
NetApp Storage Integrations Overview
NetApp Solutions
NetApp
March 19, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-
n_astra_register.html on March 19, 2024. Always check docs.netapp.com for the latest.

Table of Contents

NetApp Storage Integration Overview . 1

NetApp Astra Control Center overview . 2

Astra Trident Overview. 30

NetApp Storage Integration Overview
NetApp provides a number of products to help you with orchestrating and managing persistent data in
container based environments, such as Red Hat OpenShift.

NetApp Astra Control offers a rich set of storage and application-aware data management services for stateful
Kubernetes workloads, powered by NetApp data protection technology. The Astra Control Service is available
to support stateful workloads in cloud-native Kubernetes deployments. The Astra Control Center is available to
support stateful workloads in on-premises deployments, like Red Hat OpenShift. For more information visit the
NetApp Astra Control website here.

NetApp Astra Trident is an open-source and fully-supported storage orchestrator for containers and
Kubernetes distributions, including Red Hat OpenShift. For more information, visit the Astra Trident website
here.

The following pages have additional information about the NetApp products that have been validated for
application and persistent storage management in the Red Hat OpenShift with NetApp solution:

1

https://cloud.netapp.com/astra
https://docs.netapp.com/us-en/trident/index.html

• NetApp Astra Control Center

• NetApp Astra Trident

NetApp Astra Control Center overview

NetApp Astra Control Center offers a rich set of storage and application-aware data management services for
stateful Kubernetes workloads deployed in an on-premises environment and powered by NetApp data
protection technology.

NetApp Astra Control Center can be installed on a Red Hat OpenShift cluster that has the Astra Trident
storage orchestrator deployed and configured with storage classes and storage backends to NetApp ONTAP
storage systems.

For the installation and configuration of Astra Trident to support Astra Control Center, see this document here.

In a cloud-connected environment, Astra Control Center uses Cloud Insights to provide advanced monitoring
and telemetry. In the absence of a Cloud Insights connection, limited monitoring and telemetry (7-days worth of
metrics) is available and exported to Kubernetes native monitoring tools (Prometheus and Grafana) through
open metrics endpoints.

Astra Control Center is fully integrated into the NetApp AutoSupport and Active IQ ecosystem to provide
support for users, provide assistance with troubleshooting, and display usage statistics.

In addition to the paid version of Astra Control Center, a 90-day evaluation license is available. The evaluation
version is supported through the email and community (Slack channel). Customers have access to these and
other knowledge-base articles and the documentation available from the in-product support dashboard.

2

To get started with NetApp Astra Control Center, visit the Astra website.

Astra Control Center installation prerequisites

1. One or more Red Hat OpenShift clusters. Versions 4.6 EUS and 4.7 are currently supported.

2. Astra Trident must already be installed and configured on each Red Hat OpenShift cluster.

3. One or more NetApp ONTAP storage systems running ONTAP 9.5 or greater.

It’s best practice for each OpenShift install at a site to have a dedicated SVM for persistent
storage. Multi-site deployments require additional storage systems.

4. A Trident storage backend must be configured on each OpenShift cluster with an SVM backed by an
ONTAP cluster.

5. A default StorageClass configured on each OpenShift cluster with Astra Trident as the storage provisioner.

6. A load balancer must be installed and configured on each OpenShift cluster for load balancing and
exposing OpenShift Services.

See the link here for information about load balancers that have been validated for this
purpose.

7. A private image registry must be configured to host the NetApp Astra Control Center images.

See the link here to install and configure an OpenShift private registry for this purpose.

8. You must have Cluster Admin access to the Red Hat OpenShift cluster.

9. You must have Admin access to NetApp ONTAP clusters.

10. An admin workstation with docker or podman, tridentctl, and oc or kubectl tools installed and added to your
$PATH.

Docker installations must have docker version greater than 20.10 and Podman installations
must have podman version greater than 3.0.

Install Astra Control Center

3

https://cloud.netapp.com/astra
https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-n_load_balancers.html
https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-n_private_registry.html

Using OperatorHub

1. Log into the NetApp Support Site and download the latest version of NetApp Astra Control Center. To
do so requires a license attached to your NetApp account. After you download the tarball, transfer it to
the admin workstation.

