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MLRun Pipeline with Iguazio
TR-4834: NetApp and Iguazio for MLRun Pipeline

Rick Huang, David Arnette, NetApp
Marcelo Litovsky, Iguazio

This document covers the details of the MLRun pipeline using NetApp ONTAP Al, NetApp Al Control Plane,
NetApp Cloud Volumes software, and the Iguazio Data Science Platform. We used Nuclio serverless function,
Kubernetes Persistent Volumes, NetApp Cloud Volumes, NetApp Snapshot copies, Grafana dashboard, and
other services on the Iguazio platform to build an end-to-end data pipeline for the simulation of network failure
detection. We integrated Iguazio and NetApp technologies to enable fast model deployment, data replication,
and production monitoring capabilities on premises as well as in the cloud.

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial
intelligence (Al) models. However, according to research by Google, data scientists spend ~80% of their time
figuring out how to make their models work with enterprise applications and run at scale, as shown in the
following image depicting model development in the AlI/ML workflow.
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To manage end-to-end Al/ML projects, a wider understanding of enterprise components is needed. Although
DevOps have taken over the definition, integration, and deployment these types of components, machine
learning operations target a similar flow that includes Al/ML projects. To get an idea of what an end-to-end
Al/ML pipeline touches in the enterprise, see the following list of required components:

» Storage

* Networking

» Databases

* File systems



» Containers
» Continuous integration and continuous deployment (CI/CD) pipeline
» Development integrated development environment (IDE)
» Security
» Data access policies
* Hardware
¢ Cloud
* Virtualization
» Data science toolsets and libraries
In this paper, we demonstrate how the partnership between NetApp and Iguazio drastically simplifies the

development of an end-to-end Al/ML pipeline. This simplification accelerates the time to market for all of your
AI/ML applications.

Target Audience
The world of data science touches multiple disciplines in information technology and business.

» The data scientist needs the flexibility to use their tools and libraries of choice.
* The data engineer needs to know how the data flows and where it resides.
* A DevOps engineer needs the tools to integrate new Al/ML applications into their CI/CD pipelines.

» Business users want to have access to Al/ML applications. We describe how NetApp and Iguazio help
each of these roles bring value to business with our platforms.

Solution Overview

This solution follows the lifecycle of an Al/ML application. We start with the work of data scientists to define the
different steps needed to prep data and train and deploy models. We follow with the work needed to create a
full pipeline with the ability to track artifacts, experiment with execution, and deploy to Kubeflow. To complete
the full cycle, we integrate the pipeline with NetApp Cloud Volumes to enable data versioning, as seen in the
following image.
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Technology Overview

NetApp Overview

NetApp is the data authority for the hybrid cloud. NetApp provides a full range of hybrid cloud data services
that simplify management of applications and data across cloud and on-premises environments to accelerate
digital transformation. Together with our partners, NetApp empowers global organizations to unleash the full
potential of their data to expand customer touch points, foster greater innovation, and optimize their operations.

NetApp ONTAP Al

NetApp ONTAP Al, powered by NVIDIA DGX systems and NetApp cloud-connected all-flash storage,
streamlines the flow of data reliably and speeds up analytics, training, and inference with your data fabric that
spans from edge to core to cloud. It gives IT organizations an architecture that provides the following benefits:

 Eliminates design complexities
+ Allows independent scaling of compute and storage
* Enables customers to start small and scale seamlessly

» Offers a range of storage options for various performance and cost pointsNetApp ONTAP Al offers
converged infrastructure stacks incorporating NVIDIA DGX-1, a petaflop-scale Al system, and NVIDIA
Mellanox high-performance Ethernet switches to unify Al workloads, simplify deployment, and accelerate
ROI. We leveraged ONTAP Al with one DGX-1 and NetApp AFF A800 storage system for this technical
report. The following image shows the topology of ONTAP Al with the DGX-1 system used in this
validation.
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NetApp Al Control Plane

