Data Protection for OpenShift Virtualization
NetApp Solutions
NetApp
May 17, 2024
Table of Contents

Data Protection for OpenShift Virtualization ... 1
Data protection for VMs in OpenShift Virtualization using OpenShift API for Data Protection (OADP) ... 1
Installation of OpenShift API for Data Protection (OADP) Operator .. 3
Creating on-demand backup for VMs in OpenShift Virtualization .. 12
Restore a VM from a backup .. 15
Deleting backups and restores in using Velero ... 21
Data Protection for OpenShift Virtualization

Data protection for VMs in OpenShift Virtualization using OpenShift API for Data Protection (OADP)

Author: Banu Sundhar, NetApp

This section of the reference document provides details for creating backups of VMs using the OpenShift API for Data Protection (OADP) with Velero on NetApp ONTAP S3 or NetApp StorageGRID S3. The backups of Persistent Volumes (PVs) of the VM disks are created using CSI Astra Trident Snapshots.

Virtual machines in the OpenShift Virtualization environment are containerized applications that run in the worker nodes of your OpenShift Container platform. It is important to protect the VM metadata as well as the persistent disks of the VMs, so that when they are lost or corrupted, you can recover them.

The persistent disks of the OpenShift Virtualization VMs can be backed by ONTAP storage integrated to the OpenShift Cluster using Astra Trident CSI. In this section we use OpenShift API for Data Protection (OADP) to perform backup of VMs including its data volumes to

- ONTAP Object Storage
- StorageGrid

We then restore from the backup when needed.

OADP enables backup, restore, and disaster recovery of applications on an OpenShift cluster. Data that can be protected with OADP include Kubernetes resource objects, persistent volumes, and internal images.
Red Hat OpenShift has leveraged the solutions developed by the OpenSource communities for data protection. Velero is an open-source tool to safely backup and restore, perform disaster recovery, and migrate Kubernetes cluster resources and persistent volumes. To use Velero easily, OpenShift has developed the OADP operator and the Velero plugin to integrate with the CSI storage drivers. The core of the OADP APIs that are exposed are based on the Velero APIs. After installing the OADP operator and configuring it, the backup/restore operations that can be performed are based on the operations exposed by the Velero API.

OADP 1.3 is available from the operator hub of OpenShift cluster 4.12 and later. It has a built-in Data Mover that can move CSI volume snapshots to a remote object store. This provides portability and durability by moving snapshots to an object storage location during backup. The snapshots are then available for restoration after disasters.

The following are the versions of the various components used for the examples in this section

- OpenShift Cluster 4.14
- OpenShift Virtualization installed via Operator
- OpenShift Virtualization Operator provided by Red Hat
- OADP Operator 1.13 provided by Red Hat
- Velero CLI 1.13 for Linux
- Astra Trident 24.02
- ONTAP 9.12

Astra Trident CSI
OpenShift API for Data Protection (OADP)
Velero
Installation of OpenShift API for Data Protection (OADP) Operator

This section outlines the installation of OpenShift API for Data Protection (OADP) Operator.

Prerequisites

- A Red Hat OpenShift cluster (later than version 4.12) installed on bare-metal infrastructure with RHCOS worker nodes
- A NetApp ONTAP cluster integrated with the cluster using Astra Trident
- A Trident backend configured with an SVM on ONTAP cluster
- A StorageClass configured on the OpenShift cluster with Astra Trident as the provisioner
- Trident Snapshot class created on the cluster
- Cluster-admin access to Red Hat OpenShift cluster
- Admin access to NetApp ONTAP cluster
- OpenShift Virtualization operator installed and configured
- VMs deployed in a Namespace on OpenShift Virtualization
- An admin workstation with tridentctl and oc tools installed and added to $PATH

If you want to take a backup of a VM when it is in the Running state, then you must install the QEMU guest agent on that virtual machine. If you install the VM using an existing template, then QEMU agent is installed automatically. QEMU allows the guest agent to quiesce in-flight data in the guest OS during the snapshot process, and avoid possible data corruption. If you do not have QEMU installed, you can stop the virtual machine before taking a backup.