To get started with a trial license for Astra Control, visit the Astra registration site.

2. Unpack the tar ball and change the working directory to the resulting folder.

[netapp-user@rhel7 ~]$ tar -vxzf astra-control-center-

21.12.60.tar.gz

[netapp-user@rhel7 ~]$ cd astra-control-center-21.12.60

3. Before starting the installation, push the Astra Control Center images to an image registry. You can
choose to do this with either Docker or Podman, instructions for both are provided in this step.

4

https://cloud.netapp.com/astra-register

Podman

a. Export the registry FQDN with the organization/namespace/project name as a environment
variable ‘registry’.

[netapp-user@rhel7 ~]$ export REGISTRY=astra-

registry.apps.ocp-vmw.cie.netapp.com/netapp-astra

b. Log into the registry.

[netapp-user@rhel7 ~]$ podman login -u ocp-user -p password

--tls-verify=false astra-registry.apps.ocp-vmw.cie.netapp.com

If you are using kubeadmin user to log into the private registry, then use

token instead of password - podman login -u ocp-user -p token

--tls-verify=false astra-registry.apps.ocp-

vmw.cie.netapp.com.

Alternatively, you can create a service account, assign registry-editor and/or
registry-viewer role (based on whether you require push/pull access) and log
into the registry using service account’s token.

c. Create a shell script file and paste the following content in it.

[netapp-user@rhel7 ~]$ vi push-images-to-registry.sh

for astraImageFile in $(ls images/*.tar) ; do

 # Load to local cache. And store the name of the loaded

image trimming the 'Loaded images: '

 astraImage=$(podman load --input ${astraImageFile} | sed

's/Loaded image(s): //')

 astraImage=$(echo ${astraImage} | sed 's!localhost/!!')

 # Tag with local image repo.

 podman tag ${astraImage} ${REGISTRY}/${astraImage}

 # Push to the local repo.

 podman push ${REGISTRY}/${astraImage}

done

If you are using untrusted certificates for your registry, edit the shell script and

use --tls-verify=false for the podman push command podman push

$REGISTRY/$(echo $astraImage | sed 's/[\/]\+\///') --tls

-verify=false.

d. Make the file executable.

5

[netapp-user@rhel7 ~]$ chmod +x push-images-to-registry.sh

e. Execute the shell script.

[netapp-user@rhel7 ~]$./push-images-to-registry.sh

6

Docker

a. Export the registry FQDN with the organization/namespace/project name as a environment
variable ‘registry’.

[netapp-user@rhel7 ~]$ export REGISTRY=astra-

registry.apps.ocp-vmw.cie.netapp.com/netapp-astra

b. Log into the registry.

[netapp-user@rhel7 ~]$ docker login -u ocp-user -p password

astra-registry.apps.ocp-vmw.cie.netapp.com

If you are using kubeadmin user to log into the private registry, then use

token instead of password - docker login -u ocp-user -p token

astra-registry.apps.ocp-vmw.cie.netapp.com.

Alternatively, you can create a service account, assign registry-editor and/or
registry-viewer role (based on whether you require push/pull access) and log
into the registry using service account’s token.

c. Create a shell script file and paste the following content in it.

[netapp-user@rhel7 ~]$ vi push-images-to-registry.sh

for astraImageFile in $(ls images/*.tar) ; do

 # Load to local cache. And store the name of the loaded

image trimming the 'Loaded images: '

 astraImage=$(docker load --input ${astraImageFile} | sed

's/Loaded image: //')

 astraImage=$(echo ${astraImage} | sed 's!localhost/!!')

 # Tag with local image repo.

 docker tag ${astraImage} ${REGISTRY}/${astraImage}

 # Push to the local repo.

 docker push ${REGISTRY}/${astraImage}

done

d. Make the file executable.

[netapp-user@rhel7 ~]$ chmod +x push-images-to-registry.sh

e. Execute the shell script.

7

[netapp-user@rhel7 ~]$./push-images-to-registry.sh

4. When using private image registries that are not publicly trusted, upload the image registry TLS
certificates to the OpenShift nodes. To do so, create a configmap in the openshift-config namespace
using the TLS certificates and patch it to the cluster image config to make the certificate trusted.