The NetApp Al Control Plane enables you to unleash Al and ML with a solution that offers extreme scalability,
streamlined deployment, and nonstop data availability. The Al Control Plane solution integrates Kubernetes
and Kubeflow with a data fabric enabled by NetApp. Kubernetes, the industry-standard container orchestration
platform for cloud-native deployments, enables workload scalability and portability. Kubeflow is an open-source
machine-learning platform that simplifies management and deployment, enabling developers to do more data
science in less time. A data fabric enabled by NetApp offers uncompromising data availability and portability to
make sure that your data is accessible across the pipeline, from edge to core to cloud. This technical report
uses the NetApp Al Control Plane in an MLRun pipeline. The following image shows Kubernetes cluster
management page where you can have different endpoints for each cluster. We connected NFS Persistent
Volumes to the Kubernetes cluster, and the following images show an Persistent Volume connected to the
cluster, where NetApp Trident offers persistent storage support and data management capabilities.

4 Kubernetes Clusters
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https://www.netapp.com/us/media/ds-netapp-project-trident.pdf

Persistent Volumes for Kubernetes

Connected with Kubernetes Cluster

Cloud Volumes ONTAP is connected to 1 Kubernetes cluster. View Cluster

You can connect another Kubernetes cluster to this Cloud Volumes ONTAP system. If the Kubernetes cluster is in a different
network than Cloud Volumes ONTAP, specify a custom export policy to provide access to clients.

Kubernetes Cluster Custom Export Policy (Qptional)
Select Kubernetes Cluster Custom Export Policy
kubernetes b 172.31.0.0/16

Set as default storage class

« NFS iSCs|
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Iguazio Overview

The Iguazio Data Science Platform is a fully integrated and secure data- science platform as a service (PaaS)
that simplifies development, accelerates performance, facilitates collaboration, and addresses operational
challenges. This platform incorporates the following components, and the Iguazio Data Science Platform is
presented in the following image:

» A data-science workbench that includes Jupyter Notebooks, integrated analytics engines, and Python
packages

* Model management with experiments tracking and automated pipeline capabilities

Managed data and ML services over a scalable Kubernetes cluster
* Nuclio, a real-time serverless functions framework

* An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple
objects), and streaming

Integration with third-party data sources such as NetApp, Amazon S3, HDFS, SQL databases, and
streaming or messaging protocols

Real-time dashboards based on Grafana
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Next: Software and Hardware Requirements

Software and Hardware Requirements

Network Configuration

The following is the network configuration requirement for setting up in the cloud:

» The Iguazio cluster and NetApp Cloud Volumes must be in the same virtual private cloud.
* The cloud manager must have access to port 6443 on the Iguazio app nodes.

* We used Amazon Web Services in this technical report. However, users have the option of deploying the
solution in any Cloud provider.For on-premises testing in ONTAP Al with NVIDIA DGX-1, we used the
Iguazio hosted DNS service for convenience.

Clients must be able to access dynamically created DNS domains. Customers can use their own DNS if
desired.

Hardware Requirements

You can install lguazio on-premises in your own cluster. We have verified the solution in NetApp ONTAP Al
with an NVIDIA DGX-1 system. The following table lists the hardware used to test this solution.

Hardware Quantity
DGX-1 systems 1
NetApp AFF A800 system 1 high-availability (HA) pair, includes 2 controllers and

48 NVMe SSDs (3.8TB or above)

Cisco Nexus 3232C network switches 2

The following table lists the software components required for on-premise testing:



Software

NetApp ONTAP data management software
Cisco NX-OS switch firmware

NVIDIADGX OS

Docker container platform

Container version

Machine learning framework

Iguazio

ESX Server

Version or Other Information
9.7

7.0(3)16(1)

4.4 - Ubuntu 18.04 LTS
19.03.5

20.01-tf1-py2

TensorFlow 1.15.0

Version 2.8+

6.5

This solution was fully tested with Iguazio version 2.5 and NetApp Cloud Volumes ONTAP for AWS. The
Iguazio cluster and NetApp software are both running on AWS.

