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NetApp Modern Data Analytics Solutions

Cloud Data Management with NetApp File-Object Duality
and AWS SageMaker

TR-4967: Cloud Data Management with NetApp File-Object Duality and AWS
SageMaker

Karthikeyan Nagalingam, NetApp

Data scientists and engineers often need to access data stored in the NFS format, but

accessing this data directly from the S3 protocol in AWS SageMaker can be challenging

because AWS only supports S3 bucket access. However, NetApp ONTAP provides a

solution by enabling dual-protocol access for NFS and S3. With this solution, data

scientists and engineers can access NFS data from AWS SageMaker notebooks via S3

buckets from NetApp Cloud Volumes ONTAP. This approach enables easy access and

sharing of the same data from both NFS and S3 without the need for additional software.

Solution technology

This solution utilizes the following technologies:

• AWS SageMaker Notebook. Offers machine learning capabilities to developers and data scientists to

create, train, and deploy high-quality ML models efficiently.

• NetApp BlueXP. Enables the discovery, deployment, and operation of storage on premises as well as on

AWS, Azure, and Google Cloud. It provides data protection against data loss, cyber threats, and unplanned

outages and optimizes data storage and infrastructure.

• NetApp Cloud Volumes ONTAP. Provides enterprise-grade storage volumes with NFS, SMB/CIFS, iSCSI,

and S3 protocols on AWS, Azure, and Google Cloud, giving users greater flexibility in accessing and

managing their data in the cloud.

NetApp Cloud Volumes ONTAP created from BlueXP to store ML data.

The following figure shows the technical components of the solution.
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Use case summary

A potential use case for dual protocol access of NFS and S3 is in the fields of machine learning and data

science. For example, a team of data scientists might be working on a machine learning project using AWS

SageMaker, which requires access to data stored in the NFS format. However, the data might also need to be

accessed and shared via S3 buckets to collaborate with other team members or to integrate with other

applications that use S3.

By utilizing NetApp Cloud Volumes ONTAP, the team can store their data in a single location and have it

accessible with both NFS and S3 protocols. The data scientists can access the data in NFS format directly

from AWS SageMaker, while other team members or applications can access the same data via S3 buckets.

This approach enables the data to be accessed and shared easily and efficiently without the need for additional

software or data migration between different storage solutions. It also allows for a more streamlined workflow

and collaboration among team members, resulting in faster and more effective development of machine

learning models.

Data duality for data scientists and other applications

Data is available in NFS and accessed from S3 from AWS SageMaker.

Technology requirements

You need NetApp BlueXP, NetApp Cloud Volumes ONTAP, and AWS SageMaker Notebooks for the data-

duality use case.

Software requirements

The following table lists the software components that are required to implement the use case.

Software Quantity

BlueXP 1

NetApp Cloud Volumes ONTAP 1

AWS SageMaker Notebook 1

Deployment procedures

Deploying the data-duality solution involves the following tasks:

• BlueXP Connector

• NetApp Cloud Volumes ONTAP

• Data for machine learning

• AWS SageMaker

• Validated machine learning from Jupyter Notebooks

BlueXP connector

In this validation, we used AWS. It’s also applicable for Azure and Google Cloud. To create a BlueXP

Connector in AWS, complete the following steps:
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1. We used the credentials based on the mcarl-marketplace-subscription in BlueXP.

2. Choose the region suitable for your environment (for example, us-east-1 [N. Virginia]), and select the

authentication method (for example, Assume Role or AWS keys). In this validation, we use AWS keys.

3. Provide the name of the connector and create a role.

4. Provide the network details such as the VPC, subnet, or keypair, depending on whether you need a public

IP or not.

5. Provide the details for the security group, such as HTTP, HTTPS, or SSH access from the source type,

such as anywhere and IP range information.

6. Review and create the BlueXP Connector.

7. Verify that the BlueXP EC2 instance state is running in the AWS console, and check the IP address from

the Networking tab.

8. Log into the connector user interface from the BlueXP portal, or you can use the IP address for access

from the browser.

NetApp Cloud Volumes ONTAP

To create a Cloud Volumes ONTAP instance in BlueXP, complete the following steps:

1. Create a new working environment, select the cloud provider, and select the type of Cloud Volumes

ONTAP instance, (such as single-CVO, HA, or Amazon FSxN for ONTAP).

2. Provide details such as the Cloud Volumes ONTAP cluster name and credentials. In this validation, we

created a Cloud Volumes ONTAP instance called svm_sagemaker_cvo_sn1.

3. Select the services needed for Cloud Volumes ONTAP. In this validation, we choose to only monitor, so we

disabled Data Sense & Compliance and Backup to Cloud Services.

4. In the Location & Connectivity section, select the AWS region, VPC, subnet, security group, SSH

authentication method, and either a password or a key pair.

5. Choose the charging method. We used Professional for this validation.

6. You can choose a preconfigured package, such as POC and Small Workloads, Database and

Application Data Production Workloads, Cost Effective DR, or Highest Performance Production

Workloads. In this validation, we choose Poc and Small Workloads.

7. Create a volume with a specific size, allowed protocols, and export options. In this validation, we created a

volume called vol1.

8. Choose a profile disk type and tiering policy. In this validation, we disabled Storage Efficiency and

General- Purpose SSD – Dynamic Performance.

9. Finally, review and create the Cloud Volumes ONTAP instance. Then wait for 15-20 minutes for BlueXP to

create the Cloud Volumes ONTAP working environment.

10. Configure the following parameters to enable the Duality protocol. The Duality protocol (NFS/S3) is

supported from ONTAP 9. 12.1 and later.

a. In this validation, we created an SVM called svm_sagemaker_cvo_sn1 and volume vol1.

b. Verify that the SVM has the protocol support for NFS and S3. If not, modify the SVM to support them.
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sagemaker_cvo_sn1::> vserver show -vserver svm_sagemaker_cvo_sn1

                                    Vserver: svm_sagemaker_cvo_sn1

                               Vserver Type: data

                            Vserver Subtype: default

                               Vserver UUID: 911065dd-a8bc-11ed-bc24-

e1c0f00ad86b

                                Root Volume:

svm_sagemaker_cvo_sn1_root

                                  Aggregate: aggr1

                                 NIS Domain: -

                 Root Volume Security Style: unix

                                LDAP Client: -

               Default Volume Language Code: C.UTF-8

                            Snapshot Policy: default

                              Data Services: data-cifs, data-

flexcache,

                                             data-iscsi, data-nfs,

                                             data-nvme-tcp

                                    Comment:

                               Quota Policy: default

                List of Aggregates Assigned: aggr1

 Limit on Maximum Number of Volumes allowed: unlimited

                        Vserver Admin State: running

                  Vserver Operational State: running

   Vserver Operational State Stopped Reason: -

                          Allowed Protocols: nfs, cifs, fcp, iscsi,

ndmp, s3

                       Disallowed Protocols: nvme

            Is Vserver with Infinite Volume: false

                           QoS Policy Group: -

                        Caching Policy Name: -

                                Config Lock: false

                               IPspace Name: Default

                         Foreground Process: -

                    Logical Space Reporting: true

                  Logical Space Enforcement: false

Default Anti_ransomware State of the Vserver's Volumes: disabled

            Enable Analytics on New Volumes: false

    Enable Activity Tracking on New Volumes: false

sagemaker_cvo_sn1::>

11. Create and install a CA certificate if required.

12. Create a service data policy.

4



sagemaker_cvo_sn1::*> network interface service-policy create -vserver

svm_sagemaker_cvo_sn1 -policy sagemaker_s3_nfs_policy -services data-

core,data-s3-server,data-nfs,data-flexcache

sagemaker_cvo_sn1::*> network interface create -vserver

svm_sagemaker_cvo_sn1 -lif svm_sagemaker_cvo_sn1_s3_lif -service-policy

sagemaker_s3_nfs_policy -home-node sagemaker_cvo_sn1-01 -address

172.30.10.41 -netmask 255.255.255.192

Warning: The configured failover-group has no valid failover targets for

the LIF's failover-policy. To view the failover targets for a LIF, use

         the "network interface show -failover" command.

sagemaker_cvo_sn1::*>

sagemaker_cvo_sn1::*> network interface show

Logical    Status     Network            Current       Current Is

Vserver     Interface  Admin/Oper Address/Mask       Node          Port

Home

----------- ---------- ---------- ------------------ -------------

------- ----

sagemaker_cvo_sn1

            cluster-mgmt up/up    172.30.10.40/26    sagemaker_cvo_sn1-

01

                                                                   e0a

true

            intercluster up/up    172.30.10.48/26    sagemaker_cvo_sn1-

01

                                                                   e0a

true

            sagemaker_cvo_sn1-01_mgmt1

                         up/up    172.30.10.58/26    sagemaker_cvo_sn1-

01

                                                                   e0a

true

svm_sagemaker_cvo_sn1

            svm_sagemaker_cvo_sn1_data_lif

                         up/up    172.30.10.23/26    sagemaker_cvo_sn1-

01

                                                                   e0a

true

            svm_sagemaker_cvo_sn1_mgmt_lif

                         up/up    172.30.10.32/26    sagemaker_cvo_sn1-

01

                                                                   e0a

true

            svm_sagemaker_cvo_sn1_s3_lif

                         up/up    172.30.10.41/26    sagemaker_cvo_sn1-
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01

                                                                   e0a

true

6 entries were displayed.

sagemaker_cvo_sn1::*>

sagemaker_cvo_sn1::*> vserver object-store-server create -vserver

svm_sagemaker_cvo_sn1  -is-http-enabled true -object-store-server

svm_sagemaker_cvo_s3_sn1 -is-https-enabled false

sagemaker_cvo_sn1::*> vserver object-store-server show

Vserver: svm_sagemaker_cvo_sn1

           Object Store Server Name: svm_sagemaker_cvo_s3_sn1

               Administrative State: up

                       HTTP Enabled: true

             Listener Port For HTTP: 80

                      HTTPS Enabled: false

     Secure Listener Port For HTTPS: 443

  Certificate for HTTPS Connections: -

                  Default UNIX User: pcuser

               Default Windows User: -

                            Comment:

sagemaker_cvo_sn1::*>

13. Check the aggregate details.
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sagemaker_cvo_sn1::*> aggr show

Aggregate     Size Available Used% State   #Vols  Nodes            RAID

Status

--------- -------- --------- ----- ------- ------ ----------------

------------

aggr0_sagemaker_cvo_sn1_01

           124.0GB   50.88GB   59% online       1 sagemaker_cvo_

raid0,

                                                  sn1-01

normal

aggr1      907.1GB   904.9GB    0% online       2 sagemaker_cvo_

raid0,

                                                  sn1-01

normal

2 entries were displayed.

sagemaker_cvo_sn1::*>

14. Create a user and group.
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sagemaker_cvo_sn1::*> vserver object-store-server user create -vserver

svm_sagemaker_cvo_sn1 -user s3user

sagemaker_cvo_sn1::*> vserver object-store-server user show

Vserver     User            ID        Access Key          Secret Key

----------- --------------- --------- -------------------

-------------------

svm_sagemaker_cvo_sn1

            root            0         -                   -

   Comment: Root User

svm_sagemaker_cvo_sn1

            s3user          1         0ZNAX21JW5Q8AP80CQ2E

 

PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr

2 entries were displayed.

sagemaker_cvo_sn1::*>

sagemaker_cvo_sn1::*> vserver object-store-server group create -name

s3group -users s3user -comment ""

sagemaker_cvo_sn1::*>

sagemaker_cvo_sn1::*> vserver object-store-server group delete -gid 1

-vserver svm_sagemaker_cvo_sn1

sagemaker_cvo_sn1::*> vserver object-store-server group create -name

s3group -users s3user -comment "" -policies FullAccess

sagemaker_cvo_sn1::*>

15. Create a bucket on the NFS volume.
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sagemaker_cvo_sn1::*> vserver object-store-server bucket create -bucket

ontapbucket1 -type nas -comment "" -vserver svm_sagemaker_cvo_sn1 -nas

-path /vol1

sagemaker_cvo_sn1::*> vserver object-store-server bucket show

Vserver     Bucket          Type     Volume            Size

Encryption Role       NAS Path

----------- --------------- -------- ----------------- ----------

---------- ---------- ----------

svm_sagemaker_cvo_sn1

            ontapbucket1    nas      vol1              -          false

-          /vol1

sagemaker_cvo_sn1::*>

AWS SageMaker

To create an AWS Notebook from AWS SageMaker, complete the following steps:

1. Make sure the user who is creating Notebook instance has an AmazonSageMakerFullAccess IAM policy or

is part of an existing group that has AmazonSageMakerFullAccess rights. In this validation, the user is part

of an existing group.

2. Provide the following information:

◦ Notebook instance name.

◦ Instance type.

◦ Platform identifier.

◦ Select the IAM role that has AmazonSageMakerFullAccess rights.

◦ Root access – enable.

◦ Encryption key - Select no custom encryption.

◦ Keep the remaining default options.

3. In this validation, the SageMaker instance details are as follows:
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4. Start the AWS Notebook.

5. Open the Jupyter lab.
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6. Log into the terminal and mount the Cloud Volumes ONTAP volume.

sh-4.2$ sudo mkdir /vol1; sudo mount -t nfs 172.30.10.41:/vol1 /vol1

sh-4.2$ df -h

Filesystem          Size  Used Avail Use% Mounted on

devtmpfs            2.0G     0  2.0G   0% /dev

tmpfs               2.0G     0  2.0G   0% /dev/shm

tmpfs               2.0G  624K  2.0G   1% /run

tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup

/dev/xvda1          140G  114G   27G  82% /

/dev/xvdf           4.8G   72K  4.6G   1% /home/ec2-user/SageMaker

tmpfs               393M     0  393M   0% /run/user/1001

tmpfs               393M     0  393M   0% /run/user/1002

tmpfs               393M     0  393M   0% /run/user/1000

172.30.10.41:/vol1  973M  189M  785M  20% /vol1

sh-4.2$

7. Check the bucket created on the Cloud Volumes ONTAP volume using the AWS CLI commands.
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sh-4.2$ aws configure --profile netapp

AWS Access Key ID [None]: 0ZNAX21JW5Q8AP80CQ2E

AWS Secret Access Key [None]: PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr

Default region name [None]: us-east-1

Default output format [None]:

sh-4.2$

sh-4.2$ aws s3 ls --profile netapp --endpoint-url

2023-02-10 17:59:48 ontapbucket1

sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/

2023-02-10 18:46:44       4747 1

2023-02-10 18:48:32         96 setup.cfg

sh-4.2$

Data for machine learning

In this validation, we used a dataset from DBpedia, a crowd-sourced community effort, to extract structured

content from the information created in various Wikimedia projects.

1. Download the data from the DBpedia GitHub location and extract it. Use the same terminal used in the

previous section.
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sh-4.2$ wget

--2023-02-14 23:12:11--

Resolving github.com (github.com)... 140.82.113.3

Connecting to github.com (github.com)|140.82.113.3|:443... connected.

HTTP request sent, awaiting response... 302 Found

Location:  [following]

--2023-02-14 23:12:11--

Resolving raw.githubusercontent.com (raw.githubusercontent.com)...

185.199.109.133, 185.199.110.133, 185.199.111.133, ...

Connecting to raw.githubusercontent.com

(raw.githubusercontent.com)|185.199.109.133|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 68431223 (65M) [application/octet-stream]

Saving to: ‘dbpedia_csv.tar.gz’

100%[===================================================================

========================================================================

===================>] 68,431,223  56.2MB/s   in 1.2s

2023-02-14 23:12:13 (56.2 MB/s) - ‘dbpedia_csv.tar.gz’ saved

[68431223/68431223]

sh-4.2$ tar -zxvf dbpedia_csv.tar.gz

dbpedia_csv/

dbpedia_csv/test.csv

dbpedia_csv/classes.txt

dbpedia_csv/train.csv

dbpedia_csv/readme.txt

sh-4.2$

2. Copy the data to the Cloud Volumes ONTAP location and check it from the S3 bucket using the AWS CLI.
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sh-4.2$ df -h

Filesystem          Size  Used Avail Use% Mounted on

devtmpfs            2.0G     0  2.0G   0% /dev

tmpfs               2.0G     0  2.0G   0% /dev/shm

tmpfs               2.0G  628K  2.0G   1% /run

tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup

/dev/xvda1          140G  114G   27G  82% /

/dev/xvdf           4.8G   52K  4.6G   1% /home/ec2-user/SageMaker

tmpfs               393M     0  393M   0% /run/user/1002

tmpfs               393M     0  393M   0% /run/user/1001

tmpfs               393M     0  393M   0% /run/user/1000

172.30.10.41:/vol1  973M  384K  973M   1% /vol1

sh-4.2$ pwd

/home/ec2-user

sh-4.2$ cp -ra dbpedia_csv /vol1

sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/

                           PRE dbpedia_csv/

2023-02-10 18:46:44       4747 1

2023-02-10 18:48:32         96 setup.cfg

sh-4.2$

3. Perform basic validation to make sure that read/write functionality works on the S3 bucket.

sh-4.2$ aws s3 cp  --profile netapp --endpoint-url  /usr/share/doc/util-

linux-2.30.2 s3://ontapbucket1/ --recursive

upload: ../../../usr/share/doc/util-linux-2.30.2/deprecated.txt to

s3://ontapbucket1/deprecated.txt

upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.bash to

s3://ontapbucket1/getopt-parse.bash

upload: ../../../usr/share/doc/util-linux-2.30.2/README to

s3://ontapbucket1/README

upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.tcsh to

s3://ontapbucket1/getopt-parse.tcsh

upload: ../../../usr/share/doc/util-linux-2.30.2/AUTHORS to

s3://ontapbucket1/AUTHORS

upload: ../../../usr/share/doc/util-linux-2.30.2/NEWS to

s3://ontapbucket1/NEWS

sh-4.2$ aws s3 ls --profile netapp --endpoint-url

s3://ontapbucket1/s3://ontapbucket1/

An error occurred (InternalError) when calling the ListObjectsV2

operation: We encountered an internal error. Please try again.

sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/

                           PRE dbpedia_csv/

2023-02-16 19:19:27      26774 AUTHORS
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2023-02-16 19:19:27      72727 NEWS

2023-02-16 19:19:27       4493 README

2023-02-16 19:19:27       2825 deprecated.txt

2023-02-16 19:19:27       1590 getopt-parse.bash

2023-02-16 19:19:27       2245 getopt-parse.tcsh

sh-4.2$ ls -ltr /vol1

total 132

drwxrwxr-x 2 ec2-user ec2-user  4096 Mar 29  2015 dbpedia_csv

-rw-r--r-- 1 nobody   nobody    2245 Apr 10 17:37 getopt-parse.tcsh

-rw-r--r-- 1 nobody   nobody    2825 Apr 10 17:37 deprecated.txt

-rw-r--r-- 1 nobody   nobody    4493 Apr 10 17:37 README

-rw-r--r-- 1 nobody   nobody    1590 Apr 10 17:37 getopt-parse.bash

-rw-r--r-- 1 nobody   nobody   26774 Apr 10 17:37 AUTHORS

-rw-r--r-- 1 nobody   nobody   72727 Apr 10 17:37 NEWS

sh-4.2$ ls -ltr /vol1/dbpedia_csv/

total 192104

-rw------- 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv

-rw------- 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv

-rw------- 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt

-rw-rw-r-- 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt

sh-4.2$ chmod -R 777 /vol1/dbpedia_csv

sh-4.2$ ls -ltr /vol1/dbpedia_csv/

total 192104

-rwxrwxrwx 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv

-rwxrwxrwx 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv

-rwxrwxrwx 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt

-rwxrwxrwx 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt

sh-4.2$ aws s3 cp --profile netapp --endpoint-url http://172.30.2.248/

s3://ontapbucket1/ /tmp --recursive

download: s3://ontapbucket1/AUTHORS to ../../tmp/AUTHORS

download: s3://ontapbucket1/README to ../../tmp/README

download: s3://ontapbucket1/NEWS to ../../tmp/NEWS

download: s3://ontapbucket1/dbpedia_csv/classes.txt to

../../tmp/dbpedia_csv/classes.txt

download: s3://ontapbucket1/dbpedia_csv/readme.txt to

../../tmp/dbpedia_csv/readme.txt

download: s3://ontapbucket1/deprecated.txt to ../../tmp/deprecated.txt

download: s3://ontapbucket1/getopt-parse.bash to ../../tmp/getopt-

parse.bash

download: s3://ontapbucket1/getopt-parse.tcsh to ../../tmp/getopt-

parse.tcsh

download: s3://ontapbucket1/dbpedia_csv/test.csv to

../../tmp/dbpedia_csv/test.csv

download: s3://ontapbucket1/dbpedia_csv/train.csv to

../../tmp/dbpedia_csv/train.csv

sh-4.2$
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sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/

                           PRE dbpedia_csv/

2023-02-16 19:19:27      26774 AUTHORS

2023-02-16 19:19:27      72727 NEWS

2023-02-16 19:19:27       4493 README

2023-02-16 19:19:27       2825 deprecated.txt

2023-02-16 19:19:27       1590 getopt-parse.bash

2023-02-16 19:19:27       2245 getopt-parse.tcsh

sh-4.2$

Validate machine learning from Jupyter Notebooks

The following validation provides the machine-learning build, train, and deploy models through text

classification by using the SageMaker BlazingText example below:

1. Install the boto3 and SageMaker packages.

In [1]:  pip install --upgrade boto3 sagemaker

Output:

Looking in indexes: https://pypi.org/simple,

https://pip.repos.neuron.amazo naws.com

Requirement already satisfied: boto3 in /home/ec2-

user/anaconda3/envs/pytho n3/lib/python3.10/site-packages (1.26.44)

Collecting boto3

  Downloading boto3-1.26.72-py3-none-any.whl (132 kB)

     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.7/132.7 kB 14.6 MB/s eta

0: 00:00

Requirement already satisfied: sagemaker in /home/ec2-

user/anaconda3/envs/p ython3/lib/python3.10/site-packages (2.127.0)

Collecting sagemaker

  Downloading sagemaker-2.132.0.tar.gz (668 kB)

     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 668.0/668.0 kB 12.3 MB/s eta

0:

00:0000:01

  Preparing metadata (setup.py) ... done

Collecting botocore<1.30.0,>=1.29.72

  Downloading botocore-1.29.72-py3-none-any.whl (10.4 MB)

     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.4/10.4 MB 44.3 MB/s eta

0: 00:0000:010:01

Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-

user/a naconda3/envs/python3/lib/python3.10/site-packages (from boto3)

(0.6.0)

Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-
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user/ana conda3/envs/python3/lib/python3.10/site-packages (from boto3)

(0.10.0)

Requirement already satisfied: attrs<23,>=20.3.0 in /home/ec2-

user/anaconda

3/envs/python3/lib/python3.10/site-packages (from sagemaker) (22.1.0)

Requirement already satisfied: google-pasta in /home/ec2-

user/anaconda3/env s/python3/lib/python3.10/site-packages (from

sagemaker) (0.2.0)

Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-

user/anaconda

3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.22.4)

Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-

user/anacond a3/envs/python3/lib/python3.10/site-packages (from

sagemaker) (3.20.3)

Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in

/home/ec2-u ser/anaconda3/envs/python3/lib/python3.10/site-packages

(from sagemaker)

(0.1.5)

Requirement already satisfied: smdebug_rulesconfig==1.0.1 in /home/ec2-

use r/anaconda3/envs/python3/lib/python3.10/site-packages (from

sagemaker) (1.

0.1) Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in

/home/ec2user/anaconda3/envs/python3/lib/python3.10/site-packages (from

sagemaker)

(4.13.0)

Requirement already satisfied: packaging>=20.0 in /home/ec2-

user/anaconda3/ envs/python3/lib/python3.10/site-packages (from

sagemaker) (21.3)

Requirement already satisfied: pandas in /home/ec2-

user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from

sagemaker) (1.5.1)

Requirement already satisfied: pathos in /home/ec2-

user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from

sagemaker) (0.3.0)

Requirement already satisfied: schema in /home/ec2-

user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from

sagemaker) (0.7.5) Requirement already satisfied: python-

dateutil<3.0.0,>=2.1 in /home/ec2-use

r/anaconda3/envs/python3/lib/python3.10/site-packages (from

botocore<1.30.

0,>=1.29.72->boto3) (2.8.2)

Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-

user/anac onda3/envs/python3/lib/python3.10/site-packages (from

botocore<1.30.0,>=1.2

9.72->boto3) (1.26.8) Requirement already satisfied: zipp>=0.5 in

/home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages
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(from importlib-metadata<5.0,>=1.4.0->s agemaker) (3.10.0)

Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-

user/a naconda3/envs/python3/lib/python3.10/site-packages (from

packaging>=20.0->s agemaker) (3.0.9)

Requirement already satisfied: six in /home/ec2-

user/anaconda3/envs/python

3/lib/python3.10/site-packages (from protobuf3-to-dict<1.0,>=0.1.5-

>sagemak er) (1.16.0)

Requirement already satisfied: pytz>=2020.1 in /home/ec2-

user/anaconda3/env s/python3/lib/python3.10/site-packages (from pandas-

>sagemaker) (2022.5)

Requirement already satisfied: ppft>=1.7.6.6 in /home/ec2-

user/anaconda3/en vs/python3/lib/python3.10/site-packages (from pathos-

>sagemaker) (1.7.6.6) Requirement already satisfied:

multiprocess>=0.70.14 in /home/ec2-user/anac

onda3/envs/python3/lib/python3.10/site-packages (from pathos->sagemaker)

(0.70.14)

Requirement already satisfied: dill>=0.3.6 in /home/ec2-

user/anaconda3/env s/python3/lib/python3.10/site-packages (from pathos-

>sagemaker) (0.3.6)

Requirement already satisfied: pox>=0.3.2 in /home/ec2-

user/anaconda3/envs/ python3/lib/python3.10/site-packages (from pathos-

>sagemaker) (0.3.2) Requirement already satisfied: contextlib2>=0.5.5 in

/home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages

(from schema->sagemaker) (21.

6.0) Building wheels for collected packages: sagemaker

  Building wheel for sagemaker (setup.py) ... done

  Created wheel for sagemaker: filename=sagemaker-2.132.0-py2.py3-none-

any. whl size=905449

sha256=f6100a5dc95627f2e2a49824e38f0481459a27805ee19b5a06ec

83db0252fd41

  Stored in directory: /home/ec2-

user/.cache/pip/wheels/60/41/b6/482e7ab096

520df034fbf2dddd244a1d7ba0681b27ef45aa61

Successfully built sagemaker

Installing collected packages: botocore, boto3, sagemaker

  Attempting uninstall: botocore     Found existing installation:

botocore 1.24.19

    Uninstalling botocore-1.24.19:       Successfully uninstalled

botocore-1.24.19

  Attempting uninstall: boto3     Found existing installation: boto3

1.26.44

    Uninstalling boto3-1.26.44:

      Successfully uninstalled boto3-1.26.44

  Attempting uninstall: sagemaker     Found existing installation:

sagemaker 2.127.0

18



    Uninstalling sagemaker-2.127.0:

      Successfully uninstalled sagemaker-2.127.0

ERROR: pip's dependency resolver does not currently take into account

all t he packages that are installed. This behaviour is the source of

the followi ng dependency conflicts.

awscli 1.27.44 requires botocore==1.29.44, but you have botocore 1.29.72

wh ich is incompatible.

aiobotocore 2.0.1 requires botocore<1.22.9,>=1.22.8, but you have

botocore 1.29.72 which is incompatible. Successfully installed boto3-

1.26.72 botocore-1.29.72 sagemaker-2.132.0 Note: you may need to restart

the kernel to use updated packages.

2. In the following step, the data (dbpedia_csv) is downloaded from the s3 bucket ontapbucket1 to a

Jupyter Notebook instance used in machine learning.
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In [2]: import sagemaker

In [3]: from sagemaker import get_execution_role

In [4]:

import json

import boto3

sess = sagemaker.Session()

role = get_execution_role()

print(role)

bucket = "ontapbucket1"

print(bucket)

sess.s3_client = boto3.client('s3',region_name='',aws_access_key_id =

'0ZNAX21JW5Q8AP80CQ2E',  aws_secret_access_key =

'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',

                              use_ssl = False, endpoint_url =

'http://172.30.10.41',

 

config=boto3.session.Config(signature_version='s3v4',

s3={'addressing_style':'path'}) )

sess.s3_resource = boto3.resource('s3',region_name='',aws_access_key_id

= '0ZNAX21JW5Q8AP80CQ2E', aws_secret_access_key =

'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',

                              use_ssl = False, endpoint_url =

'http://172.30.10.41',

 

config=boto3.session.Config(signature_version='s3v4',

s3={'addressing_style':'path'}) )

prefix = "blazingtext/supervised"

import os

my_bucket = sess.s3_resource.Bucket(bucket)

my_bucket = sess.s3_resource.Bucket(bucket)

#os.mkdir('dbpedia_csv')

for s3_object in my_bucket.objects.all():

    filename = s3_object.key

#    print(filename)

#    print(s3_object.key)

    my_bucket.download_file(s3_object.key, filename)

3. The following code creates the mapping from integer indices to class labels that are used to retrieve the

actual class name during inference.

index_to_label = {}

with open("dbpedia_csv/classes.txt") as f:

    for i,label in enumerate(f.readlines()):

        index_to_label[str(i + 1)] = label.strip()
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The output lists the files and folders in the ontapbucket1 bucket that are used as data for the AWS

SageMaker machine-learning validation.

arn:aws:iam::210811600188:role/SageMakerFullRole ontapbucket1

AUTHORS

AUTHORS

NEWS

NEWS

README README

dbpedia_csv/classes.txt dbpedia_csv/classes.txt dbpedia_csv/readme.txt

dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/test.csv

dbpedia_csv/train.csv dbpedia_csv/train.csv deprecated.txt

deprecated.txt getopt-parse.bash getopt-parse.bash getopt-parse.tcsh

getopt-parse.tcsh

In [5]: ls

AUTHORS       deprecated.txt     getopt-parse.tcsh  NEWS

Untitled.ipynb dbpedia_csv/  getopt-parse.bash  lost+found/

README

In [6]: ls -l dbpedia_csv

total 191344

-rw-rw-r-- 1 ec2-user ec2-user       146 Feb 16 19:43 classes.txt

-rw-rw-r-- 1 ec2-user ec2-user      1758 Feb 16 19:43 readme.txt

-rw-rw-r-- 1 ec2-user ec2-user  21775285 Feb 16 19:43 test.csv

-rw-rw-r-- 1 ec2-user ec2-user 174148970 Feb 16 19:43 train.csv

4. Start the data preprocessing phase to preprocess the training data into a space-separated, tokenized text

format that can be consumed by the BlazingText algorithm and the nltk library to tokenize the input

sentences from the DBPedia dataset. Download the nltk tokenizer and other libraries. The

transform_instance applied to each data instance in parallel uses the Python multiprocessing module.

ln [7]: from random import shuffle

import multiprocessing

from multiprocessing import Pool

import csv

import nltk

nltk.download("punkt")

def transform_instance(row):

    cur_row = []

    label ="__label__" + index_to_label [row[0]] # Prefix the index-ed

label with __label__

    cur_row.append (label)

    cur_row.extend(nltk.word_tokenize(row[1].lower ()))

    cur_row.extend(nltk.word_tokenize(row[2].lower ()))

    return cur_row

def preprocess(input_file, output_file, keep=1):
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    all_rows = []

    with open(input_file,"r") as csvinfile:

        csv_reader = csv.reader(csvinfile, delimiter=",")

        for row in csv_reader:

            all_rows.append(row)

    shuffle(all_rows)

    all_rows = all_rows[: int(keep * len(all_rows))]

    pool = Pool(processes=multiprocessing.cpu_count())

    transformed_rows = pool.map(transform_instance, all_rows)

    pool.close()

    pool. join()

    with open(output_file, "w") as csvoutfile:

        csv_writer = csv.writer (csvoutfile, delimiter=" ",

lineterminator="\n")

        csv_writer.writerows (transformed_rows)

# Preparing the training dataset

# since preprocessing the whole dataset might take a couple of minutes,

# we keep 20% of the training dataset for this demo.

# Set keep to 1 if you want to use the complete dataset

preprocess("dbpedia_csv/train.csv","dbpedia.train", keep=0.2)

# Preparing the validation dataset

preprocess("dbpedia_csv/test.csv","dbpedia.validation")

sess = sagemaker.Session()

role = get_execution_role()

print (role) # This is the role that sageMaker would use to leverage Aws

resources (S3,  Cloudwatch) on your behalf

bucket = sess.default_bucket() # Replace with your own bucket name if

needed

print("default Bucket::: ")

print(bucket)

Output:

[nltk_data] Downloading package punkt to /home/ec2-user/nltk_data...

[nltk_data]   Package punkt is already up-to-date!

arn:aws:iam::210811600188:role/SageMakerFullRole default Bucket:::

sagemaker-us-east-1-210811600188

5. Upload the formatted and training dataset to S3 so that it can be used by SageMaker to execute training

jobs. Then upload two files to the bucket and prefix location using the Python SDK.
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ln [8]: %%time

train_channel = prefix + "/train"

validation_channel = prefix + "/validation"

sess.upload_data(path="dbpedia.train", bucket=bucket,

key_prefix=train_channel)

sess.upload_data(path="dbpedia.validation", bucket=bucket,

key_prefix=validation_channel)

s3_train_data = "s3://{}/{}".format(bucket, train_channel)

s3_validation_data = "s3://{}/{}".format(bucket, validation_channel)

Output:

CPU times: user 546 ms, sys: 163 ms, total: 709 ms

Wall time: 1.32 s

6. Set up an output location at S3 where the model artifact is loaded so that artifacts can be the output of the

algorithm’s training job. Create a sageMaker.estimator.Estimator object to launch the training job.

In [9]: s3_output_location = "s3://{}/{}/output".format(bucket, prefix)

In [10]: region_name = boto3.Session().region_name

In [11]: container =

sagemaker.amazon.amazon_estimator.get_image_uri(region_name,

"blazingtext","latest")

print("Using SageMaker BlazingText container: {} ({})".format(container,

region_name))

Output:

The method get_image_uri has been renamed in sagemaker>=2.

See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.

Defaulting to the only supported framework/algorithm version: 1.

Ignoring f ramework/algorithm version: latest.

Using SageMaker BlazingText container: 811284229777.dkr.ecr.us-east-

1.amazo naws.com/blazingtext:1 (us-east-1)

7. Define the SageMaker Estrimator with resource configurations and hyperparameters to train text

classification on the DBPedia dataset using the supervised mode on a c4.4xlarge instance.
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In [12]: bt_model = sagemaker.estimator.Estimator(

container,

role,

instance_count=1,

instance_type="ml.c4.4xlarge",

volume_size=30,

max_run=360000,

input_mode="File",

output_path=s3_output_location,

hyperparameters={

        "mode": "supervised",

        "epochs": 1,

        "min_count": 2,

        "learning_rate": 0.05,

        "vector_dim": 10,

        "early_stopping": True,

        "patience": 4,

        "min_epochs": 5,

        "word_ngrams": 2,

 },

     )

8. Prepare a handshake between the data channels and the algorithm. To do this, create the

sagemaker.session.s3_input objects from the data channels, and keep them in a dictionary for the

algorithm to consume.

ln [13]: train_data = sagemaker.inputs.TrainingInput(

    s3_train_data,

    distribution="FullyReplicated",

    content_type="text/plain",

    s3_data_type="S3Prefix",

)

validation_data = sagemaker.inputs.TrainingInput(

    s3_validation_data,

    distribution="FullyReplicated",

    content_type="text/plain",

    s3_data_type="S3Prefix",

)

data_channels = {"train": train_data, "validation": validation_data}

9. After the job has finished, a Job Complete message appears. The trained model can be found in the S3

bucket that was set up as the output_path in the estimator.
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ln [14]: bt_model.fit(inputs=data_channels, logs=True)

Output:

INFO:sagemaker:Creating training-job with name: blazingtext-2023-02-16-

20-3

7-30-748

2023-02-16 20:37:30 Starting - Starting the training job......

2023-02-16 20:38:09 Starting - Preparing the instances for

training......

2023-02-16 20:39:24 Downloading - Downloading input data

2023-02-16 20:39:24 Training - Training image download completed.

Training in progress... Arguments: train

[02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been

set up. [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have

already been set up.

[02/16/2023 20:39:41 INFO 140279908747072] nvidia-smi took:

0.0251793861389

16016 secs to identify 0 gpus

[02/16/2023 20:39:41 INFO 140279908747072] Running single machine CPU

Blazi ngText training using supervised mode.

Number of CPU sockets found in instance is  1

[02/16/2023 20:39:41 INFO 140279908747072] Processing

/opt/ml/input/data/tr ain/dbpedia.train . File size: 35.0693244934082 MB

[02/16/2023 20:39:41 INFO 140279908747072] Processing

/opt/ml/input/data/va lidation/dbpedia.validation . File size:

21.887572288513184 MB

Read 6M words

Number of words:  149301

Loading validation data from

/opt/ml/input/data/validation/dbpedia.validati on

Loaded validation data.

-------------- End of epoch: 1 ##### Alpha: 0.0000  Progress: 100.00%

Million Words/sec: 10.39 ##### Training finished.

Average throughput in Million words/sec: 10.39

Total training time in seconds: 0.60

#train_accuracy: 0.7223

Number of train examples: 112000

#validation_accuracy: 0.7205

Number of validation examples: 70000

2023-02-16 20:39:55 Uploading - Uploading generated training model

2023-02-16 20:40:11 Completed - Training job completed

Training seconds: 68

Billable seconds: 68
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10. After training is complete, deploy the trained model as an Amazon SageMaker real-time hosted endpoint to

make predictions.

In [15]: from sagemaker.serializers import JSONSerializer

 text_classifier = bt_model.deploy(

     initial_instance_count=1, instance_type="ml.m4.xlarge",

serializer=JSONS

)

Output:

INFO:sagemaker:Creating model with name: blazingtext-2023-02-16-20-41-

33-10

0

INFO:sagemaker:Creating endpoint-config with name blazingtext-2023-02-

16-20

-41-33-100

INFO:sagemaker:Creating endpoint with name blazingtext-2023-02-16-20-41-

33-

100

-------!

In [16]: sentences = [

    "Convair was an american aircraft manufacturing company which later

expanded into rockets and spacecraft.",

       "Berwick secondary college is situated in the outer melbourne

metropolitan suburb of berwick .",

]

# using the same nltk tokenizer that we used during data preparation for

training

tokenized_sentences = [" ".join(nltk.word_tokenize(sent)) for sent in

sentences]

payload = {"instances": tokenized_sentences} response =

text_classifier.predict(payload)

predictions = json.loads(response)

print(json.dumps(predictions, indent=2))
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[

  {

    "label": [

      "__label__Artist"

    ],

    "prob": [

      0.4090951681137085

    ]

  },

  {

    "label": [

      "__label__EducationalInstitution"

    ],

    "prob": [

      0.49466073513031006

    ]

  }

]

11. By default, the model returns one prediction with the highest probability. To retrieve the top k predictions,

set k in the configuration file.

In [17]: payload = {"instances": tokenized_sentences, "configuration":

{"k": 2}}

 response = text_classifier.predict(payload)

 predictions = json.loads(response)

 print(json.dumps(predictions, indent=2))
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[

  {

    "label": [

      "__label__Artist",

      "__label__MeanOfTransportation"

    ],

    "prob": [

      0.4090951681137085,

      0.26930734515190125

    ]

  },

  {

    "label": [

      "__label__EducationalInstitution",

      "__label__Building"

    ],

    "prob": [

      0.49466073513031006,

      0.15817692875862122

    ]

  }

]

12. Delete the endpoint before closing the notebook.

In [18]: sess.delete_endpoint(text_classifier.endpoint)

WARNING:sagemaker.deprecations:The endpoint attribute has been renamed

in s agemaker>=2.

See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.

INFO:sagemaker:Deleting endpoint with name: blazingtext-2023-02-16-20-

41-33

-100

Conclusion

Based on this validation, Data scientists and engineers can access NFS data from AWS

SageMaker Jupyter Notebooks via S3 buckets from NetApp Cloud Volumes ONTAP. This

approach enables easy access and sharing of the same data from both NFS and S3

without the need for additional software.

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:
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• Text classification using SageMaker BlazingText

https://sagemaker-

examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/blazingtext_text_classification_dbp

edia/blazingtext_text_classification_dbpedia.html

• ONTAP version support for S3 object storage

https://docs.netapp.com/us-en/ontap/s3-config/ontap-version-support-s3-concept.html

Apache Kafka workloads with NetApp NFS storage

TR-4947: Apache Kafka workload with NetApp NFS storage - Functional validation
and performance

Shantanu Chakole, Karthikeyan Nagalingam, and Joe Scott, NetApp

Kafka is a distributed publish-subscribe messaging system with a robust queue that can

accept large amounts of message data. With Kafka, applications can write and read data

to topics in a very fast manner. Because of its fault tolerance and scalability, Kafka is

often used in the big data space as a reliable way to ingest and move many data streams

very quickly. Use cases include stream processing, website-activity tracking, metrics

collection and monitoring, log aggregation, real time analytics, and so on.

Although normal Kafka operations on NFS work well, the silly rename issue crashes the application during the

resizing or repartitioning of a Kafka cluster running on NFS. This is a significant issue because a Kafka cluster

must be resized or repartitioned for load-balancing or maintenance purposes. You can find additional details

here.

This document describes the following subjects:

• The silly-rename problem and solution validation

• Reducing CPU utilization to reduce the I/O wait time

• Faster Kafka broker recovery time

• Performance in the cloud and on-premises

Why use NFS storage for Kafka workloads?