[netapp-user@rhel7 ~]$ oc create configmap default-ingress-ca -n

openshift-config --from-file=astra-registry.apps.ocp

-vmw.cie.netapp.com=tls.crt

[netapp-user@rhel7 ~]$ oc patch image.config.openshift.io/cluster

--patch '{"spec":{"additionalTrustedCA":{"name":"default-ingress-

ca"}}}' --type=merge

If you are using an OpenShift internal registry with default TLS certificates from the
ingress operator with a route, you still need to follow the previous step to patch the
certificates to the route hostname. To extract the certificates from ingress operator, you

can use the command oc extract secret/router-ca --keys=tls.crt -n

openshift-ingress-operator.

5. Create a namespace netapp-acc-operator for Astra Control Center.

[netapp-user@rhel7 ~]$ oc create ns netapp-acc-operator

namespace/netapp-acc-operator created

6. Create a secret with credentials to log into the image registry in netapp-acc-operator
namespace.

[netapp-user@rhel7 ~]$ oc create secret docker-registry astra-

registry-cred --docker-server=astra-registry.apps.ocp

-vmw.cie.netapp.com --docker-username=ocp-user --docker

-password=password -n netapp-acc-operator

secret/astra-registry-cred created

7. Log into the Red Hat OpenShift GUI console with cluster-admin access.

8. Select Administrator from the Perspective drop down.

9. Navigate to Operators > OperatorHub and search for Astra.

8

10. Select netapp-acc-operator tile and click Install.

11. On the Install Operator screen, accept all default parameters and click Install.

9

12. Wait for the operator installation to complete.

13. Once the operator installation succeeds, navigate to click on View Operator.

10

14. Then click on Create Instance in Astra Control Center tile in the operator.

15. Fill the Create AstraControlCenter form fields and click Create.

a. Optionally edit the Astra Control Center instance name.

b. Optionally enable or disable Auto Support. Retaining Auto Support functionality is recommended.

c. Enter the FQDN for Astra Control Center.

d. Enter the Astra Control Center version; the latest is displayed by default.

e. Enter an account name for Astra Control Center and admin details like first name, last name and

11

email address.

f. Enter the volume reclaim policy, default is Retain.

g. In Image Registry, enter the FQDN for your registry along with the organization name as it was

given while pushing the images to the registry (in this example, astra-registry.apps.ocp-

vmw.cie.netapp.com/netapp-astra)

h. If you use a registry that requires authentication, enter the secret name in Image Registry section.

i. Configure scaling options for Astra Control Center resource limits.

j. Enter the storage class name if you want to place PVCs on a non-default storage class.

k. Define CRD handling preferences.

12

Automated [Ansible]

1. To use Ansible playbooks to deploy Astra Control Center, you need an Ubuntu/RHEL machine with
Ansible installed. Follow the procedures here for Ubuntu and RHEL.

2. Clone the GitHub repository that hosts the Ansible content.

git clone https://github.com/NetApp-

Automation/na_astra_control_suite.git

3. Log into the NetApp Support site and download the latest version of NetApp Astra Control Center. To
do so requires a license attached to your NetApp account. After you download the tarball, transfer it to
the workstation.

To get started with a trial license for Astra Control, visit the Astra registration site.

4. Create or obtain the kubeconfig file with admin access to the OpenShift cluster on which Astra Control
Center is to be installed.

5. Change the directory to the na_astra_control_suite.

13

https://docs.netapp.com/us-en/netapp-solutions/automation/getting-started.html
https://cloud.netapp.com/astra-register

cd na_astra_control_suite

6. Edit the vars/vars.yml file, and fill in the variables with the required information.

#Define whether or not to push the Astra Control Center images to

your private registry [Allowed values: yes, no]

push_images: yes

#The directory hosting the Astra Control Center installer

installer_directory: /home/admin/

#Specify the ingress type. Allowed values - "AccTraefik" or

"Generic"

#"AccTraefik" if you want the installer to create a LoadBalancer

type service to access ACC, requires MetalLB or similar.