Software
Iguazio
App node

Data node

Version or Type
Version 2.8+
MS5.4xlarge
13.4xlarge

Next: Network Device Failure Prediction Use Case Summary

Network Device Failure Prediction Use Case Summary

This use case is based on an Iguazio customer in the telecommunications space in Asia. With 100K enterprise
customers and 125k network outage events per year, there was a critical need to predict and take proactive
action to prevent network failures from affecting customers. This solution provided them with the following

benefits:

* Predictive analytics for network failures

* Integration with a ticketing system

« Taking proactive action to prevent network failuresAs a result of this implementation of Iguazio, 60% of

failures were proactively prevented.

Next: Setup Overview

Setup Overview

Iguazio Installation

Iguazio can be installed on-premises or on a cloud provider. Provisioning can be done as a service and
managed by Iguazio or by the customer. In both cases, Iguazio provides a deployment application (Provazio)

to deploy and manage clusters.

For on-premises installation, please refer to NVA-1121 for compute, network, and storage setup. On-premises
deployment of Iguazio is provided by Iguazio without additional cost to the customer. See this page for DNS
and SMTP server configurations. The Provazio installation page is shown as follows.


https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.iguazio.com/docs/latest-release/intro/setup/howto/
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Next: Configuring Kubernetes Cluster

Configuring Kubernetes Cluster

This section is divided into two parts for cloud and on-premises deployment respectively.

Cloud Deployment Kubernetes Configuration

Through NetApp Cloud Manager, you can define the connection to the Iguazio Kubernetes cluster. Trident
requires access to multiple resources in the cluster to make the volume available.

1. To enable access, obtain the Kubernetes config file from one the Iguazio nodes. The file is located under
/home/Iguazio/.kube/config. Download this file to your desktop.

2. Go to Discover Cluster to configure.
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3. Upload the Kubernetes config file. See the following image.

Upload Kubernetes Configuration File

Upload the Kubernetes configuration file (kubeconfig) so Cloud Manager can install Trident on

the Kubernetes cluster.

Connecting Cloud Volumes ONTAF with a Kubernetes cluster enables users to request and
manage persistent volumes using native Kubernetes interfaces and constructs. Users can take
advantage of ONTAP's advanced data management features without having to know anything
about it. Storage provisioning is enabled by using MNetApp Trident.

Learn more about Trident for Kubernetes.

Upload File

4. Deploy Trident and associate a volume with the cluster. See the following image on defining and assigning
a Persistent Volume to the Iguazio cluster.This process creates a Persistent Volume (PV) in Iguazio’s
Kubernetes cluster. Before you can use it, you must define a Persistent Volume Claim (PVC).

10



Persistent Volumes for Kubernetes

Connected with Kubernetes Cluster

Cloud Volumes ONTAP is connected to 1 Kubernetes cluster. View Cluster

You can connect another Kubernetes cluster to this Cloud Volumes ONTAP system. If the Kubernetes cluster is in a different
network than Cloud Volumes ONTAP, specify a custom export policy to provide access to clients.

Kubernetes Cluster Custom Export Policy (Optional)
Select Kubernetes Cluster Custom Export Policy
kubernetes b 172.31.0.0/16

Set as default storage class

= NFS iSCs|

On-Premises Deployment Kubernetes Configuration

For on-premises installation of NetApp Trident, see TR-4798 for details. After configuring your Kubernetes
cluster and installing NetApp Trident, you can connect Trident to the Iguazio cluster to enable NetApp data
management capabilities, such as taking Snapshot copies of your data and model.

Next: Define Persistent Volume Claim

Define Persistent Volume Claim

1. Save the following YAML to a file to create a PVC of type Basic.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: basic
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi
storageClassName: netapp-file

11


https://www.netapp.com/us/media/tr-4798.pdf

2. Apply the YAML file to your Iguazio Kubernetes cluster.

Kubectl -n default-tenant apply -f <your yaml file>

Attach NetApp Volume to the Jupyter Notebook

Iguazio offers several managed services to provide data scientists with a full end-to-end stack for development
and deployment of Al/ML applications. You can read more about these components at the Iguazio Overview of
Application Services and Tools.