Kafka workloads in production applications can stream huge amounts of data between applications. This data

is held and stored in the Kafka broker nodes in the Kafka cluster. Kafka is also known for availability and

parallelism, which it achieves by breaking topics into partitions and then replicating those partitions throughout

the cluster. This eventually means that the huge amount of data that flows through a Kafka cluster is generally

multiplied in size. NFS makes rebalancing data as the number of brokers changes very quick and easy. For

large environments, rebalancing data across DAS when the number of brokers changes is very time

consuming, and, in most Kafka environments, the number of brokers changes frequently.

Other benefits include the following:

• Maturity. NFS is a mature protocol, which means most aspects of implementing, securing, and using it are

well understood.
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• Open. NFS is an open protocol, and its continued development is documented in internet specifications as

a free and open network protocol.

• Cost-effective. NFS is a low-cost solution for network file sharing that is easy to set up because it uses the

existing network infrastructure.

• Centrally managed. Centralized management of NFS decreases the need for added software and disk

space on individual user systems.

• Distributed. NFS can be used as a distributed file system, reducing the need for removable media storage

devices.

Why NetApp for Kafka workloads?

The NetApp NFS implementation is considered a gold standard for the protocol and is used in countless

enterprise NAS environments. In addition to the credibility of NetApp, it also offers the following benefits:

• Reliability and efficiency

• Scalability and performance

• High availability (HA partner in a NetApp ONTAP cluster)

• Data protection

◦ Disaster recovery (NetApp SnapMirror). Your site goes down or you want to jump start at a different

site and continue from where you left off.

◦ Manageability of your storage system (administration and management using NetApp OnCommand).

◦ Load balancing. The cluster allows you to access different volumes from data LIFs hosted on different

nodes.

◦ Nondisruptive operations. LIFs or volume moves are transparent to the NFS clients.

NetApp solution for silly rename issue for NFS to Kafka workloads

Kafka is built with the assumption that the underlying filesystem is POSIX compliant: for

example, XFS or Ext4. Kafka resource rebalancing removes files while the application is

still using them. A POSIX-compliant file system allows unlink to proceed. However, it only

removes the file after all references to the file are gone. If the underlying filesystem is

network attached, then the NFS client intercepts the unlink calls and manages the

workflow. Because there are pending opens on the file being unlinked, the NFS client

sends a rename request to the NFS server and, on the last close of the unlinked file,

issues a remove operation on the renamed file. This behavior is commonly referred to as

NFS silly rename, and it is orchestrated by the NFS client.

Any Kafka broker using storage from an NFSv3 server runs into issues because of this behavior. However, the

NFSv4.x protocol has features to address this issue by allowing the server to take responsibility for the

opened, unlinked files. NFS servers supporting this optional feature communicate the ownership capability to

the NFS client at the time of file opening. The NFS client then ceases the unlink management when there are

opens pending and allows the server to manage the flow. Although the NFSv4 specification provides guidelines

for implementation, until now, there were not any known NFS server implementations that supported this

optional feature.

The following changes are required for the NFS server and the NFS client to address the silly rename issue:
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• Changes to NFS client (Linux). At the time of file opening, the NFS server responds with a flag, indicating

the capability to handle the unlinking of opened files. NFS client-side changes allow the NFS server to

handle the unlinking in the presence of the flag. NetApp has updated the open-source Linux NFS client

with these changes. The updated NFS client is now generally available in RHEL8.7 and RHEL9.1.

• Changes to NFS server. The NFS server keeps track of opens. Unlinking on an existing open file is now

managed by the server to match POSIX semantics. When the last open is closed, The NFS server then

initiates the actual removal of the file and thus avoids the silly rename process. The ONTAP NFS server

has implemented this capability in its latest release, ONTAP 9.12.1.

With the above changes to the NFS client and server, Kafka can safely reap all the benefits of network-

attached NFS storage.

Functional validation - Silly rename fix

For the functional validation, we showed that a Kafka cluster with an NFSv3 mount for

storage fails to perform Kafka operations like partition redistribution, whereas another

cluster mounted on NFSv4 with the fix can perform the same operations without any

disruptions.

Validation setup

The setup is run on AWS. The following table shows the different platform components and environmental

configuration used for the validation.

Platform component Environment configuration

Confluent Platform version 7.2.1 • 3 x zookeepers – t3.xlarge

• 4 x broker servers – r3.xlarge

• 1 x Grafana – t3.xlarge

• 1 x control center – t3.xlarge

• 3 x Producer/consumer

Operating system on all nodes RHEL8.7or later

NetApp Cloud Volumes ONTAP instance Single-node instance – M5.2xLarge

The following figure show the architectural configuration for this solution.
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Architectural flow

• Compute. We used a four-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers.

• Monitoring. We used two nodes for a Prometheus-Grafana combination.

• Workload. For generating workloads, we used a separate three-node cluster that can produce to and

consume from this Kafka cluster.

• Storage. We used a single-node NetApp Cloud volumes ONTAP instance with two 500GB GP2 AWS-EBS

volumes attached to the instance. These volumes were then exposed to the Kafka cluster as single

NFSv4.1 volume through a LIF.

The default properties of Kafka were chosen for all servers. The same was done for the zookeeper swarm.

Methodology of testing

1. Update -is-preserve-unlink-enabled true to the kafka volume, as follows:

aws-shantanclastrecall-aws::*> volume create -vserver kafka_svm -volume

kafka_fg_vol01 -aggregate kafka_aggr -size 3500GB -state online -policy

kafka_policy -security-style unix -unix-permissions 0777 -junction-path

/kafka_fg_vol01 -type RW -is-preserve-unlink-enabled true

[Job 32] Job succeeded: Successful

2. Two similar Kafka clusters were created with the following difference:
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◦ Cluster 1. The backend NFS v4.1 server running production-ready ONTAP version 9.12.1 was hosted

by a NetApp CVO instance. RHEL 8.7/RHEL 9.1 were installed on the brokers.

◦ Cluster 2. The backend NFS server was a manually created generic Linux NFSv3 server.

3. A demo topic was created on both the Kafka clusters.

Cluster 1:

Cluster 2:

4. Data was loaded into these newly created topics for both clusters. This was done using the producer-perf-

test toolkit that comes in the default Kafka package:

./kafka-producer-perf-test.sh --topic __a_demo_topic --throughput -1

--num-records 3000000 --record-size 1024 --producer-props acks=all

bootstrap.servers=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,

172.30.0.123:9092

5. A health check was performed for broker-1 for each of the clusters using telnet:

◦ telnet 172.30.0.160 9092

◦ telnet 172.30.0.198 9092

A successful health check for brokers on both clusters is shown in the next screenshot:
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6. To trigger the failure condition that causes Kafka clusters using NFSv3 storage volumes to crash, we

initiated the partition reassignment process on both clusters. Partition reassignment was performed using

kafka-reassign-partitions.sh. The detailed process is as follows:

a. To reassign the partitions for a topic in a Kafka cluster, we generated the proposed reassignment config

JSON (this was performed for both the clusters).

kafka-reassign-partitions --bootstrap

-server=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,172.30.

0.123:9092 --broker-list "1,2,3,4" --topics-to-move-json-file

/tmp/topics.json --generate

b. The generated reassignment JSON was then saved in /tmp/reassignment- file.json.

c. The actual partition reassignment process was triggered by the following command:

kafka-reassign-partitions --bootstrap

-server=172.30.0.198:9092,172.30.0.163:9092,172.30.0.221:9092,172.30.

0.204:9092 --reassignment-json-file /tmp/reassignment-file.json

–execute

7. After a few minutes when the reassignment was completed, another health check on the brokers showed

that cluster using NFSv3 storage volumes had run into a silly rename issue and had crashed, whereas

Cluster 1 using NetApp ONTAP NFSv4.1 storage volumes with the fix continued operations without any

disruptions.

◦ Cluster1-Broker-1 is alive.

◦ Cluster2-broker-1 is dead.

8. Upon checking the Kafka log directories, it was clear that Cluster 1 using NetApp ONTAP NFSv4.1 storage

volumes with the fix had clean partition assignment, while Cluster 2 using generic NFSv3 storage did not

due to silly rename issues, which led to the crash. The following picture shows partition rebalancing of

Cluster 2, which resulted in a silly rename issue on NFSv3 storage.
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The following picture shows a clean partition rebalancing of Cluster 1 using NetApp NFSv4.1 storage.

Why NetApp NFS for Kafka workloads?

Now that there is a solution for the silly rename issue in NFS storage with Kafka, you can

create robust deployments that leverage NetApp ONTAP storage for your Kafka

workload. Not only does this significantly reduce operational overhead, it also brings the

following benefits to your Kafka clusters:

• Reduced CPU utilization on Kafka brokers. Using disaggregated NetApp ONTAP storage separates disk

I/O operations from the broker and thus reduces its CPU footprint.

• Faster broker recovery-time. Since disaggregated NetApp ONTAP storage is shared across Kafka broker

nodes, a new compute instance can replace a bad broker at any point in a fraction of the time compared to

conventional Kafka deployments without rebuilding the data.

• Storage efficiency. As the storage layer of the application is now provisioned through NetApp ONTAP,

customers can avail all the benefits of storage efficiency that comes with ONTAP, such as in-line data

compression, deduplication, and compaction.
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These benefits were tested and validated in test cases that we discuss in detail in this section.

Reduced CPU utilization on Kafka broker

We discovered that overall CPU utilization is lower than its DAS counterpart when we ran similar workloads on

two sperate Kafka clusters that were identical in their technical specifications but differed in their storage

technologies. Not only is the overall CPU utilization lower when Kafka cluster is using ONTAP storage, but the

increase in the CPU utilization demonstrated a gentler gradient than in a DAS-based Kafka cluster.

Architectural setup

The following table shows the environmental configuration used to demonstrate reduced CPU utilization.

Platform component Environment configuration

Kafka 3.2.3

Benchmarking tool: OpenMessaging

• 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x Producer/Consumer — c5n.2xlarge

Operating system on all nodes RHEL 8.7 or later

NetApp Cloud Volumes ONTAP instance Single Node Instance – M5.2xLarge

Benchmarking tool

The benchmarking tool used in this test case is the OpenMessaging framework. OpenMessaging is vendor-

neutral and language-independent; it provides industry guidelines for finance, e-commerce, IoT, and big-data;

and it helps develop messaging and streaming applications across heterogeneous systems and platforms. The

following figure depicts the interaction of OpenMessaging clients with a Kafka cluster.
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• Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had two NFSv4.1 mount points to a single volume on the NetApp CVO

instance through a dedicated LIF.

• Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

have a separate three-node cluster that can produce to and consume from this Kafka cluster.

• Storage. We used a single-node NetApp Cloud volumes ONTAP instance with six 250GB GP2 AWS-EBS

volumes mounted on the instance. These volumes were then exposed to the Kafka cluster as six NFSv4.1

volumes through dedicated LIFs.

• Configuration. The two configurable elements in this test case were Kafka brokers and OpenMessaging

workloads.

◦ Broker config. The following specifications were selected for the Kafka brokers. We used replication

factor of 3 for all measurements, as is highlighted below.
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• OpenMessaging benchmark (OMB) workload config. The following specifications were provided. We

specified a target producer rate, highlighted below.

Methodology of testing

1. Two similar clusters were created, each having its own set of benchmarking cluster swarms.

◦ Cluster 1. NFS-based Kafka cluster.

◦ Cluster 2. DAS-based Kafka cluster.

2. Using an OpenMessaging command, similar workloads were triggered on each cluster.

sudo bin/benchmark --drivers driver-kafka/kafka-group-all.yaml

workloads/1-topic-100-partitions-1kb.yaml

38



3. The produce rate configuration was increased in four iterations, and CPU utilization was recorded with

Grafana. The produce rate was set to the following levels:

◦ 10,000

◦ 40,000

◦ 80,000

◦ 100,000

Observation

There are two primary benefits of using NetApp NFS storage with Kafka:

• You can reduce CPU usage by almost one-third. The overall CPU usage under similar workloads was

lower for NFS compared to DAS SSDs; savings range from 5% for lower produce rates to 32% for higher

produce rates.

• A three-fold reduction in CPU utilization drift at higher produce rates. As expected, there was an

upward drift for the increase in CPU utilization as the produce rates were increased. However, CPU

utilization on Kafka brokers using DAS went up from 31% for the lower produce rate to 70% for the higher

produce rate, a 39% increase. However, with an NFS storage backend, the CPU utilization went up from

26% to 38%, a 12% increase.
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Also, at 100,000 messages, DAS shows more CPU utilization than an NFS cluster.
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Faster broker recovery

We discovered that Kafka brokers recover faster when they are using shared NetApp NFS storage. When a

broker crashes in a Kafka cluster, this broker can be replaced by a healthy broker with a same broker ID. Upon

performing this test case, we found that, in the case of a DAS-based Kafka cluster, the cluster rebuilds the data

on a newly added healthy broker, which is time consuming. In the case of a NetApp NFS-based Kafka cluster,

the replacing broker continues to read data from the previous log directory and recovers much faster.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

• 1 x backup Kafka node – i3en.2xlarge

Operating system on all nodes RHEL8.7 or later

NetApp Cloud Volumes ONTAP instance Single-node instance – M5.2xLarge

The following figure depicts the architecture of an NAS-based Kafka cluster.
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• Compute. A three-node Kafka cluster with a three-node zookeeper ensemble running on dedicated

servers. Each broker has two NFS mount points to a single volume on the NetApp CVO instance via a

dedicated LIF.

• Monitoring. Two nodes for a Prometheus-Grafana combination. For generating workloads, we use a

separate three-node cluster that can produce and consume to this Kafka cluster.

• Storage. A single-node NetApp Cloud volumes ONTAP instance with six 250GB GP2 AWS-EBS volumes

mounted on the instance. These volumes are then exposed to the Kafka cluster as six NFS volume through

dedicated LIFs.

• Broker configuration. The one configurable element in this test case are Kafka brokers. The following

specifications were selected for the Kafka brokers. The replica.lag.time.mx.ms is set to a high value

because this determines how fast a particular node is taken out of the ISR list. When you switch between

bad and healthy nodes, you don’t want that broker ID to be excluded from the ISR list.

Methodology of testing

1. Two similar clusters were created:

◦ An EC2-based confluent cluster.

◦ A NetApp NFS-based confluent cluster.

2. One standby Kafka node was created with a configuration identical to the nodes from the original Kafka

cluster.

3. On each of the clusters, a sample topic was created, and approximately 110GB of data was populated on

each of the brokers.

◦ EC2-based cluster. A Kafka broker data directory is mapped on /mnt/data-2 (In the following figure,

Broker-1 of cluster1 [left terminal]).

◦ NetApp NFS-based cluster. A Kafka broker data directory is mounted on NFS point /mnt/data (In

the following figure, Broker-1 of cluster2 [right terminal]).
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4. In each of the clusters, Broker-1 was terminated to trigger a failed broker recovery process.

5. After the broker was terminated, the broker IP address was assigned as a secondary IP to the standby

broker. This was necessary because a broker in a Kafka cluster is identified by the following:

◦ IP address. Assigned by reassigning the failed broker IP to the standby broker.

◦ Broker ID. This was configured in the standby broker server.properties.

6. Upon IP assignment, the Kafka service was started on the standby broker.

7. After a while, the server logs were pulled to check the time taken to build data on the replacement node in

the cluster.

Observation

Kafka broker recovery was almost nine times faster. The time it took to recover a failed broker node was found

to be significantly faster when using NetApp NFS shared storage compared to using DAS SSDs in a Kafka

cluster. For 1TB of topic data, the recovery time for a DAS-based cluster was 48 minutes, compared to less

than 5 minutes for a NetApp-NFS based Kafka cluster.

We observed that the EC2-based cluster took 10 minutes to rebuild the 110GB of data on the new broker node,

whereas the NFS- based cluster completed the recovery in 3 minutes. We also observed in the in logs that

consumer offsets for the partitions for EC2 were 0, while, on the NFS cluster, consumer offsets were picked up

from the previous broker.

[2022-10-31 09:39:17,747] INFO [LogLoader partition=test-topic-51R3EWs-

0000-55, dir=/mnt/kafka-data/broker2] Reloading from producer snapshot and

rebuilding producer state from offset 583999 (kafka.log.UnifiedLog$)

[2022-10-31 08:55:55,170] INFO [LogLoader partition=test-topic-qbVsEZg-

0000-8, dir=/mnt/data-1] Loading producer state till offset 0 with message

format version 2 (kafka.log.UnifiedLog$)

DAS-based cluster

1. The backup node started at 08:55:53,730.

2. The data rebuilding process ended at 09:05:24,860. Processing 110GB of data required approximately 10

minutes.
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NFS-based cluster

1. The backup node was started at 09:39:17,213. The starting log entry is highlighted below.

2. The data rebuild process ended at 09:42:29,115. Processing 110GB of data required approximately 3

minutes.

The test was repeated for brokers containing around 1TB data, which took approximately 48 minutes for

the DAS and 3 min for NFS. The results are depicted in the following graph.
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Storage efficiency

Because the storage layer of the Kafka cluster was provisioned through NetApp ONTAP, we got all the storage

efficiency capabilities of ONTAP. This was tested by generating a significant amount of data on a Kafka cluster

with NFS storage provisioned on Cloud Volumes ONTAP. We could see that there was a significant space

reduction due to ONTAP capabilities.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

*

Operating system on all nodes RHEL8.7 or later

NetApp Cloud Volumes ONTAP instance Single node instance – M5.2xLarge

The following figure depicts the architecture of an NAS-based Kafka cluster.

• Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had two NFS mount points to a single volume on the NetApp CVO instance
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via a dedicated LIF.

• Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

used a separate three-node cluster that could produce and consume to this Kafka cluster.

• Storage. We used a single-node NetApp Cloud Volumes ONTAP instance with six 250GB GP2 AWS-EBS

volumes mounted on the instance. These volumes were then exposed to the Kafka cluster as six NFS

volumes through dedicated LIFs.

• Configuration. The configurable elements in this test case were the Kafka brokers.

Compression was switched off on the producer’s end, thus enabling producers to generate high throughput.

Storage efficiency was instead handled by the compute layer.

Methodology of testing

1. A Kafka cluster was provisioned with the specifications mentioned above.

2. On the cluster, about 350GB data was produced using the OpenMessaging Benchmarking tool.

3. After the workload was completed, the storage efficiency statistics were collected using ONTAP System

Manager and the CLI.

Observation

For data that was generated using the OMB tool, we saw space savings of ~33% with a storage efficiency ratio

of 1.70:1. As seen in the following figures, the logical space used by the data produced was 420.3GB and the

physical space used to hold the data was 281.7GB.
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Performance overview and validation in AWS

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for

performance in the AWS cloud. The benchmarking examples are described in the

following sections.

Kafka in AWS cloud with NetApp Cloud Volumes ONTAP (high-availability pair and single node)

A Kafka cluster with NetApp Cloud Volumes ONTAP (HA pair) was benchmarked for performance in the AWS

cloud. This benchmarking is described in the following sections.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using NAS.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

*

Operating system on all nodes RHEL8.6

NetApp Cloud Volumes ONTAP instance HA pair instance – m5dn.12xLarge x 2node

Single Node Instance - m5dn.12xLarge x 1 node

NetApp cluster volume ONTAP setup

1. For the Cloud Volumes ONTAP HA pair, we created two aggregates with three volumes on each aggregate

on each storage controller. For the single Cloud Volumes ONTAP node, we create six volumes in an

aggregate.

48



2. To achieve better network performance, we enabled high speed networking for both the HA pair and the

single node.
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3. We noticed that the ONTAP NVRAM had more IOPS so we changed the IOPS to 2350 for the Cloud

Volumes ONTAP root volume. The root volume disk in Cloud Volumes ONTAP was 47GB in size. The

following ONTAP command is for the HA pair, and the same step is applicable for the single node.
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statistics start -object vnvram -instance vnvram -counter

backing_store_iops -sample-id sample_555

kafka_nfs_cvo_ha1::*> statistics show -sample-id sample_555

Object: vnvram

Instance: vnvram

Start-time: 1/18/2023 18:03:11

End-time: 1/18/2023 18:03:13

Elapsed-time: 2s

Scope: kafka_nfs_cvo_ha1-01

    Counter                                                     Value

    -------------------------------- --------------------------------

    backing_store_iops                                           1479

Object: vnvram

Instance: vnvram

Start-time: 1/18/2023 18:03:11

End-time: 1/18/2023 18:03:13

Elapsed-time: 2s

Scope: kafka_nfs_cvo_ha1-02

    Counter                                                     Value

    -------------------------------- --------------------------------

    backing_store_iops                                           1210

2 entries were displayed.

kafka_nfs_cvo_ha1::*>
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The following figure depicts the architecture of an NAS-based Kafka cluster.

• Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had two NFS mount points to a single volume on the Cloud Volumes

ONTAP instance through a dedicated LIF.

• Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

used a separate three-node cluster that could produce and consume to this Kafka cluster.

• Storage. We used an HA-pair Cloud volumes ONTAP instance with one 6TB GP3 AWS-EBS volume

mounted on the instance. The volume was then exported to the Kafka broker with an NFS mount.
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OpenMessage Benchmarking configurations

1. For better NFS performance, we need more network connections between the NFS server and the NFS

client, which can be created using nconnect. Mount the NFS volumes on the broker nodes with the

nconnect option by running the following command:
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[root@ip-172-30-0-121 ~]# cat /etc/fstab

UUID=eaa1f38e-de0f-4ed5-a5b5-2fa9db43bb38/xfsdefaults00

/dev/nvme1n1 /mnt/data-1 xfs defaults,noatime,nodiscard 0 0

/dev/nvme2n1 /mnt/data-2 xfs defaults,noatime,nodiscard 0 0

172.30.0.233:/kafka_aggr3_vol1 /kafka_aggr3_vol1 nfs

defaults,nconnect=16 0 0

172.30.0.233:/kafka_aggr3_vol2 /kafka_aggr3_vol2 nfs

defaults,nconnect=16 0 0

172.30.0.233:/kafka_aggr3_vol3 /kafka_aggr3_vol3 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol1 /kafka_aggr22_vol1 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol2 /kafka_aggr22_vol2 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol3 /kafka_aggr22_vol3 nfs

defaults,nconnect=16 0 0

[root@ip-172-30-0-121 ~]# mount -a

[root@ip-172-30-0-121 ~]# df -h

Filesystem                       Size  Used Avail Use% Mounted on

devtmpfs                          31G     0   31G   0% /dev

tmpfs                             31G  249M   31G   1% /run

tmpfs                             31G     0   31G   0% /sys/fs/cgroup

/dev/nvme0n1p2                    10G  2.8G  7.2G  28% /

/dev/nvme1n1                     2.3T  248G  2.1T  11% /mnt/data-1

/dev/nvme2n1                     2.3T  245G  2.1T  11% /mnt/data-2

172.30.0.233:/kafka_aggr3_vol1   1.0T   12G 1013G   2% /kafka_aggr3_vol1

172.30.0.233:/kafka_aggr3_vol2   1.0T  5.5G 1019G   1% /kafka_aggr3_vol2

172.30.0.233:/kafka_aggr3_vol3   1.0T  8.9G 1016G   1% /kafka_aggr3_vol3

172.30.0.242:/kafka_aggr22_vol1  1.0T  7.3G 1017G   1%

/kafka_aggr22_vol1

172.30.0.242:/kafka_aggr22_vol2  1.0T  6.9G 1018G   1%

/kafka_aggr22_vol2

172.30.0.242:/kafka_aggr22_vol3  1.0T  5.9G 1019G   1%

/kafka_aggr22_vol3

tmpfs                            6.2G     0  6.2G   0% /run/user/1000

[root@ip-172-30-0-121 ~]#

2. Check the network connections in Cloud Volumes ONTAP. The following ONTAP command is used from

the single Cloud Volumes ONTAP node. The same step is applicable to the Cloud Volumes ONTAP HA

pair.

Last login time: 1/20/2023 00:16:29

kafka_nfs_cvo_sn::> network connections active show -service nfs*

-fields remote-host

node                cid        vserver              remote-host
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------------------- ---------- -------------------- ------------

kafka_nfs_cvo_sn-01 2315762628 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762629 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762630 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762631 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762632 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762633 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762634 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762635 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762636 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762637 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762639 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762640 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762641 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762642 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762643 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762644 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762645 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762646 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762647 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762648 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762649 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762650 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762651 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762652 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762653 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762656 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762657 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762658 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762659 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762660 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762661 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762662 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762663 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762664 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762665 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762666 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762667 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762668 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762669 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762670 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762671 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762672 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762673 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762674 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762676 svm_kafka_nfs_cvo_sn 172.30.0.121

55



kafka_nfs_cvo_sn-01 2315762677 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762678 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762679 svm_kafka_nfs_cvo_sn 172.30.0.223

48 entries were displayed.

 

kafka_nfs_cvo_sn::>

3. We use the following Kafka server.properties in all Kafka brokers for the Cloud Volumes ONTAP HA

pair. The log.dirs property is different for each broker, and the remaining properties are common for

brokers. For broker1, the log.dirs value is as follows:

[root@ip-172-30-0-121 ~]# cat /opt/kafka/config/server.properties

broker.id=0

advertised.listeners=PLAINTEXT://172.30.0.121:9092

#log.dirs=/mnt/data-1/d1,/mnt/data-1/d2,/mnt/data-1/d3,/mnt/data-

2/d1,/mnt/data-2/d2,/mnt/data-2/d3

log.dirs=/kafka_aggr3_vol1/broker1,/kafka_aggr3_vol2/broker1,/kafka_aggr

3_vol3/broker1,/kafka_aggr22_vol1/broker1,/kafka_aggr22_vol2/broker1,/ka

fka_aggr22_vol3/broker1

zookeeper.connect=172.30.0.12:2181,172.30.0.30:2181,172.30.0.178:2181

num.network.threads=64

num.io.threads=64

socket.send.buffer.bytes=102400

socket.receive.buffer.bytes=102400

socket.request.max.bytes=104857600

num.partitions=1

num.recovery.threads.per.data.dir=1

offsets.topic.replication.factor=1

transaction.state.log.replication.factor=1

transaction.state.log.min.isr=1

replica.fetch.max.bytes=524288000

background.threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

[root@ip-172-30-0-121 ~]#

◦ For broker2, the log.dirs property value is as follows:

log.dirs=/kafka_aggr3_vol1/broker2,/kafka_aggr3_vol2/broker2,/kafka_a

ggr3_vol3/broker2,/kafka_aggr22_vol1/broker2,/kafka_aggr22_vol2/broke

r2,/kafka_aggr22_vol3/broker2

◦ For broker3, the log.dirs property value is as follows:
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log.dirs=/kafka_aggr3_vol1/broker3,/kafka_aggr3_vol2/broker3,/kafka_a

ggr3_vol3/broker3,/kafka_aggr22_vol1/broker3,/kafka_aggr22_vol2/broke

r3,/kafka_aggr22_vol3/broker3

4. For the single Cloud Volumes ONTAP node, The Kafka servers.properties is the same as for the

Cloud Volumes ONTAP HA pair except for the log.dirs property.

◦ For broker1, the log.dirs value is as follows:

log.dirs=/kafka_aggr2_vol1/broker1,/kafka_aggr2_vol2/broker1,/kafka_a

ggr2_vol3/broker1,/kafka_aggr2_vol4/broker1,/kafka_aggr2_vol5/broker1

,/kafka_aggr2_vol6/broker1

◦ For broker2, the log.dirs value is as follows:

log.dirs=/kafka_aggr2_vol1/broker2,/kafka_aggr2_vol2/broker2,/kafka_a

ggr2_vol3/broker2,/kafka_aggr2_vol4/broker2,/kafka_aggr2_vol5/broker2

,/kafka_aggr2_vol6/broker2

◦ For broker3, the log.dirs property value is as follows:

log.dirs=/kafka_aggr2_vol1/broker3,/kafka_aggr2_vol2/broker3,/kafka_a

ggr2_vol3/broker3,/kafka_aggr2_vol4/broker3,/kafka_aggr2_vol5/broker3

,/kafka_aggr2_vol6/broker3

5. The workload in the OMB is configured with the following properties: (/opt/benchmark/workloads/1-

topic-100-partitions-1kb.yaml).

topics: 4

partitionsPerTopic: 100

messageSize: 32768

useRandomizedPayloads: true

randomBytesRatio: 0.5

randomizedPayloadPoolSize: 100

subscriptionsPerTopic: 1

consumerPerSubscription: 80

producersPerTopic: 40

producerRate: 1000000

consumerBacklogSizeGB: 0

testDurationMinutes: 5

The messageSize can vary for each use case. In our performance test, we used 3K.
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We used two different drivers, Sync or Throughput, from OMB to generate the workload on the Kafka

cluster.

◦ The yaml file used for Sync driver properties is as follows (/opt/benchmark/driver-

kafka/kafka-sync.yaml):

name: Kafka

driverClass:

io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver

# Kafka client-specific configuration

replicationFactor: 3

topicConfig: |

  min.insync.replicas=2

  flush.messages=1

  flush.ms=0

commonConfig: |

 

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909

2

producerConfig: |

  acks=all

  linger.ms=1

  batch.size=1048576

consumerConfig: |

  auto.offset.reset=earliest

  enable.auto.commit=false

  max.partition.fetch.bytes=10485760

◦ The yaml file used for the Throughput driver properties is as follows (/opt/benchmark/driver-

kafka/kafka-throughput.yaml):
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name: Kafka

driverClass:

io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver

# Kafka client-specific configuration

replicationFactor: 3

topicConfig: |

  min.insync.replicas=2

commonConfig: |

 

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909

2

  default.api.timeout.ms=1200000

  request.timeout.ms=1200000

producerConfig: |

  acks=all

  linger.ms=1

  batch.size=1048576

consumerConfig: |

  auto.offset.reset=earliest

  enable.auto.commit=false

  max.partition.fetch.bytes=10485760

Methodology of testing

1. A Kafka cluster was provisioned as per the specification described above using Terraform and Ansible.

Terraform is used to build the infrastructure using AWS instances for the Kafka cluster and Ansible builds

the Kafka cluster on them.

2. An OMB workload was triggered with the workload configuration described above and the Sync driver.

Sudo bin/benchmark –drivers driver-kafka/kafka- sync.yaml workloads/1-

topic-100-partitions-1kb.yaml

3. Another workload was triggered with the Throughput driver with same workload configuration.

sudo bin/benchmark –drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

Observation

Two different types of drivers were used to generate workloads to benchmark the performance of a Kafka

instance running on NFS. The difference between the drivers is the log flush property.

For a Cloud Volumes ONTAP HA pair:
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• Total throughput generated consistently by the Sync driver: ~1236 MBps.

• Total throughput generated for the Throughput driver: peak ~1412 MBps.

For a single Cloud Volumes ONTAP node:

• Total throughput generated consistently by the Sync driver: ~ 1962MBps.

• Total throughput generated by the Throughput driver: peak ~1660MBps

The Sync driver can generate consistent throughput as logs are flushed to the disk instantly, whereas the

Throughput driver generates bursts of throughput as logs are committed to disk in bulk.

These throughput numbers are generated for the given AWS configuration. For higher performance

requirements, the instance types can be scaled up and tuned further for better throughput numbers. The total

throughput or total rate is the combination of both producer and consumer rate.

Be sure to check the storage throughput when performing throughput or sync driver benchmarking.

60



Performance overview and validation in AWS FSx for NetApp ONTAP

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for

performance in the AWS FSx for NetApp ONTAP. The benchmarking examples are

described in the following sections.
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Apache Kafka in AWS FSx for NetApp ONTAP

Network File System (NFS) is a widely used network filesystem for storing large amounts of data. In most

organizations data is increasingly being generated by streaming applications like Apache Kafka. These

workloads require scalability, low latency, and a robust data ingestion architecture with modern storage

capabilities. To enable real-time analytics and to provide actionable insights, a well designed and highly

performant infrastructure is required.

Kafka by design works with POSIX compliant file system and relies on the file system to handle file operations,

but when storing data on an NFSv3 file system, the Kafka broker NFS client can interpret file operations

differently from a local file system like XFS or Ext4. A common example is the NFS Silly rename which caused

Kafka brokers to fail when expanding clusters and re-allocating partitions. To deal with this challenge NetApp

has updated the open-source Linux NFS client with changes now generally available in RHEL8.7, RHEL9.1,

and supported from the current FSx for NetApp ONTAP release, ONTAP 9.12.1.

Amazon FSx for NetApp ONTAP provides a fully managed, scalable, and highly performance NFS file system

in the cloud. Kafka data on FSx for NetApp ONTAP can scale to handle large amounts of data and ensure fault

tolerance. NFS provides centralized storage management and data protection for critical and sensitive

datasets.

These enhancements make it possible for AWS customer to take advantage of FSx for NetApp ONTAP when

running Kafka workloads on AWS compute services. These benefits are:

* Reducing CPU utilization to reduce the I/O wait time

* Faster Kafka broker recovery time.

* Reliability and efficiency.

* Scalability and performance.

* Multi-Availability Zone availability.

* Data protection.

Performance overview and validation in AWS FSx for NetApp ONTAP

A Kafka cluster with the storage layer mounted on NetApp NFS was benchmarked for performance in the AWS

cloud. The benchmarking examples are described in the following sections.

Kafka in AWS FSx for NetApp ONTAP

A Kafka cluster with AWS FSx for NetApp ONTAP was benchmarked for performance in the AWS cloud. This

benchmarking is described in the following sections.

Architectural setup

The following table shows the environmental configuration for a Kafka cluster using AWS FSx for NetApp

ONTAP.

Platform component Environment configuration

Kafka 3.2.3 • 3 x zookeepers – t2.small

• 3 x broker servers – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x producer/consumer — c5n.2xlarge

*

Operating system on all nodes RHEL8.6
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Platform component Environment configuration

AWS FSx for NetApp ONTAP Multi-AZ with 4GB/Sec throughput and 160000 IOPS

NetApp FSx for NetApp ONTAP setup

1. For our initial testing, we have created a FSx for NetApp ONTAP filesystem with 2TB of capacity and

40000 IOPs for 2GB/Sec throughput.

[root@ip-172-31-33-69 ~]# aws fsx create-file-system --region us-east-2

--storage-capacity 2048 --subnet-ids <desired subnet 1> subnet-<desired

subnet 2> --file-system-type ONTAP --ontap-configuration

DeploymentType=MULTI_AZ_HA_1,ThroughputCapacity=2048,PreferredSubnetId=<

desired primary subnet>,FsxAdminPassword=<new

password>,DiskIopsConfiguration="{Mode=USER_PROVISIONED,Iops=40000"}

In our example, we are deploying FSx for NetApp ONTAP through the AWS CLI. You will need to

customize the command further in your environment as needed. FSx for NetApp ONTAP can additionally

be deployed and managed through the AWS Console for an easier and more streamlined deployment

experience with less command line input.

Documentation In FSx for NetApp ONTAP, the max IOPS achievable for a 2GB/Sec throughput filesystem

in our test region (US-East-1) is 80,000 iops. The total max iops for a FSx for NetApp ONTAP filesystem is

160,000 iops which requires a 4GB/Sec throughput deployment to achieve which we will demonstrate later

in this document.

For more information on FSx for NetApp ONTAP performance specifications, please feel free to visit the

AWS FSx for NetApp ONTAP documentation here: https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/

performance.html .

Detailed command line syntax for FSx “create-file-system" can be found here:

https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

For instance, you can specify a specific KMS key as opposed to the default AWS FSx master key that is

used when no KMS key is specified.

2. While creating the FSx for NetApp ONTAP filesystem, Wait till the “LifeCycle” status changes to

“AVAILABLE” in your JSON return after describing your filesystem as follows:

[root@ip-172-31-33-69 ~]# aws fsx describe-file-systems  --region us-

east-1 --file-system-ids fs-02ff04bab5ce01c7c

3. Validate the credentials by login into Fsx for NetApp ONTAP SSH with the fsxadmin user:

Fsxadmin is the default admin account for FSx for NetApp ONTAP filesystems at creation. The password

for fsxadmin is the password that was configured when first creating the filesystem either in the AWS

Console or with the AWS CLI as we completed in Step 1.
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[root@ip-172-31-33-69 ~]# ssh fsxadmin@198.19.250.244

The authenticity of host '198.19.250.244 (198.19.250.244)' can't be

established.

ED25519 key fingerprint is

SHA256:mgCyRXJfWRc2d/jOjFbMBsUcYOWjxoIky0ltHvVDL/Y.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '198.19.250.244' (ED25519) to the list of

known hosts.

(fsxadmin@198.19.250.244) Password:

This is your first recorded login.

4. Once your credentials have been validated, Create the storage Virtual Machine on the FSx for NetApp

ONTAP filesystem

[root@ip-172-31-33-69 ~]# aws fsx --region us-east-1 create-storage-

virtual-machine --name svmkafkatest --file-system-id fs-

02ff04bab5ce01c7c

A Storage Virtual Machine (SVM) is an isolated file server with its own administrative credentials and

endpoints for administering and accessing data in FSx for NetApp ONTAP volumes and provides FSx for

NetApp ONTAP multi-tenancy.

5. Once you have configured your primary Storage Virtual Machine, SSH into the newly created FSx for

NetApp ONTAP filesystem and create volumes in storage virtual machine using below sample command

and similarly we create 6 volumes for this validation. Based on our validation, keep the default constituent

(8) or less constituents which will provides better performance to kafka.

FsxId02ff04bab5ce01c7c::*> volume create -volume kafkafsxN1 -state

online -policy default -unix-permissions ---rwxr-xr-x -junction-active

true -type RW -snapshot-policy none  -junction-path /kafkafsxN1 -aggr

-list aggr1

6. We will need additional capacity in our volumes for our testing. Extend the size of the volume to 2TB and

mount on the junction path.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN1 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN1" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN2 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN2" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN3 -new-size +2TB
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vol size: Volume "svmkafkatest:kafkafsxN3" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN4 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN4" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN5 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN5" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN6 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN6" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume show -vserver svmkafkatest -volume *

Vserver   Volume       Aggregate    State      Type       Size

Available Used%

--------- ------------ ------------ ---------- ---- ----------

---------- -----

svmkafkatest

          kafkafsxN1   -            online     RW       2.10TB

1.99TB    0%

svmkafkatest

          kafkafsxN2   -            online     RW       2.10TB

1.99TB    0%

svmkafkatest

          kafkafsxN3   -            online     RW       2.10TB

1.99TB    0%

svmkafkatest

          kafkafsxN4   -            online     RW       2.10TB

1.99TB    0%

svmkafkatest

          kafkafsxN5   -            online     RW       2.10TB

1.99TB    0%

svmkafkatest

          kafkafsxN6   -            online     RW       2.10TB

1.99TB    0%

svmkafkatest

          svmkafkatest_root

                       aggr1        online     RW          1GB

968.1MB    0%

7 entries were displayed.

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN1 -junction

-path /kafkafsxN1

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN2 -junction

-path /kafkafsxN2
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FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN3 -junction

-path /kafkafsxN3

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN4 -junction

-path /kafkafsxN4

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN5 -junction

-path /kafkafsxN5

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN6 -junction

-path /kafkafsxN6

In FSx for NetApp ONTAP, volumes can be thin provisioned. In our example, the total extended volume

capacity exceeds total filesystem capacity so we will need to extend the total filesystem capacity in order to

unlock additional provisioned volume capacity which we will demonstrate in our next step.

7. Next, for additional performance and capacity,We extend the FSx for NetApp ONTAP throughput capacity

from 2GB/Sec to 4GB/Sec and IOPS to 160000, and capacity to 5 TB

[root@ip-172-31-33-69 ~]# aws fsx update-file-system --region us-east-1

--storage-capacity 5120 --ontap-configuration

'ThroughputCapacity=4096,DiskIopsConfiguration={Mode=USER_PROVISIONED,Io

ps=160000}' --file-system-id fs-02ff04bab5ce01c7c

Detailed command line syntax for FSx “update-file-system" can be found here:

https://docs.aws.amazon.com/cli/latest/reference/fsx/update-file-system.html

8. The FSx for NetApp ONTAP volumes are mounted with nconnect and default opions in Kafka brokers

The following picture shows our final architecture of a our FSx for NetApp ONTAP based Kafka cluster:
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◦ Compute. We used a three-node Kafka cluster with a three-node zookeeper ensemble running on

dedicated servers. Each broker had six NFS mount points to a six volumes on the FSx for NetApp

ONTAP instance.

◦ Monitoring. We used two nodes for a Prometheus-Grafana combination. For generating workloads, we

used a separate three-node cluster that could produce and consume to this Kafka cluster.

◦ Storage. We used an FSx for NetApp ONTAP with six 2TB volumes mounted. The volume was then

exported to the Kafka broker with an NFS mount.The FSx for NetApp ONTAP volumes are mounted

with 16 nconnect sessions and default options in Kafka brokers.

OpenMessage Benchmarking configurations.

We used the same configuration used for the NetApp Cloud volumes ONTAP and their details are here -

https://docs.netapp.com/us-en/netapp-solutions/data-analytics/kafka-nfs-performance-overview-and-validation-

in-aws.html#architectural-setup

Methodology of testing

1. A Kafka cluster was provisioned as per the specification described above using terraform and ansible.

Terraform is used to build the infrastructure using AWS instances for the Kafka cluster and ansible builds

the Kafka cluster on them.

2. An OMB workload was triggered with the workload configuration described above and the Sync driver.

sudo bin/benchmark –drivers driver-kafka/kafka-sync.yaml workloads/1-

topic-100-partitions-1kb.yaml

3. Another workload was triggered with the Throughput driver with same workload configuration.

67

https://docs.netapp.com/us-en/netapp-solutions/data-analytics/kafka-nfs-performance-overview-and-validation-in-aws.html#architectural-setup
https://docs.netapp.com/us-en/netapp-solutions/data-analytics/kafka-nfs-performance-overview-and-validation-in-aws.html#architectural-setup


sudo bin/benchmark –drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

Observation

Two different types of drivers were used to generate workloads to benchmark the performance of a Kafka

instance running on NFS. The difference between the drivers is the log flush property.

