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Example High-performance Jobs for AIPod
Deployments

Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following

tasks from the deployment jump host. With Trident, you can quickly and easily make a

data volume, potentially containing petabytes of data, accessible to a Kubernetes

workload. To make such a data volume accessible from within a Kubernetes pod, simply

specify a PVC in the pod definition.

This section assumes that you have already containerized (in the Docker container format) the

specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark

workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the

ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features

eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring

eight or more GPUs is not present or is currently occupied with another workload. If so, then the job

remains in a pending state until such a worker node becomes available.

Additionally, in order to maximize storage bandwidth, the volume that contains the needed training data is

mounted twice within the pod that this job creates. Another volume is also mounted in the pod. This second

volume will be used to store results and metrics. These volumes are referenced in the job definition by

using the names of the PVCs. For more information about Kubernetes jobs, see the official Kubernetes

documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this

example job creates. The default size of the /dev/shm virtual volume that is automatically created by the

Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an emptyDir

volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more

information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >

privileged value of true. This value means that the container effectively has root access on the host.

This annotation is used in this case because the specific workload that is being executed requires root

access. Specifically, a clear cache operation that the workload performs requires root access. Whether or

not this privileged: true annotation is necessary depends on the requirements of the specific

workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml

apiVersion: batch/v1

kind: Job

metadata:

  name: netapp-tensorflow-single-imagenet

spec:
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  backoffLimit: 5

  template:

    spec:

      volumes:

      - name: dshm

        emptyDir:

          medium: Memory

      - name: testdata-iface1

        persistentVolumeClaim:

          claimName: pb-fg-all-iface1

      - name: testdata-iface2

        persistentVolumeClaim:

          claimName: pb-fg-all-iface2

      - name: results

        persistentVolumeClaim:

          claimName: tensorflow-results

      containers:

      - name: netapp-tensorflow-py2

        image: netapp/tensorflow-py2:19.03.0

        command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--

num_devices=8"]

        resources:

          limits:

            nvidia.com/gpu: 8

        volumeMounts:

        - mountPath: /dev/shm

          name: dshm

        - mountPath: /mnt/mount_0

          name: testdata-iface1

        - mountPath: /mnt/mount_1

          name: testdata-iface2

        - mountPath: /tmp

          name: results

        securityContext:

          privileged: true

      restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml

job.batch/netapp-tensorflow-single-imagenet created

$ kubectl get jobs

NAME                                       COMPLETIONS   DURATION   AGE

netapp-tensorflow-single-imagenet          0/1           24s        24s

2. Confirm that the job that you created in step 1 is running correctly. The following example command

confirms that a single pod was created for the job, as specified in the job definition, and that this pod is
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currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME                                             READY   STATUS

RESTARTS   AGE

IP              NODE            NOMINATED NODE

netapp-tensorflow-single-imagenet-m7x92          1/1     Running     0

3m    10.233.68.61    10.61.218.154   <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example commands

confirm that the job completed successfully.
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$ kubectl get jobs

NAME                                             COMPLETIONS   DURATION

AGE

netapp-tensorflow-single-imagenet                1/1           5m42s

10m

$ kubectl get pods

NAME                                                   READY   STATUS

RESTARTS   AGE

netapp-tensorflow-single-imagenet-m7x92                0/1     Completed

0          11m

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 711

Total images/sec = 6530.59125

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

=========================================

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by

slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000

--datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_ima

genet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job object that

was created in step 1.

When you delete the job object, Kubernetes automatically deletes any associated pods.
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$ kubectl get jobs

NAME                                             COMPLETIONS   DURATION

AGE

netapp-tensorflow-single-imagenet                1/1           5m42s

10m

$ kubectl get pods

NAME                                                   READY   STATUS

RESTARTS   AGE

netapp-tensorflow-single-imagenet-m7x92                0/1     Completed

0          11m

$ kubectl delete job netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform

the following tasks on the deployment jump host. This process enables you to take

advantage of data that is stored on a NetApp volume and to use more GPUs than a

single worker node can provide. See the following figure for a depiction of a synchronous

distributed AI job.

Synchronous distributed jobs can help increase performance and training accuracy compared

with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs

versus asynchronous jobs is outside the scope of this document.

1. The following example commands show the creation of one worker that participates in the synchronous

distributed execution of the same TensorFlow benchmark job that was executed on a single node in the

example in the section Execute a Single-Node AI Workload. In this specific example, only a single worker

is deployed because the job is executed across two worker nodes.
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This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that

features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize

performance, you might want to increase this number to be equal to the number of GPUs that your worker

nodes feature. For more information about Kubernetes deployments, see the official Kubernetes

documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would

never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job

construct. If your worker is designed or written to complete on its own, then it might make sense to use the

job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true.