One of the managed services is Jupyter Notebook. Each developer gets its own deployment of a notebook
container with the resources they need for development. To give them access to the NetApp Cloud Volume,
you can assign the volume to their container and resource allocation, running user, and environment variable
settings for Persistent Volume Claims is presented in the following image.

For an on-premises configuration, you can refer to TR-4798 on the Trident setup to enable NetApp ONTAP
data management capabilities, such as taking Snapshot copies of your data or model for versioning control.
Add the following line in your Trident back- end config file to make Snapshot directories visible:

"defaults": {
"snapshotDir": "true"

You must create a Trident back- end config file in JSON format, and then run the following Trident command to
reference it:

tridentctl create backend -f <backend-file>

& Enobled Flavor Fufl stock without GRU -
am 10m th zh ih
Inaet ity wincow ;

Spark upark, -
Resources

tor more information about the resource parameters, see

Environment Variables

Tha mesrmaty and CPU canfigurations ars applis) 16 each replica

FRaquegr Limit

Memary GB - o - {
Perslstent Volume Claims (PVCs)
Rarjuast 1
CRL - mllicpy = T ol = @ Name (3 Mount Path
Running User * basic o inetapp

Next: Deploying the Application

12


https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
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Deploying the Application
The following sections describe how to install and deploy the application.

Next: Get Code from GitHub.

Get Code from GitHub

Now that the NetApp Cloud Volume or NetApp Trident volume is available to the Iguazio
cluster and the developer environment, you can start reviewing the application.

Users have their own workspace (directory). On every notebook, the path to the user directory is /User. The
Iguazio platform manages the directory. If you follow the instructions above, the NetApp Cloud volume is

available in the /netapp directory.

Get the code from GitHub using a Jupyter terminal.

File  Edit  Miew Run  Kernel Git Tabs Settings Help

I + *r C ¢ BN /User X | [ at16k.ipynb ¥ | [W 03-nudlio-predictionipynb X
-/ | @ 12:58:17 | ~ § []
) MName =
B nfs a
B schedules
P | o
M workshop
LA get-demas ipynb
[ get-demossh
%[O igz-tutorials-getsh
O LICENSE
% [ netopstargz
M README.md
= [ runs
| mw

snapshotipynb

e

sUpport-services

|

| Untitled.ipynh
At the Jupyter terminal prompt, clone the project.

cd /User
git clone

You should now see the netops- netapp folder on the file tree in Jupyter workspace.
Next: Configure Working Environment
Configure Working Environment

Copy the Notebook set env-Example.ipynb as set env.ipynb. Open and edit
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set env.ipynb. This notebook sets variables for credentials, file locations, and
execution drivers.

If you follow the instructions above, the following steps are the only changes to make:
1. Obtain this value from the Iguazio services dashboard: docker registry
Example: docker-registry.default-tenant.app.clusterq.iguaziodev.com: 80
2. Change admin to your Iguazio username:
IGZ CONTAINER PATH = '/users/admin'

The following are the ONTAP system connection details. Include the volume name that was generated
when Trident was installed. The following setting is for an on-premises ONTAP cluster:

ontapClusterMgmtHostname = '0.0.0.0'
ontapClusterAdminUsername = 'USER'
ontapClusterAdminPassword = 'PASSWORD'
sourceVolumeName = 'SOURCE VOLUME'

The following setting is for Cloud Volumes ONTAP:

MANAGER=ontapClusterMgmtHostname
svm="svm'

email="'email'
password=ontapClusterAdminPassword
weid="weid"

volume=sourceVolumeName

Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the
specifications of the Docker images required to run the pipeline and execute the image creation from Jupyter
Notebook. Open the notebook create- images.ipynb and Run All Cells.

This notebook creates two images that we use in the pipeline.