#"Generic" if you want to create or configure ingress controller

yourself, installer just creates a ClusterIP service for traefik.

ingress_type: "AccTraefik"

#Name of the Astra Control Center installer (Do not include the

extension, just the name)

astra_tar_ball_name: astra-control-center-22.04.0

#The complete path to the kubeconfig file of the

kubernetes/openshift cluster Astra Control Center needs to be

installed to.

hosting_k8s_cluster_kubeconfig_path: /home/admin/cluster-

kubeconfig.yml

#Namespace in which Astra Control Center is to be installed

astra_namespace: netapp-astra-cc

#Astra Control Center Resources Scaler. Leave it blank if you want

to accept the Default setting.

astra_resources_scaler: Default

#Storageclass to be used for Astra Control Center PVCs, it must be

created before running the playbook [Leave it blank if you want the

PVCs to use default storageclass]

astra_trident_storageclass: basic

#Reclaim Policy for Astra Control Center Persistent Volumes [Allowed

values: Retain, Delete]

storageclass_reclaim_policy: Retain

14

#Private Registry Details

astra_registry_name: "docker.io"

#Whether the private registry requires credentials [Allowed values:

yes, no]

require_reg_creds: yes

#If require_reg_creds is yes, then define the container image

registry credentials

#Usually, the registry namespace and usernames are same for

individual users

astra_registry_namespace: "registry-user"

astra_registry_username: "registry-user"

astra_registry_password: "password"

#Kuberenets/OpenShift secret name for Astra Control Center

#This name will be assigned to the K8s secret created by the

playbook

astra_registry_secret_name: "astra-registry-credentials"

#Astra Control Center FQDN

acc_fqdn_address: astra-control-center.cie.netapp.com

#Name of the Astra Control Center instance

acc_account_name: ACC Account Name

#Administrator details for Astra Control Center

admin_email_address: admin@example.com

admin_first_name: Admin

admin_last_name: Admin

7. Run the playbook to deploy Astra Control Center. The playbook requires root privileges for certain
configurations.

If the user running the playbook is root or has passwordless sudo configured, then run the following
command to run the playbook.

ansible-playbook install_acc_playbook.yml

If the user has password-based sudo access configured, run the following command to run the
playbook, and then enter the sudo password.

ansible-playbook install_acc_playbook.yml -K

15

Post Install Steps

1. It might take several minutes for the installation to complete. Verify that all the pods and services in the

netapp-astra-cc namespace are up and running.

[netapp-user@rhel7 ~]$ oc get all -n netapp-astra-cc

2. Check the acc-operator-controller-manager logs to ensure that the installation is completed.

[netapp-user@rhel7 ~]$ oc logs deploy/acc-operator-controller-manager -n

netapp-acc-operator -c manager -f

The following message indicates the successful installation of Astra Control Center.

{"level":"info","ts":1624054318.029971,"logger":"controllers.AstraContro

lCenter","msg":"Successfully Reconciled AstraControlCenter in

[seconds]s","AstraControlCenter":"netapp-astra-

cc/astra","ae.Version":"[21.12.60]"}

3. The username for logging into Astra Control Center is the email address of the administrator provided in

the CRD file and the password is a string ACC- appended to the Astra Control Center UUID. Run the
following command:

[netapp-user@rhel7 ~]$ oc get astracontrolcenters -n netapp-astra-cc

NAME UUID

astra 345c55a5-bf2e-21f0-84b8-b6f2bce5e95f

In this example, the password is ACC-345c55a5-bf2e-21f0-84b8-b6f2bce5e95f.

4. Get the traefik service load balancer IP.

[netapp-user@rhel7 ~]$ oc get svc -n netapp-astra-cc | egrep

'EXTERNAL|traefik'

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S)

AGE

traefik LoadBalancer 172.30.99.142

10.61.186.181 80:30343/TCP,443:30060/TCP

16m

5. Add an entry in the DNS server pointing the FQDN provided in the Astra Control Center CRD file to the

16

EXTERNAL-IP of the traefik service.

6. Log into the Astra Control Center GUI by browsing its FQDN.

17

7. When you log into Astra Control Center GUI for the first time using the admin email address provided in
CRD, you need to change the password.