Steps to install OADP Operator

1. Go to the Operator Hub of the cluster and select Red Hat OADP operator. In the Install page, use all the default selections and click install. On the next page, again use all the defaults and click Install. The OADP operator will be installed in the namespace openshift-adp.
OperatorHub

Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace, or add optional add-ons and shared services to your developers. After installation, the Operator capabilities will appear in the Developer Catalog providing a self-service capability.

OADP Operator

1.3.0 provided by Red Hat

Install

Channel
stable-1.3

Version
1.3.0

Capability level
- Basic Install
- Seamless Upgrades
- Full Lifecycle
- Deep Insights
- Auto Pilot

Source
Red Hat

Provider
Red Hat

Infrastructure features
Disconnected

OpenShift API for Data Protection (OADP) operator sets up and installs Velero on the OpenShift platform, allowing users to backup and restore applications.

Backup and restore Kubernetes resources and internal images, at the granularity of a namespace, using a version of Velero appropriate for the installed version of OADP.

OADP backs up Kubernetes objects and internal images by saving them as an archive file on object storage. OADP backs up persistent volumes (PVs) by creating snapshots with the native cloud snapshot API or with the Container Storage Interface (CSI). For cloud providers that do not support snapshots, OADP backs up resources and PV data with Restic or Kopia.

- Installing OADP for application backup and restore
- Installing OADP on a ROSA cluster and using STS, please follow the Getting Started Steps 1-3 in order to obtain the role ARN needed for using the standardized STS configuration flow via OLM
- Frequently Asked Questions
Prerequisites for Velero configuration with Ontap S3 details

After the installation of the operator succeeds, configure the instance of Velero. Velero can be configured to use S3 compatible Object Storage. Configure ONTAP S3 using the procedures shown in the Object Storage Management section of ONTAP documentation. You will need the following information from your ONTAP S3 configuration to integrate with Velero.

- A Logical Interface (LIF) that can be used to access S3
- User credentials to access S3 that includes the access key and the secret access key
- A bucket name in S3 for backups with access permissions for the user
- For secure access to the Object storage, TLS certificate should be installed on the Object Storage server.

Prerequisites for Velero configuration with StorageGrid S3 details

Velero can be configured to use S3 compatible Object Storage. You can configure StorageGrid S3 using the procedures shown in the StorageGrid documentation. You will need the following information from your StorageGrid S3 configuration to integrate with Velero.

- The endpoint that can be used to access S3
- User credentials to access S3 that includes the access key and the secret access key
- A bucket name in S3 for backups with access permissions for the user
- For secure access to the Object storage, TLS certificate should be installed on the Object Storage server.

Steps to configure Velero

- First, create a secret for an ONTAP S3 user credential or StorageGrid Tenant user credentials. This will be used to configure Velero later. You can create a secret from the CLI or from the web console. To create a secret from the web console, select Secrets, then click on Key/Value Secret. Provide the values for the credential name, key and the value as shown. Be sure to use the Access Key Id and Secret Access Key of your S3 user. Name the secret appropriately. In the sample below, a secret with ONTAP S3 user credentials named ontap-s3-credentials is created.
To create a secret named sg-s3-credentials from the CLI you can use the following command.
• Next, to configure Velero, select Installed Operators from the menu item under Operators, click on OADP operator, and then select the DataProtectionApplication tab.

Click on Create DataProtectionApplication. In the form view, provide a name for the DataProtection Application or use the default name.

Now go to the YAML view and replace the spec information as shown in the yaml file examples below.

Sample yaml file for configuring Velero with ONTAP S3 as the backupLocation
spec:
 backupLocations:
 - velero:
 config:
 insecureSkipTLSVerify: 'true' -> use this for https communication with ONTAP S3
 profile: default
 region: us-east
 s3ForcePathStyle: 'True' -> This allows use of IP in s3URL
 s3Url: 'https://10.xx.xx.xx' -> Ensure TLS certificate for S3 is configured
 credential:
 key: cloud
 name: ontap-s3-credentials -> previously created secret
default: true
 objectStorage:
 bucket: velero -> Your bucket name previously created in S3 for backups
 prefix: demobackup -> The folder that will be created in the bucket
 provider: aws
 configuration:
 nodeAgent:
 enable: true
 uploaderType: kopia
 # default Data Mover uses Kopia to move snapshots to Object Storage
 velero:
 defaultPlugins:
 - csi -> Add this plugin
 - openshift
 - aws
 - kubevirt -> Add this plugin