* iguazio/netapp. Used to handle ML tasks.

Create image for training pipeline

fn.build config(image=docker_reglstrys’ /figuazioe/netapp’, commands=["pip install
vilo frames Faspocr>=@,3.3 PyYaMi==5,]1.2 pyarrow==2.15.1 pandas=+«a.25.3 matplotlibh seaborn yollowbh
fn.deplay()

* netapp/pipeline. Contains utilities to handle NetApp Snapshot copies.

14
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Review Individual Jupyter Notebooks

The following table lists the libraries and frameworks we used to build this task. All these components have
been fully integrated with Iguazio’s role- based access and security controls.

Libraries/Framework Description

MLRun An managed by Iguazio to enable the assembly,
execution, and monitoring of an ML/AI pipeline.

Nuclio A serverless functions framework integrated with
Iguazio. Also available as an open-source project
managed by Iguazio.

Kubeflow A Kubernetes-based framework to deploy the pipeline.
This is also an open-source project to which Iguazio
contributes. It is integrated with Iguazio for added
security and integration with the rest of the

infrastructure.

Docker A Docker registry run as a service in the Iguazio
platform. You can also change this to connect to your
registry.

NetApp Cloud Volumes Cloud Volumes running on AWS give us access to

large amounts of data and the ability to take Snapshot
copies to version the datasets used for training.

Trident Trident is an open-source project managed by
NetApp. It facilitates the integration with storage and
compute resources in Kubernetes.

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before
being brought together in the pipeline. We cover each notebook individually following the deployment flow of
this demonstration application.

The desired result is a pipeline that trains a model based on a Snapshot copy of the data and deploys the
model for inference. A block diagram of a completed MLRun pipeline is shown in the following image.

15
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Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use
case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and
predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook data- generator.ipynb
creates a serverless function that runs every 10 minutes and generates a Parquet file with new data. To deploy
the function, run all the cells in this notebook. See the Nuclio website to review any unfamiliar components in
this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is
assumed to be part of the function. Import the Nuclio module to enable $nuclio magic.

# nuclio: ignore
import nuclio

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and
the resources it consumes.

16
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spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron",

"spec.triggers.inference.attributes.interval”™ :"10m",
"spec.readinessTimeoutSeconds" : 60,
"spec.minReplicas" : 1}, ...

The init context function is invoked by the Nuclio framework upon initialization of the function.

def init context (context):

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is
executed. You can change the name of the handler and specify it in the function spec.

def handler (context, event):

You can test the function from the notebook prior to deployment.

$%time

# nuclio: ignore

init context (context)

event = nuclio.Event (body="")
output = handler (context, event)
output

The function can be deployed from the notebook or it can be deployed from a CI/CD pipeline (adapting this
code).

addr = nuclio.deploy file(name='generator',6 project="netops', spec=spec,
tag='vl.1l")

Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each
notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun
documentation to execute them as Kubernetes jobs.

shap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name
of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While
running in the pipeline, the execution context contains variables to help locate all files needed for execution.

17



While writing this code, the developer does not have to worry about the file location in the container that
executes it. As described later, this application is deployed with all its dependencies, and it is the definition of
the pipeline parameters that provides the execution context.

command = os.path.join(context.get param('APP DIR'),"snap cv.sh")

The created Snapshot copy location is placed in the MLRun context to be consumed by steps in the pipeline.

context.log result ('snapVolumeDetails',snap path)

The next three notebooks are run in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from
the Snapshot directory and writes the features for model training to the NetApp volume.

When running in the context of the pipeline, the input DATA DIR contains the Snapshot copy location.

metrics table = os.path.join(str (mlruncontext.get input ('DATA DIR',
os.getenv ('DATA DIR','/netpp'))),

mlruncontext.get param('metrics table',
os.getenv('metrics table', 'netops metrics parquet')))

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available
through the Kubeflow and MLRun Uls. Each execution has its own version of this visualization tool.

ax.set title("features correlation")

plt.savefig(os.path.join (base path, "plots/corr.png"))

context.log artifact (PlotArtifact ("correlation”, body=plt.gcf()),
local path="plots/corr.html")

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that
generates the features need to run prediction on incoming metrics. This notebook invokes the creation of the
function. The function code is in the notebook data- prep.ipynb. Notice that we use the same notebook as
a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for
inferencing. We also collect statistics to keep track of each execution (experiment).