8. If you wish to add a user to Astra Control Center, navigate to Account > Users, click Add, enter the details
of the user, and click Add.

18

9. Astra Control Center requires a license for all of it’s functionalities to work. To add a license, navigate to
Account > License, click Add License, and upload the license file.

If you encounter issues with the install or configuration of NetApp Astra Control Center, the
knowledge base of known issues is available here.

Register your Red Hat OpenShift Clusters with the Astra Control Center

To enable the Astra Control Center to manage your workloads, you must first register your Red Hat OpenShift
cluster.

19

https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Astra

Register Red Hat OpenShift clusters

1. The first step is to add the OpenShift clusters to the Astra Control Center and manage them. Go to Clusters
and click Add a Cluster, upload the kubeconfig file for the OpenShift cluster, and click Select Storage.

The kubeconfig file can be generated to authenticate with a username and password or a
token. Tokens expire after a limited amount of time and might leave the registered cluster
unreachable. NetApp recommends using a kubeconfig file with a username and password to
register your OpenShift clusters to Astra Control Center.

2. Astra Control Center detects the eligible storage classes. Now select the way that storageclass provisions
volumes using Trident backed by an SVM on NetApp ONTAP and click Review. In the next pane, verify the
details and click Add Cluster.

20

3. Register both OpenShift clusters as described in step 1. When added, the clusters move to the Discovering
status while Astra Control Center inspects them and installs the necessary agents. Cluster status changes
to Running after they are successfully registered.

All Red Hat OpenShift clusters to be managed by Astra Control Center should have access
to the image registry that was used for its installation as the agents installed on the
managed clusters pull the images from that registry.

4. Import ONTAP clusters as storage resources to be managed as backends by Astra Control Center. When
OpenShift clusters are added to Astra and a storageclass is configured, it automatically discovers and
inspects the ONTAP cluster backing the storageclass but does not import it into the Astra Control Center to
be managed.

21

5. To import the ONTAP clusters, go to Backends, click the dropdown, and select Manage next to the ONTAP
cluster to be managed. Enter the ONTAP cluster credentials, click Review Information, and then click
Import Storage Backend.

6. After the backends are added, the status changes to Available. These backends now have the information
about the persistent volumes in the OpenShift cluster and the corresponding volumes on the ONTAP
system.

22

7. For backup and restore across OpenShift clusters using Astra Control Center, you must provision an object
storage bucket that supports the S3 protocol. Currently supported options are ONTAP S3, StorageGRID,
and AWS S3. For the purpose of this installation, we are going to configure an AWS S3 bucket. Go to
Buckets, click Add bucket, and select Generic S3. Enter the details about the S3 bucket and credentials to
access it, click the checkbox "Make this bucket the default bucket for the cloud," and then click Add.

Choose the applications to protect

After you have registered your Red Hat OpenShift clusters, you can discover the applications that are deployed
and manage them via the Astra Control Center.

23

Manage applications

1. After the OpenShift clusters and ONTAP backends are registered with the Astra Control Center, the control
center automatically starts discovering the applications in all the namespaces that are using the
storageclass configured with the specified ONTAP backend.

2. Navigate to Apps > Discovered and click the dropdown menu next to the application you would like to
manage using Astra. Then click Manage.

1. The application enters the Available state and can be viewed under the Managed tab in the Apps section.

24

Protect your applications

After application workloads are managed by Astra Control Center, you can configure the protection settings for
those workloads.

Creating an application snapshot

A snapshot of an application creates an ONTAP Snapshot copy that can be used to restore or clone the
application to a specific point in time based on that Snapshot copy.

1. To take a snapshot of the application, navigate to the Apps > Managed tab and click the application you
would like to make a Snapshot copy of. Click the dropdown menu next to the application name and click
Snapshot.

2. Enter the snapshot details, click Next, and then click Snapshot. It takes about a minute to create the
snapshot, and the status becomes Available after the snapshot is successfully created.

25

Creating an application backup

A backup of an application captures the active state of the application and the configuration of it’s resources,
coverts them into files, and stores them in a remote object storage bucket.

