
AWS FSx for NetApp ONTAP (FSxN) for
MLOps
NetApp Solutions
NetApp
March 19, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-
solutions/ai/mlops_fsxn_s3_integration.html on March 19, 2024. Always check docs.netapp.com for the
latest.

Table of Contents

AWS FSx for NetApp ONTAP (FSxN) for MLOps . 1

Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker 1

Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in

SageMaker . 15

Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD). 24

AWS FSx for NetApp ONTAP (FSxN) for MLOps

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

This section delves into the practical application of AI infrastructure development, providing an end-to-end

walkthrough of constructing an MLOps pipeline using FSxN. Comprising three comprehensive examples, it

guides you to meet your MLOps needs via this powerful data management platform.

These articles focus on:

1. Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker

2. Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in

SageMaker

3. Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD)

By the end of this section, you will have gained a solid understanding of how to use FSxN to streamline MLOps

processes.

Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a
private S3 bucket into AWS SageMaker

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

Using SageMaker as an example, this page provides guidance on configuring FSxN as a private S3 bucket.

For more information about FSxN, please take a look at this presentation (Video Link)

User Guide

Server creation

Create a SageMaker Notebook Instance

1. Open AWS console. In the search panel, search SageMaker and click the service Amazon SageMaker.

1

http://youtube.com/watch?v=mFN13R6JuUk

2. Open the Notebook instances under Notebook tab, click the orange button Create notebook instance.

3. In the creation page,

Enter the Notebook instance name

Expand the Network panel

Leave other entries default and select a VPC, Subnet, and Security group(s). (This VPC and Subnet will

be used to create FSxN file system later)

Click the orange button Create notebook instance at the bottom right.

2

3

Create an FSxN File System

1. Open AWS console. In the search panel, search Fsx and click the service FSx.

2. Click Create file system.

3. Select the first card FSx for NetApp ONTAP and click Next.

4

4. In the details configuration page.

a. Select the Standard create option.

b. Enter the File system name and the SSD storage capacity.

5

c. Make sure to use the VPC and subnet same to the SageMaker Notebook instance.

6

d. Enter the Storage virtual machine name and Specify a password for your SVM (storage virtual

machine).

7

e. Leave other entries default and click the orange button Next at the bottom right.

f. Click the orange button Create file system at the bottom right of the review page.

8

5. It may takes about 20-40 minutes to spin up the FSx file system.

Server Configuration

ONTAP Configuration

1. Open the created FSx file system. Please make sure the status is Available.

2. Select the Administration tab and keep the Management endpoint - IP address and ONTAP

administrator username.

9

3. Open the created SageMaker Notebook instance and click Open JupyterLab.

4. In the Jupyter Lab page, open a new Terminal.

10

5. Enter the ssh command ssh <admin user name>@<ONTAP server IP> to login to the FSxN ONTAP file

system. (The user name and IP address are retrieved from the step 2)

Please use the password used when creating the Storage virtual machine.

6. Execute the commands in the following order.

We use fsxn-ontap as the name for the FSxN private S3 bucket name.

Please use the storage virtual machine name for the -vserver argument.

vserver object-store-server create -vserver fsxn-svm-demo -object-store

-server fsx_s3 -is-http-enabled true -is-https-enabled false

vserver object-store-server user create -vserver fsxn-svm-demo -user

s3user

vserver object-store-server group create -name s3group -users s3user

-policies FullAccess

vserver object-store-server bucket create fsxn-ontap -vserver fsxn-svm-

demo -type nas -nas-path /vol1

11

7. Execute the below commands to retrieve the endpoint IP and credentials for FSxN private S3.

network interface show -vserver fsxn-svm-demo -lif nfs_smb_management_1

set adv

vserver object-store-server user show

8. Keep the endpoint IP and credential for future use.

12

Client Configuration

1. In SageMaker Notebook instance, create a new Jupyter notebook.

2. Use the below code as a work around solution to upload files to FSxN private S3 bucket.

For a comprehensive code example please refer to this notebook.

