
MLRun Pipeline with Iguazio
NetApp Solutions
NetApp
June 30, 2022

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/ai/mlrun_introduction.html
on June 30, 2022. Always check docs.netapp.com for the latest.

Table of Contents

MLRun Pipeline with Iguazio . 1

TR-4834: NetApp and Iguazio for MLRun Pipeline . 1

Technology Overview . 3

Software and Hardware Requirements . 7

Network Device Failure Prediction Use Case Summary . 8

Setup Overview . 8

Deploying the Application. 13

Conclusion . 28

MLRun Pipeline with Iguazio

TR-4834: NetApp and Iguazio for MLRun Pipeline

Rick Huang, David Arnette, NetApp

Marcelo Litovsky, Iguazio

This document covers the details of the MLRun pipeline using NetApp ONTAP AI, NetApp AI Control Plane,

NetApp Cloud Volumes software, and the Iguazio Data Science Platform. We used Nuclio serverless function,

Kubernetes Persistent Volumes, NetApp Cloud Volumes, NetApp Snapshot copies, Grafana dashboard, and

other services on the Iguazio platform to build an end-to-end data pipeline for the simulation of network failure

detection. We integrated Iguazio and NetApp technologies to enable fast model deployment, data replication,

and production monitoring capabilities on premises as well as in the cloud.

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial

intelligence (AI) models. However, according to research by Google, data scientists spend ~80% of their time

figuring out how to make their models work with enterprise applications and run at scale, as shown in the

following image depicting model development in the AI/ML workflow.

To manage end-to-end AI/ML projects, a wider understanding of enterprise components is needed. Although

DevOps have taken over the definition, integration, and deployment these types of components, machine

learning operations target a similar flow that includes AI/ML projects. To get an idea of what an end-to-end

AI/ML pipeline touches in the enterprise, see the following list of required components:

• Storage

• Networking

• Databases

• File systems

1

• Containers

• Continuous integration and continuous deployment (CI/CD) pipeline

• Development integrated development environment (IDE)

• Security

• Data access policies

• Hardware

• Cloud

• Virtualization

• Data science toolsets and libraries

In this paper, we demonstrate how the partnership between NetApp and Iguazio drastically simplifies the

development of an end-to-end AI/ML pipeline. This simplification accelerates the time to market for all of your

AI/ML applications.

Target Audience

The world of data science touches multiple disciplines in information technology and business.

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their CI/CD pipelines.

• Business users want to have access to AI/ML applications. We describe how NetApp and Iguazio help

each of these roles bring value to business with our platforms.

Solution Overview

This solution follows the lifecycle of an AI/ML application. We start with the work of data scientists to define the

different steps needed to prep data and train and deploy models. We follow with the work needed to create a

full pipeline with the ability to track artifacts, experiment with execution, and deploy to Kubeflow. To complete

the full cycle, we integrate the pipeline with NetApp Cloud Volumes to enable data versioning, as seen in the

following image.

2

Next: Technology Overview

Technology Overview

NetApp Overview

NetApp is the data authority for the hybrid cloud. NetApp provides a full range of hybrid cloud data services

that simplify management of applications and data across cloud and on-premises environments to accelerate

digital transformation. Together with our partners, NetApp empowers global organizations to unleash the full

potential of their data to expand customer touch points, foster greater innovation, and optimize their operations.

NetApp ONTAP AI

NetApp ONTAP AI, powered by NVIDIA DGX systems and NetApp cloud-connected all-flash storage,

streamlines the flow of data reliably and speeds up analytics, training, and inference with your data fabric that

spans from edge to core to cloud. It gives IT organizations an architecture that provides the following benefits:

• Eliminates design complexities

• Allows independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost pointsNetApp ONTAP AI offers

converged infrastructure stacks incorporating NVIDIA DGX-1, a petaflop-scale AI system, and NVIDIA

Mellanox high-performance Ethernet switches to unify AI workloads, simplify deployment, and accelerate

ROI. We leveraged ONTAP AI with one DGX-1 and NetApp AFF A800 storage system for this technical

report. The following image shows the topology of ONTAP AI with the DGX-1 system used in this

validation.