For example, the following command enters the accuracy score into the context for that experiment. This value

18



is visible in Kubeflow and MLRun.

context.log result (‘accuracy’,score)

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This
notebook invokes the creation of the serverless function defined in nuclio-inference- function.ipynb.
Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to
reassess the accuracy of the model against new metrics. First, open the pipeline. ipynb notebook. We take
you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API

service runs in the lguazio platform and is the point of interaction with Kubernetes resources. Each developer
cannot directly request resources; the API handles the requests and enables access controls.

# MLRun API connection definition
mlconf.dbpath = 'http://mlrun-api:8080"

The pipeline can work with NetApp Cloud Volumes and on-premises volumes. We built this demonstration to
use Cloud Volumes, but you can see in the code the option to run on-premises.
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# Initialize the NetApp snap fucntion once for all functions in a notebook
if [ NETAPP CLOUD VOLUME ] :

snapfn =
code_to function('snap',project="'NetApp', kind='job', filename="snap cv.ipyn
b") .apply (mount v3io())

snap params = {

"metrics table" : metrics table,

"NETAPP MOUNT PATH" : NETAPP MOUNT PATH,

'MANAGER' : MANAGER,

svm svm,
'email': email,
'password': password ,

'weid': weid,

'volume': volume,
"APP DIR" : APP DIR
}
else:
snapfn =

code_to function('snap',project="'NetApp',6 kind='job',6 filename="snapshot.ipy
nb") .apply (mount v3io())

snapfn.spec.image = docker registry + '/netapp/pipeline:latest’

snapfn.spec.volume mounts =

[snapfn.spec.volume mounts[0],netapp volume mounts]
snapfn.spec.volumes = [ snapfn.spec.volumes[0],netapp volumes]

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A
function has all the specifications required to run that notebook. As you scroll down the notebook, you can see
that we define a function for every step in the pipeline.

Part of the Notebook Description
<code_to_function> Name of the function:
(part of the MLRun module) Project name. used to organize all project artifacts.

This is visible in the MLRun UI.

Kind. In this case, a Kubernetes job. This could be
Dask, mpi, sparkk8s, and more. See the MLRun
documentation for more details.

File. The name of the notebook. This can also be a
location in Git (HTTP).

image The name of the Docker image we are using for this
step. We created this earlier with the create-
image.ipynb notebook.

volume_mounts & volumes Details to mount the NetApp Cloud Volume at run
time.

We also define parameters for the steps.
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params={ "FEATURES TABLE":FEATURES TABLE,
"SAVE _TO" : SAVE TO,
"metrics table" : metrics table,
"FROM TSDB': 0,
'PREDICTIONS TABLE': PREDICTIONS TABLE,

'TRAIN ON LAST': 'ld',

'"TRAIN SIZE' :0.7,

'NUMBER OF SHARDS' : 4,

'"MODEL FILENAME' : 'netops.v3.model.pickle',
'"APP_DIR' : APP DIR,

'"FUNCTION NAME' : 'netops-inference',
'"PROJECT NAME' : 'netops',

'"NETAPP SIM' : NETAPP SIM,

'NETAPP MOUNT PATH': NETAPP MOUNT PATH,
'"NETAPP_PVC CLAIM' : NETAPP PVC CLAIM,
'IGZ CONTAINER PATH' : IGZ CONTAINER PATH,
'IGZ MOUNT PATH' : IGZ MOUNT PATH

}

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to
make this definition. The difference between using MLRun and building on your own is the simplification and
shortening of the coding.

The functions we defined are turned into step components using the as_step function of MLRun.