For a Kafka Replication factor 1 and the FSx for NetApp ONTAP:

• Total throughput generated consistently by the Sync driver: ~ 3218 MBps and peak performance in ~ 3652

MBps.

• Total throughput generated consistently by the Throughput driver: ~ 3679 MBps and peak performance in ~

3908 MBps.

For Kafka with replication factor 3 and the FSx for NetApp ONTAP :

• Total throughput generated consistently by the Sync driver: ~ 1252 MBps and peak performance in ~ 1382

MBps.

• Total throughput generated consistently by the Throughput driver: ~ 1218 MBps and peak performance in ~

1328 MBps.

In Kafka replication factor 3, the read and write operation happened three times on the FSx for NetApp ONTAP,

In Kafka replication factor 1, the read and write operation is one time on the FSx for NetApp ONTAP, so in both

validation, we able to reach the maximum throughput of 4GB/Sec.

The Sync driver can generate consistent throughput as logs are flushed to the disk instantly, whereas the

Throughput driver generates bursts of throughput as logs are committed to disk in bulk.

These throughput numbers are generated for the given AWS configuration. For higher performance

requirements, the instance types can be scaled up and tuned further for better throughput numbers. The total

throughput or total rate is the combination of both producer and consumer rate.

The below chart shows the 2GB/Sec FSx for NetApp ONTAP and 4GB/Sec performance for Kafka replication

factor 3. The replication factor 3 does the read and write operation three times on the FSx for NetApp ONTAP

storage. The total rate for throughput driver is 881 MB/Sec, which does read and write Kafka operation

approximately 2.64 GB/Sec on the 2GB/Sec FSx for NetApp ONTAP filesystem and total rate for throughput

driver is 1328 MB/Sec that does read and write kafka operation approximately 3.98 GB/Sec. Ther Kafka
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performance is linear and scalable based on the FSx for NetApp ONTAP throughput.

The below chart shows the performance between EC2 instance vs FSx for NetApp ONTAP (Kafka Replication

Factor : 3)

Performance overview and validation with AFF A900 on-premises

On-premises, we used the NetApp AFF A900 storage controller with ONTAP 9.12.1RC1

to validate the performance and scaling of a Kafka cluster. We used the same testbed as

in our previous tiered storage best practices with ONTAP and AFF.

We used Confluent Kafka 6.2.0 to evaluate the AFF A900. The cluster features eight broker nodes and three

zookeeper nodes. For performance testing, we used five OMB worker nodes.
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Storage configuration

We used NetApp FlexGroups instances to provide a single namespace for log directories, simplifying recovery

and configuration. We used NFSv4.1 and pNFS to provide direct path access to log segment data.

Client tuning

Each client mounted the FlexGroup instance with the following command.

mount -t nfs -o vers=4.1,nconnect=16 172.30.0.121:/kafka_vol01

/data/kafka_vol01

In addition, we increased the max_session_slots` from the default 64 to 180. This matches the default

session slot limit in ONTAP.

Kafka broker tuning

To maximize throughput in the system under test, we significantly increased the default parameters for certain

key thread pools. We recommend following Confluent Kafka best practices for most configurations. This tuning

was used to maximize the concurrency of outstanding I/O to storage. These parameters can be adjusted to

match your broker’s compute resources and storage attributes.

num.io.threads=96

num.network.threads=96

background.threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

queued.max.requests=2000
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Workload generator testing methodology

We used the same OMB configurations as for cloud testing for the Throughput driver and topic configuration.

1. A FlexGroup instance was provisioned using Ansible on an AFF cluster.

---

- name: Set up kafka broker processes

  hosts: localhost

  vars:

    ntap_hostname: ‘hostname’

    ntap_username: 'user'

    ntap_password: 'password'

    size: 10

    size_unit: tb

    vserver: vs1

    state: present

    https: true

    export_policy: default

    volumes:

      - name: kafka_fg_vol01

        aggr: ["aggr1_a", "aggr2_a", “aggr1_b”, “aggr2_b”]

        path: /kafka_fg_vol01

  tasks:

    - name: Edit volumes

      netapp.ontap.na_ontap_volume:

        state: "{{ state }}"

        name: "{{ item.name }}"

        aggr_list: "{{ item.aggr }}"

        aggr_list_multiplier: 8

        size: "{{ size }}"

        size_unit: "{{ size_unit }}"

        vserver: "{{ vserver }}"

        snapshot_policy: none

        export_policy: default

        junction_path: "{{ item.path }}"

        qos_policy_group: none

        wait_for_completion: True

        hostname: "{{ ntap_hostname }}"

        username: "{{ ntap_username }}"

        password: "{{ ntap_password }}"

        https: "{{ https }}"

        validate_certs: false

      connection: local

      with_items: "{{ volumes }}"

71



2. pNFS was enabled on the ONTAP SVM.

vserver modify -vserver vs1 -v4.1-pnfs enabled -tcp-max-xfer-size 262144

3. The workload was triggered with the Throughput driver using with same workload configuration as for

Cloud Volumes ONTAP. See the section “Steady state performance” below. The workload used a

replication factor of 3, meaning three copies of log segments were maintained in NFS.

sudo bin/benchmark --drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

4. Finally, we completed measurements using a backlog to measure the ability of consumers to catch up to

the latest messages. OMB constructs a backlog by pausing consumers during the beginning of a

measurement. This produces three distinct phases: backlog creation (producer-only traffic), backlog

draining (a consumer-heavy phase in which consumers catch up on missed events in a topic), and the

steady state. See the section “exploring storage limits” for more information.

Steady state performance

We evaluated the AFF A900 using the OpenMessaging Benchmark to provide a similar comparison as for

Cloud Volumes ONTAP in AWS and DAS in AWS. All performance values represent Kafka-cluster throughput

at the producer and consumer level.

Steady state performance with Confluent Kafka and the AFF A900 achieved over 3.4GBps average throughput

for both producer and consumers. This is over 3.4 million messages across the Kafka cluster. By visualizing

the sustained throughput in bytes per second for BrokerTopicMetrics, we see the excellent steady state

performance and traffic supported by the AFF A900.

This aligns well with the view of messages delivered per topic. The following graph provides a per-topic

breakdown. In the configuration tested we saw nearly 900k messages per topic across four topics.
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Extreme performance and exploring storage limits

For AFF, we also tested with OMB using the backlog feature. The backlog feature pauses consumer

subscriptions while a backlog of events is built up in the Kafka cluster. During this phase, only producer traffic

occurs, which generates events that are committed to logs. This most closely emulates batch processing or

offline analytics workflows; in these workflows, consumer subscriptions are started and must read historical

data that has already been evicted from the broker cache.

To understand the storage limitations on consumer throughput in this configuration, we measured the

producer-only phase to understand how much write traffic the A900 could absorb. See the next section “Sizing

guidance” to understand how to leverage this data.

During the producer-only part of this measurement, we saw high peak throughput that pushed the limits of

A900 performance (when other broker resources were not saturated serving producer and consumer traffic).
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We increased the message size to 16k for this measurement to limit per-message overheads

and maximize storage throughput to NFS mount points.

messageSize: 16384

consumerBacklogSizeGB: 4096

The Confluent Kafka cluster achieved a peak producer throughput of 4.03GBps.

18:12:23.833 [main] INFO WorkloadGenerator - Pub rate 257759.2 msg/s /

4027.5 MB/s | Pub err     0.0 err/s …

After OMB completed populating the eventbacklog, consumer traffic was restarted. During measurements with

backlog draining, we observed peak consumer throughput of over 20GBps across all topics. The combined

throughput to the NFS volume storing the OMB log data approached ~30GBps.

Sizing guidance

Amazon Web Services offers a sizing guide for Kafka cluster sizing and scaling.

This sizing provides a useful formula for determining storage throughput requirements for your Kafka cluster:

For an aggregated throughput produced into the cluster of tcluster with a replication factor of r, the throughput

received by the broker storage is as follows:

t[storage] = t[cluster]/#brokers + t[cluster]/#brokers * (r-1)

          = t[cluster]/#brokers * r

This can be simplified even further:

max(t[cluster]) <= max(t[storage]) * #brokers/r

Using this formula allows you to select the appropriate ONTAP platform for your Kafka hot tier needs.

The following table explains the anticipated producer throughput for the A900 with different replication factors:

Replication factor Producer throughput (GPps)

3 (measured) 3.4

2 5.1

1 10.2

Conclusion

The NetApp solution for the silly rename problem provides a simple, inexpensive, and
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centrally managed form of storage for workloads that were previously incompatible with

NFS.

This new paradigm enables customers to create more manageable Kafka clusters that are easier to migrate

and mirror for the purpose of disaster recovery and data protection.

We have also seen that NFS provides additional benefits such as reduced CPU utilization and a faster

recovery time, dramatically improved storage efficiency, and better performance through NetApp ONTAP.

Where to find additional information

To learn more about the information that is described in this document, review the

following documents and/or websites:

• What is Apache Kafka?

https://www.confluent.io/what-is-apache-kafka/

• What is silly rename?

https://linux-nfs.org/wiki/index.php/Server-side_silly_rename

• ONATP is read for streaming applications.

https://www.netapp.com/blog/ontap-ready-for-streaming-applications/

• Silly- rename issue with Kafka.

https://sbg.technology/2018/07/10/kafka-nfs/

• NetApp product documentation

https://www.netapp.com/support-and-training/documentation/

• What is NFS?

https://en.wikipedia.org/wiki/Network_File_System

• What is Kafka partition reassignment?

https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html

• What is the OpenMessaging Benchmark?

https://openmessaging.cloud/

• How do you migrate a Kafka broker?

https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058

• How do you monitor Kafka broker with Prometheus?

https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/

• Managed Platform for Apache Kafka
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https://www.instaclustr.com/platform/managed-apache-kafka/

• Support for Apache Kafka

https://www.instaclustr.com/support-solutions/kafka-support/

• Consulting services for Apache Kafka

https://www.instaclustr.com/services/consulting/

Confluent Kafka with NetApp ONTAP storage controllers

TR-4941: Confluent with NetApp ONTAP storage controllers

Karthikeyan Nagalingam, Joe Scott, NetApp

Rankesh Kumar, Confluent

To make the Confluent Platform more scalable and elastic, it must be able to scale and

balance workloads very quickly. Tiered storage makes storing huge volumes of data in

Confluent manageable by reducing this operational burden.

The fundamental idea is to separate data storage from data processing, which makes it much easier to scale

each independently.

Loaded with industry-leading innovations, NetApp ONTAP data management software provides Confluent with

many advantages anywhere the data lives.

This document outlines performance benchmarks for the Confluent platform on NetApp ONTAP using a tiered

storage benchmarking kit.

Solution

Confluent and NetApp AFF A900 storage controller powered by ONTAP are distributed

systems designed for data streams. Both are horizontally scalable, fault tolerant, and

provide excellent performance under load. They complement each other in distributed

data streaming and stream processing with lower storage costs with data reduction

technologies that minimize the data footprint. The AFF A900 storage controller provides

great performance, while allowing the decoupling of compute and data storage resources.

This simplifies system administration and allows resources to be scaled independently.
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Solution architecture details

This section covers the hardware and software used for performance verification in Confluent Platform

deployment with NetApp ONTAP for tiered storage. The following table covers the solution architecture and

base components.

Platform component Environment configuration

Confluent Platform version 6.2 • 3 x zookeepers

• 8 x broker servers

• 5 x tools servers

• 1 x Grafana

• 1 x control center

Operating system on all nodes Linux (ubuntu 18.04)

NetApp ONTAP for warm buckets • 1 x AFF A900 high-availability (HA) pair

• 4 x 24 x 800 SSDs

• S3 protocol

• 100GbE

15 Fujitsu PRIMERGY RX2540 servers • 2 CPUs; 16 physical cores total

• Intel Xeon

• 256GB physical memory

• 100GbE dual port
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Technology overview

This section describes the technology used in this solution.

NetApp ONTAP storage controller

NetApp ONTAP is a high-performance, enterprise- grade storage operating system.

NetApp ONTAP 9.8 introduces support for Amazon Simple Storage Service (S3) APIs. ONTAP supports a

subset of Amazon Web Services (AWS) S3 API actions and allows data to be represented as objects in

ONTAP-based systems across cloud providers (AWS, Azure, and GCP) and on-premises.

NetApp StorageGRID software is the flagship NetApp solution for object storage. ONTAP complements

StorageGRID by providing an ingest and preprocessing point on the edge, expanding the data fabric powered

by NetApp for object data, and increasing the value of the NetApp product portfolio.

Access to an S3 bucket is provided through authorized user and client applications. The following diagram

shows the application accessing an S3 bucket.

Primary use cases

The primary purpose of supporting S3 APIs is to provide objects access on ONTAP. The ONTAP unified

storage architecture now supports files (NFS and SMB), blocks (FC and iSCSI), and objects (S3).

Native S3 applications

An increasing number of applications are able to leverage ONTAP support for object access using S3.

Although well-suited for high-capacity archival workloads, the need for high performance in native S3

applications is growing rapidly and includes:
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• Analytics

• Artificial intelligence

• Edge-to-core ingest

• Machine learning

Customers can now use familiar manageability tools such as ONTAP System Manager to rapidly provision

high-performance object storage for development and operations in ONTAP, taking advantage of the ONTAP

storage efficiencies and security as they do so.

FabricPool endpoints

Beginning with ONTAP 9.8, FabricPool supports tiering to buckets in ONTAP, allowing for ONTAP-to-ONTAP

tiering. This is an excellent option for customers who wish to repurpose existing FAS infrastructure as an object

store endpoint.

FabricPool supports tiering to ONTAP in two ways:

• Local cluster tiering. Inactive data is tiered to a bucket located on the local cluster using cluster LIFs.

• Remote cluster tiering. Inactive data is tiered to a bucket located on a remote cluster in a manner similar

to a traditional FabricPool cloud tier using IC LIFs on the FabricPool client and data LIFs on the ONTAP

object store.

ONTAP S3 is appropriate if you want S3 capabilities on existing clusters without additional hardware and

management. For deployments larger than 300TB, NetApp StorageGRID software continues to be the flagship

NetApp solution for object storage. A FabricPool license is not required when using ONTAP or StorageGRID as

the cloud tier.

NetApp ONTAP for Confluent tiered storage

Every data center needs to keep business-critical applications running and important data available and

secure. The new NetApp AFF A900 system is powered by ONTAP Enterprise Edition software and a high-

resilience design. Our new lightning-fast NVMe storage system eliminates disruptions to mission-critical

operations, minimizes performance tuning, and safeguards your data from ransomware attacks.

From initial deployment to scaling your Confluent cluster, your environment demands rapid adaptation to

changes that are nondisruptive to your business-critical applications. ONTAP enterprise data management,

quality of service (QoS), and performance allow you to plan and adapt to your environment.

Using NetApp ONTAP and Confluent Tiered Storage together simplifies the management of Apache Kafka

clusters by leveraging ONTAP as a scale-out storage target and enables independent scaling of compute and

storage resources for Confluent.

An ONTAP S3 server is built on the mature scale-out storage capabilities of ONTAP. Scaling your ONTAP

cluster can be performed seamlessly by extending your S3 buckets to use newly added nodes to the ONTAP

cluster.

Simple management with ONTAP System Manager

ONTAP System Manager is a browser-based graphical interface that allows you to configure, manage, and

monitor your ONTAP storage controller across globally distributed locations in a single pane of glass.
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You can configure and manage ONTAP S3 with System Manager and the ONTAP CLI. When you enable S3

and create buckets using System Manager, ONTAP provides best-practice defaults for a simplified

configuration. If you configure the S3 server and buckets from the CLI, you can still manage them with System

Manager if desired or vice-versa.

When you create an S3 bucket using System Manager, ONTAP configures a default performance service level

that is the highest available on your system. For example, on an AFF system, the default setting would be

Extreme. Performance service levels are predefined adaptive QoS policy groups. Instead of one of the default

service levels, you can specify a custom QoS policy group or no policy group.

Predefined adaptive QoS policy groups include the following:

• Extreme. Used for applications that require the lowest latency and highest performance.

• Performance. Used for applications with modest performance needs and latency.

• Value. Used for applications for which throughput and capacity are more important than latency.

• Custom. Specify a custom QoS policy or no QoS policy.

If you select Use for tiering, no performance service levels are selected, and the system tries to select low-

cost media with optimal performance for the tiered data.

ONTAP tries to provision this bucket on local tiers that have the most appropriate disks, satisfying the chosen

service level. However, if you need to specify which disks to include in the bucket, consider configuring S3

object storage from the CLI by specifying the local tiers (aggregate). If you configure the S3 server from the

CLI, you can still manage it with System Manager if desired.

If you want the ability to specify which aggregates are used for buckets, you can only do so using the CLI.
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Confluent

Confluent Platform is a full-scale data streaming platform that enables you to easily access, store, and manage

data as continuous, real-time streams. Built by the original creators of Apache Kafka, Confluent expands the

benefits of Kafka with enterprise-grade features while removing the burden of Kafka management or

monitoring. Today, over 80% of the Fortune 100 are powered by data streaming technology, and most use

Confluent.

Why Confluent?

By integrating historical and real-time data into a single, central source of truth, Confluent makes it easy to

build an entirely new category of modern, event-driven applications, gain a universal data pipeline, and unlock

powerful new use cases with full scalability, performance, and reliability.

What is Confluent used for?

Confluent Platform lets you focus on how to derive business value from your data rather than worrying about

the underlying mechanics, such as how data is being transported or integrated between disparate systems.

Specifically, Confluent Platform simplifies connecting data sources to Kafka, building streaming applications, as

well as securing, monitoring, and managing your Kafka infrastructure. Today, Confluent Platform is used for a

wide array of use cases across numerous industries, from financial services, omnichannel retail, and

autonomous cars to fraud detection, microservices, and IoT.

The following figure shows the components of Confluent Platform.

Overview of Confluent event streaming technology

At the core of Confluent Platform is Kafka, the most popular open source distributed streaming platform. The

key capabilities of Kafka include the following:

• Publish and subscribe to streams of records.
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• Store streams of records in a fault tolerant way.

• Process streams of records.

Out of the box, Confluent Platform also includes Schema Registry, REST Proxy, a total of 100+ prebuilt Kafka

connectors, and ksqlDB.

Overview of Confluent platform enterprise features

• Confluent Control Center. A UI-based system for managing and monitoring Kafka. It allows you to easily

manage Kafka Connect and to create, edit, and manage connections to other systems.

• Confluent for Kubernetes. Confluent for Kubernetes is a Kubernetes operator. Kubernetes operators

extend the orchestration capabilities of Kubernetes by providing the unique features and requirements for a

specific platform application. For Confluent Platform, this includes greatly simplifying the deployment

process of Kafka on Kubernetes and automating typical infrastructure lifecycle tasks.

• Kafka Connect Connectors. Connectors use the Kafka Connect API to connect Kafka to other systems

such as databases, key-value stores, search indexes, and file systems. Confluent Hub has downloadable

connectors for the most popular data sources and sinks, including fully tested and supported versions of

these connectors with Confluent Platform. More details can be found here.

• Self- balancing clusters. Provides automated load balancing, failure detection and self-healing. It also

provides support for adding or decommissioning brokers as needed, with no manual tuning.

• Confluent cluster linking. Directly connects clusters together and mirrors topics from one cluster to

another over a link bridge. Cluster linking simplifies setup of multi-datacenter, multi-cluster, and hybrid

cloud deployments.

• Confluent auto data balancer. Monitors your cluster for the number of brokers, the size of partitions, the

number of partitions, and the number of leaders within the cluster. It allows you to shift data to create an

even workload across your cluster, while throttling rebalance traffic to minimize the effect on production

workloads while rebalancing.

• Confluent replicator. Makes it easier than ever to maintain multiple Kafka clusters in multiple data

centers.

• Tiered storage. Provides options for storing large volumes of Kafka data using your favorite cloud

provider, thereby reducing operational burden and cost. With tiered storage, you can keep data on cost-

effective object storage and scale brokers only when you need more compute resources.

• Confluent JMS client. Confluent Platform includes a JMS-compatible client for Kafka. This Kafka client

implements the JMS 1.1 standard API, using Kafka brokers as the backend. This is useful if you have

legacy applications using JMS and you would like to replace the existing JMS message broker with Kafka.

• Confluent MQTT proxy. Provides a way to publish data directly to Kafka from MQTT devices and

gateways without the need for a MQTT broker in the middle.

• Confluent security plugins. Confluent security plugins are used to add security capabilities to various

Confluent Platform tools and products. Currently, there is a plugin available for the Confluent REST proxy

that helps to authenticate the incoming requests and propagate the authenticated principal to requests to

Kafka. This enables Confluent REST proxy clients to utilize the multitenant security features of the Kafka

broker.

Confluent Performance validation

We have performed the verification with Confluent Platform for tiered storage on NetApp

ONTAP. The NetApp and Confluent teams worked on this verification together and ran

the test cases required for it.
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Confluent setup

For the setup, we used three zookeepers, five brokers, and five testing servers with 256GB RAM and 16

CPUs. For NetApp storage, we used ONTAP with an AFF A900 HA pair. The storage and brokers were

connected through 100GbE connections.

The following figure shows the network topology of configuration used for tiered storage verification.

The tools servers act as application clients that send or receive events to or from Confluent nodes.

Confluent tiered storage configuration

We used the following testing parameters:
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confluent.tier.fetcher.num.threads=80

confluent.tier.archiver.num.threads=80

confluent.tier.enable=true

confluent.tier.feature=true

confluent.tier.backend=S3

confluent.tier.s3.bucket=kafkabucket1-1

confluent.tier.s3.region=us-east-1

confluent.tier.s3.cred.file.path=/data/kafka/.ssh/credentials

confluent.tier.s3.aws.endpoint.override=http://wle-mendocino-07-08/

confluent.tier.s3.force.path.style.access=true

bootstrap.server=192.168.150.172:9092,192.168.150.120:9092,192.168.150.164

:9092,192.168.150.198:9092,192.168.150.109:9092,192.168.150.165:9092,192.1

68.150.119:9092,192.168.150.133:9092

debug=true

jmx.port=7203

num.partitions=80

num.records=200000000

#object PUT size - 512MB and fetch 100MB – netapp

segment.bytes=536870912

max.partition.fetch.bytes=1048576000

#GET size is max.partition.fetch.bytes/num.partitions

length.key.value=2048

trogdor.agent.nodes=node0,node1,node2,node3,node4

trogdor.coordinator.hostname.port=192.168.150.155:8889

num.producers=20

num.head.consumers=20

num.tail.consumers=1

test.binary.task.max.heap.size=32G

test.binary.task.timeout.sec=3600

producer.timeout.sec=3600

consumer.timeout.sec=3600

For verification, we used ONTAP with the HTTP protocol, but HTTPS also worked. The access key and secret

key are stored in the file name provided in the confluent.tier.s3.cred.file.path parameter.

NetApp storage controller – ONTAP

We configured a single HA pair configuration in ONTAP for verification.
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Verification results

We completed the following five test cases for the verification. The first two were functionality tests and the

remaining three were performance tests.

Object store correctness test

This test performs basic operations such as get, put, and delete on the object store used for the tiered storage

using API calls.
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Tiering functionality correctness test

This test checks the end-to-end functionality of the object storage. It creates a topic, produces an event stream

to the newly created topic, waits for the brokers to archive the segments to the object storage, consumes the

event stream, and validates the consumed stream matches with the produced stream. We have performed this

test with and without an object-store fault injection. We simulated node failure by stopping the service manager

service in one of the nodes in ONTAP and validating that the end-to-end functionality works with object

storage.

Tier fetch benchmark

This test validated the read performance of the tiered object storage and checked the range fetch read

requests under heavy load from segments generated by the benchmark. In this benchmark, Confluent

developed custom clients to serve the tier fetch requests.

Produce-consume workload generator

This test indirectly generates write workload on the object store through the archival of segments. The read

workload (segments read) was generated from object storage when consumer groups fetched the segments.

This workload was generated by a TOCC script. This test checked the performance of read and write on the

object storage in parallel threads. We tested with and without object store fault injection as we did for the tiering

functionality correctness test.

Retention workload generator

This test checked the deletion performance of an object storage under a heavy topic- retention workload. The

retention workload was generated using a TOCC script that produces many messages in parallel to a test

topic. The test topic was configuring with an aggressive size-based and time-based retention setting that

caused the event stream to be continuously purged from the object store. The segments were then archived.

This led to many deletions in the object storage by the broker and collection of the performance of the object-

store delete operations.

For verification details, see the Confluent website.

Performance tests with produce-consume workload generator

We performed tiered storage testing with either five or eight broker nodes during a

produce-consume workload with the one AFF A900 HA pair NetApp storage controller.

According to our tests, the time to completion and the performance results scaled with the

number of broker nodes until AFF A900 resource utilization reached one hundred

percent. The ONTAP storage controller setup required a minimum of one HA pair.

The performance for the S3 retrieve operation increased linearly based on number of Confluent broker nodes.

ONTAP storage controller supports up to 12 HA pair in a single deployment.

The following graph shows combined S3 tiering traffic with five or eight broker nodes. We maximized the AFF

A900 single HA pair performance.
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The following graph shows the Kafka throughput at approximately 31.74GBps.

We also observed similar throughput in the ONTAP storage controller perfstat report.

object_store_server:wle-mendocino-07-08:get_data:34080805907b/ s

object_store_server:wle-mendocino-07-08:put_data:484236974b/ s

Performance best practice guidelines

This page describes the best practices for improving performance in this solution.

• For ONTAP, when possible, use a GET size >=1MB.

• Increasing num.network.threads and num.io.threads in server.properties on broker nodes

enables you to push increased tiering activity to S3 tier. These results are with num.network.threads

and num.io.threads set to 32.
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• S3 buckets should target eight constituents per member aggregate.

• Ethernet links driving S3 traffic should use an MTU of 9k when possible on both storage and client.

Conclusion

This verification test reached 31.74GBps of tiering throughput on Confluent with NetApp

ONTAP Storage Controller.

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:

• What is Confluent?

https://www.confluent.io/apache-kafka-vs-confluent/

• S3-sink parameter details

https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html#s3-configuration-options

• Apache Kafka

https://en.wikipedia.org/wiki/Apache_Kafka

• S3 in ONTAP best practices

https://www.netapp.com/pdf.html?item=/media/17219-tr4814.pdf

• S3 Object storage Management

https://docs.netapp.com/us-en/ontap/s3-config/s3-support-concept.html

• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

NetApp Storage Solutions for Apache Spark

TR-4570: NetApp Storage Solutions for Apache Spark: Architecture, Use Cases,
and Performance Results

Rick Huang, Karthikeyan Nagalingam, NetApp

This document focuses on the Apache Spark architecture, customer use cases, and the

NetApp storage portfolio related to big data analytics and artificial intelligence (AI). It also

presents various testing results using industry-standard AI, machine learning (ML), and

deep learning (DL) tools against a typical Hadoop system so that you can choose the

appropriate Spark solution. To begin, you need a Spark architecture, appropriate

components, and two deployment modes (cluster and client).
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This document also provides customer use cases to address configuration issues, and it discusses an

overview of the NetApp storage portfolio relevant to big data analytics and AI, ML, and DL with Spark. We then

finish with testing results derived from Spark-specific use cases and the NetApp Spark solution portfolio.

Customer challenges

This section focuses on customer challenges with big data analytics and AI/ML/DL in data growth industries

such as retail, digital marketing, banking, discrete manufacturing, process manufacturing, government, and

professional services.

Unpredictable performance

Traditional Hadoop deployments typically use commodity hardware. To improve performance, you must tune

the network, operating system, Hadoop cluster, ecosystem components such as Spark, and hardware. Even if

you tune each layer, it can be difficult to achieve desired performance levels because Hadoop is running on

commodity hardware that was not designed for high performance in your environment.

Media and node failures

Even under normal conditions, commodity hardware is prone to failure. If one disk on a data node fails, the

Hadoop master by default considers that node to be unhealthy. It then copies specific data from that node over

the network from replicas to a healthy node. This process slows down the network packets for any Hadoop

jobs. The cluster must then copy the data back again and remove the over- replicated data when the unhealthy

node returns to a healthy state.

Hadoop vendor lock-in

Hadoop distributors have their own Hadoop distribution with their own versioning, which locks in the customer

to those distributions. However, many customers require support for in-memory analytics that does not tie the

customer to specific Hadoop distributions. They need the freedom to change distributions and still bring their

analytics with them.

Lack of support for more than one language

Customers often require support for multiple languages in addition to MapReduce Java programs to run their

jobs. Options such as SQL and scripts provide more flexibility for getting answers, more options for organizing

and retrieving data, and faster ways of moving data into an analytics framework.

Difficulty of use

For some time, people have complained that Hadoop is difficult to use. Even though Hadoop has become

simpler and more powerful with each new version, this critique has persisted. Hadoop requires that you

understand Java and MapReduce programming patterns, a challenge for database administrators and people

with traditional scripting skill sets.

Complicated frameworks and tools

Enterprises AI teams face multiple challenges. Even with expert data science knowledge, tools and

frameworks for different deployment ecosystems and applications might not translate simply from one to

another. A data science platform should integrate seamlessly with corresponding big data platforms built on

Spark with ease of data movement, reusable models, code out of the box, and tools that support best practices

for prototyping, validating, versioning, sharing, reusing, and quickly deploying models to production.
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Why choose NetApp?

NetApp can improve your Spark experience in the following ways:

• NetApp NFS direct access (shown in the figure below) allows customers to run big-data-analytics jobs on

their existing or new NFSv3 or NFSv4 data without moving or copying the data. It prevents multiple copies

of data and eliminates the need to sync the data with a source.

• More efficient storage and less server replication. For example, the NetApp E-Series Hadoop solution

requires two rather than three replicas of the data, and the FAS Hadoop solution requires a data source but

no replication or copies of data. NetApp storage solutions also produce less server-to-server traffic.

• Better Hadoop job and cluster behavior during drive and node failure.

• Better data-ingest performance.

For example, in the financial and healthcare sector, the movement of data from one place to another must

meet legal obligations, which is not an easy task. In this scenario, NetApp NFS direct access analyzes the

financial and healthcare data from its original location. Another key benefit is that using NetApp NFS direct

access simplifies protecting Hadoop data by using native Hadoop commands and enabling data protection

workflows with the rich data management portfolio from NetApp.

NetApp NFS direct access provides two kinds of deployment options for Hadoop/Spark clusters:

• By default, Hadoop or Spark clusters use the Hadoop Distributed File System (HDFS) for data storage and

the default file system. NetApp NFS direct access can replace the default HDFS with NFS storage as the

default file system, enabling direct analytics on NFS data.

• In another deployment option, NetApp NFS direct access supports configuring NFS as additional storage

along with HDFS in a single Hadoop or Spark cluster. In this case, the customer can share data through

NFS exports and access it from the same cluster along with HDFS data.

The key benefits of using NetApp NFS direct access include the following:

• Analyzing the data from its current location, which prevents the time- and performance-consuming task of
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moving analytics data to a Hadoop infrastructure such as HDFS.

• Reducing the number of replicas from three to one.

• Enabling users to decouple compute and storage to scale them independently.

• Providing enterprise data protection by leveraging the rich data management capabilities of ONTAP.

• Certification with the Hortonworks data platform.

• Enabling hybrid data analytics deployments.

• Reducing backup time by leveraging dynamic multithread capability.

See TR-4657: NetApp hybrid cloud data solutions - Spark and Hadoop based on customer use cases for

backing up Hadoop data, backup and disaster recovery from the cloud to on-premises, enabling DevTest on

existing Hadoop data, data protection and multicloud connectivity, and accelerating analytics workloads.

The following sections describe storage capabilities that are important for Spark customers.

Storage tiering

With Hadoop storage tiering, you can store files with different storage types in accordance with a storage

policy. Storage types include hot, cold, warm, all_ssd, one_ssd, and lazy_persist.

<<<<<<< HEAD

We performed validation of Hadoop storage tiering on a NetApp AFF storage controller and an E-Series

storage controller with SSD and SAS drives with different storage policies. The Spark cluster with AFF-A800

has four compute worker nodes, whereas the cluster with E-Series has eight. This is mainly to compare the

performance of solid-state drives (SSDs) versus hard-drive disks (HDDs).
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We performed validation of Hadoop storage tiering on a NetApp AFF storage controller and an E-Series

storage controller with SSD and SAS drives with different storage policies. The Spark cluster with AFF-

A800 has four compute worker nodes, whereas the cluster with E-Series has eight. We did this primarily

to compare the performance of solid-state drives to hard-drive disks.

>>>>>>> a51c9ddf73ca69e1120ce05edc7b0b9607b96eae

The following figure shows the performance of NetApp solutions for a Hadoop SSD.

• The baseline NL-SAS configuration used eight compute nodes and 96 NL-SAS drives. This

configuration generated 1TB of data in 4 minutes and 38 seconds. See TR-3969 NetApp E-Series

Solution for Hadoop for details on the cluster and storage configuration.

• Using TeraGen, the SSD configuration generated 1TB of data 15.66x faster than the NL-SAS

configuration. Moreover, the SSD configuration used half the number of compute nodes and half the

number of disk drives (24 SSd drives in total). Based on the job completion time, it was almost twice

as fast as the NL-SAS configuration.

• Using TeraSort, the SSD configuration sorted 1TB of data 1138.36 times more quickly than the NL-

SAS configuration. Moreover, the SSD configuration used half the number of compute nodes and half

the number of disk drives (24 SSd drives in total). Therefore, per drive, it was approximately three

times faster than the NL-SAS configuration.

<<<<<<< HEAD

• The takeaway is transitioning from spinning disks to all-flash improves performance. The number of

compute nodes was not the bottleneck. With NetApp’s all-flash storage, runtime performance scales

well.

• With NFS, the data was functionally equivalent to being pooled all together, which can reduce the

number of compute nodes depending on your workload. The Apache Spark cluster users do not have

to manually rebalance data when changing number of compute nodes.

• In summary, transitioning from spinning disks to all-flash improves performance. The number of compute

nodes was not the bottleneck. With NetApp all-flash storage, runtime performance scales well.
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• With NFS, data was functionally equivalent to being pooled all together, which can reduce the number of

compute nodes depending on your workload. Apache Spark cluster users do not need to manually

rebalance data when changing the number of compute nodes.

>>>>>>> a51c9ddf73ca69e1120ce05edc7b0b9607b96eae

Performance scaling - Scale out

When you need more computation power from a Hadoop cluster in an AFF solution, you can add data nodes

with an appropriate number of storage controllers. NetApp recommends starting with four data nodes per

storage controller array and increasing the number to eight data nodes per storage controller, depending on

workload characteristics.

AFF and FAS are perfect for in-place analytics. Based on computation requirements, you can add node

managers, and non-disruptive operations allow you to add a storage controller on demand without downtime.

We offer rich features with AFF and FAS, such as NVME media support, guaranteed efficiency, data reduction,

QOS, predictive analytics, cloud tiering, replication, cloud deployment, and security. To help customers meet

their requirements, NetApp offers features such as file system analytics, quotas, and on-box load balancing

with no additional license costs. NetApp has better performance in the number of concurrent jobs, lower

latency, simpler operations, and higher gigabytes per second throughput than our competitors. Furthermore,

NetApp Cloud Volumes ONTAP runs on all three major cloud providers.

Performance scaling - Scale up

Scale-up features allow you to add disk drives to AFF, FAS, and E-Series systems when you need additional

storage capacity. With Cloud Volumes ONTAP, scaling storage to the PB level is a combination of two factors:

tiering infrequently used data to object storage from block storage and stacking Cloud Volumes ONTAP

licenses without additional compute.

Multiple protocols

NetApp systems support most protocols for Hadoop deployments, including SAS, iSCSI, FCP, InfiniBand, and

NFS.

Operational and supported solutions

The Hadoop solutions described in this document are supported by NetApp. These solutions are also certified

with major Hadoop distributors. For information, see the MapR site, the Hortonworks site, and the Cloudera

certification and partner sites.

Target audience

The world of analytics and data science touches multiple disciplines in IT and business:

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI and ML applications into their CI and CD pipelines.

• Cloud administrators and architects must be able to set up and manage hybrid cloud resources.

• Business users want to have access to analytics, AI, ML, and DL applications.

In this technical report, we describe how NetApp AFF, E-Series, StorageGRID, NFS direct access, Apache

Spark, Horovod, and Keras help each of these roles bring value to business.
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Solution technology

Apache Spark is a popular programming framework for writing Hadoop applications that

works directly with the Hadoop Distributed File System (HDFS). Spark is production

ready, supports processing of streaming data, and is faster than MapReduce. Spark has

configurable in-memory data caching for efficient iteration, and the Spark shell is

interactive for learning and exploring data. With Spark, you can create applications in

Python, Scala, or Java. Spark applications consist of one or more jobs that have one or

more tasks.

Every Spark application has a Spark driver. In YARN-Client mode, the driver runs on the client locally. In

YARN-Cluster mode, the driver runs in the cluster on the application master. In the cluster mode, the

application continues to run even if the client disconnects.

There are three cluster managers:

• Standalone. This manager is a part of Spark, which makes it easy to set up a cluster.

• Apache Mesos. This is a general cluster manager that also runs MapReduce and other applications.

• Hadoop YARN. This is a resource manager in Hadoop 3.
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The resilient distributed dataset (RDD) is the primary component of Spark. RDD recreates the lost and missing

data from data stored in memory in the cluster and stores the initial data that comes from a file or is created

programmatically. RDDs are created from files, data in memory, or another RDD. Spark programming performs

two operations: transformation and actions. Transformation creates a new RDD based on an existing one.

Actions return a value from an RDD.

Transformations and actions also apply to Spark Datasets and DataFrames. A dataset is a distributed

collection of data that provides the benefits of RDDs (strong typing, use of lambda functions) with the benefits

of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then

manipulated using functional transformations (map, flatMap, filter, and so on.). A DataFrame is a dataset

organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame

in R/Python. DataFrames can be constructed from a wide array of sources such as structured data files, tables

in Hive/HBase, external databases on-premises or in the cloud, or existing RDDs.

Spark applications include one or more Spark jobs. Jobs run tasks in executors, and executors run in YARN

containers. Each executor runs in a single container, and executors exist throughout the life of an application.

An executor is fixed after the application starts, and YARN does not resize the already allocated container. An

executor can run tasks concurrently on in-memory data.

NetApp Spark solutions overview

NetApp has three storage portfolios: FAS/AFF, E-Series, and Cloud Volumes ONTAP. We

have validated AFF and the E-Series with ONTAP storage system for Hadoop solutions

with Apache Spark.

The data fabric powered by NetApp integrates data management services and applications (building blocks)

for data access, control, protection, and security, as shown in the figure below.

The building blocks in the figure above include:

• NetApp NFS direct access. Provides the latest Hadoop and Spark clusters with direct access to NetApp

NFS volumes without additional software or driver requirements.

• NetApp Cloud Volumes ONTAP and Cloud Volume Services. Software-defined connected storage

based on ONTAP running in Amazon Web Services (AWS) or Azure NetApp Files (ANF) in Microsoft Azure
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cloud services.

• NetApp SnapMirror technology. Provides data protection capabilities between on-premises and ONTAP

Cloud or NPS instances.

• Cloud service providers. These providers include AWS, Microsoft Azure, Google Cloud, and IBM Cloud.

• PaaS. Cloud-based analytics services such as Amazon Elastic MapReduce (EMR) and Databricks in AWS

as well as Microsoft Azure HDInsight and Azure Databricks.

The following figure depicts the Spark solution with NetApp storage.

The ONTAP Spark solution uses the NetApp NFS direct access protocol for in-place analytics and AI, ML, and

DL workflows using access to existing production data. Production data available to Hadoop nodes is exported

to perform in-place analytical and AI, ML, and DL jobs. You can access data to process in Hadoop nodes either

with NetApp NFS direct access or without it. In Spark with the standalone or yarn cluster manager, you can

configure an NFS volume by using file:///<target_volume. We validated three use cases with different

datasets. The details of these validations are presented in the section “Testing Results.” (xref)

The following figure depicts NetApp Apache Spark/Hadoop storage positioning.
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We identified the unique features of the E-Series Spark solution, the AFF/FAS ONTAP Spark solution, and the

StorageGRID Spark solution, and performed detailed validation and testing. Based upon our observations,

NetApp recommends the E-Series solution for greenfield installations and new scalable deployments and the

AFF/FAS solution for in-place analytics, AI, ML, and DL workloads using existing NFS data, and StorageGRID

for AI, ML, and DL and modern data analytics when object storage is required.

A data lake is a storage repository for large datasets in native form that can be used for analytics, AI, ML, and

DL jobs. We built a data lake repository for the E-Series, AFF/FAS, and StorageGRID SG6060 Spark solutions.

The E-Series system provides HDFS access to the Hadoop Spark cluster, whereas existing production data is

accessed through the NFS direct access protocol to the Hadoop cluster. For datasets that reside in object

storage, NetApp StorageGRID provides S3 and S3a secure access.

Use case summary

This page describes the different areas in which this solution can be used.

Streaming data

Apache Spark can process streaming data, which is used for streaming extract, transform, and load (ETL)

processes; data enrichment; triggering event detection; and complex session analysis:

• Streaming ETL. Data is continually cleaned and aggregated before it is pushed into datastores. Netflix

uses Kafka and Spark streaming to build a real-time online movie recommendation and data monitoring

solution that can process billions of events per day from different data sources. Traditional ETL for batch

processing is treated differently, however. This data is read first, and then it is converted into a database

format before being written to the database.

• Data enrichment. Spark streaming enriches the live data with static data to enable more real-time data

analysis. For example, online advertisers can deliver personalized, targeted ads directed by information

about customer behavior.