Sample yaml file for configuring Velero with StorageGrid S3 as the backupLocation and snapshotLocation
The spec section in the yaml file should be configured appropriately for the following parameters similar to the example above.

backupLocations
ONTAP S3 or StorageGrid S3 (with its credentials and other information as shown in the yaml) is configured as the default BackupLocation for velero.

snapshotLocations
If you use Container Storage Interface (CSI) snapshots, you do not need to specify a snapshot location because you will create a VolumeSnapshotClass CR to register the CSI driver. In our example, you use Astra Trident CSI and you have previously created VolumeSnapshotClass CR using the Trident CSI driver.

Enable CSI plugin
Add csi to the defaultPlugins for Velero to back up persistent volumes with CSI snapshots. The Velero CSI plugins, to backup CSI backed PVCs, will choose the VolumeSnapshotClass in the cluster that has `velero.io/csi-volumesnapshot-class` label set on it. For this

- You must have the trident VolumeSnapshotClass created.
- Edit the label of the trident-snapshotclass and set it to
Ensure that the snapshots can persist even if the VolumeSnapshot objects are deleted. This can be done by setting the `deletionPolicy` to Retain. If not, deleting a namespace will completely lose all PVCs ever backed up in it.

```yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
  name: trident-snapshotclass
driver: csi.trident.netapp.io
deletionPolicy: Retain
```
Ensure that the DataProtectionApplication is created and is in condition: Reconciled.

The OADP operator will create a corresponding BackupStorageLocation. This will be used when creating a backup.
Creating on-demand backup for VMs in OpenShift Virtualization

This section outlines how to create on-demand backup for VMs in OpenShift Virtualization.

Steps to create a backup of a VM

To create an on-demand backup of the entire VM (VM metadata and VM disks), click on the Backup tab. This creates a Backup Custom Resource (CR). A sample yaml is provided to create the Backup CR. Using this yaml, the VM and its disks in the specified namespace will be backed up. Additional parameters can be set as shown in the documentation.

A snapshot of the persistent volumes backing the disks will be created by the CSI. A backup of the VM along with the snapshot of its disks are created and stored in the backup location specified in the yaml. The backup will remain in the system for 30 days as specified in the ttl.
apiVersion: velero.io/v1
kind: Backup
metadata:
 name: backup1
 namespace: openshift-adp
spec:
 includedNamespaces:
 - virtual-machines-demo
 snapshotVolumes: true
 storageLocation: velero-demo-1 -->this is the backupStorageLocation previously created when Velero is configured.
 ttl: 720h0m0s

Once the backup completes, its Phase will show as completed.

You can inspect the backup in the Object storage with the help of an S3 browser application. The path of the backup shows in the configured bucket with the prefix name (velero/demobackup). You can see the contents of the backup includes the volume snapshots, logs, and other metadata of the virtual machine.

In StorageGrid, you can also use the S3 console that is available from the Tenant Manager to view the backup objects.
Creating scheduled backups for VMs in OpenShift Virtualization

To create backups on a schedule, you need to create a Schedule CR. The schedule is simply a Cron expression allowing you to specify the time at which you want to create the backup. A sample yaml to create a Schedule CR.

```yaml
apiVersion: velero.io/v1
kind: Schedule
metadata:
  name: <schedule>
  namespace: openshift-adp
spec:
  schedule: 0 7 * * *
  template:
    hooks: {}
    includedNamespaces:
    - <namespace>
  storageLocation: velero-demo-1
  defaultVolumesToFsBackup: true
  ttl: 720h0m0s
```

The Cron expression 0 7 * * * means a backup will be created at 7:00 every day. The namespaces to be included in the backup and the storage location for the backup are also specified. So instead of a Backup CR, Schedule CR is used to create a backup at the specified time and frequency.

Once the schedule is created, it will be Enabled.
Backups will be created according to this schedule, and can be viewed from the Backup tab.