Snapshot Step Definition

Initiate a Snapshot function, output, and mount v3io as source:

snap = snapfn.as step (NewTask (handler="handler', params=snap params),
name="'NetApp Cloud Volume Snapshot',outputs=['snapVolumeDetails', 'training
_parquet file']) .apply (mount v3io())
Parameters Details
NewTask NewTask is the definition of the function run.
(MLRun module) Handler. Name of the Python function to invoke. We
used the name handler in the notebook, but it is not
required.

params. The parameters we passed to the execution.
Inside our code, we use context.get param
(‘PARAMETER’) to get the values.
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Parameters

as_step

Details

Name. Name of the Kubeflow pipeline step.

outputs. These are the values that the step adds to
the dictionary on completion. Take a look at the
snap_cv.ipynb notebook.

mount_v3io(). This configures the step to mount /User
for the user executing the pipeline.

prep = data prep.as_ step (name='data-prep',

handler="handler', params=params,
inputs = {'DATA DIR':
snap.outputs|['snapVolumeDetails']}

out path=artifacts path) .apply (mount v3io()) .after (snap)
Parameters Details
inputs You can pass to a step the outputs of a previous step.
In this case, snap.outputs['snapVolumeDetails'] is the
name of the Snapshot copy we created on the snap
step.
out_path A location to place artifacts generating using the

MLRun module log_artifacts.

You can run pipeline. ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio
dashboard to monitor progress as seen in the Iguazio dashboard Pipelines tab.
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Because we logged the accuracy of training step in every run, we have a record of accuracy for each

Pipelines

Experiments > NetAppXGB

& @ xgb_pipeline 2020-03-24 18-51-08

Graph

Run output

describe

experiment, as seen in the record of training accuracy.

Run name

xgb_pipeline 2020-03-24 18-51-...

xgb_pipeline 2020-03-19 13-31-...

xgb_pipeline 2020-03-18 12-56-...

xgb_pipeline 2020-03-17 19-49-...

xgb_pipeline 2020-03-17 18-34-...

xgb_pipeline 2020-03-17 17-34-...

xgb_pipeline 2020-03-17 17-01-...

xgb_pipeline 2020-03-16 16-47-...

O00000O0O0O02D

xgb_pipeline 2020-03-16 13-57-...

If you select the Snapshot step, you can see the name of the Snapshot copy that was used to run this

experiment.

Status

<]

O 0 60 0 6 6 0 o

Duration

0:08:43

0:08:14

0:08:11

0:08:03

0:05:54

0:04:48

0:05:25

0:06:08

0:05:18

Pipeline Version

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

Config

Recurring ...

Start time

3/24/2020

3/19/2020

3/18/2020

3/17/2020

3/17/2020

3/17/2020

3/17/2020

3/16/2020

3/16/2020

netapp-cloud-volu...

data-prep

, 2:51:09 PM

, 9:31:19 AM

, 8:56:08 AM

, 3:49:31 PM

, 2:34:56 PM

, 1:34:16 PM

, 1:01:58 PM

, 12:47:19 ..

, 9:57:03 AM

accuracy

0.985

0.980

0.990

0.985

0.980

0.982

0.987

0.983

0.980



X netops-trainign-pipeline-with-netapp-volume-cloning-rtxdl-2910983943

cloud- @

netapp:coud-yol... Artifacts Input/Output Volumes Manifest Logs

Input artracts
l _--..‘----

Output parameters

data-prep ]
netapp-cloud-volume-snapshot- /netapp/.snapshot/kfp 20200324 185122
snapVolumeDetails
netapp-cloud-volume-snapshot- Inetapp/.snapshot/kfp_20200324_18512...
training_parquet_file

xgb-train @ Qutput artifacts

The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot as
seen in the following image.