• Trigger event detection. Spark streaming allows you to detect and respond quickly to unusual behavior

that could indicate potentially serious problems. For example, financial institutions use triggers to detect

and stop fraud transactions, and hospitals use triggers to detect dangerous health changes detected in a

patient’s vital signs.

• Complex session analysis. Spark streaming collects events such as user activity after logging in to a

97



website or application, which are then grouped and analyzed. For example, Netflix uses this functionality to

provide real-time movie recommendations.

For more streaming data configuration, Confluent Kafka verification, and performance tests, see TR-4912: Best

practice guidelines for Confluent Kafka tiered storage with NetApp.

Machine learning

The Spark integrated framework helps you run repeated queries on datasets using the machine learning library

(MLlib). MLlib is used in areas such as clustering, classification, and dimensionality reduction for some

common big data functions such as predictive intelligence, customer segmentation for marketing purposes,

and sentiment analysis. MLlib is used in network security to conduct real-time inspections of data packets for

indications of malicious activity. It helps security providers learn about new threats and stay ahead of hackers

while protecting their clients in real time.

Deep learning

TensorFlow is a popular deep learning framework used across the industry. TensorFlow supports the

distributed training on a CPU or GPU cluster. This distributed training allows users to run it on a large amount

of data with lot of deep layers.

Until fair recently, if we wanted to use TensorFlow with Apache Spark, we needed to perform all necessary ETL

for TensorFlow in PySpark and then write data to intermediate storage. That data would then be loaded onto

the TensorFlow cluster for the actual training process. This workflow required the user to maintain two different

clusters, one for ETL and one for distributed training of TensorFlow. Running and maintaining multiple clusters

was typically tedious and time consuming.

DataFrames and RDD in earlier Spark versions were not well-suited for deep learning because random access

was limited. In Spark 3.0 with project hydrogen, native support for the deep learning frameworks is added. This

approach allows non-MapReduce-based scheduling on the Spark cluster.

Interactive analysis

Apache Spark is fast enough to perform exploratory queries without sampling with development languages

other than Spark, including SQL, R, and Python. Spark uses visualization tools to process complex data and

visualize it interactively. Spark with structured streaming performs interactive queries against live data in web

analytics that enable you to run interactive queries against a web visitor’s current session.

Recommender system

Over the years, recommender systems have brought tremendous changes to our lives, as businesses and

consumers have responded to dramatic changes in online shopping, online entertainment, and many other

industries. Indeed, these systems are among the most evident success stories of AI in production. In many

practical use cases, recommender systems are combined with conversational AI or chatbots interfaced with an

NLP backend to obtain relevant information and produce useful inferences.

Today, many retailers are adopting newer business models like buying online and picking up in store, curbside

pickup, self-checkout, scan-and-go, and more. These models have become prominent during the COVID-19

pandemic by making shopping safer and more convenient for consumers. AI is crucial for these growing digital

trends, which are influenced by consumer behavior and vice versa. To meet the growing demands of

consumers, to augment the customer experience, to improve operational efficiency, and to grow revenue,

NetApp helps its enterprise customers and businesses use machine- learning and deep- learning algorithms to

design faster and more accurate recommender systems.

There are several popular techniques used for providing recommendations, including collaborative filtering,
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content-based systems, the deep learning recommender model (DLRM), and hybrid techniques. Customers

previously utilized PySpark to implement collaborative filtering for creating recommendation systems. Spark

MLlib implements alternating least squares (ALS) for collaborative filtering, a very popular algorithm among

enterprises before the rise of DLRM.

Natural language processing

Conversational AI, made possible by natural language processing (NLP), is the branch of AI helping computers

communicate with humans. NLP is prevalent in every industry vertical and many use cases, from smart

assistants and chatbots to Google search and predictive text. According to a Gartner prediction, by 2022, 70%

of people will be interacting with conversational AI platforms on a daily basis. For a high-quality conversation

between a human and a machine, responses must be rapid, intelligent, and natural sounding.

Customers need a large amount of data to process and train their NLP and automatic speech recognition

(ASR) models. They also need to move data across the edge, core, and cloud, and they need the power to

perform inference in milliseconds to establish natural communication with humans. NetApp AI and Apache

Spark is an ideal combination for compute, storage, data processing, model training, fine-tuning, and

deployment.

Sentiment analysis is a field of study within NLP in which positive, negative, or neutral sentiments are extracted

from text. Sentiment analysis has a variety of use cases, from determining support center employee

performance in conversations with callers to providing appropriate automated chatbot responses. It has also

been used to predict a firm’s stock price based on the interactions between firm representatives and the

audience at quarterly earnings calls. Furthermore, sentiment analysis can be used to determine a customer’s

view on the products, services, or support provided by the brand.

We used the Spark NLP library from John Snow Labs to load pretrained pipelines and Bidirectional Encoder

Representations from Transformers (BERT) models including financial news sentiment and FinBERT,

performing tokenization, named entity recognition, model training, fitting and sentiment analysis at scale. Spark

NLP is the only open-source NLP library in production that offers state-of-the-art transformers such as BERT,

ALBERT, ELECTRA, XLNet, DistilBERT, RoBERTa, DeBERTa, XLM- RoBERTa, Longformer, ELMO, Universal

Sentence Encoder, Google T5, MarianMT, and GPT2. The library works not only in Python and R, but also in

the JVM ecosystem (Java, Scala, and Kotlin) at scale by extending Apache Spark natively.

Major AI, ML, and DL use cases and architectures

Major AI, ML, and DL use cases and methodology can be divided into the following

sections:

Spark NLP pipelines and TensorFlow distributed inferencing

The following list contains the most popular open-source NLP libraries that have been adopted by the data

science community under different levels of development:

• Natural Language Toolkit (NLTK). The complete toolkit for all NLP techniques. It has been maintained since

the early 2000s.

• TextBlob. An easy-to-use NLP tools Python API built on top of NLTK and Pattern.

• Stanford Core NLP. NLP services and packages in Java developed by the Stanford NLP Group.

• Gensim. Topic Modelling for Humans started off as a collection of Python scripts for the Czech Digital

Mathematics Library project.

• SpaCy. End-to-end industrial NLP workflows with Python and Cython with GPU acceleration for

transformers.
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• Fasttext. A free, lightweight, open-source NLP library for the learning-of-word embeddings and sentence

classification created by Facebook’s AI Research (FAIR) lab.

Spark NLP is a single, unified solution for all NLP tasks and requirements that enables scalable, high-

performance, and high-accuracy NLP-powered software for real production use cases. It leverages transfer

learning and implements the latest state-of-the-art algorithms and models in research and across industries.

Due to the lack of full support by Spark for the above libraries, Spark NLP was built on top of Spark ML to take

advantage of Spark’s general-purpose in-memory distributed data processing engine as an enterprise-grade

NLP library for mission-critical production workflows. Its annotators utilize rule-based algorithms, machine

learning, and TensorFlow to power deep learning implementations. This covers common NLP tasks including

but not limited to tokenization, lemmatization, stemming, part-of-speech tagging, named-entity recognition,

spell checking, and sentiment analysis.

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based machine learning

technique for NLP. It popularized the concept of pretraining and fine tuning. The transformer architecture in

BERT originated from machine translation, which models long-term dependencies better than Recurrent Neural

Network (RNN)-based language models. It also introduced the Masked Language Modelling (MLM) task,

where a random 15% of all tokens are masked and the model predicts them, enabling true bidirectionality.

Financial sentiment analysis is challenging due to the specialized language and lack of labeled data in that

domain. FinBERT, a language model based on pretrained BERT, was domain adapted on Reuters TRC2, a

financial corpus, and fine-tuned with labeled data ( Financial PhraseBank) for financial sentiment classification.

Researchers extracted 4, 500 sentences from news articles with financial terms. Then 16 experts and masters

students with finance backgrounds labeled the sentences as positive, neutral, and negative. We built an end-

to-end Spark workflow to analyze sentiment for Top-10 NASDAQ company earnings call transcripts from 2016

to 2020 using FinBERT and two other pre-trained pipelines ( Sentiment Analysis for Financial News, Explain

Document DL) from Spark NLP.

The underlying deep learning engine for Spark NLP is TensorFlow, an end-to-end, open-source platform for

machine learning that enables easy model building, robust ML production anywhere, and powerful

experimentation for research. Therefore, when executing our pipelines in Spark yarn cluster mode, we

were essentially running distributed TensorFlow with data and model parallelization across one master and

multiple worker nodes, as well as network- attached storage mounted on the cluster.

Horovod distributed training

The core Hadoop validation for MapReduce-related performance is performed with TeraGen, TeraSort,

TeraValidate, and DFSIO (read and write). The TeraGen and TeraSort validation results are presented in TR-

3969: NetApp Solutions for Hadoop for E-Series and in the section “Storage Tiering” (xref) for AFF.

Based upon customer requests, we consider distributed training with Spark to be one of the most important of

the various use cases. In this document, we used the Hovorod on Spark to validate Spark performance with

NetApp on-premises, cloud-native, and hybrid cloud solutions using NetApp All Flash FAS (AFF) storage

controllers, Azure NetApp Files, and StorageGRID.

The Horovod on Spark package provides a convenient wrapper around Horovod that makes running

distributed training workloads in Spark clusters simple, enabling a tight model design loop in which data

processing, model training, and model evaluation are all done in Spark where training and inferencing data

resides.

There are two APIs for running Horovod on Spark: a high-level Estimator API and a lower-level Run API.

Although both use the same underlying mechanism to launch Horovod on Spark executors, the Estimator API

abstracts the data processing, model training loop, model checkpointing, metrics collection, and distributed

training. We used Horovod Spark Estimators, TensorFlow, and Keras for an end-to-end data preparation and

distributed training workflow based on the Kaggle Rossmann Store Sales competition.
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The script keras_spark_horovod_rossmann_estimator.py can be found in the section "Python scripts

for each major use case." It contains three parts:

• The first part performs various data preprocessing steps over an initial set of CSV files provided by Kaggle

and gathered by the community. The input data is separated into a training set with a Validation subset,

and a testing dataset.

• The second part defines a Keras Deep Neural Network (DNN) model with logarithmic sigmoid activation

function and an Adam optimizer, and it performs distributed training of the model using Horovod on Spark.

• The third part performs prediction on the testing dataset using the best model that minimizes the validation

set overall mean absolute error. It then creates an output CSV file.

See the section “Machine Learning” for various runtime comparison results.

Multi-worker deep learning using Keras for CTR prediction

With the recent advances in ML platforms and applications, a lot of attention is now on learning at scale. The

click-through rate (CTR) is defined as the average number of click-throughs per hundred online ad impressions

(expressed as a percentage). It is widely adopted as a key metric in various industry verticals and use cases,

including digital marketing, retail, e-commerce, and service providers. See our TR-4904: Distributed training in

Azure - Click-Through Rate Prediction for more detail on the applications of CTR and an end-to-end Cloud AI

workflow implementation with Kubernetes, distributed data ETL, and model training using Dask and CUDA ML.

In this technical report we used a variation of the Criteo Terabyte Click Logs dataset (see TR-4904) for multi-

worker distributed deep learning using Keras to build a Spark workflow with Deep and Cross Network (DCN)

models, comparing its performance in terms of log loss error function with a baseline Spark ML Logistic

Regression model. DCN efficiently captures effective feature interactions of bounded degrees, learns highly

nonlinear interactions, requires no manual feature engineering or exhaustive searching, and has low

computational cost.

Data for web-scale recommender systems is mostly discrete and categorical, leading to a large and sparse

feature space that is challenging for feature exploration. This has limited most large-scale systems to linear

models such as logistic regression. However, identifying frequently predictive features and at the same time

exploring unseen or rare cross features is the key to making good predictions. Linear models are simple,

interpretable, and easy to scale, but they are limited in their expressive power.

Cross features, on the other hand, have been shown to be significant in improving the models’ expressiveness.

Unfortunately, it often requires manual feature engineering or exhaustive search to identify such features.

Generalizing to unseen feature interactions is often difficult. Using a cross neural network like DCN avoids

task-specific feature engineering by explicitly applying feature crossing in an automatic fashion. The cross

network consists of multiple layers, where the highest degree of interactions is provably determined by layer

depth. Each layer produces higher-order interactions based on existing ones and keeps the interactions from

previous layers.

A deep neural network (DNN) has the promise to capture very complex interactions across features. However,

compared to DCN, it requires nearly an order of magnitude more parameters, is unable to form cross features

explicitly, and may fail to efficiently learn some types of feature interactions. The cross network is memory

efficient and easy to implement. Jointly training the cross and DNN components together efficiently captures

predictive feature interactions and delivers state-of-the-art performance on the Criteo CTR dataset.

A DCN model starts with an embedding and stacking layer, followed by a cross network and a deep network in

parallel. These in turn are followed by a final combination layer which combines the outputs from the two

networks. Your input data can be a vector with sparse and dense features. In Spark, both ml and mllib libraries

contain the type SparseVector. It is therefore important for users to distinguish between the two and be

mindful when calling their respective functions and methods. In web-scale recommender systems such as CTR

101

https://docs.netapp.com/us-en/netapp-solutions/ai/aks-anf_introduction.html
https://docs.netapp.com/us-en/netapp-solutions/ai/aks-anf_introduction.html
https://labs.criteo.com/2013/12/download-terabyte-click-logs-2/
https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.ml.linalg.SparseVector.html
https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.mllib.linalg.SparseVector.html


prediction, the inputs are mostly categorical features, for example ‘country=usa’. Such features are often

encoded as one-hot vectors, for example, ‘[0,1,0, …]’. One-hot-encoding (OHE) with SparseVector is

useful when dealing with real-world datasets with ever-changing and growing vocabularies. We modified

examples in DeepCTR to process large vocabularies, creating embedding vectors in the embedding and

stacking layer of our DCN.

The Criteo Display Ads dataset predicts the ads click-through rate. It has 13 integer features and 26

categorical features in which each category has a high cardinality. For this dataset, an improvement of 0.001 in

logloss is practically significant due to the large input size. A small improvement in prediction accuracy for a

large user base can potentially lead to a large increase in a company’s revenue. The dataset contains 11GB of

user logs from a period of 7 days, which equates to around 41 million records. We used Spark

dataFrame.randomSplit()function to randomly split the data for training (80%), cross-validation (10%),

and the remaining 10% for testing.

DCN was implemented on TensorFlow with Keras. There are four main components in implementing the model

training process with DCN:

• Data processing and embedding. Real-valued features are normalized by applying a log transform. For

categorical features, we embed the features in dense vectors of dimension 6×(category cardinality)1/4.

Concatenating all embeddings results in a vector of dimension 1026.

• Optimization. We applied mini-batch stochastic optimization with the Adam optimizer. The batch size was

set to 512. Batch normalization was applied to the deep network and the gradient clip norm was set at 100.

• Regularization. We used early stopping, as L2 regularization or dropout was not found to be effective.

• Hyperparameters. We report results based on a grid search over the number of hidden layers, the hidden

layer size, the initial learning rate, and the number of cross layers. The number of hidden layers ranged

from 2 to 5, with hidden layer sizes ranging from 32 to 1024. For DCN, the number of cross layers was

from 1 to 6. The initial learning rate was tuned from 0.0001 to 0.001 with increments of 0.0001. All

experiments applied early stopping at training step 150,000, beyond which overfitting started to occur.

In addition to DCN, we also tested other popular deep-learning models for CTR prediction, including DeepFM,

xDeepFM, AutoInt, and DCN v2.

Architectures used for validation

For this validation, we used four worker nodes and one master nodes with an AFF-A800 HA pair. All cluster

members were connected through 10GbE network switches.

For this NetApp Spark solution validation, we used three different storage controllers: the E5760, the E5724,

and the AFF-A800. The E-Series storage controllers were connected to five data nodes with 12Gbps SAS

connections. The AFF HA-pair storage controller provides exported NFS volumes through 10GbE connections

to Hadoop worker nodes. The Hadoop cluster members were connected through 10GbE connections in the E-

Series, AFF, and StorageGRID Hadoop solutions.
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Testing results

We used the TeraSort and TeraValidate scripts in the TeraGen benchmarking tool to
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measure the Spark performance validation with E5760, E5724, and AFF-A800

configurations. In addition, three major use cases were tested: Spark NLP pipelines and

TensorFlow distributed training, Horovod distributed training, and multi-worker deep

learning using Keras for CTR Prediction with DeepFM.

For both E-Series and StorageGRID validation, we used Hadoop replication factor 2. For AFF validation, we

only used one source of data.

The following table lists the hardware configuration for the Spark performance validation.

Type Hadoop worker

nodes

Drive type Drives per node Storage controller

SG6060 4 SAS 12 Single high-

availability (HA) pair

E5760 4 SAS 60 Single HA pair

E5724 4 SAS 24 Single HA pair

AFF800 4 SSD 6 Single HA pair

The following table lists software requirements.

Software Version

RHEL 7.9

OpenJDK Runtime Environment 1.8.0

OpenJDK 64-Bit Server VM 25.302

Git 2.24.1

GCC/G++ 11.2.1

Spark 3.2.1

PySpark 3.1.2

SparkNLP 3.4.2

TensorFlow 2.9.0

Keras 2.9.0

Horovod 0.24.3

Financial sentiment analysis

We published TR-4910: Sentiment Analysis from Customer Communications with NetApp AI, in which an end-

to-end conversational AI pipeline was built using the NetApp DataOps Toolkit, AFF storage, and NVIDIA DGX

System. The pipeline performs batch audio signal processing, automatic speech recognition (ASR), transfer

learning, and sentiment analysis leveraging the DataOps Toolkit, NVIDIA Riva SDK, and the Tao framework.

Expanding the sentiment analysis use case to the financial services industry, we built a SparkNLP workflow,

loaded three BERT models for various NLP tasks, such as named entity recognition, and obtained sentence-

level sentiment for NASDAQ Top 10 companies’ quarterly earnings calls.

The following script sentiment_analysis_spark. py uses the FinBERT model to process transcripts in
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HDFS and produce positive, neutral, and negative sentiment counts, as shown in the following table:

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

hdfs:///data1/Transcripts/

> ./sentiment_analysis_hdfs.log 2>&1

real13m14.300s

user557m11.319s

sys4m47.676s

The following table lists the earnings-call, sentence-level sentiment analysis for NASDAQ Top 10 companies

from 2016 to 2020.

Sentime

nt

counts

and

percenta

ge

All 10

Compani

es

AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA

Positive

counts

7447 1567 743 290 682 826 824 904 417

Neutral

counts

64067 6856 7596 5086 6650 5914 6099 5715 6189

Negative

counts

1787 253 213 84 189 97 282 202 89

Uncatego

rized

counts

196 0 0 76 0 0 0 1 0

(total

counts)

73497 8676 8552 5536 7521 6837 7205 6822 6695

In terms of percentages, most sentences spoken by the CEOs and CFOs are factual and therefore carry

neutral sentiment. During an earnings call, analysts ask questions which might convey positive or negative

sentiment. It is worth further investigating quantitatively how negative or positive sentiment affect stock prices

on the same or next day of trading.

The following table lists the sentence-level sentiment analysis for NASDAQ Top 10 companies, expressed in

percentage.
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Sentime

nt

percenta

ge

All 10

Compani

es

AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA

Positive 10.13% 18.06% 8.69% 5.24% 9.07% 12.08% 11.44% 13.25% 6.23%

Neutral 87.17% 79.02% 88.82% 91.87% 88.42% 86.50% 84.65% 83.77% 92.44%

Negative 2.43% 2.92% 2.49% 1.52% 2.51% 1.42% 3.91% 2.96% 1.33%

Uncatego

rized

0.27% 0% 0% 1.37% 0% 0% 0% 0.01% 0%

In terms of the workflow runtime, we saw a significant 4.78x improvement from local mode to a distributed

environment in HDFS, and a further 0.14% improvement by leveraging NFS.

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

file:///sparkdemo/sparknlp/Transcripts/

> ./sentiment_analysis_nfs.log 2>&1

real13m13.149s

user537m50.148s

sys4m46.173s

As the following figure shows, data and model parallelism improved the data processing and distributed

TensorFlow model inferencing speed. Data location in NFS yielded a slightly better runtime because the

workflow bottleneck is the downloading of pretrained models. If we increase the transcripts dataset size, the

advantage of NFS is more obvious.
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Distributed training with Horovod performance

The following command produced runtime information and a log file in our Spark cluster using a single master

node with 160 executors each with one core. The executor memory was limited to 5GB to avoid out-of-memory

error. See the section “Python scripts for each major use case” for more detail regarding the data processing,

model training, and model accuracy calculation in keras_spark_horovod_rossmann_estimator.py.

(base) [root@n138 horovod]# time spark-submit

--master local

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkusecase/horovod

--local-submission-csv /tmp/submission_0.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_local. log 2>&1

The resulting runtime with ten training epochs was as follows:

real43m34.608s

user12m22.057s

sys2m30.127s

It took more than 43 minutes to process input data, train a DNN model, calculate accuracy, and produce
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TensorFlow checkpoints and a CSV file for prediction results. We limited the number of training epochs to 10,

which in practice is often set to 100 to ensure satisfactory model accuracy. The training time typically scales

linearly with the number of epochs.

We next used the four worker nodes available in the cluster and executed the same script in yarn mode with

data in HDFS:

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir hdfs:///user/hdfs/tr-4570/experiments/horovod

--local-submission-csv /tmp/submission_1.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_yarn.log 2>&1

The resulting runtime was improved as follows:

real8m13.728s

user7m48.421s

sys1m26.063s

With Horovod’s model and data parallelism in Spark, we saw a 5.29x runtime speedup of yarn versus local

mode with ten training epochs. This is shown in the following figure with the legends HDFS and Local. The

underlying TensorFlow DNN model training can be further accelerated with GPUs if available. We plan to

conduct this testing and publish results in a future technical report.

Our next test compared the runtimes with input data residing in NFS versus HDFS. The NFS volume on the

AFF A800 was mounted on /sparkdemo/horovod across the five nodes (one master, four workers) in our

Spark cluster. We ran a similar command as for previous tests, with the --data- dir parameter now pointing

to the NFS mount:

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkdemo/horovod

--local-submission-csv /tmp/submission_2.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_nfs.log 2>&1

108



The resulting runtime with NFS was as follows:

real 5m46.229s

user 5m35.693s

sys  1m5.615s

There was a further 1.43x speedup, as shown in the following figure. Therefore, with a NetApp all-flash storage

connected to their cluster, customers enjoy the benefits of fast data transfer and distribution for Horovod Spark

workflows, achieving 7.55x speedup versus running on a single node.

Deep learning models for CTR prediction performance

For recommender systems designed to maximize CTR, you must learn sophisticated feature interactions

behind user behaviors that can be mathematically calculated from low order to high order. Both low-order and

high-order feature interactions should be equally important for a good deep learning model without biasing

towards one or the other. Deep Factorization Machine (DeepFM), a factorization machine-based neural

network, combines factorization machines for recommendation and deep learning for feature learning in a new

neural network architecture.

Although conventional factorization machines model pairwise feature interactions as an inner product of latent

vectors between features and can theoretically capture high-order information, in practice, machine learning

practitioners usually only use second- order feature interactions due to the high computation and storage

complexity. Deep neural network variants like Google’s Wide & Deep Models on the other hand learns

sophisticated feature interactions in a hybrid network structure by combining a linear wide model and a deep

model.

There are two inputs to this Wide & Deep Model, one for the underlying wide model and the other for the deep,

the latter part of which still requires expert feature engineering and thus renders the technique less

generalizable to other domains. Unlike the Wide & Deep Model, DeepFM can be efficiently trained with raw

features without any feature engineering because its wide part and deep part share the same input and the
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embedding vector.

We first processed the Criteo train.txt (11GB) file into a CSV file named ctr_train.csv stored in an

NFS mount /sparkdemo/tr-4570-data using run_classification_criteo_spark.py from the

section “Python scripts for each major use case.” Within this script, the function process_input_file

performs several string methods to remove tabs and insert ‘,’ as the delimiter and ‘\n’ as newline. Note

that you only need to process the original train.txt once, so that the code block is shown as comments.

For the following testing of different DL models, we used ctr_train.csv as the input file. In subsequent

testing runs, the input CSV file was read into a Spark DataFrame with schema containing a field of ‘label’,

integer dense features ['I1', 'I2', 'I3', …, 'I13'], and sparse features ['C1', 'C2', 'C3',

…, 'C26']. The following spark-submit command takes in an input CSV, trains DeepFM models with 20%

split for cross validation, and picks the best model after ten training epochs to calculate prediction accuracy on

the testing set:

(base) [root@n138 ~]# time spark-submit --master yarn --executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py --data

-dir file:///sparkdemo/tr-4570-data >

/tmp/run_classification_criteo_spark_local.log 2>&1

Note that since the data file ctr_train.csv is over 11GB, you must set a sufficient

spark.driver.maxResultSize greater than the dataset size to avoid error.

 spark = SparkSession.builder \

    .master("yarn") \

    .appName("deep_ctr_classification") \

    .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

    .config("spark.executor.cores", "1") \

    .config('spark.executor.memory', '5gb') \

    .config('spark.executor.memoryOverhead', '1500') \

    .config('spark.driver.memoryOverhead', '1500') \

    .config("spark.sql.shuffle.partitions", "480") \

    .config("spark.sql.execution.arrow.enabled", "true") \

    .config("spark.driver.maxResultSize", "50gb") \

    .getOrCreate()

In the above SparkSession.builder configuration we also enabled Apache Arrow, which converts a Spark

DataFrame into a Pandas DataFrame with the df.toPandas() method.

22/06/17 15:56:21 INFO scheduler.DAGScheduler: Job 2 finished: toPandas at

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py:96, took

627.126487 s

Obtained Spark DF and transformed to Pandas DF using Arrow.

110

https://arrow.apache.org/


After random splitting, there are over 36M rows in the training dataset and 9M samples in the testing set:

Training dataset size =  36672493

Testing dataset size =  9168124

Because this technical report is focused on CPU testing without using any GPUs, it is imperative that you build

TensorFlow with appropriate compiler flags. This step avoids invoking any GPU-accelerated libraries and takes

full advantage of TensorFlow’s Advanced Vector Extensions (AVX) and AVX2 instructions. These features are

designed for linear algebraic computations like vectorized addition, matrix multiplications inside a feed-forward,

or back-propagation DNN training. Fused Multiply Add (FMA) instruction available with AVX2 using 256-bit

floating point (FP) registers is ideal for integer code and data types, resulting in up to a 2x speedup. For FP

code and data types, AVX2 achieves 8% speedup over AVX.

2022-06-18 07:19:20.101478: I

tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary

is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the

following CPU instructions in performance-critical operations:  AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the

appropriate compiler flags.

To build TensorFlow from source, NetApp recommends using Bazel. For our environment, we executed the

following commands in the shell prompt to install dnf, dnf-plugins, and Bazel.

yum install dnf

dnf install 'dnf-command(copr)'

dnf copr enable vbatts/bazel

dnf install bazel5

You must enable GCC 5 or newer to use C++17 features during the build process, which is provided by RHEL

with Software Collections Library (SCL). The following commands install devtoolset and GCC 11.2.1 on our

RHEL 7.9 cluster:

subscription-manager repos --enable rhel-server-rhscl-7-rpms

yum install devtoolset-11-toolchain

yum install devtoolset-11-gcc-c++

yum update

scl enable devtoolset-11 bash

. /opt/rh/devtoolset-11/enable

Note that the last two commands enable devtoolset-11, which uses /opt/rh/devtoolset-

11/root/usr/bin/gcc (GCC 11.2.1). Also, make sure your git version is greater than 1.8.3 (this comes

with RHEL 7.9). Refer to this article for updating git to 2.24.1.

We assume that you have already cloned the latest TensorFlow master repo. Then create a workspace
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directory with a WORKSPACE file to build TensorFlow from source with AVX, AVX2, and FMA. Run the

configure file and specify the correct Python binary location. CUDA is disabled for our testing because we

did not use a GPU. A .bazelrc file is generated according to your settings. Further, we edited the file and set

build --define=no_hdfs_support=false to enable HDFS support. Refer to .bazelrc in the section

“Python scripts for each major use case,” for a complete list of settings and flags.

./configure

bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=

-mfpmath=both -k //tensorflow/tools/pip_package:build_pip_package

After you build TensorFlow with the correct flags, run the following script to process the Criteo Display Ads

dataset, train a DeepFM model, and calculate the Area Under the Receiver Operating Characteristic Curve

(ROC AUC) from prediction scores.

(base) [root@n138 examples]# ~/anaconda3/bin/spark-submit

--master yarn

--executor-memory 15g

--executor-cores 1

--num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py

--data-dir file:///sparkdemo/tr-4570-data

> . /run_classification_criteo_spark_nfs.log 2>&1

After ten training epochs, we obtained the AUC score on the testing dataset:
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Epoch 1/10

125/125 - 7s - loss: 0.4976 - binary_crossentropy: 0.4974 - val_loss:

0.4629 - val_binary_crossentropy: 0.4624

Epoch 2/10

125/125 - 1s - loss: 0.3281 - binary_crossentropy: 0.3271 - val_loss:

0.5146 - val_binary_crossentropy: 0.5130

Epoch 3/10

125/125 - 1s - loss: 0.1948 - binary_crossentropy: 0.1928 - val_loss:

0.6166 - val_binary_crossentropy: 0.6144

Epoch 4/10

125/125 - 1s - loss: 0.1408 - binary_crossentropy: 0.1383 - val_loss:

0.7261 - val_binary_crossentropy: 0.7235

Epoch 5/10

125/125 - 1s - loss: 0.1129 - binary_crossentropy: 0.1102 - val_loss:

0.7961 - val_binary_crossentropy: 0.7934

Epoch 6/10

125/125 - 1s - loss: 0.0949 - binary_crossentropy: 0.0921 - val_loss:

0.9502 - val_binary_crossentropy: 0.9474

Epoch 7/10

125/125 - 1s - loss: 0.0778 - binary_crossentropy: 0.0750 - val_loss:

1.1329 - val_binary_crossentropy: 1.1301

Epoch 8/10

125/125 - 1s - loss: 0.0651 - binary_crossentropy: 0.0622 - val_loss:

1.3794 - val_binary_crossentropy: 1.3766

Epoch 9/10

125/125 - 1s - loss: 0.0555 - binary_crossentropy: 0.0527 - val_loss:

1.6115 - val_binary_crossentropy: 1.6087

Epoch 10/10

125/125 - 1s - loss: 0.0470 - binary_crossentropy: 0.0442 - val_loss:

1.6768 - val_binary_crossentropy: 1.6740

test AUC 0.6337

In a manner similar to previous use cases, we compared the Spark workflow runtime with data residing in

different locations. The following figure shows a comparison of the deep learning CTR prediction for a Spark

workflows runtime.
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Hybrid cloud solution

A modern enterprise data center is a hybrid cloud that connects multiple distributed

infrastructure environments through a continuous data management plane with a

consistent operating model, on premises and/or in multiple public clouds. To get the most

out of a hybrid cloud, you must be able to seamlessly move data between your on-

premises and multi-cloud environments without the need for any data conversions or

application refactoring.

Customers have indicated that they start their hybrid cloud journey either by moving secondary storage to the

cloud for use cases such as data protection or by moving less business-critical workloads such as application

development and DevOps to the cloud. They then move on to more critical workloads. Web and content

hosting, DevOps and application development, databases, analytics, and containerized apps are among the

most popular hybrid-cloud workloads. The complexity, cost, and risks of enterprise AI projects have historically

hindered AI adoption from experimental stage to production.

With a NetApp hybrid-cloud solution, customers benefit from integrated security, data governance, and

compliance tools with a single control panel for data and workflow management across distributed

environments, while optimizing the total cost of ownership based on their consumption. The following figure is

an example solution of a cloud service partner tasked with providing multi-cloud connectivity for customers' big-

data-analytics data.
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In this scenario, IoT data received in AWS from different sources is stored in a central location in NetApp

Private Storage (NPS). The NPS storage is connected to Spark or Hadoop clusters located in AWS and Azure

enabling big-data-analytics applications running in multiple clouds accessing the same data. The main

requirements and challenges for this use case include the following:

• Customers want to run analytics jobs on the same data using multiple clouds.

• Data must be received from different sources such as on-premises and cloud environments through

different sensors and hubs.

• The solution must be efficient and cost effective.

• The main challenge is to build a cost-effective and efficient solution that delivers hybrid analytics services

between different on-premises and cloud environments.

Our data protection and multicloud connectivity solution resolves the pain point of having cloud analytics

applications across multiple hyperscalers. As shown in the figure above, data from sensors is streamed and

ingested into the AWS Spark cluster through Kafka. The data is stored in an NFS share residing in NPS, which

is located outside of the cloud provider within an Equinix data center.

Because NetApp NPS is connected to Amazon AWS and Microsoft Azure through Direct Connect and Express

Route connections respectively, customers can leverage the In-Place Analytics Module to access the data from

both Amazon and AWS analytics clusters. Consequently, because both on-premises and NPS storage runs

ONTAP software, SnapMirror can mirror the NPS data into the on-premises cluster, providing hybrid cloud

analytics across on-premises and multiple clouds.

For the best performance, NetApp typically recommends using multiple network interfaces and direct

connection or express routes to access the data from cloud instances. We have other data mover solutions

including XCP and BlueXP Copy and Sync to help customers build application-aware, secure, and cost-

effective hybrid-cloud Spark clusters.

Python scripts for each major use case

The following three Python scripts correspond to the three major use cases tested. First is

sentiment_analysis_sparknlp.py.

# TR-4570 Refresh NLP testing by Rick Huang

from sys import argv
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import os

import sparknlp

import pyspark.sql.functions as F

from sparknlp import Finisher

from pyspark.ml import Pipeline

from sparknlp.base import *

from sparknlp.annotator import *

from sparknlp.pretrained import PretrainedPipeline

from sparknlp import Finisher

# Start Spark Session with Spark NLP

spark = sparknlp.start()

print("Spark NLP version:")

print(sparknlp.version())

print("Apache Spark version:")

print(spark.version)

spark = sparknlp.SparkSession.builder \

     .master("yarn") \

     .appName("test_hdfs_read_write") \

     .config("spark.executor.cores", "1") \

     .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-

nlp_2.12:3.4.3")\

     .config('spark.executor.memory', '5gb') \

     .config('spark.executor.memoryOverhead','1000')\

     .config('spark.driver.memoryOverhead','1000')\

     .config("spark.sql.shuffle.partitions", "480")\

     .getOrCreate()

sc = spark.sparkContext

from pyspark.sql import SQLContext

sql = SQLContext(sc)

sqlContext = SQLContext(sc)

# Download pre-trained pipelines & sequence classifier

explain_pipeline_model = PretrainedPipeline('explain_document_dl',

lang='en').model#pipeline_sa =

PretrainedPipeline("classifierdl_bertwiki_finance_sentiment_pipeline",

lang="en")

# pipeline_finbert =

BertForSequenceClassification.loadSavedModel('/sparkusecase/bert_sequence_

classifier_finbert_en_3', spark)

sequenceClassifier = BertForSequenceClassification \

        .pretrained('bert_sequence_classifier_finbert', 'en') \

        .setInputCols(['token', 'document']) \

        .setOutputCol('class') \

        .setCaseSensitive(True) \

        .setMaxSentenceLength(512)

def process_sentence_df(data):

    # Pre-process: begin
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    print("1. Begin DataFrame pre-processing...\n")

    print(f"\n\t2. Attaching DocumentAssembler Transformer to the

pipeline")

    documentAssembler = DocumentAssembler() \

        .setInputCol("text") \

        .setOutputCol("document") \

        .setCleanupMode("inplace_full")

        #.setCleanupMode("shrink", "inplace_full")

    doc_df = documentAssembler.transform(data)

    doc_df.printSchema()

    doc_df.show(truncate=50)

    # Pre-process: get rid of  blank lines

    clean_df = doc_df.withColumn("tmp", F.explode("document")) \

        .select("tmp.result").where("tmp.end !=

-1").withColumnRenamed("result", "text").dropna()

    print("[OK!] DataFrame after initial cleanup:\n")

    clean_df.printSchema()

    clean_df.show(truncate=80)

    # for FinBERT

    tokenizer = Tokenizer() \

        .setInputCols(['document']) \

        .setOutputCol('token')

    print(f"\n\t3. Attaching Tokenizer Annotator to the pipeline")

    pipeline_finbert = Pipeline(stages=[

        documentAssembler,

        tokenizer,

        sequenceClassifier

        ])

    # Use Finisher() & construct PySpark ML pipeline

    finisher = Finisher().setInputCols(["token", "lemma", "pos",

"entities"])

    print(f"\n\t4. Attaching Finisher Transformer to the pipeline")

    pipeline_ex = Pipeline() \

        .setStages([

           explain_pipeline_model,

           finisher

           ])

    print("\n\t\t\t ---- Pipeline Built Successfully ----")

    # Loading pipelines to annotate

    #result_ex_df = pipeline_ex.transform(clean_df)

    ex_model = pipeline_ex.fit(clean_df)

    annotations_finished_ex_df = ex_model.transform(clean_df)

    # result_sa_df = pipeline_sa.transform(clean_df)

    result_finbert_df = pipeline_finbert.fit(clean_df).transform(clean_df)

    print("\n\t\t\t ----Document Explain, Sentiment Analysis & FinBERT

Pipeline Fitted Successfully ----")

117



    # Check the result entities

    print("[OK!] Simple explain ML pipeline result:\n")

    annotations_finished_ex_df.printSchema()

    annotations_finished_ex_df.select('text',

'finished_entities').show(truncate=False)

    # Check the result sentiment from FinBERT

    print("[OK!] Sentiment Analysis FinBERT pipeline result:\n")

    result_finbert_df.printSchema()

    result_finbert_df.select('text', 'class.result').show(80, False)

    sentiment_stats(result_finbert_df)

    return

def sentiment_stats(finbert_df):

    result_df = finbert_df.select('text', 'class.result')

    sa_df = result_df.select('result')

    sa_df.groupBy('result').count().show()

    # total_lines = result_clean_df.count()

    # num_neutral = result_clean_df.where(result_clean_df.result ==

['neutral']).count()

    # num_positive = result_clean_df.where(result_clean_df.result ==

['positive']).count()

    # num_negative = result_clean_df.where(result_clean_df.result ==

['negative']).count()

    # print(f"\nRatio of neutral sentiment = {num_neutral/total_lines}")

    # print(f"Ratio of positive sentiment = {num_positive / total_lines}")

    # print(f"Ratio of negative sentiment = {num_negative /

total_lines}\n")

    return

def process_input_file(file_name):

    # Turn input file to Spark DataFrame

    print("START processing input file...")

    data_df = spark.read.text(file_name)

    data_df.show()

    # rename first column 'text' for sparknlp

    output_df = data_df.withColumnRenamed("value", "text").dropna()

    output_df.printSchema()

    return output_dfdef process_local_dir(directory):

    filelist = []

    for subdir, dirs, files in os.walk(directory):

        for filename in files:

            filepath = subdir + os.sep + filename

            print("[OK!] Will process the following files:")

            if filepath.endswith(".txt"):

                print(filepath)

                filelist.append(filepath)

    return filelist

def process_local_dir_or_file(dir_or_file):

118



    numfiles = 0

    if os.path.isfile(dir_or_file):

        input_df = process_input_file(dir_or_file)

        print("Obtained input_df.")

        process_sentence_df(input_df)

        print("Processed input_df")

        numfiles += 1

    else:

        filelist = process_local_dir(dir_or_file)

        for file in filelist:

            input_df = process_input_file(file)

            process_sentence_df(input_df)

            numfiles += 1

    return numfiles

def process_hdfs_dir(dir_name):

    # Turn input files to Spark DataFrame

    print("START processing input HDFS directory...")

    data_df = spark.read.option("recursiveFileLookup",

"true").text(dir_name)

    data_df.show()

    print("[DEBUG] total lines in data_df = ", data_df.count())

    # rename first column 'text' for sparknlp

    output_df = data_df.withColumnRenamed("value", "text").dropna()

    print("[DEBUG] output_df looks like: \n")

    output_df.show(40, False)

    print("[DEBUG] HDFS dir resulting data_df schema: \n")

    output_df.printSchema()

    process_sentence_df(output_df)

    print("Processed HDFS directory: ", dir_name)

    returnif __name__ == '__main__':

    try:

        if len(argv) == 2:

            print("Start processing input...\n")

    except:

        print("[ERROR] Please enter input text file or path to

process!\n")

        exit(1)

    # This is for local file, not hdfs:

    numfiles = process_local_dir_or_file(str(argv[1]))

    # For HDFS single file & directory:

    input_df = process_input_file(str(argv[1]))

    print("Obtained input_df.")

    process_sentence_df(input_df)

    print("Processed input_df")

    numfiles += 1

    # For HDFS directory of subdirectories of files:
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    input_parse_list = str(argv[1]).split('/')

    print(input_parse_list)

    if input_parse_list[-2:-1] == ['Transcripts']:

        print("Start processing HDFS directory: ", str(argv[1]))

        process_hdfs_dir(str(argv[1]))

    print(f"[OK!] All done. Number of files processed = {numfiles}")

The second script is keras_spark_horovod_rossmann_estimator.py.