3

NetApp AI Control Plane

The NetApp AI Control Plane enables you to unleash AI and ML with a solution that offers extreme scalability,

streamlined deployment, and nonstop data availability. The AI Control Plane solution integrates Kubernetes

and Kubeflow with a data fabric enabled by NetApp. Kubernetes, the industry-standard container orchestration

platform for cloud-native deployments, enables workload scalability and portability. Kubeflow is an open-source

machine-learning platform that simplifies management and deployment, enabling developers to do more data

science in less time. A data fabric enabled by NetApp offers uncompromising data availability and portability to

make sure that your data is accessible across the pipeline, from edge to core to cloud. This technical report

uses the NetApp AI Control Plane in an MLRun pipeline. The following image shows Kubernetes cluster

management page where you can have different endpoints for each cluster. We connected NFS Persistent

Volumes to the Kubernetes cluster, and the following images show an Persistent Volume connected to the

cluster, where NetApp Trident offers persistent storage support and data management capabilities.

4

https://www.netapp.com/us/media/ds-netapp-project-trident.pdf

5

Iguazio Overview

The Iguazio Data Science Platform is a fully integrated and secure data- science platform as a service (PaaS)

that simplifies development, accelerates performance, facilitates collaboration, and addresses operational

challenges. This platform incorporates the following components, and the Iguazio Data Science Platform is

presented in the following image:

• A data-science workbench that includes Jupyter Notebooks, integrated analytics engines, and Python

packages

• Model management with experiments tracking and automated pipeline capabilities

• Managed data and ML services over a scalable Kubernetes cluster

• Nuclio, a real-time serverless functions framework

• An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple

objects), and streaming

• Integration with third-party data sources such as NetApp, Amazon S3, HDFS, SQL databases, and

streaming or messaging protocols

• Real-time dashboards based on Grafana

6

Next: Software and Hardware Requirements

Software and Hardware Requirements

Network Configuration

The following is the network configuration requirement for setting up in the cloud:

• The Iguazio cluster and NetApp Cloud Volumes must be in the same virtual private cloud.

• The cloud manager must have access to port 6443 on the Iguazio app nodes.

• We used Amazon Web Services in this technical report. However, users have the option of deploying the

solution in any Cloud provider.For on-premises testing in ONTAP AI with NVIDIA DGX-1, we used the

Iguazio hosted DNS service for convenience.

Clients must be able to access dynamically created DNS domains. Customers can use their own DNS if

desired.

Hardware Requirements

You can install Iguazio on-premises in your own cluster. We have verified the solution in NetApp ONTAP AI

with an NVIDIA DGX-1 system. The following table lists the hardware used to test this solution.

Hardware Quantity

DGX-1 systems 1

NetApp AFF A800 system 1 high-availability (HA) pair, includes 2 controllers and

48 NVMe SSDs (3.8TB or above)

Cisco Nexus 3232C network switches 2

The following table lists the software components required for on-premise testing:

7

Software Version or Other Information

NetApp ONTAP data management software 9.7

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.4 - Ubuntu 18.04 LTS

Docker container platform 19.03.5

Container version 20.01-tf1-py2

Machine learning framework TensorFlow 1.15.0

Iguazio Version 2.8+

ESX Server 6.5

This solution was fully tested with Iguazio version 2.5 and NetApp Cloud Volumes ONTAP for AWS. The

Iguazio cluster and NetApp software are both running on AWS.

Software Version or Type

Iguazio Version 2.8+

App node M5.4xlarge

Data node I3.4xlarge

Next: Network Device Failure Prediction Use Case Summary

Network Device Failure Prediction Use Case Summary

This use case is based on an Iguazio customer in the telecommunications space in Asia. With 100K enterprise

customers and 125k network outage events per year, there was a critical need to predict and take proactive

action to prevent network failures from affecting customers. This solution provided them with the following

benefits:

• Predictive analytics for network failures

• Integration with a ticketing system

• Taking proactive action to prevent network failuresAs a result of this implementation of Iguazio, 60% of

failures were proactively prevented.

Next: Setup Overview

Setup Overview

Iguazio Installation

Iguazio can be installed on-premises or on a cloud provider. Provisioning can be done as a service and

managed by Iguazio or by the customer. In both cases, Iguazio provides a deployment application (Provazio)

to deploy and manage clusters.

For on-premises installation, please refer to NVA-1121 for compute, network, and storage setup. On-premises

deployment of Iguazio is provided by Iguazio without additional cost to the customer. See this page for DNS

and SMTP server configurations. The Provazio installation page is shown as follows.