Restore a VM from a backup

This section describes how to restore virtual machine(s) from a backup.

Prerequisites

To restore from a backup, let us assume that the namespace where the virtual machine existed got accidentally deleted.
Restore to the same namespace

To restore from the backup that we just created, we need to create a Restore Custom Resource (CR). We need to provide it a name, provide the name of the backup that we want to restore from and set the restorePVs to true. Additional parameters can be set as shown in the documentation. Click on Create button.

```
apiVersion: velero.io/v1
kind: Restore
metadata:
  name: restore1
  namespace: openshift-adp
spec:
  backupName: backup1
  restorePVs: true
```

When the phase shows completed, you can see that the virtual machines have been restored to the state when the snapshot was taken. (If the backup was created when the VM was running, restoring the VM from the backup will start the restored VM and bring it to a running state). The VM is restored to the same namespace.
Restore to a different namespace

To restore the VM to a different namespace, you can provide a namespaceMapping in the yaml definition of the Restore CR.

The following sample yaml file creates a Restore CR to restore a VM and its disks in the virtual-machines-demo namespace when the backup was taken to the virtual-machines namespace.

```yaml
apiVersion: velero.io/v1
kind: Restore
metadata:
  name: restore-to-different-ns
  namespace: openshift-adp
spec:
  backupName: backup
  restorePVs: true
  includedNamespaces:
  - virtual-machines-demo
  namespaceMapping:
    virtual-machines-demo: virtual-machines
```

When the phase shows completed, you can see that the virtual machines have been restored to the state when the snapshot was taken. (If the backup was created when the VM was running, restoring the VM from the backup will start the restored VM and bring it to a running state). The VM is restored to a different namespace as specified in the yaml.
Restore to a different storage class

Velero provides a generic ability to modify the resources during restore by specifying json patches. The json patches are applied to the resources before they are restored. The json patches are specified in a configmap and the configmap is referenced in the restore command. This feature enables you to restore using different storage class.

In the example below, the virtual machine, during creation uses ontap-nas as the storage class for its disks. A backup of the virtual machine named backup1 is created.

Simulate a loss of the VM by deleting the VM.

To restore the VM using a different storage class, for example, ontap-nas-eco storage class, you need to do the following two steps:

Step 1

Create a config map (console) in the openshift-adp namespace as follows:
Fill in the details as shown in the screenshot:
Select namespace : openshift-adp
Name: change-storage-class-config (can be any name)
Key: change-storage-class-config.yaml:
Value:

version: v1
resourceModifierRules:
 - conditions:
 groupResource: persistentvolumeclaims
 resourceNameRegex: "^rhel*"
 namespaces:
 - virtual-machines-demo
 patches:
 - operation: replace
 path: "/spec/storageClassName"
 value: "ontap-nas-eco"

The resulting config map object should look like this (CLI):
This config map will apply the resource modifier rule when the restore is created. A patch will be applied to replace the storage class name to ontap-nas-eco for all persistent volume claims starting with rhel.

Step 2

To restore the VM use the following command from the Velero CLI:

```
# velero restore create restore1 --from-backup backup1 --resource 
-modifier-configmap change-storage-class-config -n openshift-adp
```

The VM is restored in the same namespace with the disks created using the storage class ontap-nas-eco.
Deleting backups and restores in using Velero

This section outlines how to delete backups and restores for VMs in OpenShift Virtualization using Velero.

Deleting a backup

You can delete a Backup CR without deleting the Object Storage data by using the OC CLI tool.

```
oc delete backup <backup_CR_name> -n <velero_namespace>
```

If you want the delete the Backup CR and delete the associated object storage data, you can do so by using the Velero CLI tool.

Download the CLI as given in the instructions in the Velero documentation.

Execute the following delete command using the Velero CLI

```
velero backup delete <backup_CR_name> -n <velero_namespace>
```

You can also delete the Restore CR using the Velero CLI

```
velero restore delete restore --namespace openshift-adp
```

You can use oc command as well as the UI to delete the restore CR

```
oc delete backup <backup_CR_name> -n <velero_namespace>
```
Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.