fsxn_demo.ipynb

Setup configurations

-------- Manual configurations --------

seed: int = 77 # Random

seed

bucket_name: str = 'fsxn-ontap' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip: str = '<Your FSxN IP address>' # Please get

this IP address from FSXN

-------- Manual configurations --------

Workaround

Permission patch

!mkdir -p vol1

!sudo mount -t nfs $fsx_endpoint_ip:/vol1 /home/ec2-user/SageMaker/vol1

!sudo chmod 777 /home/ec2-user/SageMaker/vol1

Authentication for FSxN as a Private S3 Bucket

!aws configure set aws_access_key_id $aws_access_key_id

13

https://docs.netapp.com/us-en/netapp-solutions/media/mlops_fsxn_s3_integration_0.ipynb

!aws configure set aws_secret_access_key $aws_secret_access_key

Upload file to the FSxN Private S3 Bucket

%%capture

local_file_path: str = <Your local file path>

!aws s3 cp --endpoint-url http://$fsx_endpoint_ip /home/ec2-user

/SageMaker/$local_file_path s3://$bucket_name/$local_file_path

Read data from FSxN Private S3 bucket

Initialize a s3 resource client

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with

FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

--- End integrating SageMaker with FSXN ---

Read file byte content

bucket = s3_client.Bucket(bucket_name)

binary_data = bucket.Object(data.filename).get()['Body']

This concludes the integration between FSxN and the SageMaker instance.

Useful debugging checklist

• Ensure that the SageMaker Notebook instance and FSxN file system are in the same VPC.

• Remember to run the set dev command on ONTAP to set the privilege level to dev.

14

FAQ (As of Sep 27, 2023)

Q: Why am I getting the error "An error occurred (NotImplemented) when calling the

CreateMultipartUpload operation: The s3 command you requested is not implemented" when uploading

files to FSxN?

A: As a private S3 bucket, FSxN supports uploading files up to 100MB. When using the S3 protocol, files larger

than 100MB are divided into 100MB chunks, and the 'CreateMultipartUpload' function is called. However, the

current implementation of FSxN private S3 does not support this function.

Q: Why am I getting the error "An error occurred (AccessDenied) when calling the PutObject operations:

Access Denied" when uploading files to FSxN?

A: To access the FSxN private S3 bucket from a SageMaker Notebook instance, switch the AWS credentials to

the FSxN credentials. However, granting write permission to the instance requires a workaround solution that

involves mounting the bucket and running the 'chmod' shell command to change the permissions.

Q: How can I integrate the FSxN private S3 bucket with other SageMaker ML services?

A: Unfortunately, the SageMaker services SDK does not provide a way to specify the endpoint for the private

S3 bucket. As a result, FSxN S3 is not compatible with SageMaker services such as Sagemaker Data

Wrangler, Sagemaker Clarify, Sagemaker Glue, Sagemaker Athena, Sagemaker AutoML, and others.

Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a
Data Source for Model Training in SageMaker

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

This tutorial offers a practical example of a computer vision classification project, providing hands-on

experience in building ML models that utilize FSxN as the data source within the SageMaker environment. The

project focuses on using PyTorch, a deep learning framework, to classify tire quality based on tire images. It

emphasizes the development of machine learning models using FSxN as the data source in Amazon

SageMaker.

What is FSxN

Amazon FSx for NetApp ONTAP is indeed a fully managed storage solution offered by AWS. It leverages

NetApp’s ONTAP file system to provide reliable and high-performance storage. With support for protocols like

NFS, SMB, and iSCSI, it allows seamless access from different compute instances and containers. The service

is designed to deliver exceptional performance, ensuring fast and efficient data operations. It also offers high

availability and durability, ensuring that your data remains accessible and protected. Additionally, the storage

capacity of Amazon FSx for NetApp ONTAP is scalable, allowing you to easily adjust it according to your

needs.

Prerequisite

Network Environment

15

FSxN (Amazon FSx for NetApp ONTAP) is an AWS storage service. It includes a file system running on the

NetApp ONTAP system and an AWS-managed system virtual machine (SVM) that connects to it. In the

provided diagram, the NetApp ONTAP server managed by AWS is located outside the VPC. The SVM serves

as the intermediary between SageMaker and the NetApp ONTAP system, receiving operation requests from

SageMaker and forwarding them to the underlying storage. To access FSxN, SageMaker must be placed

within the same VPC as the FSxN deployment. This configuration ensures communication and data access

between SageMaker and FSxN.