8

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.iguazio.com/docs/latest-release/intro/setup/howto/

Next: Configuring Kubernetes Cluster

Configuring Kubernetes Cluster

This section is divided into two parts for cloud and on-premises deployment respectively.

Cloud Deployment Kubernetes Configuration

Through NetApp Cloud Manager, you can define the connection to the Iguazio Kubernetes cluster. Trident

requires access to multiple resources in the cluster to make the volume available.

1. To enable access, obtain the Kubernetes config file from one the Iguazio nodes. The file is located under

/home/Iguazio/.kube/config. Download this file to your desktop.

2. Go to Discover Cluster to configure.

9

3. Upload the Kubernetes config file. See the following image.

4. Deploy Trident and associate a volume with the cluster. See the following image on defining and assigning

a Persistent Volume to the Iguazio cluster.This process creates a Persistent Volume (PV) in Iguazio’s

Kubernetes cluster. Before you can use it, you must define a Persistent Volume Claim (PVC).

10

On-Premises Deployment Kubernetes Configuration

For on-premises installation of NetApp Trident, see TR-4798 for details. After configuring your Kubernetes

cluster and installing NetApp Trident, you can connect Trident to the Iguazio cluster to enable NetApp data

management capabilities, such as taking Snapshot copies of your data and model.

Next: Define Persistent Volume Claim

Define Persistent Volume Claim

1. Save the following YAML to a file to create a PVC of type Basic.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: netapp-file

11

https://www.netapp.com/us/media/tr-4798.pdf

2. Apply the YAML file to your Iguazio Kubernetes cluster.

Kubectl -n default-tenant apply -f <your yaml file>

Attach NetApp Volume to the Jupyter Notebook

Iguazio offers several managed services to provide data scientists with a full end-to-end stack for development

and deployment of AI/ML applications. You can read more about these components at the Iguazio Overview of

Application Services and Tools.

One of the managed services is Jupyter Notebook. Each developer gets its own deployment of a notebook

container with the resources they need for development. To give them access to the NetApp Cloud Volume,

you can assign the volume to their container and resource allocation, running user, and environment variable

settings for Persistent Volume Claims is presented in the following image.

For an on-premises configuration, you can refer to TR-4798 on the Trident setup to enable NetApp ONTAP

data management capabilities, such as taking Snapshot copies of your data or model for versioning control.

Add the following line in your Trident back- end config file to make Snapshot directories visible:

{

 …

 "defaults": {

 "snapshotDir": "true"

 }

}

You must create a Trident back- end config file in JSON format, and then run the following Trident command to

reference it:

tridentctl create backend -f <backend-file>

Next: Deploying the Application

12

https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.netapp.com/us/media/tr-4798.pdf
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/operations/tasks/backends.html

Deploying the Application

The following sections describe how to install and deploy the application.

Next: Get Code from GitHub.

Get Code from GitHub

Now that the NetApp Cloud Volume or NetApp Trident volume is available to the Iguazio

cluster and the developer environment, you can start reviewing the application.

Users have their own workspace (directory). On every notebook, the path to the user directory is /User. The

Iguazio platform manages the directory. If you follow the instructions above, the NetApp Cloud volume is

available in the /netapp directory.

Get the code from GitHub using a Jupyter terminal.

At the Jupyter terminal prompt, clone the project.

cd /User

git clone .

You should now see the netops- netapp folder on the file tree in Jupyter workspace.

Next: Configure Working Environment

Configure Working Environment

Copy the Notebook set_env-Example.ipynb as set_env.ipynb. Open and edit

13

set_env.ipynb. This notebook sets variables for credentials, file locations, and

execution drivers.

If you follow the instructions above, the following steps are the only changes to make:

1. Obtain this value from the Iguazio services dashboard: docker_registry

Example: docker-registry.default-tenant.app.clusterq.iguaziodev.com:80

2. Change admin to your Iguazio username:

IGZ_CONTAINER_PATH = '/users/admin'

The following are the ONTAP system connection details. Include the volume name that was generated

when Trident was installed. The following setting is for an on-premises ONTAP cluster:

ontapClusterMgmtHostname = '0.0.0.0'

ontapClusterAdminUsername = 'USER'

ontapClusterAdminPassword = 'PASSWORD'

sourceVolumeName = 'SOURCE VOLUME'

The following setting is for Cloud Volumes ONTAP:

MANAGER=ontapClusterMgmtHostname

svm='svm'

email='email'

password=ontapClusterAdminPassword

weid="weid"

volume=sourceVolumeName

Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the

specifications of the Docker images required to run the pipeline and execute the image creation from Jupyter

Notebook. Open the notebook create- images.ipynb and Run All Cells.