For the backup and restore of managed applications in the Astra Control Center, you must configure superuser
settings for the backing ONTAP systems as a prerequisite. To do so, enter the following commands.

ONTAP::> export-policy rule modify -vserver ocp-trident -policyname

default -ruleindex 1 -superuser sys

ONTAP::> export-policy rule modify -policyname default -ruleindex 1 -anon

65534 -vserver ocp-trident

1. To create a backup of the managed application in the Astra Control Center, navigate to the Apps >
Managed tab and click the application that you want to take a backup of. Click the dropdown menu next to
the application name and click Backup.

2. Enter the backup details, select the object storage bucket to hold the backup files, click Next, and, after
reviewing the details, click Backup. Depending on the size of the application and data, the backup can take
several minutes, and the status of the backup becomes Available after the backup is completed
successfully.

26

Restoring an application

At the push of a button, you can restore an application to the originating namespace in the same cluster or to a
remote cluster for application protection and disaster recovery purposes.

1. To restore an application, navigate to Apps > Managed tab and click the app in question. Click the

dropdown menu next to the application name and click Restore.

2. Enter the name of the restore namespace, select the cluster you want to restore it to, and choose if you
want to restore it from an existing snapshot or from a backup of the application. Click Next.

27

3. On the review pane, enter restore and click Restore after you have reviewed the details.

4. The new application goes to the Restoring state while Astra Control Center restores the application on the
selected cluster. After all the resources of the application are installed and detected by Astra, the
application goes to the Available state.

28

Cloning an application

You can clone an application to the originating cluster or to a remote cluster for dev/test or application
protection and disaster recovery purposes. Cloning an application within the same cluster on the same storage
backend uses NetApp FlexClone technology, which clones the PVCs instantly and saves storage space.

1. To clone an application, navigate to the Apps > Managed tab and click the app in question. Click the
dropdown menu next to the application name and click Clone.

2. Enter the details of the new namespace, select the cluster you want to clone it to, and choose if you want
to clone it from an existing snapshot or a backup or the current state of the application. Then click Next and
click Clone on review pane once you have reviewed the details.

3. The new application goes to the Discovering state while Astra Control Center creates the application on the

29

selected cluster. After all the resources of the application are installed and detected by Astra, the
application goes to the Available state.

Astra Trident Overview

Astra Trident is an open-source and fully supported storage orchestrator for containers and Kubernetes
distributions, including Red Hat OpenShift. Trident works with the entire NetApp storage portfolio, including the
NetApp ONTAP and Element storage systems, and it also supports NFS and iSCSI connections. Trident
accelerates the DevOps workflow by allowing end users to provision and manage storage from their NetApp
storage systems without requiring intervention from a storage administrator.

An administrator can configure a number of storage backends based on project needs and storage system
models that enable advanced storage features, including compression, specific disk types, or QoS levels that
guarantee a certain level of performance. After they are defined, these backends can be used by developers in
their projects to create persistent volume claims (PVCs) and to attach persistent storage to their containers on
demand.

Astra Trident has a rapid development cycle, and just like Kubernetes, is released four times a year.

The latest version of Astra Trident is 22.01 released in January 2022. A support matrix for what version of

30

Trident has been tested with which Kubernetes distribution can be found here.

Starting with the 20.04 release, Trident setup is performed by the Trident operator. The operator makes large
scale deployments easier and provides additional support including self healing for pods that are deployed as a
part of the Trident install.

With the 21.01 release, a Helm chart was made available to ease the installation of the Trident Operator.

Download Astra Trident

To install Trident on the deployed user cluster and provision a persistent volume, complete the following steps:

1. Download the installation archive to the admin workstation and extract the contents. The current version of
Trident is 22.01, which can be downloaded here.

[netapp-user@rhel7 ~]$ wget

https://github.com/NetApp/trident/releases/download/v22.01.0/trident-

installer-22.01.0.tar.gz

--2021-05-06 15:17:30--

https://github.com/NetApp/trident/releases/download/v22.01.0/trident-

installer-22.01.0.tar.gz

Resolving github.com (github.com)... 140.82.114.3

Connecting to github.com (github.com)|140.82.114.3|:443... connected.