Data Access

In real-world scenarios, data scientists typically utilize the existing data stored in FSxN to build their machine

learning models. However, for demonstration purposes, since the FSxN file system is initially empty after

creation, it is necessary to manually upload the training data. This can be achieved by mounting FSxN as a

volume to SageMaker. Once the file system is successfully mounted, you can upload your dataset to the

mounted location, making it accessible for training your models within the SageMaker environment. This

approach allows you to leverage the storage capacity and capabilities of FSxN while working with SageMaker

for model development and training.

The data reading process involves configuring FSxN as a private S3 bucket. To learn the detailed configuration

instructions, please refer to Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket

into AWS SageMaker

Integration Overview

16

The workflow of using training data in FSxN to build a deep learning model in SageMaker can be summarized

into three main steps: data loader definition, model training, and deployment. At a high level, these steps form

the foundation of an MLOps pipeline. However, each step involves several detailed sub-steps for a

comprehensive implementation. These sub-steps encompass various tasks such as data preprocessing,

dataset splitting, model configuration, hyperparameter tuning, model evaluation, and model deployment. These

steps ensure a thorough and effective process for building and deploying deep learning models using training

data from FSxN within the SageMaker environment.

Step-by-Step Integration

Data Loader

In order to train a PyTorch deep learning network with data, a data loader is created to facilitate the feeding of

data. The data loader not only defines the batch size but also determines the procedure for reading and

preprocessing each record within the batch. By configuring the data loader, we can handle the processing of

data in batches, enabling training of the deep learning network.

The data loader consists of 3 parts.

Preprocessing Function

from torchvision import transforms

preprocess = transforms.Compose([

 transforms.ToTensor(),

 transforms.Resize((224,224)),

 transforms.Normalize(

 mean=[0.485, 0.456, 0.406],

 std=[0.229, 0.224, 0.225]

)

])

The above code snippet demonstrates the definition of image preprocessing transformations using the

torchvision.transforms module. In this turtorial, the preprocess object is created to apply a series of

transformations. Firstly, the ToTensor() transformation converts the image into a tensor representation.

Subsequently, the Resize 224,224 transformation resizes the image to a fixed size of 224x224 pixels. Finally,

the Normalize() transformation normalizes the tensor values by subtracting the mean and dividing by the

standard deviation along each channel. The mean and standard deviation values used for normalization are

17

commonly employed in pre-trained neural network models. Overall, this code prepares the image data for

further processing or input into a pre-trained model by converting it to a tensor, resizing it, and normalizing the

pixel values.

The PyTorch Dataset Class

import torch

from io import BytesIO

from PIL import Image

class FSxNImageDataset(torch.utils.data.Dataset):

 def __init__(self, bucket, prefix='', preprocess=None):

 self.image_keys = [

 s3_obj.key

 for s3_obj in list(bucket.objects.filter(Prefix=prefix).all())

]

 self.preprocess = preprocess

 def __len__(self):

 return len(self.image_keys)

 def __getitem__(self, index):

 key = self.image_keys[index]

 response = bucket.Object(key)

 label = 1 if key[13:].startswith('defective') else 0

 image_bytes = response.get()['Body'].read()

 image = Image.open(BytesIO(image_bytes))

 if image.mode == 'L':

 image = image.convert('RGB')

 if self.preprocess is not None:

 image = self.preprocess(image)

 return image, label

This class provides functionality to obtain the total number of records in the dataset and defines the method for

reading data for each record. Within the getitem function, the code utilizes the boto3 S3 bucket object to

retrieve the binary data from FSxN. The code style for accessing data from FSxN is similar to reading data

from Amazon S3. The subsequent explanation delves into the creation process of the private S3 object

bucket.

FSxN as a private S3 repository

18

seed = 77 # Random seed

bucket_name = '<Your ONTAP bucket name>' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip = '<Your FSxN IP address>' # Please get

this IP address from FSXN

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

s3_client = boto3.resource('s3')

bucket = s3_client.Bucket(bucket_name)

--- End integrating SageMaker with FSXN ---

To read data from FSxN in SageMaker, a handler is created that points to the FSxN storage using the S3

protocol. This allows FSxN to be treated as a private S3 bucket. The handler configuration includes specifying

the IP address of the FSxN SVM, the bucket name, and the necessary credentials. For a comprehensive

explanation on obtaining these configuration items, please refer to the document at Part 1 - Integrating AWS

FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker.