This notebook creates two images that we use in the pipeline.

• iguazio/netapp. Used to handle ML tasks.

• netapp/pipeline. Contains utilities to handle NetApp Snapshot copies.

14

Review Individual Jupyter Notebooks

The following table lists the libraries and frameworks we used to build this task. All these components have

been fully integrated with Iguazio’s role- based access and security controls.

Libraries/Framework Description

MLRun An managed by Iguazio to enable the assembly,

execution, and monitoring of an ML/AI pipeline.

Nuclio A serverless functions framework integrated with

Iguazio. Also available as an open-source project

managed by Iguazio.

Kubeflow A Kubernetes-based framework to deploy the pipeline.

This is also an open-source project to which Iguazio

contributes. It is integrated with Iguazio for added

security and integration with the rest of the

infrastructure.

Docker A Docker registry run as a service in the Iguazio

platform. You can also change this to connect to your

registry.

NetApp Cloud Volumes Cloud Volumes running on AWS give us access to

large amounts of data and the ability to take Snapshot

copies to version the datasets used for training.

Trident Trident is an open-source project managed by

NetApp. It facilitates the integration with storage and

compute resources in Kubernetes.

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before

being brought together in the pipeline. We cover each notebook individually following the deployment flow of

this demonstration application.

The desired result is a pipeline that trains a model based on a Snapshot copy of the data and deploys the

model for inference. A block diagram of a completed MLRun pipeline is shown in the following image.

15

Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use

case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and

predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook data- generator.ipynb

creates a serverless function that runs every 10 minutes and generates a Parquet file with new data. To deploy

the function, run all the cells in this notebook. See the Nuclio website to review any unfamiliar components in

this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is

assumed to be part of the function. Import the Nuclio module to enable %nuclio magic.

nuclio: ignore

import nuclio

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and

the resources it consumes.

16

https://nuclio.io/

spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron",

"spec.triggers.inference.attributes.interval" :"10m",

 "spec.readinessTimeoutSeconds" : 60,

 "spec.minReplicas" : 1},……

The init_context function is invoked by the Nuclio framework upon initialization of the function.

def init_context(context):

 ….

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is

executed. You can change the name of the handler and specify it in the function spec.

def handler(context, event):

 …

You can test the function from the notebook prior to deployment.

%%time

nuclio: ignore

init_context(context)

event = nuclio.Event(body='')

output = handler(context, event)

output

The function can be deployed from the notebook or it can be deployed from a CI/CD pipeline (adapting this

code).

addr = nuclio.deploy_file(name='generator',project='netops',spec=spec,

tag='v1.1')

Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each

notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun

documentation to execute them as Kubernetes jobs.

snap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name

of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While

running in the pipeline, the execution context contains variables to help locate all files needed for execution.

17

While writing this code, the developer does not have to worry about the file location in the container that

executes it. As described later, this application is deployed with all its dependencies, and it is the definition of

the pipeline parameters that provides the execution context.

command = os.path.join(context.get_param('APP_DIR'),"snap_cv.sh")

The created Snapshot copy location is placed in the MLRun context to be consumed by steps in the pipeline.

context.log_result('snapVolumeDetails',snap_path)

The next three notebooks are run in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from

the Snapshot directory and writes the features for model training to the NetApp volume.

When running in the context of the pipeline, the input DATA_DIR contains the Snapshot copy location.

metrics_table = os.path.join(str(mlruncontext.get_input('DATA_DIR',

os.getenv('DATA_DIR','/netpp'))),

 mlruncontext.get_param('metrics_table',

os.getenv('metrics_table','netops_metrics_parquet')))

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available

through the Kubeflow and MLRun UIs. Each execution has its own version of this visualization tool.

ax.set_title("features correlation")

plt.savefig(os.path.join(base_path, "plots/corr.png"))

context.log_artifact(PlotArtifact("correlation", body=plt.gcf()),

local_path="plots/corr.html")

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that

generates the features need to run prediction on incoming metrics. This notebook invokes the creation of the

function. The function code is in the notebook data- prep.ipynb. Notice that we use the same notebook as

a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for

inferencing. We also collect statistics to keep track of each execution (experiment).