# Copyright 2022 NetApp, Inc.

# Authored by Rick Huang

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#     http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

#

==========================================================================

====

# The below code was modified from: https://www.kaggle.com/c/rossmann-

store-sales

import argparse

import datetime

import os

import sys

from distutils.version import LooseVersion

import pyspark.sql.types as T

import pyspark.sql.functions as F

from pyspark import SparkConf, Row

from pyspark.sql import SparkSession

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense,

Flatten, Reshape, BatchNormalization, Dropout

import horovod.spark.keras as hvd

from horovod.spark.common.backend import SparkBackend

from horovod.spark.common.store import Store

from horovod.tensorflow.keras.callbacks import BestModelCheckpoint
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parser = argparse.ArgumentParser(description='Horovod Keras Spark Rossmann

Estimator Example',

 

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--master',

                    help='spark cluster to use for training. If set to

None, uses current default cluster. Cluster'

                         'should be set up to provide a Spark task per

multiple CPU cores, or per GPU, e.g. by'

                         'supplying `-c <NUM_GPUS>` in Spark Standalone

mode')

parser.add_argument('--num-proc', type=int,

                    help='number of worker processes for training,

default: `spark.default.parallelism`')

parser.add_argument('--learning_rate', type=float, default=0.0001,

                    help='initial learning rate')

parser.add_argument('--batch-size', type=int, default=100,

                    help='batch size')

parser.add_argument('--epochs', type=int, default=100,

                    help='number of epochs to train')

parser.add_argument('--sample-rate', type=float,

                    help='desired sampling rate. Useful to set to low

number (e.g. 0.01) to make sure that '

                         'end-to-end process works')

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

                    help='location of data on local filesystem (prefixed

with file://) or on HDFS')

parser.add_argument('--local-submission-csv', default='submission.csv',

                    help='output submission predictions CSV')

parser.add_argument('--local-checkpoint-file', default='checkpoint',

                    help='model checkpoint')

parser.add_argument('--work-dir', default='/tmp',

                    help='temporary working directory to write

intermediate files (prefix with hdfs:// to use HDFS)')

if __name__ == '__main__':

    args = parser.parse_args()

    # ================ #

    # DATA PREPARATION #

    # ================ #

    print('================')

    print('Data preparation')

    print('================')

    # Create Spark session for data preparation.

    conf = SparkConf() \

        .setAppName('Keras Spark Rossmann Estimator Example') \

        .set('spark.sql.shuffle.partitions', '480') \
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        .set("spark.executor.cores", "1") \

        .set('spark.executor.memory', '5gb') \

        .set('spark.executor.memoryOverhead','1000')\

        .set('spark.driver.memoryOverhead','1000')

    if args.master:

        conf.setMaster(args.master)

    elif args.num_proc:

        conf.setMaster('local[{}]'.format(args.num_proc))

    spark = SparkSession.builder.config(conf=conf).getOrCreate()

    train_csv = spark.read.csv('%s/train.csv' % args.data_dir,

header=True)

    test_csv = spark.read.csv('%s/test.csv' % args.data_dir, header=True)

    store_csv = spark.read.csv('%s/store.csv' % args.data_dir,

header=True)

    store_states_csv = spark.read.csv('%s/store_states.csv' %

args.data_dir, header=True)

    state_names_csv = spark.read.csv('%s/state_names.csv' % args.data_dir,

header=True)

    google_trend_csv = spark.read.csv('%s/googletrend.csv' %

args.data_dir, header=True)

    weather_csv = spark.read.csv('%s/weather.csv' % args.data_dir,

header=True)

    def expand_date(df):

        df = df.withColumn('Date', df.Date.cast(T.DateType()))

        return df \

            .withColumn('Year', F.year(df.Date)) \

            .withColumn('Month', F.month(df.Date)) \

            .withColumn('Week', F.weekofyear(df.Date)) \

            .withColumn('Day', F.dayofmonth(df.Date))

    def prepare_google_trend():

        # Extract week start date and state.

        google_trend_all = google_trend_csv \

            .withColumn('Date', F.regexp_extract(google_trend_csv.week,

'(.*?) -', 1)) \

            .withColumn('State', F.regexp_extract(google_trend_csv.file,

'Rossmann_DE_(.*)', 1))

        # Map state NI -> HB,NI to align with other data sources.

        google_trend_all = google_trend_all \

            .withColumn('State', F.when(google_trend_all.State == 'NI',

'HB,NI').otherwise(google_trend_all.State))

        # Expand dates.

        return expand_date(google_trend_all)

    def add_elapsed(df, cols):

        def add_elapsed_column(col, asc):

            def fn(rows):

                last_store, last_date = None, None
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                for r in rows:

                    if last_store != r.Store:

                        last_store = r.Store

                        last_date = r.Date

                    if r[col]:

                        last_date = r.Date

                    fields = r.asDict().copy()

                    fields[('After' if asc else 'Before') + col] = (r.Date

- last_date).days

                    yield Row(**fields)

            return fn

        df = df.repartition(df.Store)

        for asc in [False, True]:

            sort_col = df.Date.asc() if asc else df.Date.desc()

            rdd = df.sortWithinPartitions(df.Store.asc(), sort_col).rdd

            for col in cols:

                rdd = rdd.mapPartitions(add_elapsed_column(col, asc))

            df = rdd.toDF()

        return df

    def prepare_df(df):

        num_rows = df.count()

        # Expand dates.

        df = expand_date(df)

        df = df \

            .withColumn('Open', df.Open != '0') \

            .withColumn('Promo', df.Promo != '0') \

            .withColumn('StateHoliday', df.StateHoliday != '0') \

            .withColumn('SchoolHoliday', df.SchoolHoliday != '0')

        # Merge in store information.

        store = store_csv.join(store_states_csv, 'Store')

        df = df.join(store, 'Store')

        # Merge in Google Trend information.

        google_trend_all = prepare_google_trend()

        df = df.join(google_trend_all, ['State', 'Year',

'Week']).select(df['*'], google_trend_all.trend)

        # Merge in Google Trend for whole Germany.

        google_trend_de = google_trend_all[google_trend_all.file ==

'Rossmann_DE'].withColumnRenamed('trend', 'trend_de')

        df = df.join(google_trend_de, ['Year', 'Week']).select(df['*'],

google_trend_de.trend_de)

        # Merge in weather.

        weather = weather_csv.join(state_names_csv, weather_csv.file ==

state_names_csv.StateName)

        df = df.join(weather, ['State', 'Date'])

        # Fix null values.

        df = df \
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            .withColumn('CompetitionOpenSinceYear',

F.coalesce(df.CompetitionOpenSinceYear, F.lit(1900))) \

            .withColumn('CompetitionOpenSinceMonth',

F.coalesce(df.CompetitionOpenSinceMonth, F.lit(1))) \

            .withColumn('Promo2SinceYear', F.coalesce(df.Promo2SinceYear,

F.lit(1900))) \

            .withColumn('Promo2SinceWeek', F.coalesce(df.Promo2SinceWeek,

F.lit(1)))

        # Days & months competition was open, cap to 2 years.

        df = df.withColumn('CompetitionOpenSince',

                           F.to_date(F.format_string('%s-%s-15',

df.CompetitionOpenSinceYear,

 

df.CompetitionOpenSinceMonth)))

        df = df.withColumn('CompetitionDaysOpen',

                           F.when(df.CompetitionOpenSinceYear > 1900,

                                  F.greatest(F.lit(0), F.least(F.lit(360 *

2), F.datediff(df.Date, df.CompetitionOpenSince))))

                           .otherwise(0))

        df = df.withColumn('CompetitionMonthsOpen',

(df.CompetitionDaysOpen / 30).cast(T.IntegerType()))

        # Days & weeks of promotion, cap to 25 weeks.

        df = df.withColumn('Promo2Since',

                           F.expr('date_add(format_string("%s-01-01",

Promo2SinceYear), (cast(Promo2SinceWeek as int) - 1) * 7)'))

        df = df.withColumn('Promo2Days',

                           F.when(df.Promo2SinceYear > 1900,

                                  F.greatest(F.lit(0), F.least(F.lit(25 *

7), F.datediff(df.Date, df.Promo2Since))))

                           .otherwise(0))

        df = df.withColumn('Promo2Weeks', (df.Promo2Days /

7).cast(T.IntegerType()))

        # Check that we did not lose any rows through inner joins.

        assert num_rows == df.count(), 'lost rows in joins'

        return df

    def build_vocabulary(df, cols):

        vocab = {}

        for col in cols:

            values = [r[0] for r in df.select(col).distinct().collect()]

            col_type = type([x for x in values if x is not None][0])

            default_value = col_type()

            vocab[col] = sorted(values, key=lambda x: x or default_value)

        return vocab

    def cast_columns(df, cols):

        for col in cols:

            df = df.withColumn(col,
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F.coalesce(df[col].cast(T.FloatType()), F.lit(0.0)))

        return df

    def lookup_columns(df, vocab):

        def lookup(mapping):

            def fn(v):

                return mapping.index(v)

            return F.udf(fn, returnType=T.IntegerType())

        for col, mapping in vocab.items():

            df = df.withColumn(col, lookup(mapping)(df[col]))

        return df

    if args.sample_rate:

        train_csv = train_csv.sample(withReplacement=False,

fraction=args.sample_rate)

        test_csv = test_csv.sample(withReplacement=False,

fraction=args.sample_rate)

    # Prepare data frames from CSV files.

    train_df = prepare_df(train_csv).cache()

    test_df = prepare_df(test_csv).cache()

    # Add elapsed times from holidays & promos, the data spanning training

& test datasets.

    elapsed_cols = ['Promo', 'StateHoliday', 'SchoolHoliday']

    elapsed = add_elapsed(train_df.select('Date', 'Store', *elapsed_cols)

                          .unionAll(test_df.select('Date', 'Store',

*elapsed_cols)),

                          elapsed_cols)

    # Join with elapsed times.

    train_df = train_df \

        .join(elapsed, ['Date', 'Store']) \

        .select(train_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

    test_df = test_df \

        .join(elapsed, ['Date', 'Store']) \

        .select(test_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

    # Filter out zero sales.

    train_df = train_df.filter(train_df.Sales > 0)

    print('===================')

    print('Prepared data frame')

    print('===================')

    train_df.show()

    categorical_cols = [

        'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week',

'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',

        'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear',

'Promo2SinceYear', 'Events', 'Promo',

        'StateHoliday', 'SchoolHoliday'
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    ]

    continuous_cols = [

        'CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC',

'Min_TemperatureC', 'Max_Humidity',

        'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h',

'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_de',

        'BeforePromo', 'AfterPromo', 'AfterStateHoliday',

'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'

    ]

    all_cols = categorical_cols + continuous_cols

    # Select features.

    train_df = train_df.select(*(all_cols + ['Sales', 'Date'])).cache()

    test_df = test_df.select(*(all_cols + ['Id', 'Date'])).cache()

    # Build vocabulary of categorical columns.

    vocab = build_vocabulary(train_df.select(*categorical_cols)

 

.unionAll(test_df.select(*categorical_cols)).cache(),

                             categorical_cols)

    # Cast continuous columns to float & lookup categorical columns.

    train_df = cast_columns(train_df, continuous_cols + ['Sales'])

    train_df = lookup_columns(train_df, vocab)

    test_df = cast_columns(test_df, continuous_cols)

    test_df = lookup_columns(test_df, vocab)

    # Split into training & validation.

    # Test set is in 2015, use the same period in 2014 from the training

set as a validation set.

    test_min_date = test_df.agg(F.min(test_df.Date)).collect()[0][0]

    test_max_date = test_df.agg(F.max(test_df.Date)).collect()[0][0]

    one_year = datetime.timedelta(365)

    train_df = train_df.withColumn('Validation',

                                   (train_df.Date > test_min_date -

one_year) & (train_df.Date <= test_max_date - one_year))

    # Determine max Sales number.

    max_sales = train_df.agg(F.max(train_df.Sales)).collect()[0][0]

    # Convert Sales to log domain

    train_df = train_df.withColumn('Sales', F.log(train_df.Sales))

    print('===================================')

    print('Data frame with transformed columns')

    print('===================================')

    train_df.show()

    print('================')

    print('Data frame sizes')

    print('================')

    train_rows = train_df.filter(~train_df.Validation).count()

    val_rows = train_df.filter(train_df.Validation).count()

    test_rows = test_df.count()
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    print('Training: %d' % train_rows)

    print('Validation: %d' % val_rows)

    print('Test: %d' % test_rows)

    # ============== #

    # MODEL TRAINING #

    # ============== #

    print('==============')

    print('Model training')

    print('==============')

    def exp_rmspe(y_true, y_pred):

        """Competition evaluation metric, expects logarithic inputs."""

        pct = tf.square((tf.exp(y_true) - tf.exp(y_pred)) /

tf.exp(y_true))

        # Compute mean excluding stores with zero denominator.

        x = tf.reduce_sum(tf.where(y_true > 0.001, pct,

tf.zeros_like(pct)))

        y = tf.reduce_sum(tf.where(y_true > 0.001, tf.ones_like(pct),

tf.zeros_like(pct)))

        return tf.sqrt(x / y)

    def act_sigmoid_scaled(x):

        """Sigmoid scaled to logarithm of maximum sales scaled by 20%."""

        return tf.nn.sigmoid(x) * tf.math.log(max_sales) * 1.2

    CUSTOM_OBJECTS = {'exp_rmspe': exp_rmspe,

                      'act_sigmoid_scaled': act_sigmoid_scaled}

    # Disable GPUs when building the model to prevent memory leaks

    if LooseVersion(tf.__version__) >= LooseVersion('2.0.0'):

        # See https://github.com/tensorflow/tensorflow/issues/33168

        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

    else:

 

K.set_session(tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})))

    # Build the model.

    inputs = {col: Input(shape=(1,), name=col) for col in all_cols}

    embeddings = [Embedding(len(vocab[col]), 10, input_length=1,

name='emb_' + col)(inputs[col])

                  for col in categorical_cols]

    continuous_bn = Concatenate()([Reshape((1, 1), name='reshape_' +

col)(inputs[col])

                                   for col in continuous_cols])

    continuous_bn = BatchNormalization()(continuous_bn)

    x = Concatenate()(embeddings + [continuous_bn])

    x = Flatten()(x)

    x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

    x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)
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    x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

    x = Dense(500, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

    x = Dropout(0.5)(x)

    output = Dense(1, activation=act_sigmoid_scaled)(x)

    model = tf.keras.Model([inputs[f] for f in all_cols], output)

    model.summary()

    opt = tf.keras.optimizers.Adam(lr=args.learning_rate, epsilon=1e-3)

    # Checkpoint callback to specify options for the returned Keras model

    ckpt_callback = BestModelCheckpoint(monitor='val_loss', mode='auto',

save_freq='epoch')

    # Horovod: run training.

    store = Store.create(args.work_dir)

    backend = SparkBackend(num_proc=args.num_proc,

                           stdout=sys.stdout, stderr=sys.stderr,

                           prefix_output_with_timestamp=True)

    keras_estimator = hvd.KerasEstimator(backend=backend,

                                         store=store,

                                         model=model,

                                         optimizer=opt,

                                         loss='mae',

                                         metrics=[exp_rmspe],

                                         custom_objects=CUSTOM_OBJECTS,

                                         feature_cols=all_cols,

                                         label_cols=['Sales'],

                                         validation='Validation',

                                         batch_size=args.batch_size,

                                         epochs=args.epochs,

                                         verbose=2,

 

checkpoint_callback=ckpt_callback)

    keras_model =

keras_estimator.fit(train_df).setOutputCols(['Sales_output'])

    history = keras_model.getHistory()

    best_val_rmspe = min(history['val_exp_rmspe'])

    print('Best RMSPE: %f' % best_val_rmspe)

    # Save the trained model.

    keras_model.save(args.local_checkpoint_file)

    print('Written checkpoint to %s' % args.local_checkpoint_file)

    # ================ #

    # FINAL PREDICTION #

    # ================ #

    print('================')

    print('Final prediction')

    print('================')
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    pred_df=keras_model.transform(test_df)

    pred_df.printSchema()

    pred_df.show(5)

    # Convert from log domain to real Sales numbers

    pred_df=pred_df.withColumn('Sales_pred', F.exp(pred_df.Sales_output))

    submission_df = pred_df.select(pred_df.Id.cast(T.IntegerType()),

pred_df.Sales_pred).toPandas()

    submission_df.sort_values(by=['Id']).to_csv(args.local_submission_csv,

index=False)

    print('Saved predictions to %s' % args.local_submission_csv)

    spark.stop()

The third script is run_classification_criteo_spark.py.

import tempfile, string, random, os, uuid

import argparse, datetime, sys, shutil

import csv

import numpy as np

from sklearn.model_selection import train_test_split

from tensorflow.keras.callbacks import EarlyStopping

from pyspark import SparkContext

from pyspark.sql import SparkSession, SQLContext, Row, DataFrame

from pyspark.mllib import linalg as mllib_linalg

from pyspark.mllib.linalg import SparseVector as mllibSparseVector

from pyspark.mllib.linalg import VectorUDT as mllibVectorUDT

from pyspark.mllib.linalg import Vector as mllibVector, Vectors as

mllibVectors

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.classification import LogisticRegressionWithSGD

from pyspark.ml import linalg as ml_linalg

from pyspark.ml.linalg import VectorUDT as mlVectorUDT

from pyspark.ml.linalg import SparseVector as mlSparseVector

from pyspark.ml.linalg import Vector as mlVector, Vectors as mlVectors

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import OneHotEncoder

from math import log

from math import exp  # exp(-t) = e^-t

from operator import add

from pyspark.sql.functions import udf, split, lit

from pyspark.sql.functions import size, sum as sqlsum

import pyspark.sql.functions as F

import pyspark.sql.types as T

from pyspark.sql.types import ArrayType, StructType, StructField,

LongType, StringType, IntegerType, FloatType

from pyspark.sql.functions import explode, col, log, when
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from collections import defaultdict

import pandas as pd

import pyspark.pandas as ps

from sklearn.metrics import log_loss, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr.models import DeepFM

from deepctr.feature_column import SparseFeat, DenseFeat,

get_feature_names

spark = SparkSession.builder \

    .master("yarn") \

    .appName("deep_ctr_classification") \

    .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

    .config("spark.executor.cores", "1") \

    .config('spark.executor.memory', '5gb') \

    .config('spark.executor.memoryOverhead', '1500') \

    .config('spark.driver.memoryOverhead', '1500') \

    .config("spark.sql.shuffle.partitions", "480") \

    .config("spark.sql.execution.arrow.enabled", "true") \

    .config("spark.driver.maxResultSize", "50gb") \

    .getOrCreate()

# spark.conf.set("spark.sql.execution.arrow.enabled", "true") # deprecated

print("Apache Spark version:")

print(spark.version)

sc = spark.sparkContext

sqlContext = SQLContext(sc)

parser = argparse.ArgumentParser(description='Spark DCN CTR Prediction

Example',

 

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

                    help='location of data on local filesystem (prefixed

with file://) or on HDFS')

def process_input_file(file_name, sparse_feat, dense_feat):

    # Need this preprocessing to turn Criteo raw file into CSV:

    print("START processing input file...")

    # only convert the file ONCE

    # sample = open(file_name)

    # sample = '\n'.join([str(x.replace('\n', '').replace('\t', ',')) for

x in sample])

    # # Add header in data file and save as CSV

    # header = ','.join(str(x) for x in (['label'] + dense_feat +

sparse_feat))

    # with open('/sparkdemo/tr-4570-data/ctr_train.csv', mode='w',

encoding="utf-8") as f:
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    #     f.write(header + '\n' + sample)

    #     f.close()

    # print("Raw training file processed and saved as CSV: ", f.name)

    raw_df = sqlContext.read.option("header", True).csv(file_name)

    raw_df.show(5, False)

    raw_df.printSchema()

    # convert columns I1 to I13 from string to integers

    conv_df = raw_df.select(col('label').cast("double"),

                            *(col(i).cast("float").alias(i) for i in

raw_df.columns if i in dense_feat),

                            *(col(c) for c in raw_df.columns if c in

sparse_feat))

    print("Schema of raw_df with integer columns type changed:")

    conv_df.printSchema()

    # result_pdf = conv_df.select("*").toPandas()

    tmp_df = conv_df.na.fill(0, dense_feat)

    result_df = tmp_df.na.fill('-1', sparse_feat)

    result_df.show()

    return result_df

if __name__ == "__main__":

    args = parser.parse_args()

    # Pandas read CSV

    # data = pd.read_csv('%s/criteo_sample.txt' % args.data_dir)

    # print("Obtained Pandas df.")

    dense_features = ['I' + str(i) for i in range(1, 14)]

    sparse_features = ['C' + str(i) for i in range(1, 27)]

    # Spark read CSV

    # process_input_file('%s/train.txt' % args.data_dir, sparse_features,

dense_features) # run only ONCE

    spark_df = process_input_file('%s/data.txt' % args.data_dir,

sparse_features, dense_features) # sample data

    # spark_df = process_input_file('%s/ctr_train.csv' % args.data_dir,

sparse_features, dense_features)

    print("Obtained Spark df and filled in missing features.")

    data = spark_df

    # Pandas

    #data[sparse_features] = data[sparse_features].fillna('-1', )

    #data[dense_features] = data[dense_features].fillna(0, )

    target = ['label']

    label_npa = data.select("label").toPandas().to_numpy()

    print("label numPy array has length = ", len(label_npa)) # 45,840,617

w/ 11GB dataset

    label_npa.ravel()

    label_npa.reshape(len(label_npa), )

    # 1.Label Encoding for sparse features,and do simple Transformation

for dense features
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    print("Before LabelEncoder():")

    data.printSchema()  # label: float (nullable = true)

    for feat in sparse_features:

        lbe = LabelEncoder()

        tmp_pdf = data.select(feat).toPandas().to_numpy()

        tmp_ndarray = lbe.fit_transform(tmp_pdf)

        print("After LabelEncoder(), tmp_ndarray[0] =", tmp_ndarray[0])

        # print("Data tmp PDF after lbe transformation, the output ndarray

has length = ", len(tmp_ndarray)) # 45,840,617 for 11GB dataset

        tmp_ndarray.ravel()

        tmp_ndarray.reshape(len(tmp_ndarray), )

        out_ndarray = np.column_stack([label_npa, tmp_ndarray])

        pdf = pd.DataFrame(out_ndarray, columns=['label', feat])

        s_df = spark.createDataFrame(pdf)

        s_df.printSchema() # label: double (nullable = true)

        print("Before joining data df with s_df, s_df example rows:")

        s_df.show(1, False)

        data = data.drop(feat).join(s_df, 'label').drop('label')

        print("After LabelEncoder(), data df example rows:")

        data.show(1, False)

        print("Finished processing sparse_features: ", feat)

    print("Data DF after label encoding: ")

    data.show()

    data.printSchema()

    mms = MinMaxScaler(feature_range=(0, 1))

    # data[dense_features] = mms.fit_transform(data[dense_features]) # for

Pandas df

    tmp_pdf = data.select(dense_features).toPandas().to_numpy()

    tmp_ndarray = mms.fit_transform(tmp_pdf)

    tmp_ndarray.ravel()

    tmp_ndarray.reshape(len(tmp_ndarray), len(tmp_ndarray[0]))

    out_ndarray = np.column_stack([label_npa, tmp_ndarray])

    pdf = pd.DataFrame(out_ndarray, columns=['label'] + dense_features)

    s_df = spark.createDataFrame(pdf)

    s_df.printSchema()

    data.drop(*dense_features).join(s_df, 'label').drop('label')

    print("Finished processing dense_features: ", dense_features)

    print("Data DF after MinMaxScaler: ")

    data.show()

    # 2.count #unique features for each sparse field,and record dense

feature field name

    fixlen_feature_columns = [SparseFeat(feat,

vocabulary_size=data.select(feat).distinct().count() + 1, embedding_dim=4)

                              for i, feat in enumerate(sparse_features)] +

\
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                             [DenseFeat(feat, 1, ) for feat in

dense_features]

    dnn_feature_columns = fixlen_feature_columns

    linear_feature_columns = fixlen_feature_columns

    feature_names = get_feature_names(linear_feature_columns +

dnn_feature_columns)

    # 3.generate input data for model

    # train, test = train_test_split(data.toPandas(), test_size=0.2,

random_state=2020) # Pandas; might hang for 11GB data

    train, test = data.randomSplit(weights=[0.8, 0.2], seed=200)

    print("Training dataset size = ", train.count())

    print("Testing dataset size = ", test.count())

    # Pandas:

    # train_model_input = {name: train[name] for name in feature_names}

    # test_model_input = {name: test[name] for name in feature_names}

    # Spark DF:

    train_model_input = {}

    test_model_input = {}

    for name in feature_names:

        if name.startswith('I'):

            tr_pdf = train.select(name).toPandas()

            train_model_input[name] = pd.to_numeric(tr_pdf[name])

            ts_pdf = test.select(name).toPandas()

            test_model_input[name] = pd.to_numeric(ts_pdf[name])

    # 4.Define Model,train,predict and evaluate

    model = DeepFM(linear_feature_columns, dnn_feature_columns,

task='binary')

    model.compile("adam", "binary_crossentropy",

                  metrics=['binary_crossentropy'], )

    lb_pdf = train.select(target).toPandas()

    history = model.fit(train_model_input,

pd.to_numeric(lb_pdf['label']).values,

                        batch_size=256, epochs=10, verbose=2,

validation_split=0.2, )

    pred_ans = model.predict(test_model_input, batch_size=256)

    print("test LogLoss",

round(log_loss(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

    print("test AUC",

round(roc_auc_score(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

Conclusion

In this document, we discuss the Apache Spark architecture, customer use cases, and

the NetApp storage portfolio as it relates to big data, modern analytics, and AI, ML, and
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DL. In our performance validation tests based on industry-standard benchmarking tools

and customer demand, the NetApp Spark solutions demonstrated superior performance

relative to native Hadoop systems. A combination of the customer use cases and

performance results presented in this report can help you to choose an appropriate Spark

solution for your deployment.

Where to find additional information

The following references were used in this TR:

• Apache Spark architecture and components

http://spark.apache.org/docs/latest/cluster-overview.html

• Apache Spark use cases

https://www.qubole.com/blog/big-data/apache-spark-use-cases/

• Apache challenges

http://www.infoworld.com/article/2897287/big-data/5-reasons-to-turn-to-spark-for-big-data-analytics.html

• Spark NLP

https://www.johnsnowlabs.com/spark-nlp/

• BERT

https://arxiv.org/abs/1810.04805

• Deep and Cross Network for Ad Click Predictions

https://arxiv.org/abs/1708.05123

• FlexGroup

http://www.netapp.com/us/media/tr-4557.pdf

• Streaming ETL

https://www.infoq.com/articles/apache-spark-streaming

• NetApp E-Series Solutions for Hadoop

https://www.netapp.com/media/16420-tr-3969.pdf

• Sentiment Analysis from Customer Communications with NetApp AI

https://docs.netapp.com/us-en/netapp-solutions/pdfs/sidebar/Sentiment_analysis_with_NetApp_AI.pdf

• NetApp Modern Data Analytics Solutions

https://docs.netapp.com/us-en/netapp-solutions/data-analytics/index.html
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• SnapMirror

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html

• XCP

https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US

• BlueXP Copy and Sync

https://cloud.netapp.com/cloud-sync-service

• DataOps Toolkit

https://github.com/NetApp/netapp-dataops-toolkit

Big Data Analytics Data to Artificial Intelligence

TR-4732: Big data analytics data to artificial intelligence

Karthikeyan Nagalingam, NetApp

This document describes how to move big-data analytics data and HPC data to AI. AI

processes NFS data through NFS exports, whereas customers often have their AI data in

a big-data analytics platform, such as HDFS, Blob, or S3 storage as well as HPC

platforms such as GPFS. This paper provides guidelines for moving big-data-analytics

data and HPC data to AI by using NetApp XCP and NIPAM. We also discuss the

business benefits of moving data from big data and HPC to AI.

Concepts and components

Big data analytics storage

Big data analytics is the major storage provider for HDFS. A customer often uses a Hadoop-compatible file

system (HCFS) such as Windows Azure Blob Storage, MapR File System (MapR-FS), and S3 object storage.

General parallel file system

IBM’s GPFS is an enterprise file system that provides an alternative to HDFS. GPFS provides flexibility for

applications to decide the block size and replication layout, which provide good performance and efficiency.

NetApp In-Place Analytics Module

The NetApp In-Place Analytics Module (NIPAM) serves as a driver for Hadoop clusters to access NFS data. It

has four components: a connection pool, an NFS InputStream, a file handle cache, and an NFS OutputStream.

For more information, see TR-4382: NetApp In-Place Analytics Module.

Hadoop Distributed Copy

Hadoop Distributed Copy (DistCp) is a distributed copy tool used for large inter-cluster and intra-cluster coping

tasks. This tool uses MapReduce for data distribution, error handling, and reporting. It expands the list of files

and directories and inputs them to map tasks to copy the data from the source list. The image below shows the
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DistCp operation in HDFS and nonHDFS.

Hadoop DistCp moves data between the two HDFS systems without using an additional driver. NetApp

provides the driver for non-HDFS systems. For an NFS destination, NIPAM provides the driver to copy data

that Hadoop DistCp uses to communicate with NFS destinations when copying data.

NetApp Cloud Volumes Service

The NetApp Cloud Volumes Service is a cloud-native file service with extreme performance. This service helps

customers accelerate their time-to-market by rapidly spinning resources up and down and using NetApp

features to improve productivity and reduce staff downtime. The Cloud Volumes Service is the right alternative

for disaster recovery and back up to cloud because it reduces the overall data-center footprint and consumes

less native public cloud storage.

NetApp XCP

NetApp XCP is client software that enables fast and reliable any-to-NetApp and NetApp-to-NetApp data

migration. This tool is designed to copy a large amount of unstructured NAS data from any NAS system to a

NetApp storage controller. The XCP Migration Tool uses a multicore, multichannel I/O streaming engine that

can process many requests in parallel, such as data migration, file or directory listings, and space reporting.

This is the default NetApp data Migration Tool. You can use XCP to copy data from a Hadoop cluster and HPC

to NetApp NFS storage. The diagram below shows data transfer from a Hadoop and HPC cluster to a NetApp

NFS volume using XCP.

136



NetApp BlueXP Copy and Sync

NetApp BlueXP Copy and Sync is a hybrid data replication software-as-a-service that transfers and

synchronizes NFS, S3, and CIFS data seamlessly and securely between on-premises storage and cloud

storage. This software is used for data migration, archiving, collaboration, analytics, and more. After data is

transferred, BlueXP Copy and Sync continuously syncs the data between the source and destination. Going

forward, it then transfers the delta. It also secures the data within your own network, in the cloud, or on

premises. This software is based on a pay-as-you-go model, which provides a cost-effective solution and

provides monitoring and reporting capabilities for your data transfer.

Customer challenges

Customers might face the following challenges when trying to access data from big-data

analytics for AI operations:

• Customer data is in a data lake repository. The data lake can contain different types of data such as

structured, unstructured, semi-structured, logs, and machine-to-machine data. All these data types must be

processed in AI systems.

• AI is not compatible with Hadoop file systems. A typical AI architecture is not able to directly access HDFS

and HCFS data, which must be moved to an AI-understandable file system (NFS).

• Moving data lake data to AI typically requires specialized processes. The amount of data in the data lake

can be very large. A customer must have an efficient, high-throughput, and cost-effective way to move data

into AI systems.

• Syncing data. If a customer wants to sync data between the big-data platform and AI, sometimes the data

processed through AI can be used with big data for analytical processing.

Data mover solution

In a big-data cluster, data is stored in HDFS or HCFS, such as MapR-FS, the Windows

Azure Storage Blob, S3, or the Google file system. We performed testing with HDFS,

MapR-FS, and S3 as the source to copy data to NetApp ONTAP NFS export with the help

of NIPAM by using the hadoop distcp command from the source.
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The following diagram illustrates the typical data movement from a Spark cluster running with HDFS storage to

a NetApp ONTAP NFS volume so that NVIDIA can process AI operations.

The hadoop distcp command uses the MapReduce program to copy the data. NIPAM works with

MapReduce to act as a driver for the Hadoop cluster when copying data. NIPAM can distribute a load across

multiple network interfaces for a single export. This process maximizes the network throughput by distributing

the data across multiple network interfaces when you copy the data from HDFS or HCFS to NFS.

NIPAM is not supported or certified with MapR.

Data mover solution for AI

The data mover solution for AI is based on customers' needs to process Hadoop data

from AI operations. NetApp moves data from HDFS to NFS by using the NIPAM. In one

use case, the customer needed to move data to NFS on the premises and another

customer needed to move data from the Windows Azure Storage Blob to Cloud Volumes

Service in order to process the data from the GPU cloud instances in the cloud.

The following diagram illustrates the data mover solution details.
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The following steps are required to build the data mover solution:

1. ONTAP SAN provides HDFS, and NAS provides the NFS volume through NIPAM to the production data

lake cluster.

2. The customer’s data is in HDFS and NFS. The NFS data can be production data from other applications

that is used for big data analytics and AI operations.

3. NetApp FlexClone technology creates a clone of the production NFS volume and provisions it to the AI

cluster on premises.

4. Data from an HDFS SAN LUN is copied into an NFS volume with NIPAM and the hadoop distcp

command. NIPAM uses the bandwidth of multiple network interfaces to transfer data. This process reduces

the data copy time so that more data can be transferred.

5. Both NFS volumes are provisioned to the AI cluster for AI operations.

6. To process on-the-premises NFS data with GPUs in the cloud, the NFS volumes are mirrored to NetApp

Private Storage (NPS) with NetApp SnapMirror technology and mounted to cloud service providers for

GPUs.

7. The customer wants to process data in EC2/EMR, HDInsight, or DataProc services in GPUs from cloud

service providers. The Hadoop data mover moves the data from Hadoop services to the Cloud Volumes

Services with NIPAM and the hadoop distcp command.

8. The Cloud Volumes Service data is provisioned to AI through the NFS protocol.Data that is processed

through AI can be sent on an on-premises location for big data analytics in addition to the NVIDIA cluster

through NIPAM, SnapMirror, and NPS.

In this scenario, the customer has large file-count data in the NAS system at a remote location that is required

for AI processing on the NetApp storage controller on premises. In this scenario, it’s better to use the XCP

Migration Tool to migrate the data at a faster speed.

The hybrid-use-case customer can use BlueXP Copy and Sync to migrate on-premises data from NFS, CIFS,

and S3 data to the cloud and vice versa for AI processing by using GPUs such as those in an NVIDIA cluster.

Both BlueXP Copy and Sync and the XCP Migration Tool are used for the NFS data migration to NetApp

ONTAP NFS.
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GPFS to NetApp ONTAP NFS

In this validation, we used four servers as Network Shared Disk (NSD) servers to provide

physical disks for GPFS. GPFS is created on top of the NSD disks to export them as NFS

exports so that NFS clients can access them, as shown in the figure below. We used XCP

to copy the data from GPFS- exported NFS to a NetApp NFS volume.
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GPFS essentials

The following node types are used in GPFS:

• Admin node. Specifies an optional field containing a node name used by the administration commands to

communicate between nodes. For example, the admin node mastr-51.netapp.com could pass a

network check to all other nodes in the cluster.

• Quorum node. Determines whether a node is included in the pool of nodes from which quorum is derived.

You need at least one node as a quorum node.

• Manager Node. Indicates whether a node is part of the node pool from which file system managers and

token managers can be selected. It is a good idea to define more than one node as a manager node. How

many nodes you designate as manager depends on the workload and the number of GPFS server licenses

you have. If you are running large parallel jobs, you might need more manager nodes than in a four-node

cluster supporting a web application.

• NSD Server. The server that prepares each physical disk for use with GPFS.

• Protocol node. The node that shares GPFS data directly through any Secure Shell (SSH) protocol with

the NFS. This node requires a GPFS server license.

List of operations for GPFS, NFS, and XCP

This section provides the list of operations that create GPFS, export GPFS as an NFS export, and transfer the

data by using XCP.

Create GPFS

To create GPFS, complete the following steps:

1. Download and install spectrum-scale data access for the Linux version on one of the servers.

2. Install the prerequisite package (chef for example) in all nodes and disable Security-Enhanced Linux

(SELinux) in all nodes.

3. Set up the install node and add the admin node and the GPFS node to the cluster definition file.

4. Add the manager node, the quorum node, the NSD servers, and the GPFS node.

5. Add the GUI, admin, and GPFS nodes, and add an additional GUI server if required.

6. Add another GPFS node and check the list of all nodes.

7. Specify a cluster name, profile, remote shell binary, remote file copy binary, and port range to be set on all

the GPFS nodes in the cluster definition file.

8. View the GPFS configuration settings and add an additional admin node.

9. Disable the data collection and upload the data package to the IBM Support Center.

10. Enable NTP and precheck the configurations before install.

11. Configure, create, and check the NSD disks.

12. Create the GPFS.

13. Mount the GPFS.

14. Verify and provide the required permissions to the GPFS.

15. Verify the GPFS read and write by running the dd command.
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Export GPFS into NFS

To export the GPFS into NFS, complete the following steps:

1. Export GPFS as NFS through the /etc/exports file.

2. Install the required NFS server packages.

3. Start the NFS service.

4. List the files in the GPFS to validate the NFS client.

Configure NFS client

To configure the NFS client, complete the following steps:

1. Export the GPFS as NFS through the /etc/exports file.

2. Start the NFS client services.

3. Mount the GPFS through the NFS protocol on the NFS client.

4. Validate the list of GPFS files in the NFS mounted folder.

5. Move the data from GPFS exported NFS to NetApp NFS by using XCP.

6. Validate the GPFS files on the NFS client.

HDFS and MapR-FS to ONTAP NFS

For this solution, NetApp validated the migration of data from data lake (HDFS) and

MapR cluster data to ONTAP NFS. The data resided in MapR-FS and HDFS. NetApp

XCP introduced a new feature that directly migrates the data from a distributed file

system such as HDFS and MapR-FS to ONTAP NFS. XCP uses async threads and

HDFS C API calls to communicate and transfer data from MapR- FS as well as HDFS.

The below figure shows the data migration from data lake (HDFS) and MapR-FS to ONTAP NFS. With this new

feature, you don’t have to export the source as an NFS share.

Why are customers moving from HDFS and MapR-FS to NFS?

Most of the Hadoop distributions such as Cloudera and Hortonworks use HDFS and MapR distributions uses
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their own filesystem called Mapr-FS to store data. HDFS and MapR-FS data provides the valuable insights to

data scientists that can be leveraged in machine learning (ML) and deep learning (DL). The data in HDFS and

MapR-FS is not shared, which means it cannot be used by other applications. Customers are looking for

shared data, specifically in the banking sector where customers’ sensitive data is used by multiple applications.

The latest version of Hadoop (3.x or later) supports NFS data source, which can be accessed without

additional third-party software. With the new NetApp XCP feature, data can be moved directly from HDFS and

MapR-FS to NetApp NFS in order to provide access to multiple applications

Testing was done in Amazon Web Services (AWS) to transfer the data from MapR-FS to NFS for the initial

performance test with 12 MAPR nodes and 4 NFS servers.

Quantity Size vCPU Memory Storage Network

NFS server 4 i3en.24xlarge 96 488GiB 8x 7500

NVMe SSD

100

MapR nodes 12 I3en.12xlarge 48 384GiB 4x 7500

NVMe SSD

50

Based on initial testing, we obtained 20GBps throughput and were able to transfer 2PB per day of data.

For more information about HDFS data migration without exporting HDFS to NFS, see the “Deployment steps -

NAS” section in TR-4863: TR-4863: Best-Practice Guidelines for NetApp XCP - Data Mover, File Migration,

and Analytics.

Business benefits

Moving data from big data analytics to AI provides the following benefits:

• The ability to extract data from different Hadoop file systems and GPFS into a unified NFS storage system

• A Hadoop-integrated and automated way to transfer data

• A reduction in the cost of library development for moving data from Hadoop file systems

• Maximum performance by aggregated throughput of multiple network interfaces from a single source of

data by using NIPAM

• Scheduled and on-demand methods to transfer data

• Storage efficiency and enterprise management capability for unified NFS data by using ONTAP data

management software

• Zero cost for data movement with the Hadoop method for data transfer

GPFS to NFS-Detailed steps

This section provides the detailed steps needed to configure GPFS and move data into

NFS by using NetApp XCP.

Configure GPFS

1. Download and Install Spectrum Scale Data Access for Linux on one of the servers.

144

https://docs.netapp.com/us-en/netapp-solutions/xcp/xcp-bp-deployment-steps.html
https://docs.netapp.com/us-en/netapp-solutions/xcp/xcp-bp-deployment-steps.html


[root@mastr-51 Spectrum_Scale_Data_Access-5.0.3.1-x86_64-Linux-

install_folder]# ls

Spectrum_Scale_Data_Access-5.0.3.1-x86_64-Linux-install

[root@mastr-51 Spectrum_Scale_Data_Access-5.0.3.1-x86_64-Linux-

install_folder]# chmod +x Spectrum_Scale_Data_Access-5.0.3.1-x86_64-

Linux-install

[root@mastr-51 Spectrum_Scale_Data_Access-5.0.3.1-x86_64-Linux-

install_folder]# ./Spectrum_Scale_Data_Access-5.0.3.1-x86_64-Linux-

install --manifest

manifest

…

<contents removes to save page space>

…

2. Install the prerequisite package (including chef and the kernel headers) on all nodes.

[root@mastr-51 5.0.3.1]# for i in 51 53 136 138 140  ; do ssh

10.63.150.$i "hostname; rpm -ivh  /gpfs_install/chef* "; done

mastr-51.netapp.com

warning: /gpfs_install/chef-13.6.4-1.el7.x86_64.rpm: Header V4 DSA/SHA1

Signature, key ID 83ef826a: NOKEY

Preparing...

########################################

package chef-13.6.4-1.el7.x86_64 is already installed

mastr-53.netapp.com

warning: /gpfs_install/chef-13.6.4-1.el7.x86_64.rpm: Header V4 DSA/SHA1

Signature, key ID 83ef826a: NOKEY

Preparing...

########################################

Updating / installing...

chef-13.6.4-1.el7

########################################

Thank you for installing Chef!

workr-136.netapp.com

warning: /gpfs_install/chef-13.6.4-1.el7.x86_64.rpm: Header V4 DSA/SHA1

Signature, key ID 83ef826a: NOKEY

Preparing...