In the example mentioned above, the bucket object is used to instantiate the PyTorch dataset object. The

dataset object will be further explained in the subsequent section.

19

https://docs.netapp.com/us-en/netapp-solutions/ai/mlops_fsxn_s3_integration.html
https://docs.netapp.com/us-en/netapp-solutions/ai/mlops_fsxn_s3_integration.html

The PyTorch Data Loader

from torch.utils.data import DataLoader

torch.manual_seed(seed)

1. Hyperparameters

batch_size = 64

2. Preparing for the dataset

dataset = FSxNImageDataset(bucket, 'dataset/tyre', preprocess=preprocess)

train, test = torch.utils.data.random_split(dataset, [1500, 356])

data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

In the example provided, a batch size of 64 is specified, indicating that each batch will contain 64 records. By

combining the PyTorch Dataset class, the preprocessing function, and the training batch size, we obtain the

data loader for training. This data loader facilitates the process of iterating through the dataset in batches

during the training phase.

Model Training

from torch import nn

class TyreQualityClassifier(nn.Module):

 def __init__(self):

 super().__init__()

 self.model = nn.Sequential(

 nn.Conv2d(3,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,64,(3,3)),

 nn.ReLU(),

 nn.Flatten(),

 nn.Linear(64*(224-6)*(224-6),2)

)

 def forward(self, x):

 return self.model(x)

20

import datetime

num_epochs = 2

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = TyreQualityClassifier()

fn_loss = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

model.to(device)

for epoch in range(num_epochs):

 for idx, (X, y) in enumerate(data_loader):

 X = X.to(device)

 y = y.to(device)

 y_hat = model(X)

 loss = fn_loss(y_hat, y)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 current_time = datetime.datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 print(f"Current Time: {current_time} - Epoch [{epoch+1}/

{num_epochs}]- Batch [{idx + 1}] - Loss: {loss}", end='\r')

This code implements a standard PyTorch training process. It defines a neural network model called

TyreQualityClassifier using convolutional layers and a linear layer to classify tire quality. The training loop

iterates over data batches, computes the loss, and updates the model’s parameters using backpropagation

and optimization. Additionally, it prints the current time, epoch, batch, and loss for monitoring purposes.

Model Deployment

Deployment

21

import io

import os

import tarfile

import sagemaker

1. Save the PyTorch model to memory

buffer_model = io.BytesIO()

traced_model = torch.jit.script(model)

torch.jit.save(traced_model, buffer_model)

2. Upload to AWS S3

sagemaker_session = sagemaker.Session()

bucket_name_default = sagemaker_session.default_bucket()

model_name = f'tyre_quality_classifier.pth'

2.1. Zip PyTorch model into tar.gz file

buffer_zip = io.BytesIO()

with tarfile.open(fileobj=buffer_zip, mode="w:gz") as tar:

 # Add PyTorch pt file

 file_name = os.path.basename(model_name)

 file_name_with_extension = os.path.split(file_name)[-1]

 tarinfo = tarfile.TarInfo(file_name_with_extension)

 tarinfo.size = len(buffer_model.getbuffer())

 buffer_model.seek(0)

 tar.addfile(tarinfo, buffer_model)

2.2. Upload the tar.gz file to S3 bucket

buffer_zip.seek(0)

boto3.resource('s3') \

 .Bucket(bucket_name_default) \

 .Object(f'pytorch/{model_name}.tar.gz') \

 .put(Body=buffer_zip.getvalue())

The code saves the PyTorch model to Amazon S3 because SageMaker requires the model to be stored in S3

for deployment. By uploading the model to Amazon S3, it becomes accessible to SageMaker, allowing for the

deployment and inference on the deployed model.

import time

from sagemaker.pytorch import PyTorchModel

from sagemaker.predictor import Predictor

from sagemaker.serializers import IdentitySerializer

from sagemaker.deserializers import JSONDeserializer

class TyreQualitySerializer(IdentitySerializer):