This value means that the pod uses the host worker node’s networking stack instead of the virtual

networking stack that Kubernetes usually creates for each pod. This annotation is used in this case

because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a

synchronous distributed manner. Therefore, it requires access to the host networking stack. A discussion

about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this

hostNetwork: true annotation is necessary depends on the requirements of the specific workload that

you are executing. For more information about the hostNetwork field, see the official Kubernetes

documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: netapp-tensorflow-multi-imagenet-worker

spec:

  replicas: 1

  selector:

    matchLabels:

      app: netapp-tensorflow-multi-imagenet-worker

  template:

    metadata:

      labels:

        app: netapp-tensorflow-multi-imagenet-worker

    spec:

      hostNetwork: true

      volumes:

      - name: dshm

        emptyDir:

          medium: Memory

      - name: testdata-iface1

        persistentVolumeClaim:

          claimName: pb-fg-all-iface1

      - name: testdata-iface2

        persistentVolumeClaim:

          claimName: pb-fg-all-iface2

      - name: results

        persistentVolumeClaim:

6

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/


          claimName: tensorflow-results

      containers:

      - name: netapp-tensorflow-py2

        image: netapp/tensorflow-py2:19.03.0

        command: ["bash", "/netapp/scripts/start-slave-multi.sh",

"22122"]

        resources:

          limits:

            nvidia.com/gpu: 8

        volumeMounts:

        - mountPath: /dev/shm

          name: dshm

        - mountPath: /mnt/mount_0

          name: testdata-iface1

        - mountPath: /mnt/mount_1

          name: testdata-iface2

        - mountPath: /tmp

          name: results

        securityContext:

          privileged: true

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml

deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME                                      DESIRED   CURRENT   UP-TO-DATE

AVAILABLE   AGE

netapp-tensorflow-multi-imagenet-worker   1         1         1

1           4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following

example commands confirm that a single worker pod was created for the deployment, as indicated in the

deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME                                                       READY

STATUS    RESTARTS   AGE

IP              NODE            NOMINATED NODE

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running   0          60s   10.61.218.154   10.61.218.154   <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the

synchronous multinode job. The following example commands create one master that kicks off, participates

in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was

executed on a single node in the example in the section Execute a Single-Node AI Workload.
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This example master job requests eight GPUs and thus can run on a single GPU worker node that features

eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance,

you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

The master pod that is specified in this example job definition is given a hostNetwork value of true, just

as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why

this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml

apiVersion: batch/v1

kind: Job

metadata:

  name: netapp-tensorflow-multi-imagenet-master

spec:

  backoffLimit: 5

  template:

    spec:

      hostNetwork: true

      volumes:

      - name: dshm

        emptyDir:

          medium: Memory

      - name: testdata-iface1

        persistentVolumeClaim:

          claimName: pb-fg-all-iface1

      - name: testdata-iface2

        persistentVolumeClaim:

          claimName: pb-fg-all-iface2

      - name: results

        persistentVolumeClaim:

          claimName: tensorflow-results

      containers:

      - name: netapp-tensorflow-py2

        image: netapp/tensorflow-py2:19.03.0

        command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--

num_devices=16", "--dgx_version=dgx1", "--

nodes=10.61.218.152,10.61.218.154"]

        resources:

          limits:

            nvidia.com/gpu: 8

        volumeMounts:

        - mountPath: /dev/shm

          name: dshm

        - mountPath: /mnt/mount_0

          name: testdata-iface1

        - mountPath: /mnt/mount_1
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          name: testdata-iface2

        - mountPath: /tmp

          name: results

        securityContext:

          privileged: true

      restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml

job.batch/netapp-tensorflow-multi-imagenet-master created

$ kubectl get jobs

NAME                                      COMPLETIONS   DURATION   AGE

netapp-tensorflow-multi-imagenet-master   0/1           25s        25s

4. Confirm that the master job that you created in step 3 is running correctly. The following example command

confirms that a single master pod was created for the job, as indicated in the job definition, and that this

pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you

originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME                                                       READY

STATUS    RESTARTS   AGE

IP              NODE            NOMINATED NODE

netapp-tensorflow-multi-imagenet-master-ppwwj              1/1

Running   0          45s   10.61.218.152   10.61.218.152   <none>

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running   0          26m   10.61.218.154   10.61.218.154   <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example

commands confirm that the job completed successfully.

$ kubectl get jobs

NAME                                      COMPLETIONS   DURATION   AGE

netapp-tensorflow-multi-imagenet-master   1/1           5m50s      9m18s

$ kubectl get pods

NAME                                                       READY

STATUS      RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj              0/1

Completed   0          9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running     0          35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

[10.61.218.152:00008] WARNING: local probe returned unhandled

shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at
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line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

Total images/sec = 12881.33875

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca

pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

=========================================

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8

-bind-to none -map-by slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH

-mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -x

NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x

NCCL_IB_GID_INDEX=3 -x

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094

-x NCCL_IB_CUDA_SUPPORT=1 -mca orte_base_help_aggregate 0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_im

agenet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

6. Delete the worker deployment when you no longer need it. The following example commands show the

deletion of the worker deployment object that was created in step 1.

When you delete the worker deployment object, Kubernetes automatically deletes any associated worker

pods.
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$ kubectl get deployments

NAME                                      DESIRED   CURRENT   UP-TO-DATE

AVAILABLE   AGE

netapp-tensorflow-multi-imagenet-worker   1         1         1

1           43m

$ kubectl get pods

NAME                                                       READY

STATUS      RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj              0/1

Completed   0          17m

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1

Running     0          43m

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted

$ kubectl get deployments

No resources found.

$ kubectl get pods

NAME                                            READY   STATUS

RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj   0/1     Completed   0

18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of the

master job object that was created in step 3.

When you delete the master job object, Kubernetes automatically deletes any associated master pods.

$ kubectl get jobs

NAME                                      COMPLETIONS   DURATION   AGE

netapp-tensorflow-multi-imagenet-master   1/1           5m50s      19m

$ kubectl get pods

NAME                                            READY   STATUS

RESTARTS   AGE

netapp-tensorflow-multi-imagenet-master-ppwwj   0/1     Completed   0

19m

$ kubectl delete job netapp-tensorflow-multi-imagenet-master

job.batch "netapp-tensorflow-multi-imagenet-master" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.
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