########################################

Updating / installing...

chef-13.6.4-1.el7

########################################

Thank you for installing Chef!

workr-138.netapp.com

warning: /gpfs_install/chef-13.6.4-1.el7.x86_64.rpm: Header V4 DSA/SHA1

Signature, key ID 83ef826a: NOKEY
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Preparing...

########################################

Updating / installing...

chef-13.6.4-1.el7

########################################

Thank you for installing Chef!

workr-140.netapp.com

warning: /gpfs_install/chef-13.6.4-1.el7.x86_64.rpm: Header V4 DSA/SHA1

Signature, key ID 83ef826a: NOKEY

Preparing...

########################################

Updating / installing...

chef-13.6.4-1.el7

########################################

Thank you for installing Chef!

[root@mastr-51 5.0.3.1]#

[root@mastr-51 installer]# for i in 51 53 136 138 140  ; do ssh

10.63.150.$i "hostname; yumdownloader kernel-headers-3.10.0-

862.3.2.el7.x86_64 ; rpm -Uvh --oldpackage kernel-headers-3.10.0-

862.3.2.el7.x86_64.rpm"; done

mastr-51.netapp.com

Loaded plugins: priorities, product-id, subscription-manager

Preparing...

########################################

Updating / installing...

kernel-headers-3.10.0-862.3.2.el7

########################################

Cleaning up / removing...

kernel-headers-3.10.0-957.21.2.el7

########################################

mastr-53.netapp.com

Loaded plugins: product-id, subscription-manager

Preparing...

########################################

Updating / installing...

kernel-headers-3.10.0-862.3.2.el7

########################################

Cleaning up / removing...

kernel-headers-3.10.0-862.11.6.el7

########################################

workr-136.netapp.com

Loaded plugins: product-id, subscription-manager

Repository ambari-2.7.3.0 is listed more than once in the configuration

Preparing...

########################################

Updating / installing...
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kernel-headers-3.10.0-862.3.2.el7

########################################

Cleaning up / removing...

kernel-headers-3.10.0-862.11.6.el7

########################################

workr-138.netapp.com

Loaded plugins: product-id, subscription-manager

Preparing...

########################################

package kernel-headers-3.10.0-862.3.2.el7.x86_64 is already installed

workr-140.netapp.com

Loaded plugins: product-id, subscription-manager

Preparing...

########################################

Updating / installing...

kernel-headers-3.10.0-862.3.2.el7

########################################

Cleaning up / removing...

kernel-headers-3.10.0-862.11.6.el7

########################################

[root@mastr-51 installer]#

3. Disable SELinux in all nodes.

[root@mastr-51 5.0.3.1]# for i in 51 53 136 138 140  ; do ssh

10.63.150.$i "hostname; sudo setenforce 0"; done

mastr-51.netapp.com

setenforce: SELinux is disabled

mastr-53.netapp.com

setenforce: SELinux is disabled

workr-136.netapp.com

setenforce: SELinux is disabled

workr-138.netapp.com

setenforce: SELinux is disabled

workr-140.netapp.com

setenforce: SELinux is disabled

[root@mastr-51 5.0.3.1]#

4. Set up the install node.
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[root@mastr-51 installer]# ./spectrumscale setup -s 10.63.150.51

[ INFO  ] Installing prerequisites for install node

[ INFO  ] Existing Chef installation detected. Ensure the PATH is

configured so that chef-client and knife commands can be run.

[ INFO  ] Your control node has been configured to use the IP

10.63.150.51 to communicate with other nodes.

[ INFO  ] Port 8889 will be used for chef communication.

[ INFO  ] Port 10080 will be used for package distribution.

[ INFO  ] Install Toolkit setup type is set to Spectrum Scale (default).

If an ESS is in the cluster, run this command to set ESS mode:

./spectrumscale setup -s server_ip -st ess

[ INFO  ] SUCCESS

[ INFO  ] Tip : Designate protocol, nsd and admin nodes in your

environment to use during install:./spectrumscale -v node add <node> -p

-a -n

[root@mastr-51 installer]#

5. Add the admin node and the GPFS node to the cluster definition file.

[root@mastr-51 installer]# ./spectrumscale node add mastr-51 -a

[ INFO  ] Adding node mastr-51.netapp.com as a GPFS node.

[ INFO  ] Setting mastr-51.netapp.com as an admin node.

[ INFO  ] Configuration updated.

[ INFO  ] Tip : Designate protocol or nsd nodes in your environment to

use during install:./spectrumscale node add <node> -p -n

[root@mastr-51 installer]#

6. Add the manager node and the GPFS node.

[root@mastr-51 installer]# ./spectrumscale node add mastr-53 -m

[ INFO  ] Adding node mastr-53.netapp.com as a GPFS node.

[ INFO  ] Adding node mastr-53.netapp.com as a manager node.

[root@mastr-51 installer]#

7. Add the quorum node and the GPFS node.

[root@mastr-51 installer]# ./spectrumscale node add workr-136 -q

[ INFO  ] Adding node workr-136.netapp.com as a GPFS node.

[ INFO  ] Adding node workr-136.netapp.com as a quorum node.

[root@mastr-51 installer]#

8. Add the NSD servers and the GPFS node.
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[root@mastr-51 installer]# ./spectrumscale node add workr-138 -n

[ INFO  ] Adding node workr-138.netapp.com as a GPFS node.

[ INFO  ] Adding node workr-138.netapp.com as an NSD server.

[ INFO  ] Configuration updated.

[ INFO  ] Tip :If all node designations are complete, add NSDs to your

cluster definition and define required filessytems:./spectrumscale nsd

add <device> -p <primary node> -s <secondary node> -fs <file system>

[root@mastr-51 installer]#

9. Add the GUI, admin, and GPFS nodes.

[root@mastr-51 installer]# ./spectrumscale node add workr-136 -g

[ INFO  ] Setting workr-136.netapp.com as a GUI server.

[root@mastr-51 installer]# ./spectrumscale node add workr-136 -a

[ INFO  ] Setting workr-136.netapp.com as an admin node.

[ INFO  ] Configuration updated.

[ INFO  ] Tip : Designate protocol or nsd nodes in your environment to

use during install:./spectrumscale node add <node> -p -n

[root@mastr-51 installer]#

10. Add another GUI server.

[root@mastr-51 installer]# ./spectrumscale node add mastr-53 -g

[ INFO  ] Setting mastr-53.netapp.com as a GUI server.

[root@mastr-51 installer]#

11. Add another GPFS node.

[root@mastr-51 installer]# ./spectrumscale node add workr-140

[ INFO  ] Adding node workr-140.netapp.com as a GPFS node.

[root@mastr-51 installer]#

12. Verify and list all nodes.
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[root@mastr-51 installer]# ./spectrumscale node list

[ INFO  ] List of nodes in current configuration:

[ INFO  ] [Installer Node]

[ INFO  ] 10.63.150.51

[ INFO  ]

[ INFO  ] [Cluster Details]

[ INFO  ] No cluster name configured

[ INFO  ] Setup Type: Spectrum Scale

[ INFO  ]

[ INFO  ] [Extended Features]

[ INFO  ] File Audit logging     : Disabled

[ INFO  ] Watch folder           : Disabled

[ INFO  ] Management GUI         : Enabled

[ INFO  ] Performance Monitoring : Disabled

[ INFO  ] Callhome               : Enabled

[ INFO  ]

[ INFO  ] GPFS                 Admin  Quorum  Manager   NSD   Protocol

GUI   Callhome   OS   Arch

[ INFO  ] Node                  Node   Node     Node   Server   Node

Server  Server

[ INFO  ] mastr-51.netapp.com    X

rhel7  x86_64

[ INFO  ] mastr-53.netapp.com                    X

X             rhel7  x86_64

[ INFO  ] workr-136.netapp.com   X       X

X             rhel7  x86_64

[ INFO  ] workr-138.netapp.com                           X

rhel7  x86_64

[ INFO  ] workr-140.netapp.com

rhel7  x86_64

[ INFO  ]

[ INFO  ] [Export IP address]

[ INFO  ] No export IP addresses configured

[root@mastr-51 installer]#

13. Specify a cluster name in the cluster definition file.

[root@mastr-51 installer]# ./spectrumscale config gpfs -c mastr-

51.netapp.com

[ INFO  ] Setting GPFS cluster name to mastr-51.netapp.com

[root@mastr-51 installer]#

14. Specify the profile.
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[root@mastr-51 installer]# ./spectrumscale config gpfs -p default

[ INFO  ] Setting GPFS profile to default

[root@mastr-51 installer]#

Profiles options: default [gpfsProtocolDefaults], random I/O

[gpfsProtocolsRandomIO], sequential I/O [gpfsProtocolDefaults], random

I/O [gpfsProtocolRandomIO]

15. Specify the remote shell binary to be used by GPFS; use -r argument.

[root@mastr-51 installer]# ./spectrumscale config gpfs -r /usr/bin/ssh

[ INFO  ] Setting Remote shell command to /usr/bin/ssh

[root@mastr-51 installer]#

16. Specify the remote file copy binary to be used by GPFS; use -rc argument.

[root@mastr-51 installer]# ./spectrumscale config gpfs -rc /usr/bin/scp

[ INFO  ] Setting Remote file copy command to /usr/bin/scp

[root@mastr-51 installer]#

17. Specify the port range to be set on all GPFS nodes; use -e argument.

[root@mastr-51 installer]# ./spectrumscale config gpfs -e 60000-65000

[ INFO  ] Setting GPFS Daemon communication port range to 60000-65000

[root@mastr-51 installer]#

18. View the GPFS config settings.

[root@mastr-51 installer]# ./spectrumscale config gpfs --list

[ INFO  ] Current settings are as follows:

[ INFO  ] GPFS cluster name is mastr-51.netapp.com.

[ INFO  ] GPFS profile is default.

[ INFO  ] Remote shell command is /usr/bin/ssh.

[ INFO  ] Remote file copy command is /usr/bin/scp.

[ INFO  ] GPFS Daemon communication port range is 60000-65000.

[root@mastr-51 installer]#

19. Add an admin node.
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[root@mastr-51 installer]# ./spectrumscale node add 10.63.150.53 -a

[ INFO  ] Setting mastr-53.netapp.com as an admin node.

[ INFO  ] Configuration updated.

[ INFO  ] Tip : Designate protocol or nsd nodes in your environment to

use during install:./spectrumscale node add <node> -p -n

[root@mastr-51 installer]#

20. Disable the data collection and upload the data package to the IBM Support Center.

[root@mastr-51 installer]# ./spectrumscale callhome disable

[ INFO  ] Disabling the callhome.

[ INFO  ] Configuration updated.

[root@mastr-51 installer]#

21. Enable NTP.

[root@mastr-51 installer]# ./spectrumscale config ntp -e on

[root@mastr-51 installer]# ./spectrumscale config ntp -l

[ INFO  ] Current settings are as follows:

[ WARN  ] No value for Upstream NTP Servers(comma separated IP's with NO

space between multiple IPs) in clusterdefinition file.

[root@mastr-51 installer]# ./spectrumscale config ntp -s 10.63.150.51

[ WARN  ] The NTP package must already be installed and full

bidirectional access to the UDP port 123 must be allowed.

[ WARN  ] If NTP is already running on any of your nodes, NTP setup will

be skipped. To stop NTP run 'service ntpd stop'.

[ WARN  ] NTP is already on

[ INFO  ] Setting Upstream NTP Servers(comma separated IP's with NO

space between multiple IPs) to 10.63.150.51

[root@mastr-51 installer]# ./spectrumscale config ntp -e on

[ WARN  ] NTP is already on

[root@mastr-51 installer]# ./spectrumscale config ntp -l

[ INFO  ] Current settings are as follows:

[ INFO  ] Upstream NTP Servers(comma separated IP's with NO space

between multiple IPs) is 10.63.150.51.

[root@mastr-51 installer]#

[root@mastr-51 installer]# service ntpd start

Redirecting to /bin/systemctl start ntpd.service

[root@mastr-51 installer]# service ntpd status

Redirecting to /bin/systemctl status ntpd.service

● ntpd.service - Network Time Service

   Loaded: loaded (/usr/lib/systemd/system/ntpd.service; enabled; vendor

preset: disabled)
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   Active: active (running) since Tue 2019-09-10 14:20:34 UTC; 1s ago

  Process: 2964 ExecStart=/usr/sbin/ntpd -u ntp:ntp $OPTIONS

(code=exited, status=0/SUCCESS)

 Main PID: 2965 (ntpd)

   CGroup: /system.slice/ntpd.service

           └─2965 /usr/sbin/ntpd -u ntp:ntp -g

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: ntp_io: estimated max

descriptors: 1024, initial socket boundary: 16

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: Listen and drop on 0

v4wildcard 0.0.0.0 UDP 123

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: Listen and drop on 1

v6wildcard :: UDP 123

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: Listen normally on 2 lo

127.0.0.1 UDP 123

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: Listen normally on 3

enp4s0f0 10.63.150.51 UDP 123

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: Listen normally on 4 lo

::1 UDP 123

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: Listen normally on 5

enp4s0f0 fe80::219:99ff:feef:99fa UDP 123

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: Listening on routing

socket on fd #22 for interface updates

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: 0.0.0.0 c016 06 restart

Sep 10 14:20:34 mastr-51.netapp.com ntpd[2965]: 0.0.0.0 c012 02 freq_set

kernel 11.890 PPM

[root@mastr-51 installer]#

22. Precheck the configurations before Install.
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[root@mastr-51 installer]# ./spectrumscale install -pr

[ INFO  ] Logging to file: /usr/lpp/mmfs/5.0.3.1/installer/logs/INSTALL-

PRECHECK-10-09-2019_14:51:43.log

[ INFO  ] Validating configuration

[ INFO  ] Performing Chef (deploy tool) checks.

[ WARN  ] NTP is already running on: mastr-51.netapp.com. The install

toolkit will no longer setup NTP.

[ INFO  ] Node(s): ['workr-138.netapp.com'] were defined as NSD node(s)

but the toolkit has not been told about any NSDs served by these node(s)

nor has the toolkit been told to create new NSDs on these node(s). The

install will continue and these nodes will be assigned server licenses.

If NSDs are desired, either add them to the toolkit with

<./spectrumscale nsd add> followed by a <./spectrumscale install> or add

them manually afterwards using mmcrnsd.

[ INFO  ] Install toolkit will not configure file audit logging as it

has been disabled.

[ INFO  ] Install toolkit will not configure watch folder as it has been

disabled.

[ INFO  ] Checking for knife bootstrap configuration...

[ INFO  ] Performing GPFS checks.

[ INFO  ] Running environment checks

[ INFO  ] Skipping license validation as no existing GPFS cluster

detected.

[ INFO  ] Checking pre-requisites for portability layer.

[ INFO  ] GPFS precheck OK

[ INFO  ] Performing Performance Monitoring checks.

[ INFO  ] Running environment checks for Performance Monitoring

[ INFO  ] Performing GUI checks.

[ INFO  ] Performing FILE AUDIT LOGGING checks.

[ INFO  ] Running environment checks for file  Audit logging

[ INFO  ] Network check from admin node workr-136.netapp.com to all

other nodes in the cluster passed

[ INFO  ] Network check from admin node mastr-51.netapp.com to all other

nodes in the cluster passed

[ INFO  ] Network check from admin node mastr-53.netapp.com to all other

nodes in the cluster passed

[ INFO  ] The install toolkit will not configure call home as it is

disabled. To enable call home, use the following CLI command:

./spectrumscale callhome enable

[ INFO  ] Pre-check successful for install.

[ INFO  ] Tip : ./spectrumscale install

[root@mastr-51 installer]#

23. Configure the NSD disks.
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[root@mastr-51 cluster-test]# cat disk.1st

%nsd: device=/dev/sdf

nsd=nsd1

servers=workr-136

usage=dataAndMetadata

failureGroup=1

%nsd: device=/dev/sdf

nsd=nsd2

servers=workr-138

usage=dataAndMetadata

failureGroup=1

24. Create the NSD disks.

[root@mastr-51 cluster-test]# mmcrnsd -F disk.1st -v no

mmcrnsd: Processing disk sdf

mmcrnsd: Processing disk sdf

mmcrnsd: Propagating the cluster configuration data to all

  affected nodes.  This is an asynchronous process.

[root@mastr-51 cluster-test]#

25. Check the NSD disk status.

[root@mastr-51 cluster-test]# mmlsnsd

 File system   Disk name    NSD servers

------------------------------------------------------------------------

---

 (free disk)   nsd1         workr-136.netapp.com

 (free disk)   nsd2         workr-138.netapp.com

[root@mastr-51 cluster-test]#

26. Create the GPFS.
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[root@mastr-51 cluster-test]# mmcrfs gpfs1 -F disk.1st -B 1M -T /gpfs1

The following disks of gpfs1 will be formatted on node workr-

136.netapp.com:

    nsd1: size 3814912 MB

    nsd2: size 3814912 MB

Formatting file system ...

Disks up to size 33.12 TB can be added to storage pool system.

Creating Inode File

Creating Allocation Maps

Creating Log Files

Clearing Inode Allocation Map

Clearing Block Allocation Map

Formatting Allocation Map for storage pool system

Completed creation of file system /dev/gpfs1.

mmcrfs: Propagating the cluster configuration data to all

  affected nodes.  This is an asynchronous process.

[root@mastr-51 cluster-test]#

27. Mount the GPFS.

[root@mastr-51 cluster-test]# mmmount all -a

Tue Oct  8 18:05:34 UTC 2019: mmmount: Mounting file systems ...

[root@mastr-51 cluster-test]#

28. Check and provide the required permissions to the GPFS.
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[root@mastr-51 cluster-test]# mmlsdisk gpfs1

disk         driver   sector     failure holds    holds

storage

name         type       size       group metadata data  status

availability pool

------------ -------- ------ ----------- -------- ----- -------------

------------ ------------

nsd1         nsd         512           1 Yes      Yes   ready         up

system

nsd2         nsd         512           1 Yes      Yes   ready         up

system

[root@mastr-51 cluster-test]#

[root@mastr-51 cluster-test]# for i in 51 53 136 138  ; do ssh

10.63.150.$i "hostname; chmod 777 /gpfs1" ; done;

mastr-51.netapp.com

mastr-53.netapp.com

workr-136.netapp.com

workr-138.netapp.com

[root@mastr-51 cluster-test]#

29. Check the GPFS read and write by running the dd command.

[root@mastr-51 cluster-test]# dd if=/dev/zero of=/gpfs1/testfile

bs=1024M count=5

5+0 records in

5+0 records out

5368709120 bytes (5.4 GB) copied, 8.3981 s, 639 MB/s

[root@mastr-51 cluster-test]# for i in 51 53 136 138  ; do ssh

10.63.150.$i "hostname; ls -ltrh /gpfs1" ; done;

mastr-51.netapp.com

total 5.0G

-rw-r--r-- 1 root root 5.0G Oct  8 18:10 testfile

mastr-53.netapp.com

total 5.0G

-rw-r--r-- 1 root root 5.0G Oct  8 18:10 testfile

workr-136.netapp.com

total 5.0G

-rw-r--r-- 1 root root 5.0G Oct  8 18:10 testfile

workr-138.netapp.com

total 5.0G

-rw-r--r-- 1 root root 5.0G Oct  8 18:10 testfile

[root@mastr-51 cluster-test]#
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Export GPFS into NFS

To export GPFS into NFS, complete the following steps:

1. Export the GPFS as NFS through the /etc/exports file.

[root@mastr-51 gpfs1]# cat /etc/exports

/gpfs1        *(rw,fsid=745)

[root@mastr-51 gpfs1]

2. Install the required NFS server packages.

[root@mastr-51 ~]# yum install rpcbind

Loaded plugins: priorities, product-id, search-disabled-repos,

subscription-manager

Resolving Dependencies

--> Running transaction check

---> Package rpcbind.x86_64 0:0.2.0-47.el7 will be updated

---> Package rpcbind.x86_64 0:0.2.0-48.el7 will be an update

--> Finished Dependency Resolution

Dependencies Resolved

========================================================================

========================================================================

========================================================================

======================

 Package                                               Arch

Version                                                    Repository

Size

========================================================================

========================================================================

========================================================================

======================

Updating:

 rpcbind                                               x86_64

0.2.0-48.el7                                               rhel-7-

server-rpms                                                60 k

Transaction Summary

========================================================================

========================================================================

========================================================================

======================

Upgrade  1 Package
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Total download size: 60 k

Is this ok [y/d/N]: y

Downloading packages:

No Presto metadata available for rhel-7-server-rpms

rpcbind-0.2.0-48.el7.x86_64.rpm

|  60 kB  00:00:00

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

  Updating   : rpcbind-0.2.0-48.el7.x86_64

1/2

  Cleanup    : rpcbind-0.2.0-47.el7.x86_64

2/2

  Verifying  : rpcbind-0.2.0-48.el7.x86_64

1/2

  Verifying  : rpcbind-0.2.0-47.el7.x86_64

2/2

Updated:

  rpcbind.x86_64 0:0.2.0-48.el7

Complete!

[root@mastr-51 ~]#

3. Start the NFS service.
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[root@mastr-51 ~]# service nfs status

Redirecting to /bin/systemctl status nfs.service

● nfs-server.service - NFS server and services

   Loaded: loaded (/usr/lib/systemd/system/nfs-server.service; disabled;

vendor preset: disabled)

  Drop-In: /run/systemd/generator/nfs-server.service.d

           └─order-with-mounts.conf

   Active: inactive (dead)

[root@mastr-51 ~]# service rpcbind start

Redirecting to /bin/systemctl start rpcbind.service

[root@mastr-51 ~]# service nfs start

Redirecting to /bin/systemctl start nfs.service

[root@mastr-51 ~]# service nfs status

Redirecting to /bin/systemctl status nfs.service

● nfs-server.service - NFS server and services

   Loaded: loaded (/usr/lib/systemd/system/nfs-server.service; disabled;

vendor preset: disabled)

  Drop-In: /run/systemd/generator/nfs-server.service.d

           └─order-with-mounts.conf

   Active: active (exited) since Wed 2019-11-06 16:34:50 UTC; 2s ago

  Process: 24402 ExecStartPost=/bin/sh -c if systemctl -q is-active

gssproxy; then systemctl reload gssproxy ; fi (code=exited,

status=0/SUCCESS)

  Process: 24383 ExecStart=/usr/sbin/rpc.nfsd $RPCNFSDARGS (code=exited,

status=0/SUCCESS)

  Process: 24379 ExecStartPre=/usr/sbin/exportfs -r (code=exited,

status=0/SUCCESS)

 Main PID: 24383 (code=exited, status=0/SUCCESS)

   CGroup: /system.slice/nfs-server.service

Nov 06 16:34:50 mastr-51.netapp.com systemd[1]: Starting NFS server and

services...

Nov 06 16:34:50 mastr-51.netapp.com systemd[1]: Started NFS server and

services.

[root@mastr-51 ~]#

4. List the files in GPFS to validate the NFS client.
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[root@mastr-51 gpfs1]# df -Th

Filesystem                                 Type      Size  Used Avail

Use% Mounted on

/dev/mapper/rhel_stlrx300s6--22--irmc-root xfs        94G   55G   39G

59% /

devtmpfs                                   devtmpfs   32G     0   32G

0% /dev

tmpfs                                      tmpfs      32G     0   32G

0% /dev/shm

tmpfs                                      tmpfs      32G  3.3G   29G

11% /run

tmpfs                                      tmpfs      32G     0   32G

0% /sys/fs/cgroup

/dev/sda7                                  xfs       9.4G  210M  9.1G

3% /boot

tmpfs                                      tmpfs     6.3G     0  6.3G

0% /run/user/10065

tmpfs                                      tmpfs     6.3G     0  6.3G

0% /run/user/10068

tmpfs                                      tmpfs     6.3G     0  6.3G

0% /run/user/10069

10.63.150.213:/nc_volume3                  nfs4      380G  8.0M  380G

1% /mnt

tmpfs                                      tmpfs     6.3G     0  6.3G

0% /run/user/0

gpfs1                                      gpfs      7.3T  9.1G  7.3T

1% /gpfs1

[root@mastr-51 gpfs1]#

[root@mastr-51 ~]# cd /gpfs1

[root@mastr-51 gpfs1]# ls

catalog  ces  gpfs-ces  ha  testfile

[root@mastr-51 gpfs1]#

[root@mastr-51 ~]# cd /gpfs1

[root@mastr-51 gpfs1]# ls

ces  gpfs-ces  ha  testfile

[root@mastr-51 gpfs1]# ls -ltrha

total 5.1G

dr-xr-xr-x   2 root root 8.0K Jan  1  1970 .snapshots

-rw-r--r--   1 root root 5.0G Oct  8 18:10 testfile

dr-xr-xr-x. 30 root root 4.0K Oct  8 18:19 ..

drwxr-xr-x   2 root root 4.0K Nov  5 20:02 gpfs-ces

drwxr-xr-x   2 root root 4.0K Nov  5 20:04 ha

drwxrwxrwx   5 root root 256K Nov  5 20:04 .

drwxr-xr-x   4 root root 4.0K Nov  5 20:35 ces

[root@mastr-51 gpfs1]#
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Configure the NFS client

To configure the NFS client, complete the following steps:

1. Install packages in the NFS client.

[root@hdp2 ~]# yum install nfs-utils rpcbind

Loaded plugins: product-id, search-disabled-repos, subscription-manager

HDP-2.6-GPL-repo-4

| 2.9 kB  00:00:00

HDP-2.6-repo-4

| 2.9 kB  00:00:00

HDP-3.0-GPL-repo-2

| 2.9 kB  00:00:00

HDP-3.0-repo-2

| 2.9 kB  00:00:00

HDP-3.0-repo-3

| 2.9 kB  00:00:00

HDP-3.1-repo-1

| 2.9 kB  00:00:00

HDP-3.1-repo-51

| 2.9 kB  00:00:00

HDP-UTILS-1.1.0.22-repo-1

| 2.9 kB  00:00:00

HDP-UTILS-1.1.0.22-repo-2

| 2.9 kB  00:00:00

HDP-UTILS-1.1.0.22-repo-3

| 2.9 kB  00:00:00

HDP-UTILS-1.1.0.22-repo-4

| 2.9 kB  00:00:00

HDP-UTILS-1.1.0.22-repo-51

| 2.9 kB  00:00:00

ambari-2.7.3.0

| 2.9 kB  00:00:00

epel/x86_64/metalink

|  13 kB  00:00:00

epel

| 5.3 kB  00:00:00

mysql-connectors-community

| 2.5 kB  00:00:00

mysql-tools-community

| 2.5 kB  00:00:00

mysql56-community

| 2.5 kB  00:00:00

rhel-7-server-optional-rpms

| 3.2 kB  00:00:00

rhel-7-server-rpms
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| 3.5 kB  00:00:00

(1/10): mysql-connectors-community/x86_64/primary_db

|  49 kB  00:00:00

(2/10): mysql-tools-community/x86_64/primary_db

|  66 kB  00:00:00

(3/10): epel/x86_64/group_gz

|  90 kB  00:00:00

(4/10): mysql56-community/x86_64/primary_db

| 241 kB  00:00:00

(5/10): rhel-7-server-optional-rpms/7Server/x86_64/updateinfo

| 2.5 MB  00:00:00

(6/10): rhel-7-server-rpms/7Server/x86_64/updateinfo

| 3.4 MB  00:00:00

(7/10): rhel-7-server-optional-rpms/7Server/x86_64/primary_db

| 8.3 MB  00:00:00

(8/10): rhel-7-server-rpms/7Server/x86_64/primary_db

|  62 MB  00:00:01

(9/10): epel/x86_64/primary_db

| 6.9 MB  00:00:08

(10/10): epel/x86_64/updateinfo

| 1.0 MB  00:00:13

Resolving Dependencies

--> Running transaction check

---> Package nfs-utils.x86_64 1:1.3.0-0.61.el7 will be updated

---> Package nfs-utils.x86_64 1:1.3.0-0.65.el7 will be an update

---> Package rpcbind.x86_64 0:0.2.0-47.el7 will be updated

---> Package rpcbind.x86_64 0:0.2.0-48.el7 will be an update

--> Finished Dependency Resolution

Dependencies Resolved

========================================================================

==============================================

 Package                 Arch                 Version

Repository                        Size

========================================================================

==============================================

Updating:

 nfs-utils               x86_64               1:1.3.0-0.65.el7

rhel-7-server-rpms               412 k

 rpcbind                 x86_64               0.2.0-48.el7

rhel-7-server-rpms                60 k

Transaction Summary

========================================================================

==============================================
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Upgrade  2 Packages

Total download size: 472 k

Is this ok [y/d/N]: y

Downloading packages:

No Presto metadata available for rhel-7-server-rpms

(1/2): rpcbind-0.2.0-48.el7.x86_64.rpm

|  60 kB  00:00:00

(2/2): nfs-utils-1.3.0-0.65.el7.x86_64.rpm

| 412 kB  00:00:00

------------------------------------------------------------------------

----------------------------------------------

Total

1.2 MB/s | 472 kB  00:00:00

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

  Updating   : rpcbind-0.2.0-48.el7.x86_64

1/4

service rpcbind start

  Updating   : 1:nfs-utils-1.3.0-0.65.el7.x86_64

2/4

  Cleanup    : 1:nfs-utils-1.3.0-0.61.el7.x86_64

3/4

  Cleanup    : rpcbind-0.2.0-47.el7.x86_64

4/4

  Verifying  : 1:nfs-utils-1.3.0-0.65.el7.x86_64

1/4

  Verifying  : rpcbind-0.2.0-48.el7.x86_64

2/4

  Verifying  : rpcbind-0.2.0-47.el7.x86_64

3/4

  Verifying  : 1:nfs-utils-1.3.0-0.61.el7.x86_64

4/4

Updated:

  nfs-utils.x86_64 1:1.3.0-0.65.el7

rpcbind.x86_64 0:0.2.0-48.el7

Complete!

[root@hdp2 ~]#

2. Start the NFS client services.
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[root@hdp2 ~]# service rpcbind start

Redirecting to /bin/systemctl start rpcbind.service

 [root@hdp2 ~]#

3. Mount the GPFS through the NFS protocol on the NFS client.

[root@hdp2 ~]# mkdir /gpfstest

[root@hdp2 ~]# mount 10.63.150.51:/gpfs1 /gpfstest

[root@hdp2 ~]# df -h

Filesystem                            Size  Used Avail Use% Mounted on

/dev/mapper/rhel_stlrx300s6--22-root  1.1T  113G  981G  11% /

devtmpfs                              126G     0  126G   0% /dev

tmpfs                                 126G   16K  126G   1% /dev/shm

tmpfs                                 126G  510M  126G   1% /run

tmpfs                                 126G     0  126G   0%

/sys/fs/cgroup

/dev/sdd2                             197M  191M  6.6M  97% /boot

tmpfs                                  26G     0   26G   0% /run/user/0

10.63.150.213:/nc_volume2              95G  5.4G   90G   6% /mnt

10.63.150.51:/gpfs1                   7.3T  9.1G  7.3T   1% /gpfstest

[root@hdp2 ~]#

4. Validate the list of GPFS files in the NFS-mounted folder.

[root@hdp2 ~]# cd /gpfstest/

[root@hdp2 gpfstest]# ls

ces  gpfs-ces  ha  testfile

[root@hdp2 gpfstest]# ls -l

total 5242882

drwxr-xr-x 4 root root       4096 Nov  5 15:35 ces

drwxr-xr-x 2 root root       4096 Nov  5 15:02 gpfs-ces

drwxr-xr-x 2 root root       4096 Nov  5 15:04 ha

-rw-r--r-- 1 root root 5368709120 Oct  8 14:10 testfile

[root@hdp2 gpfstest]#

5. Move the data from the GPFS- exported NFS to the NetApp NFS by using XCP.
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[root@hdp2 linux]# ./xcp copy -parallel 20 10.63.150.51:/gpfs1

10.63.150.213:/nc_volume2/

XCP 1.4-17914d6; (c) 2019 NetApp, Inc.; Licensed to Karthikeyan

Nagalingam [NetApp Inc] until Tue Nov  5 12:39:36 2019

xcp: WARNING: your license will expire in less than one week! You can

renew your license at https://xcp.netapp.com

xcp: open or create catalog 'xcp': Creating new catalog in

'10.63.150.51:/gpfs1/catalog'

xcp: WARNING: No index name has been specified, creating one with name:

autoname_copy_2019-11-11_12.14.07.805223

xcp: mount '10.63.150.51:/gpfs1': WARNING: This NFS server only supports

1-second timestamp granularity. This may cause sync to fail because

changes will often be undetectable.

 34 scanned, 32 copied, 32 indexed, 1 giant, 301 MiB in (59.5 MiB/s),

784 KiB out (155 KiB/s), 6s

 34 scanned, 32 copied, 32 indexed, 1 giant, 725 MiB in (84.6 MiB/s),

1.77 MiB out (206 KiB/s), 11s

 34 scanned, 32 copied, 32 indexed, 1 giant, 1.17 GiB in (94.2 MiB/s),

2.90 MiB out (229 KiB/s), 16s

 34 scanned, 32 copied, 32 indexed, 1 giant, 1.56 GiB in (79.8 MiB/s),

3.85 MiB out (194 KiB/s), 21s

 34 scanned, 32 copied, 32 indexed, 1 giant, 1.95 GiB in (78.4 MiB/s),

4.80 MiB out (191 KiB/s), 26s

 34 scanned, 32 copied, 32 indexed, 1 giant, 2.35 GiB in (80.4 MiB/s),

5.77 MiB out (196 KiB/s), 31s

 34 scanned, 32 copied, 32 indexed, 1 giant, 2.79 GiB in (89.6 MiB/s),

6.84 MiB out (218 KiB/s), 36s

 34 scanned, 32 copied, 32 indexed, 1 giant, 3.16 GiB in (75.3 MiB/s),

7.73 MiB out (183 KiB/s), 41s

 34 scanned, 32 copied, 32 indexed, 1 giant, 3.53 GiB in (75.4 MiB/s),

8.64 MiB out (183 KiB/s), 46s

 34 scanned, 32 copied, 32 indexed, 1 giant, 4.00 GiB in (94.4 MiB/s),

9.77 MiB out (230 KiB/s), 51s

 34 scanned, 32 copied, 32 indexed, 1 giant, 4.46 GiB in (94.3 MiB/s),

10.9 MiB out (229 KiB/s), 56s

 34 scanned, 32 copied, 32 indexed, 1 giant, 4.86 GiB in (80.2 MiB/s),

11.9 MiB out (195 KiB/s), 1m1s

Sending statistics...

34 scanned, 33 copied, 34 indexed, 1 giant, 5.01 GiB in (81.8 MiB/s),

12.3 MiB out (201 KiB/s), 1m2s.

[root@hdp2 linux]#

6. Validate the GPFS files on the NFS client.
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[root@hdp2 mnt]# df -Th

Filesystem                           Type      Size  Used Avail Use%

Mounted on

/dev/mapper/rhel_stlrx300s6--22-root xfs       1.1T  113G  981G  11% /

devtmpfs                             devtmpfs  126G     0  126G   0%

/dev

tmpfs                                tmpfs     126G   16K  126G   1%

/dev/shm

tmpfs                                tmpfs     126G  518M  126G   1%

/run

tmpfs                                tmpfs     126G     0  126G   0%

/sys/fs/cgroup

/dev/sdd2                            xfs       197M  191M  6.6M  97%

/boot

tmpfs                                tmpfs      26G     0   26G   0%

/run/user/0

10.63.150.213:/nc_volume2            nfs4       95G  5.4G   90G   6%

/mnt

10.63.150.51:/gpfs1                  nfs4      7.3T  9.1G  7.3T   1%

/gpfstest

[root@hdp2 mnt]#

[root@hdp2 mnt]# ls -ltrha

total 128K

dr-xr-xr-x   2 root        root                4.0K Dec 31  1969

.snapshots

drwxrwxrwx   2 root        root                4.0K Feb 14  2018 data

drwxrwxrwx   3 root        root                4.0K Feb 14  2018

wcresult

drwxrwxrwx   3 root        root                4.0K Feb 14  2018

wcresult1

drwxrwxrwx   2 root        root                4.0K Feb 14  2018

wcresult2

drwxrwxrwx   2 root        root                4.0K Feb 16  2018

wcresult3

-rw-r--r--   1 root        root                2.8K Feb 20  2018

READMEdemo

drwxrwxrwx   3 root        root                4.0K Jun 28 13:38 scantg

drwxrwxrwx   3 root        root                4.0K Jun 28 13:39

scancopyFromLocal

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:28 f3

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:28 README

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:28 f9

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:28 f6

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:28 f5

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:30 f4

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:30 f8
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-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:30 f2

-rw-r--r--   1 hdfs        hadoop              1.2K Jul  3 19:30 f7

drwxrwxrwx   2 root        root                4.0K Jul  9 11:14 test

drwxrwxrwx   3 root        root                4.0K Jul 10 16:35

warehouse

drwxr-xr-x   3       10061 tester1             4.0K Jul 15 14:40 sdd1

drwxrwxrwx   3 testeruser1 hadoopkerberosgroup 4.0K Aug 20 17:00

kermkdir

-rw-r--r--   1 testeruser1 hadoopkerberosgroup    0 Aug 21 14:20 newfile

drwxrwxrwx   2 testeruser1 hadoopkerberosgroup 4.0K Aug 22 10:13

teragen1copy_3

drwxrwxrwx   2 testeruser1 hadoopkerberosgroup 4.0K Aug 22 10:33

teragen2copy_1

-rw-rwxr--   1 root        hdfs                1.2K Sep 19 16:38 R1

drwx------   3 root        root                4.0K Sep 20 17:28 user

-rw-r--r--   1 root        root                5.0G Oct  8 14:10

testfile

drwxr-xr-x   2 root        root                4.0K Nov  5 15:02 gpfs-

ces

drwxr-xr-x   2 root        root                4.0K Nov  5 15:04 ha

drwxr-xr-x   4 root        root                4.0K Nov  5 15:35 ces

dr-xr-xr-x. 26 root        root                4.0K Nov  6 11:40 ..

drwxrwxrwx  21 root        root                4.0K Nov 11 12:14 .

drwxrwxrwx   7 nobody      nobody              4.0K Nov 11 12:14 catalog

[root@hdp2 mnt]#

MapR-FS to ONTAP NFS

This section provides the detailed steps needed to move MapR-FS data into ONTAP NFS

by using NetApp XCP.

1. Provision three LUNs for each MapR node and give the LUNs ownership of all MapR nodes.

2. During installation, choose newly added LUNs for MapR cluster disks that are used for MapR-FS.

3. Install a MapR cluster according to the MapR 6.1 documentation.

4. Check the basic Hadoop operations using MapReduce commands such as hadoop jar xxx.

5. Keep customer data in MapR-FS. For example, we generated approximately a terabyte of sample data in

MapR-FS by using Teragen.

6. Configure MapR-FS as NFS export.

a. Disable the nlockmgr service on all MapR nodes.
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root@workr-138: ~$ rpcinfo -p

   program vers proto   port  service

    100000    4   tcp    111  portmapper

    100000    3   tcp    111  portmapper

    100000    2   tcp    111  portmapper

    100000    4   udp    111  portmapper

    100000    3   udp    111  portmapper

    100000    2   udp    111  portmapper

    100003    4   tcp   2049  nfs

    100227    3   tcp   2049  nfs_acl

    100003    4   udp   2049  nfs

    100227    3   udp   2049  nfs_acl

    100021    3   udp  55270  nlockmgr

    100021    4   udp  55270  nlockmgr

    100021    3   tcp  35025  nlockmgr

    100021    4   tcp  35025  nlockmgr

    100003    3   tcp   2049  nfs

    100005    3   tcp   2049  mountd

    100005    1   tcp   2049  mountd

    100005    3   udp   2049  mountd

    100005    1   udp   2049  mountd

root@workr-138: ~$

 

root@workr-138: ~$ rpcinfo -d 100021 3

root@workr-138: ~$ rpcinfo -d 100021 4

b. Export specific folders from MapR-FS on all MapR nodes in the /opt/mapr/conf/exports file. Do

not export the parent folder with different permissions when you export sub folders.
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[mapr@workr-138 ~]$ cat /opt/mapr/conf/exports

# Sample Exports file

# for /mapr exports

# <Path> <exports_control>

#access_control -> order is specific to default

# list the hosts before specifying a default for all

#  a.b.c.d,1.2.3.4(ro) d.e.f.g(ro) (rw)

#  enforces ro for a.b.c.d & 1.2.3.4 and everybody else is rw

# special path to export clusters in mapr-clusters.conf. To disable

exporting,

# comment it out. to restrict access use the exports_control

#

#/mapr (rw)

#karthik

/mapr/my.cluster.com/tmp/testnfs /maprnfs3 (rw)

#to export only certain clusters, comment out the /mapr & uncomment.