22

 CONTENT_TYPE = 'application/x-torch'

 def serialize(self, data):

 transformed_image = preprocess(data)

 tensor_image = torch.Tensor(transformed_image)

 serialized_data = io.BytesIO()

 torch.save(tensor_image, serialized_data)

 serialized_data.seek(0)

 serialized_data = serialized_data.read()

 return serialized_data

class TyreQualityPredictor(Predictor):

 def __init__(self, endpoint_name, sagemaker_session):

 super().__init__(

 endpoint_name,

 sagemaker_session=sagemaker_session,

 serializer=TyreQualitySerializer(),

 deserializer=JSONDeserializer(),

)

sagemaker_model = PyTorchModel(

 model_data=f's3://{bucket_name_default}/pytorch/{model_name}.tar.gz',

 role=sagemaker.get_execution_role(),

 framework_version='2.0.1',

 py_version='py310',

 predictor_cls=TyreQualityPredictor,

 entry_point='inference.py',

 source_dir='code',

)

timestamp = int(time.time())

pytorch_endpoint_name = '{}-{}-{}'.format('tyre-quality-classifier', 'pt',

timestamp)

sagemaker_predictor = sagemaker_model.deploy(

 initial_instance_count=1,

 instance_type='ml.p3.2xlarge',

 endpoint_name=pytorch_endpoint_name

)

This code facilitates the deployment of a PyTorch model on SageMaker. It defines a custom serializer,

TyreQualitySerializer, which preprocesses and serializes input data as a PyTorch tensor. The

TyreQualityPredictor class is a custom predictor that utilizes the defined serializer and a JSONDeserializer.

The code also creates a PyTorchModel object to specify the model’s S3 location, IAM role, framework version,

and entry point for inference. The code generates a timestamp and constructs an endpoint name based on the

23

model and timestamp. Finally, the model is deployed using the deploy method, specifying the instance count,

instance type, and generated endpoint name. This enables the PyTorch model to be deployed and accessible

for inference on SageMaker.

Inference

image_object = list(bucket.objects.filter('dataset/tyre'))[0].get()

image_bytes = image_object['Body'].read()

with Image.open(with Image.open(BytesIO(image_bytes)) as image:

 predicted_classes = sagemaker_predictor.predict(image)

 print(predicted_classes)

This is the example of using the deployed endpoint to do the inference.

Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD)

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

In this tutorial, you will learn how to leverage various AWS services to construct a simple MLOps pipeline that

encompasses Continuous Integration (CI), Continuous Training (CT), and Continuous Deployment (CD). Unlike

traditional DevOps pipelines, MLOps requires additional considerations to complete the operational cycle. By

following this tutorial, you will gain insights into incorporating CT into the MLOps loop, enabling continuous

training of your models and seamless deployment for inference. The tutorial will guide you through the process

of utilizing AWS services to establish this end-to-end MLOps pipeline.

Manifest

Functionality Name Comment

Data storage AWS FSxN Refer to Part 1 - Integrating AWS

FSx for NetApp ONTAP (FSxN) as

a private S3 bucket into AWS

SageMaker.

Data science IDE AWS SageMaker This tutorial is based on the Jupyter

notebook presented in Part 2 -

Leveraging AWS FSx for NetApp

ONTAP (FSxN) as a Data Source

for Model Training in SageMaker.

Function to trigger the MLOps

pipeline

AWS Lambda function -

Cron job trigger AWS EventBridge -

Deep learning framework PyTorch -

24

Functionality Name Comment

AWS Python SDK boto3 -

Programming Language Python v3.10

Prerequisite

• An pre-configured FSxN file system. This tutorial utilizes data stored in FSxN for the training process.

• A SageMaker Notebook instance that is configured to share the same VPC as the FSxN file system

mentioned above.

• Before triggering the AWS Lambda function, ensure that the SageMaker Notebook instance is in

stopped status.

• The ml.g4dn.xlarge instance type is required to leverage the GPU acceleration necessary for the

computations of deep neural networks.

Architecture

This MLOps pipeline is a practical implementation that utilizes a cron job to trigger a serverless function, which

in turn executes an AWS service registered with a lifecycle callback function. The AWS EventBridge acts as

the cron job. It periodically invokes an AWS Lambda function responsible for retraining and redeploying the

model. This process involves spinning up the AWS SageMaker Notebook instance to perform the necessary

tasks.

Step-by-Step Configuration

Lifecycle configurations

To configure the lifecycle callback function for the AWS SageMaker Notebook instance, you would utilize

Lifecycle configurations. This service allow you to define the necessary actions to be performed during when

spinning up the notebook instance. Specifically, a shell script can be implemented within the Lifecycle

configurations to automatically shut down the notebook instance once the training and deployment processes

are completed. This is a required configuration as the cost is one of the major consideration in MLOps.