X netops-trainign-pipeline-with-netapp-volume-cloning-rtxd|-2
Artifacts Input/Output Volumes Manifest Logs
/ Static HTML A

describe ]
Class Balance for 48,008

40000

The MLRun API database also tracks inputs, outputs, and artifacts for each run organized by project. An
example of inputs, outputs, and artifacts for each run can be seen in the following image.
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Projects
NetApp default describe
¥ Jobs ﬁ Artifacts ¥ Jobs BArllEacLs W Jobs BAriiTacis

For each job, we store additional details.

Name
describe

deploy-model E9. 4
24 Mar, 14:56:03 ...bche38e 24 Mar, 14:52:45
xgb_train e Info Inputs Artifacts Results Logs
24 Mar, 14:53:18 ...5¢85949

uiD 66ef22187efb4ad89e8da8433c2a460e
data-prep
24 Mar, 14:52:46 ...126dc73

, Start time 24 Mar, 14:52:45

describe
24 Mar, 14:52:45 ..c2a460e
deploy-features- . Parameters Completed
function =
24 Mar, 14:52:43 ...50d8b83

Results class_label... & "_i key: summary ' label_colu.. 5 |

NetApp_Cloud_Volume_Sna
24 Mar, 14:51:22 ..3108eb2

- iy

There is more information about MLRun than we can cover in this document. Al artifacts, including the
definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or
as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more
at the MLRun GitHub site.

Next: Deploy Grafana Dashboard

Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure on network device
equipment. The results of the prediction are stored in an Iguazio TimeSeries table. You can visualize the
results with Grafana in the platform integrated with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.
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1. To verify that the Grafana service is running, look under Services.

Services

O Mame Running User  Version < CPU (cores) Memory AF
dockerregi —

O apdoskerredsin - o 27 96 _/\.n' \ 1.67 GB [
—— H1

2 Y 0610 369y /“\ 795.19 MB l

B R 2, 6.6.0 1m f\_f\f‘\_/\/_ 38.39 MB
. — e

Bl e admin 1.0.2 &im 3.27CB

O &

2. Ifitis not present, deploy an instance from the Services section:
a. Click New Service.
b. Select Grafana from the list.
c. Accept the defaults.
d. Click Next Step.
e. Enter your user ID.
f. Click Save Service.
g. Click Apply Changes at the top.

3. To deploy the dashboard, download the file NetopsPredictions-Dashboard. json through the Jupyter
interface.
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M| deploy-features-function.ipynb 21 hours ago

M| deploy-inference-functionipynb 21 hours ago
M| describedpynb a day ago
& describepy a day ago
Y: mirunpipe.yamil 19 hours ago
M| nuclio-inference-function.ipynb 8 Open
[ pip_install.sh Open With
W pipelineipynb + Open in New Browser Tab
M| set_env-Exampleipynb # Bename
M| set_envipynb X Delete
M| snap_cvipynb K Cut
[ snap_cv.sh O Copy

] Duplicate

M| snapshotipynb

L % Download
M| training.ipynb -

B Shut Down Kernel

4. Open Grafana from the Services section and import the dashboard.

Create

8% Dashboard
& Folder

"% Import

9. Click Upload * . json File and select the file that you downloaded earlier (NetopsPredictions-—
Dashboard. json). The dashboard displays after the upload is completed.
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B8 netops_predictions -

prediction

Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the
cleanup function with the cleanup. ipynb notebook.

Benefits

NetApp and Iguazio speed up and simplify the deployment of Al and ML applications by building in essential
frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and
Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity
inherent in many advanced computing workloads, effectively bridging the gap between development and
operations. Data scientists can run queries on large datasets and securely share data and algorithmic models
with authorized users during the training phase. After the containerized models are ready for production, you
can easily move them from development environments to operational environments.

Next: Conclusion

Conclusion

When building your own Al/ML pipelines, configuring the integration, management,
security, and accessibility of the components in an architecture is a challenging task.
Giving developers access and control of their environment presents another set of
challenges.

The combination of NetApp and Iguazio brings these technologies together as managed services to accelerate
technology adoption and improve the time to market for new Al/ML applications.

Next: Where to Find Additional Information
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