#/mapr/clustername (rw)

#to export /mapr only to certain hosts (using exports_control)

#/mapr a.b.c.d(rw),e.f.g.h(ro)

# export /mapr/cluster1 rw to a.b.c.d & ro to e.f.g.h (denied for

others)

#/mapr/cluster1 a.b.c.d(rw),e.f.g.h(ro)

# export /mapr/cluster2 only to e.f.g.h (denied for others)

#/mapr/cluster2 e.f.g.h(rw)

# export /mapr/cluster3 rw to e.f.g.h & ro to others

#/mapr/cluster2 e.f.g.h(rw) (ro)

#to export a certain cluster, volume or a subdirectory as an alias,

#comment out  /mapr & uncomment

#/mapr/clustername         /alias1 (rw)

#/mapr/clustername/vol     /alias2 (rw)

#/mapr/clustername/vol/dir /alias3 (rw)

#only the alias will be visible/exposed to the nfs client not the

mapr path, host options as before

[mapr@workr-138 ~]$

7. Refresh the MapR-FS NFS service.
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root@workr-138: tmp$ maprcli nfsmgmt refreshexports

ERROR (22) -  You do not have a ticket to communicate with

127.0.0.1:9998. Retry after obtaining a new ticket using maprlogin

root@workr-138: tmp$ su - mapr

[mapr@workr-138 ~]$ maprlogin password -cluster my.cluster.com

[Password for user 'mapr' at cluster 'my.cluster.com': ]

MapR credentials of user 'mapr' for cluster 'my.cluster.com' are written

to '/tmp/maprticket_5000'

[mapr@workr-138 ~]$ maprcli nfsmgmt refreshexports

8. Assign a virtual IP range to a specific server or a set of servers in the MapR cluster. Then the MapR cluster

assigns an IP to a specific server for NFS data access. The IPs enable high availability, which means that,

if a server or network with a particular IP experiences failure, the next IP from the range of IPs can be used

for NFS access.

If you would like to provide NFS access from all MapR nodes, then you can assign a set of

virtual IPs to each server, and you can use the resources from each MapR node for NFS

data access.
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9. Check the virtual IPs assigned on each MapR node and use them for NFS data access.

root@workr-138: ~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

group default qlen 1000

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

    inet 127.0.0.1/8 scope host lo

       valid_lft forever preferred_lft forever

    inet6 ::1/128 scope host
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       valid_lft forever preferred_lft forever

2: ens3f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP

group default qlen 1000

    link/ether 90:1b:0e:d1:5d:f9 brd ff:ff:ff:ff:ff:ff

    inet 10.63.150.138/24 brd 10.63.150.255 scope global noprefixroute

ens3f0

       valid_lft forever preferred_lft forever

    inet 10.63.150.96/24 scope global secondary ens3f0:~m0

       valid_lft forever preferred_lft forever

    inet 10.63.150.97/24 scope global secondary ens3f0:~m1

       valid_lft forever preferred_lft forever

    inet6 fe80::921b:eff:fed1:5df9/64 scope link

       valid_lft forever preferred_lft forever

3: eno1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP

group default qlen 1000

    link/ether 90:1b:0e:d1:af:b4 brd ff:ff:ff:ff:ff:ff

4: ens3f1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP

group default qlen 1000

    link/ether 90:1b:0e:d1:5d:fa brd ff:ff:ff:ff:ff:ff

5: eno2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state

DOWN group default qlen 1000

    link/ether 90:1b:0e:d1:af:b5 brd ff:ff:ff:ff:ff:ff

[root@workr-138: ~$

[root@workr-140 ~]# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

group default qlen 1000

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

    inet 127.0.0.1/8 scope host lo

       valid_lft forever preferred_lft forever

    inet6 ::1/128 scope host

       valid_lft forever preferred_lft forever

2: ens3f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP

group default qlen 1000

    link/ether 90:1b:0e:d1:5e:03 brd ff:ff:ff:ff:ff:ff

    inet 10.63.150.140/24 brd 10.63.150.255 scope global noprefixroute

ens3f0

       valid_lft forever preferred_lft forever

    inet 10.63.150.92/24 scope global secondary ens3f0:~m0

       valid_lft forever preferred_lft forever

    inet6 fe80::921b:eff:fed1:5e03/64 scope link noprefixroute

       valid_lft forever preferred_lft forever

3: eno1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP

group default qlen 1000

    link/ether 90:1b:0e:d1:af:9a brd ff:ff:ff:ff:ff:ff

4: ens3f1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP

group default qlen 1000
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    link/ether 90:1b:0e:d1:5e:04 brd ff:ff:ff:ff:ff:ff

5: eno2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state

DOWN group default qlen 1000

    link/ether 90:1b:0e:d1:af:9b brd ff:ff:ff:ff:ff:ff

[root@workr-140 ~]#

10. Mount the NFS- exported MapR-FS using the assigned virtual IP for checking the NFS operation. However,

this step is not required for data transfer using NetApp XCP.

root@workr-138: tmp$ mount -v -t nfs 10.63.150.92:/maprnfs3

/tmp/testmount/

mount.nfs: timeout set for Thu Dec  5 15:31:32 2019

mount.nfs: trying text-based options

'vers=4.1,addr=10.63.150.92,clientaddr=10.63.150.138'

mount.nfs: mount(2): Protocol not supported

mount.nfs: trying text-based options

'vers=4.0,addr=10.63.150.92,clientaddr=10.63.150.138'

mount.nfs: mount(2): Protocol not supported

mount.nfs: trying text-based options 'addr=10.63.150.92'

mount.nfs: prog 100003, trying vers=3, prot=6

mount.nfs: trying 10.63.150.92 prog 100003 vers 3 prot TCP port 2049

mount.nfs: prog 100005, trying vers=3, prot=17

mount.nfs: trying 10.63.150.92 prog 100005 vers 3 prot UDP port 2049

mount.nfs: portmap query retrying: RPC: Timed out

mount.nfs: prog 100005, trying vers=3, prot=6

mount.nfs: trying 10.63.150.92 prog 100005 vers 3 prot TCP port 2049

root@workr-138: tmp$ df -h

Filesystem              Size  Used Avail Use% Mounted on

/dev/sda7                84G   48G   37G  57% /

devtmpfs                126G     0  126G   0% /dev

tmpfs                   126G     0  126G   0% /dev/shm

tmpfs                   126G   19M  126G   1% /run

tmpfs                   126G     0  126G   0% /sys/fs/cgroup

/dev/sdd1               3.7T  201G  3.5T   6% /mnt/sdd1

/dev/sda6               946M  220M  726M  24% /boot

tmpfs                    26G     0   26G   0% /run/user/5000

gpfs1                   7.3T  9.1G  7.3T   1% /gpfs1

tmpfs                    26G     0   26G   0% /run/user/0

localhost:/mapr         100G     0  100G   0% /mapr

10.63.150.92:/maprnfs3   53T  8.4G   53T   1% /tmp/testmount

root@workr-138: tmp$

11. Configure NetApp XCP to transfer data from the MapR-FS NFS gateway to ONTAP NFS.

a. Configure the catalog location for XCP.
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[root@hdp2 linux]# cat /opt/NetApp/xFiles/xcp/xcp.ini

# Sample xcp config

[xcp]

#catalog =  10.63.150.51:/gpfs1

catalog =  10.63.150.213:/nc_volume1

b. Copy the license file to /opt/NetApp/xFiles/xcp/.

root@workr-138: src$ cd /opt/NetApp/xFiles/xcp/

root@workr-138: xcp$ ls -ltrha

total 252K

drwxr-xr-x 3 root   root     16 Apr  4  2019 ..

-rw-r--r-- 1 root   root    105 Dec  5 19:04 xcp.ini

drwxr-xr-x 2 root   root     59 Dec  5 19:04 .

-rw-r--r-- 1 faiz89 faiz89  336 Dec  6 21:12 license

-rw-r--r-- 1 root   root    192 Dec  6 21:13 host

-rw-r--r-- 1 root   root   236K Dec 17 14:12 xcp.log

root@workr-138: xcp$

c. Activate XCP using the xcp activate command.

d. Check the source for NFS export.
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[root@hdp2 linux]# ./xcp show 10.63.150.92

XCP 1.4-17914d6; (c) 2019 NetApp, Inc.; Licensed to Karthikeyan

Nagalingam [NetApp Inc] until Wed Feb  5 11:07:27 2020

getting pmap dump from 10.63.150.92 port 111...

getting export list from 10.63.150.92...

sending 1 mount and 4 nfs requests to 10.63.150.92...

== RPC Services ==

'10.63.150.92': TCP rpc services: MNT v1/3, NFS v3/4, NFSACL v3, NLM

v1/3/4, PMAP v2/3/4, STATUS v1

'10.63.150.92': UDP rpc services: MNT v1/3, NFS v4, NFSACL v3, NLM

v1/3/4, PMAP v2/3/4, STATUS v1

== NFS Exports ==

 Mounts  Errors  Server

      1       0  10.63.150.92

     Space    Files      Space    Files

      Free     Free       Used     Used Export

  52.3 TiB    53.7B   8.36 GiB    53.7B 10.63.150.92:/maprnfs3

== Attributes of NFS Exports ==

drwxr-xr-x --- root root 2 2 10m51s 10.63.150.92:/maprnfs3

1.77 KiB in (8.68 KiB/s), 3.16 KiB out (15.5 KiB/s), 0s.

[root@hdp2 linux]#

e. Transfer the data using XCP from multiple MapR nodes from multiple source IPs and multiple

destination IPs (ONTAP LIFs).

root@workr-138: linux$ ./xcp_yatin copy --parallel 20

10.63.150.96,10.63.150.97:/maprnfs3/tg4

10.63.150.85,10.63.150.86:/datapipeline_dataset/tg4_dest

XCP 1.6-dev; (c) 2019 NetApp, Inc.; Licensed to Karthikeyan

Nagalingam [NetApp Inc] until Wed Feb  5 11:07:27 2020

xcp: WARNING: No index name has been specified, creating one with

name: autoname_copy_2019-12-06_21.14.38.652652

xcp: mount '10.63.150.96,10.63.150.97:/maprnfs3/tg4': WARNING: This

NFS server only supports 1-second timestamp granularity. This may

cause sync to fail because changes will often be undetectable.

 130 scanned, 128 giants, 3.59 GiB in (723 MiB/s), 3.60 GiB out (724

MiB/s), 5s

 130 scanned, 128 giants, 8.01 GiB in (889 MiB/s), 8.02 GiB out (890

MiB/s), 11s

 130 scanned, 128 giants, 12.6 GiB in (933 MiB/s), 12.6 GiB out (934

MiB/s), 16s

 130 scanned, 128 giants, 16.7 GiB in (830 MiB/s), 16.7 GiB out (831

MiB/s), 21s

 130 scanned, 128 giants, 21.1 GiB in (907 MiB/s), 21.1 GiB out (908

MiB/s), 26s
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 130 scanned, 128 giants, 25.5 GiB in (893 MiB/s), 25.5 GiB out (894

MiB/s), 31s

 130 scanned, 128 giants, 29.6 GiB in (842 MiB/s), 29.6 GiB out (843

MiB/s), 36s

….

[root@workr-140 linux]# ./xcp_yatin copy  --parallel 20

10.63.150.92:/maprnfs3/tg4_2

10.63.150.85,10.63.150.86:/datapipeline_dataset/tg4_2_dest

XCP 1.6-dev; (c) 2019 NetApp, Inc.; Licensed to Karthikeyan

Nagalingam [NetApp Inc] until Wed Feb  5 11:07:27 2020

xcp: WARNING: No index name has been specified, creating one with

name: autoname_copy_2019-12-06_21.14.24.637773

xcp: mount '10.63.150.92:/maprnfs3/tg4_2': WARNING: This NFS server

only supports 1-second timestamp granularity. This may cause sync to

fail because changes will often be undetectable.

 130 scanned, 128 giants, 4.39 GiB in (896 MiB/s), 4.39 GiB out (897

MiB/s), 5s

 130 scanned, 128 giants, 9.94 GiB in (1.10 GiB/s), 9.96 GiB out

(1.10 GiB/s), 10s

 130 scanned, 128 giants, 15.4 GiB in (1.09 GiB/s), 15.4 GiB out

(1.09 GiB/s), 15s

 130 scanned, 128 giants, 20.1 GiB in (953 MiB/s), 20.1 GiB out (954

MiB/s), 20s

 130 scanned, 128 giants, 24.6 GiB in (928 MiB/s), 24.7 GiB out (929

MiB/s), 25s

 130 scanned, 128 giants, 29.0 GiB in (877 MiB/s), 29.0 GiB out (878

MiB/s), 31s

 130 scanned, 128 giants, 33.2 GiB in (852 MiB/s), 33.2 GiB out (853

MiB/s), 36s

 130 scanned, 128 giants, 37.8 GiB in (941 MiB/s), 37.8 GiB out (942

MiB/s), 41s

 130 scanned, 128 giants, 42.0 GiB in (860 MiB/s), 42.0 GiB out (861

MiB/s), 46s

 130 scanned, 128 giants, 46.1 GiB in (852 MiB/s), 46.2 GiB out (853

MiB/s), 51s

 130 scanned, 128 giants, 50.1 GiB in (816 MiB/s), 50.2 GiB out (817

MiB/s), 56s

 130 scanned, 128 giants, 54.1 GiB in (819 MiB/s), 54.2 GiB out (820

MiB/s), 1m1s

 130 scanned, 128 giants, 58.5 GiB in (897 MiB/s), 58.6 GiB out (898

MiB/s), 1m6s

 130 scanned, 128 giants, 62.9 GiB in (900 MiB/s), 63.0 GiB out (901

MiB/s), 1m11s

 130 scanned, 128 giants, 67.2 GiB in (876 MiB/s), 67.2 GiB out (877

MiB/s), 1m16s
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f. Check the load distribution on the storage controller.

Hadoop-AFF8080::*> statistics show-periodic -interval 2 -iterations 0

-summary true -object nic_common -counter rx_bytes|tx_bytes -node

Hadoop-AFF8080-01 -instance e3b

Hadoop-AFF8080: nic_common.e3b: 12/6/2019 15:55:04

 rx_bytes tx_bytes

 -------- --------

    879MB   4.67MB

    856MB   4.46MB

    973MB   5.66MB

    986MB   5.88MB

    945MB   5.30MB

    920MB   4.92MB

    894MB   4.76MB

    902MB   4.79MB

    886MB   4.68MB

    892MB   4.78MB

    908MB   4.96MB

    905MB   4.85MB

    899MB   4.83MB

Hadoop-AFF8080::*> statistics show-periodic -interval 2 -iterations 0

-summary true -object nic_common -counter rx_bytes|tx_bytes -node

Hadoop-AFF8080-01 -instance e9b

Hadoop-AFF8080: nic_common.e9b: 12/6/2019 15:55:07

 rx_bytes tx_bytes

 -------- --------

    950MB   4.93MB

    991MB   5.84MB

    959MB   5.63MB

    914MB   5.06MB

    903MB   4.81MB

    899MB   4.73MB

    892MB   4.71MB

    890MB   4.72MB

    905MB   4.86MB

    902MB   4.90MB

Where to find additional information

To learn more about the information that is described in this document, review the

following documents and/or websites:

• NetApp In-Place Analytics Module Best Practices
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https://www.netapp.com/us/media/tr-4382.pdf

• NetApp FlexGroup Volume Best Practices and Implementation Guide

https://www.netapp.com/us/media/tr-4571.pdf

• NetApp Product Documentation

https://www.netapp.com/us/documentation/index.aspx

Best practices for Confluent Kafka

TR-4912: Best practice guidelines for Confluent Kafka tiered storage with NetApp

Karthikeyan Nagalingam, Joseph Kandatilparambil, NetApp

Rankesh Kumar, Confluent

Apache Kafka is a community-distributed event-streaming platform capable of handling

trillions of events a day. Initially conceived as a messaging queue, Kafka is based on an

abstraction of a distributed commit log. Since it was created and open-sourced by

LinkedIn in 2011, Kafka has evolved from a messages queue to a full-fledged event-

streaming platform. Confluent delivers the distribution of Apache Kafka with the Confluent

Platform. The Confluent Platform supplements Kafka with additional community and

commercial features designed to enhance the streaming experience of both operators

and developers in production at a massive scale.

This document describes the best-practice guidelines for using Confluent Tiered Storage on a NetApp’s Object

storage offering by providing the following content:

• Confluent verification with NetApp Object storage – NetApp StorageGRID

• Tiered storage performance tests

• Best-practice guidelines for Confluent on NetApp storage systems

Why Confluent Tiered Storage?

Confluent has become the default real-time streaming platform for many applications, especially for big data,

analytics, and streaming workloads. Tiered Storage enables users to separate compute from storage in the

Confluent platform. It makes storing data more cost effective, enables you to store virtually infinite amounts of

data and scale workloads up (or down) on-demand, and makes administrative tasks like data and tenant

rebalancing easier. S3 compatible storage systems can take advantage of all these capabilities to democratize

data with all events in one place, eliminating the need for complex data engineering. For more info on why you

should use tiered storage for Kafka, check this article by Confluent.

Why NetApp StorageGRID for tiered storage?

StorageGRID is an industry-leading object storage platform by NetApp. StorageGRID is a software-defined,

object-based storage solution that supports industry-standard object APIs, including the Amazon Simple

Storage Service (S3) API. StorageGRID stores and manages unstructured data at scale to provide secure,

durable object storage. Content is placed in the right location, at the right time, and on the right storage tier,

optimizing workflows and reducing costs for globally distributed rich media.

179

https://www.netapp.com/us/media/tr-4382.pdf
https://www.netapp.com/us/media/tr-4571.pdf
https://www.netapp.com/us/documentation/index.aspx
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage


The greatest differentiator for StorageGRID is its Information Lifecycle Management (ILM) policy engine that

enables policy-driven data lifecycle management. The policy engine can use metadata to manage how data is

stored across its lifetime to initially optimize for performance and automatically optimize for cost and durability

as data ages.

Enabling Confluent Tiered Storage

The basic idea of tiered storage is to separate the tasks of data storage from data processing. With this

separation, it becomes much easier for the data storage tier and the data processing tier to scale

independently.

A tiered storage solution for Confluent must contend with two factors. First, it must work around or avoid

common object store consistency and availability properties, such as inconsistencies in LIST operations and

occasional object unavailability. Secondly, it must correctly handle the interaction between tiered storage and

Kafka’s replication and fault tolerance model, including the possibility of zombie leaders continuing to tier offset

ranges. NetApp Object storage provides both the consistent object availability and HA model make the tired

storage available to tier offset ranges. NetApp object storage provides consistent object availability and an HA

model to make the tired storage available to tier offset ranges.

With tiered storage, you can use high-performance platforms for low-latency reads and writes near the tail of

your streaming data, and you can also use cheaper, scalable object stores like NetApp StorageGRID for high-

throughput historical reads. We also have technical solution for Spark with netapp storage controller and

details are here. The following figure shows how Kafka fits into a real-time analytics pipeline.

The following figure depicts how NetApp StorageGRID fits in as Confluent Kafka’s object storage tier.
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Solution architecture details

This section covers the hardware and software used for Confluent verification. This

information is applicable to Confluent Platform deployment with NetApp storage. The

following table covers the tested solution architecture and base components.

Solution components Details

Confluent Kafka version 6.2 • Three zookeepers

• Five broker servers

• Five tools servers

• One Grafana

• One control center

Linux (ubuntu 18.04) All servers

NetApp StorageGRID for tiered storage • StorageGRID software

• 1 x SG1000 (load balancer)

• 4 x SGF6024

• 4 x 24 x 800 SSDs

• S3 protocol

• 4 x 100GbE (network connectivity between broker

and StorageGRID instances)
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Solution components Details

15 Fujitsu PRIMERGY RX2540 servers Each equipped with:

* 2 CPUs, 16 physical cores total

* Intel Xeon

* 256GB physical memory

* 100GbE dual port

Technology overview

This section describes the technology used in this solution.

NetApp StorageGRID

NetApp StorageGRID is a high-performance, cost-effective object storage platform. By using tiered storage,

most of the data on Confluent Kafka, which is stored in local storage or the SAN storage of the broker, is

offloaded to the remote object store. This configuration results in significant operational improvements by

reducing the time and cost to rebalance, expand, or shrink clusters or replace a failed broker. Object storage

plays an important role in managing data that resides on the object store tier, which is why picking the right

object storage is important.

StorageGRID offers intelligent, policy-driven global data management using a distributed, node-based grid

architecture. It simplifies the management of petabytes of unstructured data and billions of objects through its

ubiquitous global object namespace combined with sophisticated data management features. Single-call object

access extends across sites and simplifies high availability architectures while ensuring continual object

access, regardless of site or infrastructure outages.

Multitenancy allows multiple unstructured cloud and enterprise data applications to be securely serviced within

the same grid, increasing the ROI and use cases for NetApp StorageGRID. You can create multiple service

levels with metadata-driven object lifecycle policies, optimizing durability, protection, performance, and locality

across multiple geographies. Users can adjust data management policies and monitor and apply traffic limits to

realign with the data landscape nondisruptively as their requirements change in ever-changing IT

environments.

Simple management with Grid Manager

The StorageGRID Grid Manager is a browser-based graphical interface that allows you to configure, manage,

and monitor your StorageGRID system across globally distributed locations in a single pane of glass.
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You can perform the following tasks with the StorageGRID Grid Manager interface:

• Manage globally distributed, petabyte-scale repositories of objects such as images, video, and records.

• Monitor grid nodes and services to ensure object availability.

• Manage the placement of object data over time using information lifecycle management (ILM) rules. These

rules govern what happens to an object’s data after it is ingested, how it is protected from loss, where

object data is stored, and for how long.

• Monitor transactions, performance, and operations within the system.

Information Lifecycle Management policies

StorageGRID has flexible data management policies that include keeping replica copies of your objects and

using EC (erasure coding) schemes like 2+1 and 4+2 (among others) to store your objects, depending on

specific performance and data protection requirements. As workloads and requirements change over time, it’s

common that ILM policies must change over time as well. Modifying ILM policies is a core feature, allowing

StorageGRID customers to adapt to their ever-changing environment quickly and easily. Please check the ILM

policy and ILM rules setup in StorageGRID.

Performance

StorageGRID scales performance by adding more storage nodes, which can be VMs, bare metal, or purpose-

built appliances like the SG5712, SG5760, SG6060, or SGF6024. In our tests, we exceeded the Apache Kafka

key performance requirements with a minimum-sized, three-node grid using the SGF6024 appliance. As

customers scale their Kafka cluster with additional brokers, they can add more storage nodes to increase

performance and capacity.

Load balancer and endpoint configuration

Admin nodes in StorageGRID provide the Grid Manager UI (user interface) and REST API endpoint to view,
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configure, and manage your StorageGRID system, as well as audit logs to track system activity. To provide a

highly available S3 endpoint for Confluent Kafka tiered storage, we implemented the StorageGRID load

balancer, which runs as a service on admin nodes and gateway nodes. In addition, the load balancer also

manages local traffic and talks to the GSLB (Global Server Load Balancing) to help with disaster recovery.

To further enhance endpoint configuration, StorageGRID provides traffic classification policies built into the

admin node, lets you monitor your workload traffic, and applies various quality-of-service (QoS) limits to your

workloads. Traffic classification policies are applied to endpoints on the StorageGRID Load Balancer service

for gateway nodes and admin nodes. These policies can assist with traffic shaping and monitoring.

Traffic classification in StorageGRID

StorageGRID has built-in QoS functionality. Traffic classification policies can help monitor different types of S3

traffic coming from a client application. You can then create and apply policies to put limits on this traffic based

on in/out bandwidth, the number of read/write concurrent requests, or the read/write request rate.

Apache Kafka

Apache Kafka is a framework implementation of a software bus using stream processing written in Java and

Scala. It’s aimed to provide a unified, high-throughput, low-latency platform for handling real-time data feeds.

Kafka can connect to an external system for data export and import through Kafka Connect and provides Kafka

streams, a Java stream processing library. Kafka uses a binary, TCP-based protocol that is optimized for

efficiency and relies on a "message set" abstraction that naturally groups messages together to reduce the

overhead of the network roundtrip. This enables larger sequential disk operations, larger network packets, and

contiguous memory blocks, thereby enabling Kafka to turn a bursty stream of random message writes into

linear writes. The following figure depicts the basic data flow of Apache Kafka.

Kafka stores key-value messages that come from an arbitrary number of processes called producers. The data

can be partitioned into different partitions within different topics. Within a partition, messages are strictly

ordered by their offsets (the position of a message within a partition) and indexed and stored together with a

timestamp. Other processes called consumers can read messages from partitions. For stream processing,

Kafka offers the Streams API that allows writing Java applications that consume data from Kafka and write

results back to Kafka. Apache Kafka also works with external stream processing systems such as Apache
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Apex, Apache Flink, Apache Spark, Apache Storm, and Apache NiFi.

Kafka runs on a cluster of one or more servers (called brokers), and the partitions of all topics are distributed

across the cluster nodes. Additionally, partitions are replicated to multiple brokers. This architecture allows

Kafka to deliver massive streams of messages in a fault-tolerant fashion and has allowed it to replace some of

the conventional messaging systems like Java Message Service (JMS), Advanced Message Queuing Protocol

(AMQP), and so on. Since the 0.11.0.0 release, Kafka offers transactional writes, which provide exactly once

stream processing using the Streams API.

Kafka supports two types of topics: regular and compacted. Regular topics can be configured with a retention

time or a space bound. If there are records that are older than the specified retention time or if the space

bound is exceeded for a partition, Kafka is allowed to delete old data to free storage space. By default, topics

are configured with a retention time of 7 days, but it’s also possible to store data indefinitely. For compacted

topics, records don’t expire based on time or space bounds. Instead, Kafka treats later messages as updates

to older message with the same key and guarantees never to delete the latest message per key. Users can

delete messages entirely by writing a so-called tombstone message with the null value for a specific key.

There are five major APIs in Kafka:

• Producer API. Permits an application to publish streams of records.

• Consumer API. Permits an application to subscribe to topics and processes streams of records.

• Connector API. Executes the reusable producer and consumer APIs that can link the topics to the existing

applications.

• Streams API. This API converts the input streams to output and produces the result.

• Admin API. Used to manage Kafka topics, brokers and other Kafka objects.

The consumer and producer APIs build on top of the Kafka messaging protocol and offer a reference

implementation for Kafka consumer and producer clients in Java. The underlying messaging protocol is a

binary protocol that developers can use to write their own consumer or producer clients in any programming

language. This unlocks Kafka from the Java Virtual Machine (JVM) ecosystem. A list of available non-Java

clients is maintained in the Apache Kafka wiki.

Apache Kafka use cases

Apache Kafka is most popular for messaging, website activity tracking, metrics, log aggregation, stream

processing, event sourcing, and commit logging.

• Kafka has improved throughput, built-in partitioning, replication, and fault-tolerance, which makes it a good

solution for large-scale message-processing applications.

• Kafka can rebuild a user’s activities (page views, searches) in a tracking pipeline as a set of real-time

publish-subscribe feeds.

• Kafka is often used for operational monitoring data. This involves aggregating statistics from distributed

applications to produce centralized feeds of operational data.

• Many people use Kafka as a replacement for a log aggregation solution. Log aggregation typically collects

physical log files off of servers and puts them in a central place (for example, a file server or HDFS) for

processing. Kafka abstracts files details and provides a cleaner abstraction of log or event data as a stream

of messages. This allows for lower-latency processing and easier support for multiple data sources and

distributed data consumption.

• Many users of Kafka process data in processing pipelines consisting of multiple stages, in which raw input

data is consumed from Kafka topics and then aggregated, enriched, or otherwise transformed into new

topics for further consumption or follow-up processing. For example, a processing pipeline for
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recommending news articles might crawl article content from RSS feeds and publish it to an "articles" topic.

Further processing might normalize or deduplicate this content and publish the cleansed article content to

a new topic, and a final processing stage might attempt to recommend this content to users. Such

processing pipelines create graphs of real-time data flows based on the individual topics.

• Event souring is a style of application design for which state changes are logged as a time-ordered

sequence of records. Kafka’s support for very large stored log data makes it an excellent backend for an

application built in this style.

• Kafka can serve as a kind of external commit-log for a distributed system. The log helps replicate data

between nodes and acts as a re-syncing mechanism for failed nodes to restore their data. The log

compaction feature in Kafka helps support this use case.

Confluent

Confluent Platform is an enterprise-ready platform that completes Kafka with advanced capabilities designed to

help accelerate application development and connectivity, enable transformations through stream processing,

simplify enterprise operations at scale, and meet stringent architectural requirements. Built by the original

creators of Apache Kafka, Confluent expands the benefits of Kafka with enterprise-grade features while

removing the burden of Kafka management or monitoring. Today, over 80% of the Fortune 100 are powered by

data streaming technology – and most of those use Confluent.

Why Confluent?

By integrating historical and real-time data into a single, central source of truth, Confluent makes it easy to

build an entirely new category of modern, event-driven applications, gain a universal data pipeline, and unlock

powerful new use cases with full scalability, performance, and reliability.

What is Confluent used for?

Confluent Platform lets you focus on how to derive business value from your data rather than worrying about

the underlying mechanics, such as how data is being transported or integrated between disparate systems.

Specifically, Confluent Platform simplifies connecting data sources to Kafka, building streaming applications, as

well as securing, monitoring, and managing your Kafka infrastructure. Today, Confluent Platform is used for a

wide array of use cases across numerous industries, from financial services, omnichannel retail, and

autonomous cars, to fraud detection, microservices, and IoT.

The following figure shows Confluent Kafka Platform components.
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Overview of Confluent’s event streaming technology

At the core of Confluent Platform is Apache Kafka, the most popular open-source distributed streaming

platform. The key capabilities of Kafka are as follows:

• Publish and subscribe to streams of records.

• Store streams of records in a fault tolerant way.

• Process streams of records.

Out of the box, Confluent Platform also includes Schema Registry, REST Proxy, a total of 100+ prebuilt Kafka

connectors, and ksqlDB.

Overview of Confluent platform’s enterprise features

• Confluent Control Center. A GUI-based system for managing and monitoring Kafka. It allows you to

easily manage Kafka Connect and to create, edit, and manage connections to other systems.

• Confluent for Kubernetes. Confluent for Kubernetes is a Kubernetes operator. Kubernetes operators

extend the orchestration capabilities of Kubernetes by providing the unique features and requirements for a

specific platform application. For Confluent Platform, this includes greatly simplifying the deployment

process of Kafka on Kubernetes and automating typical infrastructure lifecycle tasks.

• Confluent connectors to Kafka. Connectors use the Kafka Connect API to connect Kafka to other

systems such as databases, key-value stores, search indexes, and file systems. Confluent Hub has

downloadable connectors for the most popular data sources and sinks, including fully tested and supported

versions of these connectors with Confluent Platform. More details can be found here.

• Self- balancing clusters. Provides automated load balancing, failure detection and self-healing. It

provides support for adding or decommissioning brokers as needed, with no manual tuning.

• Confluent cluster linking. Directly connects clusters together and mirrors topics from one cluster to

another over a link bridge. Cluster linking simplifies setup of multi-datacenter, multi-cluster, and hybrid
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cloud deployments.

• Confluent auto data balancer. Monitors your cluster for the number of brokers, the size of partitions,

number of partitions, and the number of leaders within the cluster. It allows you to shift data to create an

even workload across your cluster, while throttling rebalance traffic to minimize the effect on production

workloads while rebalancing.

• Confluent replicator. Makes it easier than ever to maintain multiple Kafka clusters in multiple data

centers.

• Tiered storage. Provides options for storing large volumes of Kafka data using your favorite cloud

provider, thereby reducing operational burden and cost. With tiered storage, you can keep data on cost-

effective object storage and scale brokers only when you need more compute resources.

• Confluent JMS client. Confluent Platform includes a JMS-compatible client for Kafka. This Kafka client

implements the JMS 1.1 standard API, using Kafka brokers as the backend. This is useful if you have

legacy applications using JMS and you would like to replace the existing JMS message broker with Kafka.

• Confluent MQTT proxy. Provides a way to publish data directly to Kafka from MQTT devices and

gateways without the need for a MQTT broker in the middle.

• Confluent security plugins. Confluent security plugins are used to add security capabilities to various

Confluent Platform tools and products. Currently, there is a plugin available for the Confluent REST proxy

that helps to authenticate the incoming requests and propagate the authenticated principal to requests to

Kafka. This enables Confluent REST proxy clients to utilize the multitenant security features of the Kafka

broker.

Confluent verification

We performed verification with Confluent Platform 6.2 Tiered Storage in NetApp

StorageGRID. The NetApp and Confluent teams worked on this verification together and

ran the test cases required for verification.

Confluent Platform setup

We used the following setup for verification.

For verification, we used three zookeepers, five brokers, five test-script executing servers, named tools servers

with 256GB RAM, and 16 CPUs. For NetApp storage, we used StorageGRID with an SG1000 load balancer

with four SGF6024s. The storage and brokers were connected via 100GbE connections.

The following figure shows the network topology of configuration used for Confluent verification.
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The tools servers act as application clients that send requests to Confluent nodes.

Confluent tiered storage configuration

The tiered storage configuration requires the following parameters in Kafka:

Confluent.tier.archiver.num.threads=16

confluent.tier.fetcher.num.threads=32

confluent.tier.enable=true

confluent.tier.feature=true

confluent.tier.backend=S3

confluent.tier.s3.bucket=kafkasgdbucket1-2

confluent.tier.s3.region=us-west-2

confluent.tier.s3.cred.file.path=/data/kafka/.ssh/credentials

confluent.tier.s3.aws.endpoint.override=http://kafkasgd.rtpppe.netapp.com:

10444/

confluent.tier.s3.force.path.style.access=true

For verification, we used StorageGRID with the HTTP protocol, but HTTPS also works. The access key and

secret key are stored in the file name provided in the confluent.tier.s3.cred.file.path parameter.

NetApp object storage - StorageGRID

We configured single-site configuration in StorageGRID for verfication.
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Verification tests

We completed the following five test cases for the verification. These tests are executed on the Trogdor

framework. The first two were functionality tests and the remaining three were performance tests.
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Object store correctness test

This test determines whether all basic operations (for example, get/put/delete) on the object store API work

well according to the needs of tiered storage. It is a basic test that every object store service should expect to

pass ahead of the following tests. It is an assertive test that either passes or fails.

Tiering functionality correctness test

This test determines if end-to-end tiered storage functionality works well with an assertive test that either

passes or fails. The test creates a test topic that by default is configured with tiering enabled and highly a

reduced hotset size. It produces an event stream to the newly created test topic, it waits for the brokers to

archive the segments to the object store, and it then consumes the event stream and validates that the

consumed stream matches the produced stream. The number of messages produced to the event stream is

configurable, which lets the user generate a sufficiently large workload according to the needs of testing. The

reduced hotset size ensures that the consumer fetches outside the active segment are served only from the

object store; this helps test the correctness of the object store for reads. We have performed this test with and

without an object-store fault injection. We simulated node failure by stopping the service manager service in

one of the nodes in StorageGRID and validating that the end-to-end functionality works with object storage.

Tier fetch benchmark

This test validated the read performance of the tiered object storage and checked the range fetch read

requests under heavy load from segments generated by the benchmark. In this benchmark, Confluent

developed custom clients to serve the tier fetch requests.

Produce-consume workload benchmark

This test indirectly generated write workload on the object store through the archival of segments. The read

workload (segments read) was generated from object storage when consumer groups fetched the segments.

This workload was generated by the test script. This test checked the performance of read and write on the

object storage in parallel threads. We tested with and without object store fault injection as we did for the tiering

functionality correctness test.

Retention workload benchmark

This test checked the deletion performance of an object store under a heavy topic-retention workload. The

retention workload was generated using a test script that produces many messages in parallel to a test topic.

The test topic was configuring with an aggressive size-based and time-based retention setting that caused the

event stream to be continuously purged from the object store. The segments were then archived. This led to a

large number of deletions in the object storage by the broker and collection of the performance of the object-

store delete operations.

Performance tests with scalability

We performed the tiered storage testing with three to four nodes for producer and

consumer workloads with the NetApp StorageGRID setup. According to our tests, the

time to completion and the performance results were directly proportional to the number

of StorageGRID nodes. The StorageGRID setup required a minimum of three nodes.

• The time to complete the produce and consumer operation decreased linearly when the number of storage

nodes increased.
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• The performance for the s3 retrieve operation increased linearly based on number of StorageGRID nodes.

StorageGRID supports up to 200 StorgeGRID nodes.
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Confluent s3 connector

The Amazon S3 Sink connector exports data from Apache Kafka topics to S3 objects in

either the Avro, JSON, or Bytes formats. The Amazon S3 sink connector periodically polls

data from Kafka and in turn uploads it to S3. A partitioner is used to split the data of every

Kafka partition into chunks. Each chunk of data is represented as an S3 object. The key

name encodes the topic, the Kafka partition, and the start offset of this data chunk.

In this setup, we show you how to read and write topics in object storage from Kafka directly using the Kafka s3

sink connector. For this test, we used a stand-alone Confluent cluster, but this setup is applicable to a

distributed cluster.

1. Download Confluent Kafka from the Confluent website.

2. Unpack the package to a folder on your server.

3. Export two variables.

Export CONFLUENT_HOME=/data/confluent/confluent-6.2.0

export PATH=$PATH:/data/confluent/confluent-6.2.0/bin

4. For a stand-alone Confluent Kafka setup, the cluster creates a temporary root folder in /tmp. It also

creates Zookeeper, Kafka, a schema registry, connect, a ksql-server, and control-center folders and copies

their respective configuration files from $CONFLUENT_HOME. See the following example:

root@stlrx2540m1-108:~# ls -ltr /tmp/confluent.406980/

total 28

drwxr-xr-x 4 root root 4096 Oct 29 19:01 zookeeper

drwxr-xr-x 4 root root 4096 Oct 29 19:37 kafka

drwxr-xr-x 4 root root 4096 Oct 29 19:40 schema-registry

drwxr-xr-x 4 root root 4096 Oct 29 19:45 kafka-rest

drwxr-xr-x 4 root root 4096 Oct 29 19:47 connect

drwxr-xr-x 4 root root 4096 Oct 29 19:48 ksql-server

drwxr-xr-x 4 root root 4096 Oct 29 19:53 control-center

root@stlrx2540m1-108:~#

5. Configure Zookeeper. You don’t need to change anything if you use the default parameters.
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root@stlrx2540m1-108:~# cat

/tmp/confluent.406980/zookeeper/zookeeper.properties  | grep -iv ^#

dataDir=/tmp/confluent.406980/zookeeper/data

clientPort=2181

maxClientCnxns=0

admin.enableServer=false

tickTime=2000

initLimit=5

syncLimit=2

server.179=controlcenter:2888:3888

root@stlrx2540m1-108:~#

In the above configuration, we updated the server. xxx property. By default, you need three

Zookeepers for the Kafka leader selection.

6. We created a myid file in /tmp/confluent.406980/zookeeper/data with a unique ID:

root@stlrx2540m1-108:~# cat /tmp/confluent.406980/zookeeper/data/myid

179

root@stlrx2540m1-108:~#

We used the last number of IP addresses for the myid file. We used default values for the Kafka, connect,

control-center, Kafka, Kafka-rest, ksql-server, and schema-registry configurations.

7. Start the Kafka services.

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# confluent

local services  start

The local commands are intended for a single-node development

environment only,

NOT for production usage.

 

Using CONFLUENT_CURRENT: /tmp/confluent.406980

ZooKeeper is [UP]

Kafka is [UP]

Schema Registry is [UP]

Kafka REST is [UP]

Connect is [UP]

ksqlDB Server is [UP]

Control Center is [UP]

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

There is a log folder for each configuration, which helps troubleshoot issues. In some instances, services

take more time to start. Make sure all services are up and running.
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8. Install Kafka connect using confluent-hub.

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# ./confluent-

hub install confluentinc/kafka-connect-s3:latest

The component can be installed in any of the following Confluent

Platform installations:

  1. /data/confluent/confluent-6.2.0 (based on $CONFLUENT_HOME)

  2. /data/confluent/confluent-6.2.0 (where this tool is installed)

Choose one of these to continue the installation (1-2): 1

Do you want to install this into /data/confluent/confluent-

6.2.0/share/confluent-hub-components? (yN) y

Component's license:

Confluent Community License

http://www.confluent.io/confluent-community-license

I agree to the software license agreement (yN) y

Downloading component Kafka Connect S3 10.0.3, provided by Confluent,

Inc. from Confluent Hub and installing into /data/confluent/confluent-

6.2.0/share/confluent-hub-components

Do you want to uninstall existing version 10.0.3? (yN) y

Detected Worker's configs:

  1. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-

distributed.properties

  2. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-

standalone.properties

  3. Standard: /data/confluent/confluent-6.2.0/etc/schema-

registry/connect-avro-distributed.properties

  4. Standard: /data/confluent/confluent-6.2.0/etc/schema-

registry/connect-avro-standalone.properties

  5. Based on CONFLUENT_CURRENT:

/tmp/confluent.406980/connect/connect.properties

  6. Used by Connect process with PID 15904:

/tmp/confluent.406980/connect/connect.properties

Do you want to update all detected configs? (yN) y

Adding installation directory to plugin path in the following files:

  /data/confluent/confluent-6.2.0/etc/kafka/connect-

distributed.properties

  /data/confluent/confluent-6.2.0/etc/kafka/connect-

standalone.properties

  /data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-

distributed.properties

  /data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-

standalone.properties

  /tmp/confluent.406980/connect/connect.properties

  /tmp/confluent.406980/connect/connect.properties
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Completed

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

You can also install a specific version by using confluent-hub install confluentinc/kafka-

connect-s3:10.0.3.

9. By default, confluentinc-kafka-connect-s3 is installed in /data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3.

10. Update the plug-in path with the new confluentinc-kafka-connect-s3.

root@stlrx2540m1-108:~# cat /data/confluent/confluent-

6.2.0/etc/kafka/connect-distributed.properties | grep plugin.path

#

plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/co

nnectors,

plugin.path=/usr/share/java,/data/zookeeper/confluent/confluent-

6.2.0/share/confluent-hub-components,/data/confluent/confluent-

6.2.0/share/confluent-hub-components,/data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3

root@stlrx2540m1-108:~#

11. Stop the Confluent services and restart them.

confluent local services  stop

confluent local services  start

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# confluent

local services  status

The local commands are intended for a single-node development

environment only,

NOT for production usage.