It’s important to note that the configuration for Lifecycle configurations needs to be set up in advance.

Therefore, it is recommended to prioritize configuring this aspect before proceeding with the other MLOps

pipeline setup.

1. To set up a Lifecycle configurations, open the Sagemaker panel and navigate to Lifecycle configurations

under the section Admin configurations.

25

2. Select the Notebook Instance tab and click the Create configuration button

26

3. Paste the below code to the entry area.

#!/bin/bash

set -e

sudo -u ec2-user -i <<'EOF'

1. Retraining and redeploying the model

NOTEBOOK_FILE=/home/ec2-

user/SageMaker/tyre_quality_classification_local_training.ipynb

echo "Activating conda env"

source /home/ec2-user/anaconda3/bin/activate pytorch_p310

nohup jupyter nbconvert "$NOTEBOOK_FILE"

--ExecutePreprocessor.kernel_name=python --execute --to notebook &

nbconvert_pid=$!

conda deactivate

2. Scheduling a job to shutdown the notebook to save the cost

PYTHON_DIR='/home/ec2-

user/anaconda3/envs/JupyterSystemEnv/bin/python3.10'

echo "Starting the autostop script in cron"

(crontab -l 2>/dev/null; echo "*/5 * * * * bash -c 'if ps -p

$nbconvert_pid > /dev/null; then echo \"Notebook is still running.\" >>

/var/log/jupyter.log; else echo \"Notebook execution completed.\" >>

/var/log/jupyter.log; $PYTHON_DIR -c \"import boto3;boto3.client(

\'sagemaker\').stop_notebook_instance(NotebookInstanceName=get_notebook_

name())\" >> /var/log/jupyter.log; fi'") | crontab -

EOF

27

4. This script executes the Jupyter Notebook, which handles the retraining and redeployment of the model for

inference. After the execution is complete, the notebook will automatically shut down within 5 minutes. To

learn more about the problem statement and the code implementation, please refer to Part 2 - Leveraging

AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in SageMaker.

5. After the creation, navigate to Notebook instances, select the target instance, and click Update settings

under Actions dropdown.

28

6. Select the created Lifecycle configuration and click Update notebook instance.

29

AWS Lambda serverless function

As mentioned earlier, the AWS Lambda function is responsible for spinning up the AWS SageMaker

Notebook instance.

1. To create an AWS Lambda function, navigate to the respective panel, switch to the Functions tab, and

click on Create Function.

2. Please file all required entries on the page and remember to switch the Runtime to Python 3.10.

30

3. Please verify that the designated role has the required permission AmazonSageMakerFullAccess and

click on the Create function button.

31

4. Select the created Lambda function. In the code tab, copy and paste the following code into the text area.

This code starts the notebook instance named fsxn-ontap.

import boto3

import logging

def lambda_handler(event, context):

 client = boto3.client('sagemaker')

 logging.info('Invoking SageMaker')

 client.start_notebook_instance(NotebookInstanceName='fsxn-ontap')

 return {

 'statusCode': 200,

 'body': f'Starting notebook instance: {notebook_instance_name}'

 }

32

5. Click the Deploy button to apply this code change.

6. To specify how to trigger this AWS Lambda function, click on the Add Trigger button.

33

7. Select EventBridge from the dropdown menu, then click on the radio button labeled Create a new rule. In

the schedule expression field, enter rate(1 day), and click on the Add button to create and apply this

new cron job rule to the AWS Lambda function.

34

After completing the two-step configuration, on a daily basis, the AWS Lambda function will initiate the

SageMaker Notebook, perform model retraining using the data from the FSxN repository, redeploy the

updated model to the production environment, and automatically shut down the SageMaker Notebook

instance to optimize cost. This ensures that the model remains up to date.

This concludes the tutorial for developing an MLOps pipeline.

35

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

36

http://www.netapp.com/TM

	AWS FSx for NetApp ONTAP (FSxN) for MLOps : NetApp Solutions
	Table of Contents
	AWS FSx for NetApp ONTAP (FSxN) for MLOps
	Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker
	Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in SageMaker
	Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD)