For example, the following command enters the accuracy score into the context for that experiment. This value

18

is visible in Kubeflow and MLRun.

context.log_result(‘accuracy’,score)

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This

notebook invokes the creation of the serverless function defined in nuclio-inference- function.ipynb.

Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to

reassess the accuracy of the model against new metrics. First, open the pipeline.ipynb notebook. We take

you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API

service runs in the Iguazio platform and is the point of interaction with Kubernetes resources. Each developer

cannot directly request resources; the API handles the requests and enables access controls.

MLRun API connection definition

mlconf.dbpath = 'http://mlrun-api:8080'

The pipeline can work with NetApp Cloud Volumes and on-premises volumes. We built this demonstration to

use Cloud Volumes, but you can see in the code the option to run on-premises.

19

Initialize the NetApp snap fucntion once for all functions in a notebook

if [NETAPP_CLOUD_VOLUME]:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snap_cv.ipyn

b").apply(mount_v3io())

 snap_params = {

 "metrics_table" : metrics_table,

 "NETAPP_MOUNT_PATH" : NETAPP_MOUNT_PATH,

 'MANAGER' : MANAGER,

 'svm' : svm,

 'email': email,

 'password': password ,

 'weid': weid,

 'volume': volume,

 "APP_DIR" : APP_DIR

 }

else:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snapshot.ipy

nb").apply(mount_v3io())

….

snapfn.spec.image = docker_registry + '/netapp/pipeline:latest'

snapfn.spec.volume_mounts =

[snapfn.spec.volume_mounts[0],netapp_volume_mounts]

 snapfn.spec.volumes = [snapfn.spec.volumes[0],netapp_volumes]

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A

function has all the specifications required to run that notebook. As you scroll down the notebook, you can see

that we define a function for every step in the pipeline.

Part of the Notebook Description

<code_to_function>

(part of the MLRun module)

Name of the function:

Project name. used to organize all project artifacts.

This is visible in the MLRun UI.

Kind. In this case, a Kubernetes job. This could be

Dask, mpi, sparkk8s, and more. See the MLRun

documentation for more details.

File. The name of the notebook. This can also be a

location in Git (HTTP).

image The name of the Docker image we are using for this

step. We created this earlier with the create-

image.ipynb notebook.

volume_mounts & volumes Details to mount the NetApp Cloud Volume at run

time.

We also define parameters for the steps.

20

params={ "FEATURES_TABLE":FEATURES_TABLE,

 "SAVE_TO" : SAVE_TO,

 "metrics_table" : metrics_table,

 'FROM_TSDB': 0,

 'PREDICTIONS_TABLE': PREDICTIONS_TABLE,

 'TRAIN_ON_LAST': '1d',

 'TRAIN_SIZE':0.7,

 'NUMBER_OF_SHARDS' : 4,

 'MODEL_FILENAME' : 'netops.v3.model.pickle',

 'APP_DIR' : APP_DIR,

 'FUNCTION_NAME' : 'netops-inference',

 'PROJECT_NAME' : 'netops',

 'NETAPP_SIM' : NETAPP_SIM,

 'NETAPP_MOUNT_PATH': NETAPP_MOUNT_PATH,

 'NETAPP_PVC_CLAIM' : NETAPP_PVC_CLAIM,

 'IGZ_CONTAINER_PATH' : IGZ_CONTAINER_PATH,

 'IGZ_MOUNT_PATH' : IGZ_MOUNT_PATH

 }

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to

make this definition. The difference between using MLRun and building on your own is the simplification and

shortening of the coding.

The functions we defined are turned into step components using the as_step function of MLRun.

Snapshot Step Definition

Initiate a Snapshot function, output, and mount v3io as source:

snap = snapfn.as_step(NewTask(handler='handler',params=snap_params),

name='NetApp_Cloud_Volume_Snapshot',outputs=['snapVolumeDetails','training

_parquet_file']).apply(mount_v3io())

Parameters Details

NewTask NewTask is the definition of the function run.