 

Using CONFLUENT_CURRENT: /tmp/confluent.406980

Connect is [UP]

Control Center is [UP]

Kafka is [UP]

Kafka REST is [UP]

ksqlDB Server is [UP]

Schema Registry is [UP]

ZooKeeper is [UP]

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin#

12. Configure the access ID and secret key in the /root/.aws/credentials file.
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root@stlrx2540m1-108:~# cat /root/.aws/credentials

[default]

aws_access_key_id = xxxxxxxxxxxx

aws_secret_access_key = xxxxxxxxxxxxxxxxxxxxxxxxxx

root@stlrx2540m1-108:~#

13. Verify that the bucket is reachable.

root@stlrx2540m4-01:~# aws s3 –endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 ls kafkasgdbucket1-2

2021-10-29 21:04:18       1388 1

2021-10-29 21:04:20       1388 2

2021-10-29 21:04:22       1388 3

root@stlrx2540m4-01:~#

14. Configure the s3-sink properties file for s3 and bucket configuration.

root@stlrx2540m1-108:~# cat /data/confluent/confluent-

6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-

s3/etc/quickstart-s3.properties | grep -v ^#

name=s3-sink

connector.class=io.confluent.connect.s3.S3SinkConnector

tasks.max=1

topics=s3_testtopic

s3.region=us-west-2

s3.bucket.name=kafkasgdbucket1-2

store.url=http://kafkasgd.rtpppe.netapp.com:10444/

s3.part.size=5242880

flush.size=3

storage.class=io.confluent.connect.s3.storage.S3Storage

format.class=io.confluent.connect.s3.format.avro.AvroFormat

partitioner.class=io.confluent.connect.storage.partitioner.DefaultPartit

ioner

schema.compatibility=NONE

root@stlrx2540m1-108:~#

15. Import a few records to the s3 bucket.
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kafka-avro-console-producer --broker-list localhost:9092 --topic

s3_topic \

--property

value.schema='{"type":"record","name":"myrecord","fields":[{"name":"f1",

"type":"string"}]}'

{"f1": "value1"}

{"f1": "value2"}

{"f1": "value3"}

{"f1": "value4"}

{"f1": "value5"}

{"f1": "value6"}

{"f1": "value7"}

{"f1": "value8"}

{"f1": "value9"}

16. Load the s3-sink connector.
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root@stlrx2540m1-108:~# confluent local services connect connector load

s3-sink  --config /data/confluent/confluent-6.2.0/share/confluent-hub-

components/confluentinc-kafka-connect-s3/etc/quickstart-s3.properties

The local commands are intended for a single-node development

environment only,

NOT for production usage.

https://docs.confluent.io/current/cli/index.html

{

  "name": "s3-sink",

  "config": {

    "connector.class": "io.confluent.connect.s3.S3SinkConnector",

    "flush.size": "3",

    "format.class": "io.confluent.connect.s3.format.avro.AvroFormat",

    "partitioner.class":

"io.confluent.connect.storage.partitioner.DefaultPartitioner",

    "s3.bucket.name": "kafkasgdbucket1-2",

    "s3.part.size": "5242880",

    "s3.region": "us-west-2",

    "schema.compatibility": "NONE",

    "storage.class": "io.confluent.connect.s3.storage.S3Storage",

    "store.url": "http://kafkasgd.rtpppe.netapp.com:10444/",

    "tasks.max": "1",

    "topics": "s3_testtopic",

    "name": "s3-sink"

  },

  "tasks": [],

  "type": "sink"

}

root@stlrx2540m1-108:~#

17. Check the s3-sink status.
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root@stlrx2540m1-108:~# confluent local services connect connector

status s3-sink

The local commands are intended for a single-node development

environment only,

NOT for production usage.

https://docs.confluent.io/current/cli/index.html

{

  "name": "s3-sink",

  "connector": {

    "state": "RUNNING",

    "worker_id": "10.63.150.185:8083"

  },

  "tasks": [

    {

      "id": 0,

      "state": "RUNNING",

      "worker_id": "10.63.150.185:8083"

    }

  ],

  "type": "sink"

}

root@stlrx2540m1-108:~#

18. Check the log to make sure that s3-sink is ready to accept topics.

root@stlrx2540m1-108:~# confluent local services connect log

19. Check the topics in Kafka.

kafka-topics --list --bootstrap-server localhost:9092

…

connect-configs

connect-offsets

connect-statuses

default_ksql_processing_log

s3_testtopic

s3_topic

s3_topic_new

root@stlrx2540m1-108:~#

20. Check the objects in the s3 bucket.
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root@stlrx2540m1-108:~# aws s3 --endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 ls --recursive kafkasgdbucket1-

2/topics/

2021-10-29 21:24:00        213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro

2021-10-29 21:24:00        213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000003.avro

2021-10-29 21:24:00        213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000006.avro

2021-10-29 21:24:08        213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000009.avro

2021-10-29 21:24:08        213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000012.avro

2021-10-29 21:24:09        213

topics/s3_testtopic/partition=0/s3_testtopic+0+0000000015.avro

root@stlrx2540m1-108:~#

21. To verify the contents, copy each file from S3 to your local filesystem by running the following command:

root@stlrx2540m1-108:~# aws s3 --endpoint-url

http://kafkasgd.rtpppe.netapp.com:10444 cp s3://kafkasgdbucket1-

2/topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro

tes.avro

download: s3://kafkasgdbucket1-

2/topics/s3_testtopic/partition=0/s3_testtopic+0+0000000000.avro to

./tes.avro

root@stlrx2540m1-108:~#

22. To print the records, use avro-tools-1.11.0.1.jar (available in the Apache Archives).

root@stlrx2540m1-108:~# java -jar /usr/src/avro-tools-1.11.0.1.jar

tojson tes.avro

21/10/30 00:20:24 WARN util.NativeCodeLoader: Unable to load native-

hadoop library for your platform... using builtin-java classes where

applicable

{"f1":"value1"}

{"f1":"value2"}

{"f1":"value3"}

root@stlrx2540m1-108:~#

Confluent Self-balancing Clusters

If you have managed a Kafka cluster before, you are likely familiar with the challenges
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that come with manually reassigning partitions to different brokers to make sure that the

workload is balanced across the cluster. For organizations with large Kafka deployments,

reshuffling large amounts of data can be daunting, tedious, and risky, especially if

mission-critical applications are built on top of the cluster. However, even for the smallest

Kafka use cases, the process is time consuming and prone to human error.

In our lab, we tested the Confluent self-balancing clusters feature, which automates rebalancing based on

cluster topology changes or uneven load. The Confluent rebalance test helps to measure the time to add a

new broker when node failure or the scaling node requires rebalancing data across brokers. In classic Kafka

configurations, the amount of data to be rebalanced grows as the cluster grows, but, in tiered storage,

rebalancing is restricted to a small amount of data. Based on our validation, rebalancing in tiered storage takes

seconds or minutes in a classic Kafka architecture and grows linearly as the cluster grows.

In self-balancing clusters, partition rebalances are fully automated to optimize Kafka’s throughput, accelerate

broker scaling, and reduce the operational burden of running a large cluster. At steady-state, self-balancing

clusters monitor the skew of data across the brokers and continuously reassigns partitions to optimize cluster

performance. When scaling the platform up or down, self-balancing clusters automatically recognize the

presence of new brokers or the removal of old brokers and trigger a subsequent partition reassignment. This

enables you to easily add and decommission brokers, making your Kafka clusters fundamentally more elastic.

These benefits come without any need for manual intervention, complex math, or the risk of human error that

partition reassignments typically entail. As a result, data rebalances are completed in far less time, and you are

free to focus on higher-value event-streaming projects rather than needing to constantly supervise your

clusters.

Best practice guidelines

This section presents lessons learned from this certification.

• Based on our validation, S3 object storage is best for Confluent to keep data.

• We can use high-throughput SAN (specifically FC) to keep the broker hot data or local disk, because, in the

Confluent tiered storage configuration, the size of the data held in the brokers data directory is based on

the segment size and retention time when the data is moved to object storage.

• Object stores provide better performance when segment.bytes is higher; we tested 512MB.

• In Kafka, the length of the key or value (in bytes) for each record produced to the topic is controlled by the

length.key.value parameter. For StorageGRID, S3 object ingest and retrieve performance increased

to higher values. For example, 512 bytes provided a 5.8GBps retrieve, 1024 bytes provided a 7.5GBps s3

retrieve, and 2048 bytes provided close to 10GBps.

The following figure presents the S3 object ingest and retrieve based on length.key.value.
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• Kafka tuning. To improve the performance of tiered storage, you can increase TierFetcherNumThreads

and TierArchiverNumThreads. As a general guideline, you want to increase TierFetcherNumThreads to

match the number of physical CPU cores and increase TierArchiverNumThreads to half the number of

CPU cores. For example, in server properties, if you have a machine with eight physical cores, set

confluent.tier.fetcher.num.threads = 8 and confluent.tier.archiver.num.threads = 4.

• Time interval for topic deletes. When a topic is deleted, deletion of the log segment files in object storage

does not immediately begin. Rather, there is a time interval with a default value of 3 hours before deletion

of those files takes place. You can modify the configuration, confluent.tier.topic.delete.check.interval.ms, to

change the value of this interval. If you delete a topic or cluster, you can also manually delete the objects in

the respective bucket.

• ACLs on tiered storage internal topics. A recommended best practice for on-premises deployments is to

enable an ACL authorizer on the internal topics used for tiered storage. Set ACL rules to limit access on

this data to the broker user only. This secures the internal topics and prevents unauthorized access to

tiered storage data and metadata.

kafka-acls --bootstrap-server localhost:9092 --command-config adminclient-

configs.conf \

--add --allow-principal User:<kafka> --operation All --topic "_confluent-

tier-state"

Replace the user <kafka> with the actual broker principal in your deployment.

For example, the command confluent-tier-state sets ACLs on the internal topic for tiered storage.

Currently, there is only a single internal topic related to tiered storage. The example creates an ACL that

provides the principal Kafka permission for all operations on the internal topic.

Sizing

Kafka sizing can be performed with four configuration modes: simple, granular, reverse,

and partitions.
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Simple

The simple mode is appropriate for the first-time Apache Kafka users or early state use cases. For this mode,

you provide requirements such as throughput MBps, read fanout, retention, and the resource utilization

percentage (60% is default). You also enter the environment, such as on-premises (bare-metal, VMware,

Kubernetes, or OpenStack) or cloud. Based on this information, the sizing of a Kafka cluster provides the

number of servers required for the broker, the zookeeper, Apache Kafka connect workers, the schema registry,

a REST Proxy, ksqlDB, and the Confluent control center.

For tiered storage, consider the granular configuration mode for sizing a Kafka cluster. Granular mode is

appropriate for experienced Apache Kafka users or well-defined use cases. This section describes sizing for

producers, stream processors, and consumers.

Producers

To describe the producers for Apache Kafka (for example a native client, REST proxy, or Kafka connector),

provide the following information:

• Name. Spark.

• Producer type. Application or service, proxy (REST, MQTT, other), and existing database (RDBMS,

NOSQL, other). You can also select “I don’t know.”

• Average throughput. In events per second (1,000,000 for example).

• Peak throughput. In events per second (4,000,000 for example).

• Average message size. In bytes, uncompressed (max 1MB; 1000 for example).

• Message format. Options include Avro, JSON, protocol buffers, binary, text, “I don’t know,” and other.

• Replication factor. Options are 1, 2, 3 (Confluent recommendation), 4, 5, or 6.

• Retention time. One day (for example). How long do you want your data to be stored in Apache Kafka?

Enter -1 with any unit for an infinite time. The calculator assumes a retention time of 10 years for infinite

retention.

• Select the check box for "Enable Tiered Storage to Decrease Broker Count and Allow for Infinite Storage?"

• When tiered storage is enabled, the retention fields control the hot set of data that is stored locally on the

broker. The archival retention fields control how long data is stored in archival object storage.

• Archival Storage Retention. One year (for example). How long do you want your data to be stored in

archival storage? Enter -1 with any unit for an infinite duration. The calculator assumes a retention of 10

years for infinite retention.

• Growth Multiplier. 1 (for example). If the value of this parameter is based on current throughput, set it to 1.

To size based on additional growth, set this parameter to a growth multiplier.

• Number of producer instances. 10 (for example). How many producer instances will be running? This

input is required to incorporate the CPU load into the sizing calculation. A blank value indicates that CPU

load is not incorporated into the calculation.

Based on this example input, sizing has the following effect on producers:

• Average throughput in uncompressed bytes: 1GBps. Peak throughput in uncompressed bytes: 4GBps.

Average throughput in compressed bytes: 400MBps. Peak throughput in compressed bytes: 1.6GBps. This

is based on a default 60% compression rate (you can change this value).

◦ Total on-broker hotset storage required: 31,104TB, including replication, compressed. Total off-broker

archival storage required: 378,432TB, compressed. Use https://fusion.netapp.com for StorageGRID

sizing.
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Stream Processors must describe their applications or services that consume data from Apache Kafka and

produce back into Apache Kafka. In most cases these are built in ksqlDB or Kafka Streams.

• Name. Spark streamer.

• Processing time. How long does this processor take to process a single message?

◦ 1 ms (simple, stateless transformation) [example], 10ms (stateful in-memory operation).

◦ 100ms (stateful network or disk operation), 1000ms (3rd party REST call).

◦ I have benchmarked this parameter and know exactly how long it takes.

• Output Retention. 1 day (example). A stream processor produces its output back to Apache Kafka. How

long do you want this output data to be stored in Apache Kafka? Enter -1 with any unit for an infinite

duration.

• Select the check box "Enable Tiered Storage to Decrease Broker Count and Allow for Infinite Storage?"

• Archival Storage Retention. 1 year (for example). How long do you want your data to be stored in

archival storage? Enter -1 with any unit for an infinite duration. The calculator assumes a retention of 10

years for infinite retention.

• Output Passthrough Percentage. 100 (for example). A stream processor produces its output back to

Apache Kafka. What percentage of inbound throughput will be outputted back into Apache Kafka? For

example, if inbound throughput is 20MBps and this value is 10, the output throughput will be 2MBps.

• From which applications does this read from? Select “Spark,” the name used in producer type-based

sizing.

Based on the above input, you can expect the following effects of sizing on stream processer instances

and topic partition estimates:

• This stream processor application requires the following number of instances. The incoming topics likely

require this many partitions as well. Contact Confluent to confirm this parameter.

◦ 1,000 for average throughput with no growth multiplier

◦ 4,000 for peak throughput with no growth multiplier

◦ 1,000 for average throughput with a growth multiplier

◦ 4,000 for peak throughput with a growth multiplier

Consumers

Describe your applications or services that consume data from Apache Kafka and do not produce back into

Apache Kafka; for example, a native client or Kafka Connector.

• Name. Spark consumer.

• Processing time. How long does this consumer take to process a single message?

◦ 1ms (for example, a simple and stateless task like logging)

◦ 10ms (fast writes to a datastore)

◦ 100ms (slow writes to a datastore)

◦ 1000ms (third party REST call)

◦ Some other benchmarked process of known duration.

• Consumer type. Application, proxy, or sink to an existing datastore (RDBMS, NoSQL, other).

• From which applications does this read from? Connect this parameter with producer and stream sizing

determined previously.
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Based on the above input, you must determine the sizing for consumer instances and topic partition estimates.

A consumer application requires the following number of instances.

• 2,000 for average throughput, no growth multiplier

• 8,000 for peak throughput, no growth multiplier

• 2,000 for average throughput, including growth multiplier

• 8,000 for peak throughput, including growth multiplier

The incoming topics likely need this number of partitions as well. Contact Confluent to confirm.

In addition to the requirements for producers, stream processors, and consumers, you must provide the

following additional requirements:

• Rebuild time. For example, 4 hours. If an Apache Kafka broker host fails, its data is lost, and a new host is

provisioned to replace the failed host, how fast must this new host rebuild itself? Leave this parameter

blank if the value is unknown.

• Resource utilization target (percentage). For example, 60. How utilized do you want your hosts to be

during average throughput? Confluent recommends 60% utilization unless you are using Confluent self-

balancing clusters, in which case utilization can be higher.

Describe your environment

• What environment will your cluster be running in? Amazon Web Services, Microsoft Azure, Google

cloud platform, bare-metal on premises, VMware on premises, OpenStack on premises, or Kubernates on

premises?

• Host details. Number of cores: 48 (for example), network card type (10GbE, 40GbE, 16GbE, 1GbE, or

another type).

• Storage volumes. Host: 12 (for example). How many hard drives or SSDs are supported per host?

Confluent recommends 12 hard drives per host.

• Storage capacity/volume (in GB). 1000 (for example). How much storage can a single volume store in

gigabytes? Confluent recommends 1TB disks.

• Storage configuration. How are storage volumes configured? Confluent recommends RAID10 to take

advantage of all Confluent features. JBOD, SAN, RAID 1, RAID 0, RAID 5, and other types are also

supported.

• Single volume throughput (MBps). 125 (for example). How fast can a single storage volume read or

write in megabytes per second? Confluent recommends standard hard drives, which typically have

125MBps throughput.

• Memory capacity (GB). 64 (for example).

After you have determined your environmental variables, select Size my Cluster. Based on the example

parameters indicated above, we determined the following sizing for Confluent Kafka:

• Apache Kafka. Broker count: 22. Your cluster is storage-bound. Consider enabling tiered storage to

decrease your host count and allow for infinite storage.

• Apache ZooKeeper. Count: 5; Apache Kafka Connect Workers: Count: 2; Schema Registry: Count: 2;

REST Proxy: Count: 2; ksqlDB: Count: 2; Confluent Control Center: Count: 1.

Use reverse mode for platform teams without a use case in mind. Use partitions mode to calculate how many

partitions a single topic requires. See https://eventsizer.io for sizing based on the reverse and partitions modes.
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Conclusion

This document provides best practice guidelines for using Confluent Tiered Storage with

NetApp storage, including verification tests, tiered storage performance results, tuning,

Confluent S3 connectors, and the self-balancing feature. Considering ILM policies,

Confluent performance with multiple performance tests for verification, and industry-

standard S3 APIs, NetApp StorageGRID object storage is an optimal choice for Confluent

tiered storage.

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:

• What is Apache Kafka

https://www.confluent.io/what-is-apache-kafka/

• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

• S3-sink parameter details

https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html#s3-configuration-options

• Apache Kafka

https://en.wikipedia.org/wiki/Apache_Kafka

• Infinite Storage in Confluent Platform

https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/

• Confluent Tiered Storage - Best practices and sizing

https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations

• Amazon S3 sink connector for Confluent Platform

https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html

• Kafka sizing

https://eventsizer.io

• StorageGRID sizing

https://fusion.netapp.com/

• Kafka use cases

https://kafka.apache.org/uses
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• Self-balancing Kafka clusters in confluent platform 6.0

https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/

https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-

to-date/

NetApp hybrid cloud data solutions - Spark and Hadoop
based on customer use cases

TR-4657: NetApp hybrid cloud data solutions - Spark and Hadoop based on
customer use cases

Karthikeyan Nagalingam and Sathish Thyagarajan, NetApp

This document describes hybrid cloud data solutions using NetApp AFF and FAS storage

systems, NetApp Cloud Volumes ONTAP, NetApp connected storage, and NetApp

FlexClone technology for Spark and Hadoop. These solution architectures allow

customers to choose an appropriate data protection solution for their environment.

NetApp designed these solutions based on interaction with customers and their business

use-cases. This document provides the following detailed information:

• Why we need data protection for Spark and Hadoop environments and customer challenges.

• The data fabric powered by NetApp vision and its building blocks and services.

• How these building blocks can be used to architect flexible data protection workflows.

• The pros and cons of several architectures based on real-world customer use cases. Each use case

provides the following components:

◦ Customer scenarios

◦ Requirements and challenges

◦ Solutions

◦ Summary of the solutions

Why Hadoop data protection?

In a Hadoop and Spark environment, the following concerns must be addressed:

• Software or human failures. Human error in software updates while carrying out Hadoop data operations

can lead to faulty behavior that can cause unexpected results from the job. In such case, we need to

protect the data to avoid failures or unreasonable outcomes. For example, as the result of a poorly

executed software update to a traffic signal analysis application, a new feature that fails to properly analyze

traffic signal data in the form of plain text. The software still analyzes JSON and other non- text file formats,

resulting in the real-time traffic control analytics system producing prediction results that are missing data

points. This situation can cause faulty outputs that might lead to accidents at the traffic signals. Data

protection can address this issue by providing the capability to quickly roll back to the previous working

application version.

• Size and scale. The size of the analytics data grows day by day due to the ever-increasing numbers of

data sources and volume. Social media, mobile apps, data analytics, and cloud computing platforms are

the main sources of data in the current big data market, which is increasing very rapidly, and therefore the
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data needs to be protected to ensure accurate data operations.

• Hadoop’s native data protection. Hadoop has a native command to protect the data, but this command

does not provide consistency of data during backup. It only supports directory-level backup. The snapshots

created by Hadoop are read-only and cannot be used to reuse the backup data directly.

Data protection challenges for Hadoop and Spark customers

A common challenge for Hadoop and Spark customers is to reduce the backup time and increase backup

reliability without negatively affecting performance at the production cluster during data protection.

Customers also need to minimize recovery point objective (RPO) and recovery time objective (RTO) downtime

and control their on-premises and cloud-based disaster recovery sites for optimal business continuity. This

control typically comes from having enterprise-level management tools.

The Hadoop and Spark environments are complicated because not only is the data volume huge and growing,

but the rate this data arrives is increasing. This scenario makes it difficult to rapidly create efficient, up-to-date

DevTest and QA environments from the source data. NetApp recognizes these challenges and offers the

solutions presented in this paper.

Data fabric powered by NetApp for big data architecture

The data fabric powered by NetApp simplifies and integrates data management across

cloud and on-premises environments to accelerate digital transformation.

The data fabric powered by NetApp delivers consistent and integrated data management services and

applications (building blocks) for data visibility and insights, data access and control, and data protection and

security, as shown in the figure below.
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Proven data fabric customer use cases

The data fabric powered by NetApp provides the following nine proven use cases for customers:

• Accelerate analytics workloads

• Accelerate DevOps transformation

• Build cloud hosting infrastructure

• Integrate cloud data services

• Protect and secure data

• Optimize unstructured data

• Gain data center efficiencies

• Deliver data insights and control

• Simplify and automate

This document covers two of the nine use cases (along with their solutions):
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• Accelerate analytics workloads

• Protect and secure data

NetApp NFS direct access

The NetApp NFS allows customers to run big data analytics jobs on their existing or new NFSv3 or NFSv4 data

without moving or copying the data. It prevents multiple copies of data and eliminates the need to sync the

data with a source. For example, in the financial sector, the movement of data from one place to another place

must meet legal obligations, which is not an easy task. In this scenario, the NetApp NFS direct access

analyzes the financial data from its original location. Another key benefit is that using the NetApp NFS direct

access simplifies protecting Hadoop data by using native Hadoop commands and enables data protection

workflows leveraging NetApp’s rich data management portfolio.

The NetApp NFS direct access provides two kinds of deployment options for Hadoop/Spark clusters:

• By default, the Hadoop/Spark clusters use Hadoop Distributed File System (HDFS) for data storage and

the default file system. The NetApp NFS direct access can replace the default HDFS with NFS storage as

the default file system, enabling direct analytics operations on NFS data.

• In another deployment option, the NetApp NFS direct access supports configuring NFS as additional

storage along with HDFS in a single Hadoop/Spark cluster. In this case, the customer can share data

through NFS exports and access it from the same cluster along with HDFS data.

The key benefits of using the NetApp NFS direct access include:

• Analyzes the data from its current location, which prevents the time- and performance-consuming task of

moving analytics data to a Hadoop infrastructure such as HDFS.

• Reduces the number of replicas from three to one.

• Enables users to decouple the compute and storage to scale them independently.

• Provides enterprise data protection by leveraging the rich data management capabilities of ONTAP.
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• Is certified with the Hortonworks data platform.

• Enables hybrid data analytics deployments.

• Reduces the backup time by leveraging dynamic multithread capability.

Building blocks for big data

The data fabric powered by NetApp integrates data management services and applications (building blocks)

for data access, control, protection, and security, as shown in the figure below.

The building blocks in the figure above include:

• NetApp NFS direct access. Provides the latest Hadoop and Spark clusters with direct access to NetApp

NFS volumes without additional software or driver requirements.

• NetApp Cloud Volumes ONTAP and Cloud Volume Services. Software-defined connected storage

based on ONTAP running in Amazon Web Services (AWS) or Azure NetApp Files (ANF) in Microsoft Azure

cloud services.

• NetApp SnapMirror technology. Provides data protection capabilities between on-premises and ONTAP

Cloud or NPS instances.

• Cloud service providers. These providers include AWS, Microsoft Azure, Google Cloud, and IBM Cloud.

• PaaS. Cloud-based analytics services such as Amazon Elastic MapReduce (EMR) and Databricks in AWS

as well as Microsoft Azure HDInsight and Azure Databricks.

Hadoop data protection and NetApp

Hadoop DistCp is a native tool used for large intercluster and intracluster copying. The

Hadoop DistCp basic process shown in the figure below is a typical backup workflow

using Hadoop native tools such as MapReduce to copy Hadoop data from an HDFS

source to a corresponding target.

The NetApp NFS direct access enables customers to set NFS as the target destination for the Hadoop DistCp

tool to copy the data from HDFS source into an NFS share through MapReduce. The NetApp NFS direct
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access acts as an NFS driver for the DistCp tool.

Overview of Hadoop data protection use cases

This section provides a high-level description of the data protection use cases, which

constitute the focus of this paper. The remaining sections provide more details for each

use case, such as the customer problem (scenario), requirements and challenges, and

solutions.

Use case 1: Backing up Hadoop data

For this use case, NetApp NFS volume helped a large financial institution reduce the long backup window time

from more than 24 hours to just under a few hours.

Use case 2: Backup and disaster recovery from the cloud to on-premises

By using the data fabric powered by NetApp as building blocks, a large broadcasting company was able to

fulfill its requirement of backing up cloud data into its on-premise data center depending on the different modes

of data transfers, such as on demand, instantaneous, or based on the Hadoop/Spark cluster load.

Use case 3: Enabling DevTest on existing Hadoop data

NetApp solutions helped an online music distributor to rapidly build multiple space-efficient Hadoop clusters in

different branches to create reports and run daily DevTest tasks by using scheduled policies.

Use case 4: Data protection and multicloud connectivity

A large service provider used the data fabric powered by NetApp to provide multicloud analytics to its

customers from different cloud instances.

Use case 5: Accelerate analytic workloads

One of the largest financial services and investment banks used the NetApp network-attached storage solution

to reduce I/O wait time and accelerate its quantitative financial analytics platform.
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Use case 1: Backing up Hadoop data

Scenario

In this scenario, the customer has a large on-premises Hadoop repository and wants to back it up for disaster

recovery purposes. However, the customer’s current backup solution is costly and is suffering from a long

backup window of more than 24 hours.

Requirements and challenges

The main requirements and challenges for this use case include:

• Software backward compatibility:

◦ The proposed alternative backup solution should be compatible with the current running software

versions used in the production Hadoop cluster.

• To meet the committed SLAs, the proposed alternative solution should achieve very low RPOs and RTOs.

• The backup created by the NetApp backup solution can be used in the Hadoop cluster built locally in the

data center as well as the Hadoop cluster running in the disaster recovery location at the remote site.

• The proposed solution must be cost effective.

• The proposed solution must reduce the performance effect on the currently running, in-production analytics

jobs during the backup times.

Customer’s existing backup solutionx

The figure below shows the original Hadoop native backup solution.

The production data is protected to tape through the intermediate backup cluster:

• HDFS1 data is copied to HDFS2 by running the hadoop distcp -update <hdfs1> <hdfs2>

command.

• The backup cluster acts as an NFS gateway, and the data is manually copied to tape through the Linux cp

command through the tape library.

The benefits of the original Hadoop native backup solution include:

• The solution is based on Hadoop native commands, which saves the user from having to learn new

procedures.

• The solution leverages industry-standard architecture and hardware.

The disadvantages of the original Hadoop native backup solution include:
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• The long backup window time exceeds 24 hours, which makes the production data vulnerable.

• Significant cluster performance degradation during backup times.

• Copying to tape is a manual process.

• The backup solution is expensive in terms of the hardware required and the human hours required for

manual processes.

Backup solutions

Based on these challenges and requirements, and taking into consideration the existing backup system, three

possible backup solutions were suggested. The following subsections describe each of these three different

backup solutions, labeled solution A through solution C.

Solution A

In Solution A, the backup Hadoop cluster sends the secondary backups to NetApp NFS storage systems,

eliminating the tape requirement, as shown in the figure below.

The detailed tasks for solution A include:

• The production Hadoop cluster has the customer’s analytics data in the HDFS that requires protection.

• The backup Hadoop cluster with HDFS acts as an intermediate location for the data. Just a bunch of disks

(JBOD) provides the storage for HDFS in both the production and backup Hadoop clusters.

• Protect the Hadoop production data is protected from the production cluster HDFS to the backup cluster

HDFS by running the Hadoop distcp –update –diff <hdfs1> <hdfs2> command.

The Hadoop snapshot is used to protect the data from production to the backup Hadoop cluster.

• The NetApp ONTAP storage controller provides an NFS exported volume, which is provisioned to the

backup Hadoop cluster.

• By running the Hadoop distcp command leveraging MapReduce and multiple mappers, the analytics

data is protected from the backup Hadoop cluster to NFS.

After the data is stored in NFS on the NetApp storage system, NetApp Snapshot, SnapRestore, and
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FlexClone technologies are used to back up, restore, and duplicate the Hadoop data as needed.

Hadoop data can be protected to the cloud as well as disaster recovery locations by using

SnapMirror technology.

The benefits of solution A include:

• Hadoop production data is protected from the backup cluster.

• HDFS data is protected through NFS enabling protection to cloud and disaster recovery locations.

• Improves performance by offloading backup operations to the backup cluster.

• Eliminates manual tape operations

• Allows for enterprise management functions through NetApp tools.

• Requires minimal changes to the existing environment.

• Is a cost-effective solution.

The disadvantage of this solution is that it requires a backup cluster and additional mappers to improve

performance.

The customer recently deployed solution A due to its simplicity, cost, and overall performance.

In this solution, SAN disks from ONTAP can be used instead of JBOD. This option offloads the backup cluster

storage load to ONTAP; however, the downside is that SAN fabric switches are required.

Solution B

Solution B adds NFS volume to the production Hadoop cluster, which eliminates the need for the backup

Hadoop cluster, as shown in the figure below.
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The detailed tasks for solution B include:

• The NetApp ONTAP storage controller provisions the NFS export to the production Hadoop cluster.

The Hadoop native hadoop distcp command protects the Hadoop data from the production cluster

HDFS to NFS.

• After the data is stored in NFS on the NetApp storage system, Snapshot, SnapRestore, and FlexClone

technologies are used to back up, restore, and duplicate the Hadoop data as needed.

The benefits of solution B include:

• The production cluster is slightly modified for the backup solution, which simplifies implementation and

reduces additional infrastructure cost.

• A backup cluster for the backup operation is not required.

• HDFS production data is protected in the conversion to NFS data.

• The solution allows for enterprise management functions through NetApp tools.

The disadvantage of this solution is that it’s implemented in the production cluster, which can add additional

administrator tasks in the production cluster.

Solution C

In solution C, the NetApp SAN volumes are directly provisioned to the Hadoop production cluster for HDFS

storage, as shown in the figure below.
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The detailed steps for solution C include:

• NetApp ONTAP SAN storage is provisioned at the production Hadoop cluster for HDFS data storage.

• NetApp Snapshot and SnapMirror technologies are used to back up the HDFS data from the production

Hadoop cluster.

• There is no performance effect to production for the Hadoop/Spark cluster during the Snapshot copy

backup process because the backup is at the storage layer.

Snapshot technology provides backups that complete in seconds regardless of the size of the

data.

The benefits of solution C include:

• Space-efficient backup can be created by using Snapshot technology.

• Allows for enterprise management functions through NetApp tools.

Use case 2: Backup and disaster recovery from the cloud to on-premises

This use case is based on a broadcasting customer that needs to back up cloud-based

analytics data to its on-premises data center, as illustrated in the figure below.
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Scenario

In this scenario, the IoT sensor data is ingested into the cloud and analyzed by using an open source Apache

Spark cluster within AWS. The requirement is to back up the processed data from the cloud to on-premises.

Requirements and challenges

The main requirements and challenges for this use case include:

• Enabling data protection should not cause any performance effect on the production Spark/Hadoop cluster

in the cloud.

• Cloud sensor data needs to be moved and protected to on-premises in an efficient and secure way.

• Flexibility to transfer data from the cloud to on-premises under different conditions, such as on-demand,

instantaneous, and during low-cluster load times.
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Solution

The customer uses AWS Elastic Block Store (EBS) for its Spark cluster HDFS storage to receive and ingest

data from remote sensors through Kafka. Consequently, the HDFS storage acts as the source for the backup

data.

To fulfill these requirements, NetApp ONTAP Cloud is deployed in AWS, and an NFS share is created to act as

the backup target for the Spark/Hadoop cluster.

After the NFS share is created, copy the data from the HDFS EBS storage into the ONTAP NFS share. After

the data resides in NFS in ONTAP Cloud, SnapMirror technology can be used to mirror the data from the cloud

into on-premises storage as needed in a secure and efficient way.

This image shows the backup and disaster recovery from cloud to on-premises solution.

Use case 3: Enabling DevTest on existing Hadoop data

In this use case, the customer’s requirement is to rapidly and efficiently build new

Hadoop/Spark clusters based on an existing Hadoop cluster containing a large amount of

analytics data for DevTest and reporting purposes in the same data center as well as

remote locations.

Scenario

In this scenario, multiple Spark/Hadoop clusters are built from a large Hadoop data lake implementation on-

premises as well as at disaster recovery locations.

Requirements and challenges

The main requirements and challenges for this use case include:

• Create multiple Hadoop clusters for DevTest, QA, or any other purpose that requires access to the same

production data. The challenge here is to clone a very large Hadoop cluster multiple times instantaneously

and in a very space-efficient manner.
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• Sync the Hadoop data to DevTest and reporting teams for operational efficiency.

• Distribute the Hadoop data by using the same credentials across production and new clusters.

• Use scheduled policies to efficiently create QA clusters without affecting the production cluster.

Solution

FlexClone technology is used to answer the requirements just described. FlexClone technology is the

read/write copy of a Snapshot copy. It reads the data from parent Snapshot copy data and only consumes

additional space for new/modified blocks. It is fast and space-efficient.

First, a Snapshot copy of the existing cluster was created by using a NetApp consistency group.

Snapshot copies within NetApp System Manager or the storage admin prompt. The consistency group

Snapshot copies are application-consistent group Snapshot copies, and the FlexClone volume is created

based on consistency group Snapshot copies. It is worth mentioning that a FlexClone volume inherits the

parent volume’s NFS export policy. After the Snapshot copy is created, a new Hadoop cluster must be installed

for DevTest and reporting purposes, as shown in the figure below. The cloned NFS volume from the new

Hadoop cluster access the the NFS data.

This image shows the Hadoop cluster for DevTest.

Use case 4: Data protection and multicloud connectivity

This use case is relevant for a cloud service partner tasked with providing multicloud

connectivity for customers' big data analytics data.
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Scenario

In this scenario, IoT data received in AWS from different sources is stored in a central location in NPS. The

NPS storage is connected to Spark/Hadoop clusters located in AWS and Azure enabling big data analytics

applications running in multiple clouds accessing the same data.

Requirements and challenges

The main requirements and challenges for this use case include:

• Customers want to run analytics jobs on the same data using multiple clouds.

• Data must be received from different sources such as on-premises and cloud through different sensors and

hubs.

• The solution must be efficient and cost-effective.

• The main challenge is to build a cost-effective and efficient solution that delivers hybrid analytics services

between on-premises and across different clouds.

Solution

This image illustrates the data protection and multicloud connectivity solution.

As shown in the figure above, data from sensors is streamed and ingested into the AWS Spark cluster through

Kafka. The data is stored in an NFS share residing in NPS, which is located outside of the cloud provider within

an Equinix data center. Because NetApp NPS is connected to Amazon AWS and Microsoft Azure through

Direct Connect and Express Route connections, respectively, customers can access the NFS data from both

Amazon and AWS analytics clusters. This approach solves having cloud analytics across multiple

hyperscalers.

Consequently, because both on-premises and NPS storage runs ONTAP software, SnapMirror can mirror the

NPS data into the on-premises cluster, providing hybrid cloud analytics across on-premises and multiple

clouds.

For the best performance, NetApp typically recommends using multiple network interfaces and direct

connection/express routes to access the data from cloud instances.
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Use case 5: Accelerate analytic workloads

In this scenario, a large financial services and investment bank’s analytics platform was

modernized using the NetApp NFS storage solution to achieve significant improvement in

analyzing investment risks and derivatives for its asset management and quantitative

business unit.

Scenario

In the customer’s existing environment, the Hadoop infrastructure used for the analytics platform leveraged

internal storage from the Hadoop servers. Due to proprietary nature of JBOD environment, many internal

customers within the organization were unable to take advantage of their Monte Carlo quantitative model, a

simulation that relies on the recurring samples of real-time data. The suboptimal ability to understand the

effects of uncertainty in market movements was serving unfavorably for the quantitative asset management

business unit.

Requirements and challenges

The quantitative business unit at the bank wanted an efficient forecasting method to attain accurate and timely

predictions. To do so, the team recognized the need to modernize the infrastructure, reduce existing I/O wait

time and improve performance on the analytic applications such as Hadoop and Spark to efficiently simulate

investment models, measure potential gains and analyze risks.

Solution

The customer had JBOD for their existing Spark solution. NetApp ONTAP, NetApp StorageGRID, and MinIO

Gateway to NFS was then leveraged to reduce the I/O wait time for the bank’s quantitative finance group that

runs simulation and analysis on investment models that assess potential gains and risks. This image shows

the Spark solution with NetApp storage.
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As shown in figure above, AFF A800, A700 systems, and StorageGRID were deployed to access parquet files

through NFS and S3 protocols in a six-node Hadoop cluster with Spark, and YARN and Hive metadata

services for data analytic operations.

A direct-attached storage (DAS) solution in the customer’s old environment had the disadvantage to scale

compute and storage independently. With NetApp ONTAP solution for Spark, the bank’s financial analytics

business unit was able to decouple storage from compute and seamlessly bring infrastructure resources more

effectively as needed.

By using ONTAP with NFS, the compute server CPUs were almost fully utilized for Spark SQL jobs and the I/O

wait time was reduced by nearly 70%, therefore providing better compute power and performance boost to

Spark workloads. Subsequently, increasing CPU utilization also enabled the customer to leverage GPUs, such

as GPUDirect, for further platform modernization. Additionally, StorageGRID provides a low-cost storage option

for Spark workloads and MinIO Gateway provides secure access to NFS data through the S3 protocol. For

data in the cloud, NetApp recommends Cloud Volumes ONTAP, Azure NetApp Files, and NetApp Cloud

Volumes Service.

Conclusion

This section provides a summary of the use cases and solutions provided by NetApp to

fulfill various Hadoop data protection requirements. By using the data fabric powered by
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NetApp, customers can:

• Have the flexibility to choose the right data protection solutions by leveraging NetApp’s rich data

management capabilities and integration with Hadoop native workflows.

• Reduce their Hadoop cluster backup window time by almost 70%.

• Eliminate any performance effect resulting from Hadoop cluster backups.

• Provide multicloud data protection and data access from different cloud providers simultaneously to a

single source of analytics data.

• Create fast and space-efficient Hadoop cluster copies by using FlexClone technology.

Where to find additional information

To learn more about the information described in this document, see the following documents and/or websites:

• NetApp Big Data Analytics Solutions

https://www.netapp.com/us/solutions/applications/big-data-analytics/index.aspx

• Apache Spark Workload with NetApp Storage

https://www.netapp.com/pdf.html?item=/media/26877-nva-1157-deploy.pdf

• NetApp Storage Solutions for Apache Spark

https://www.netapp.com/media/16864-tr-4570.pdf

• Apache Hadoop on data fabric enabled by NetApp

https://www.netapp.com/media/16877-tr-4529.pdf
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Modern data analytics - Different solutions for different
analytics strategies

This white paper describes NetApp modern data analytics solution strategies. It includes

details about the business outcomes, customer challenges, technology trends,

competition legacy architecture, modern workflows, use cases, industries, cloud,

technology partners, data movers, NetApp Active IQ, NetApp DataOps Toolkit, Hadoop to

Spark, software-defined storage with NetApp Astra Control, containers, enterprise data

management, archiving, and tiering toward achieving the goals of AI and analytics and

how NetApp and customers together are modernizing their data architecture.

Modern data analytics - Different solutions for different analytics strategies

TR-4623: NetApp E-Series E5700 and Splunk Enterprise

Mitch Blackburn, NetApp

TR-4623 describes the integrated architecture of the NetApp E-Series and Splunk design.

Optimized for node storage balance, reliability, performance, storage capacity, and

density, this design employs the Splunk clustered index node model, with higher

scalability and lower TCO. Decoupling storage from compute provides the ability to scale

each separately, saving the cost of overprovisioning one or the other. In addition, this

document summarizes the performance test results obtained from a Splunk machine log

event simulation tool.

TR-4623: NetApp E-Series E5700 and Splunk Enterprise

NVA-1157-DEPLOY: Apache Spark workload with NetApp
storage solution

Karthikeyan Nagalingam, NetApp

NVA-1157-DEPLOY describes the performance and functionality validation of Apache

Spark SQL on NetApp NFS AFF storage systems. It reviews the configuration,

architecture, and performance testing based on various scenarios, as well as

recommendations for using Spark with NetApp ONTAP data management software. It

also covers test results based on just a bunch of disks (JBOD) versus the NetApp AFF

A800 storage controller.

NVA-1157-DEPLOY: Apache Spark workload with NetApp storage solution
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