(MLRun module) Handler. Name of the Python function to invoke. We

used the name handler in the notebook, but it is not

required.

params. The parameters we passed to the execution.

Inside our code, we use context.get_param

(‘PARAMETER’) to get the values.

21

Parameters Details

as_step Name. Name of the Kubeflow pipeline step.

outputs. These are the values that the step adds to

the dictionary on completion. Take a look at the

snap_cv.ipynb notebook.

mount_v3io(). This configures the step to mount /User

for the user executing the pipeline.

prep = data_prep.as_step(name='data-prep',

handler='handler',params=params,

 inputs = {'DATA_DIR':

snap.outputs['snapVolumeDetails']} ,

out_path=artifacts_path).apply(mount_v3io()).after(snap)

Parameters Details

inputs You can pass to a step the outputs of a previous step.

In this case, snap.outputs['snapVolumeDetails'] is the

name of the Snapshot copy we created on the snap

step.

out_path A location to place artifacts generating using the

MLRun module log_artifacts.

You can run pipeline.ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio

dashboard to monitor progress as seen in the Iguazio dashboard Pipelines tab.

22

Because we logged the accuracy of training step in every run, we have a record of accuracy for each

experiment, as seen in the record of training accuracy.

If you select the Snapshot step, you can see the name of the Snapshot copy that was used to run this

experiment.

23

The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot as

seen in the following image.

The MLRun API database also tracks inputs, outputs, and artifacts for each run organized by project. An

example of inputs, outputs, and artifacts for each run can be seen in the following image.

24

For each job, we store additional details.

There is more information about MLRun than we can cover in this document. Al artifacts, including the

definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or

as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more

at the MLRun GitHub site.

Next: Deploy Grafana Dashboard

Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure on network device

equipment. The results of the prediction are stored in an Iguazio TimeSeries table. You can visualize the

results with Grafana in the platform integrated with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.

25

https://github.com/mlrun/mlrun

1. To verify that the Grafana service is running, look under Services.

2. If it is not present, deploy an instance from the Services section:

a. Click New Service.

b. Select Grafana from the list.

c. Accept the defaults.

d. Click Next Step.

e. Enter your user ID.

f. Click Save Service.

g. Click Apply Changes at the top.

3. To deploy the dashboard, download the file NetopsPredictions-Dashboard.json through the Jupyter

interface.

26

4. Open Grafana from the Services section and import the dashboard.

5. Click Upload *.json File and select the file that you downloaded earlier (NetopsPredictions-

Dashboard.json). The dashboard displays after the upload is completed.

27

Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the

cleanup function with the cleanup.ipynb notebook.

Benefits

NetApp and Iguazio speed up and simplify the deployment of AI and ML applications by building in essential

frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and

Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity

inherent in many advanced computing workloads, effectively bridging the gap between development and

operations. Data scientists can run queries on large datasets and securely share data and algorithmic models

with authorized users during the training phase. After the containerized models are ready for production, you

can easily move them from development environments to operational environments.

Next: Conclusion

Conclusion

When building your own AI/ML pipelines, configuring the integration, management,

security, and accessibility of the components in an architecture is a challenging task.

Giving developers access and control of their environment presents another set of

challenges.

The combination of NetApp and Iguazio brings these technologies together as managed services to accelerate

technology adoption and improve the time to market for new AI/ML applications.

Next: Where to Find Additional Information

28

https://docs.netapp.com/us-en/netapp-solutions/ai/mlrun_where_to_find_additional_information.html

Copyright Information

Copyright © 2022 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document

covered by copyright may be reproduced in any form or by any means-graphic, electronic, or

mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-

without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY

DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.

NetApp assumes no responsibility or liability arising from the use of products described herein,

except as expressly agreed to in writing by NetApp. The use or purchase of this product does not

convey a license under any patent rights, trademark rights, or any other intellectual property

rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents,

foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and

Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of

NetApp, Inc. Other company and product names may be trademarks of their respective owners.

29

http://www.netapp.com/TM

	MLRun Pipeline with Iguazio : NetApp Solutions
	Table of Contents
	MLRun Pipeline with Iguazio
	TR-4834: NetApp and Iguazio for MLRun Pipeline
	Technology Overview
	Software and Hardware Requirements
	Network Device Failure Prediction Use Case Summary
	Setup Overview
	Deploying the Application
	Conclusion