HTTP request sent, awaiting response... 302 Found

Location: https://github-

releases.githubusercontent.com/77179634/a4fa9f00-a9f2-11eb-9053-

98e8e573d4ae?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-

Credential=AKIAIWNJYAX4CSVEH53A%2F20210506%2Fus-east-

1%2Fs3%2Faws4_request&X-Amz-Date=20210506T191643Z&X-Amz-Expires=300&X-

Amz-

Signature=8a49a2a1e08c147d1ddd8149ce45a5714f9853fee19bb1c507989b9543eb36

30&X-Amz-

SignedHeaders=host&actor_id=0&key_id=0&repo_id=77179634&response-

content-disposition=attachment%3B%20filename%3Dtrident-installer-

22.01.0.tar.gz&response-content-type=application%2Foctet-stream

[following]

--2021-05-06 15:17:30-- https://github-

releases.githubusercontent.com/77179634/a4fa9f00-a9f2-11eb-9053-

98e8e573d4ae?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-

Credential=AKIAIWNJYAX4CSVEH53A%2F20210506%2Fus-east-

1%2Fs3%2Faws4_request&X-Amz-Date=20210506T191643Z&X-Amz-Expires=300&X-

Amz-

Signature=8a49a2a1e08c147d1ddd8149ce45a5714f9853fee19bb1c507989b9543eb36

30&X-Amz-

SignedHeaders=host&actor_id=0&key_id=0&repo_id=77179634&response-

content-disposition=attachment%3B%20filename%3Dtrident-installer-

22.01.0.tar.gz&response-content-type=application%2Foctet-stream

Resolving github-releases.githubusercontent.com (github-

31

https://docs.netapp.com/us-en/trident/trident-get-started/requirements.html#supported-frontends-orchestrators
https://github.com/NetApp/trident/releases/download/v22.01.0/trident-installer-22.01.0.tar.gz

releases.githubusercontent.com)... 185.199.108.154, 185.199.109.154,

185.199.110.154, ...

Connecting to github-releases.githubusercontent.com (github-

releases.githubusercontent.com)|185.199.108.154|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 38349341 (37M) [application/octet-stream]

Saving to: ‘trident-installer-22.01.0.tar.gz’

100%[===

===>] 38,349,341 88.5MB/s

in 0.4s

2021-05-06 15:17:30 (88.5 MB/s) - ‘trident-installer-22.01.0.tar.gz’

saved [38349341/38349341]

2. Extract the Trident install from the downloaded bundle.

[netapp-user@rhel7 ~]$ tar -xzf trident-installer-22.01.0.tar.gz

[netapp-user@rhel7 ~]$ cd trident-installer/

[netapp-user@rhel7 trident-installer]$

Install the Trident Operator with Helm

1. First set the location of the user cluster’s kubeconfig file as an environment variable so that you don’t
have to reference it, because Trident has no option to pass this file.

[netapp-user@rhel7 trident-installer]$ export KUBECONFIG=~/ocp-

install/auth/kubeconfig

2. Run the Helm command to install the Trident operator from the tarball in the helm directory while creating
the trident namespace in your user cluster.

32

[netapp-user@rhel7 trident-installer]$ helm install trident

helm/trident-operator-22.01.0.tgz --create-namespace --namespace trident

NAME: trident

LAST DEPLOYED: Fri May 7 12:54:25 2021

NAMESPACE: trident

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

Thank you for installing trident-operator, which will deploy and manage

NetApp's Trident CSI

storage provisioner for Kubernetes.

Your release is named 'trident' and is installed into the 'trident'

namespace.

Please note that there must be only one instance of Trident (and

trident-operator) in a Kubernetes cluster.

To configure Trident to manage storage resources, you will need a copy

of tridentctl, which is

available in pre-packaged Trident releases. You may find all Trident

releases and source code

online at https://github.com/NetApp/trident.

To learn more about the release, try:

 $ helm status trident

 $ helm get all trident

3. You can verify that Trident is successfully installed by checking the pods that are running in the namespace
or by using the tridentctl binary to check the installed version.

33

[netapp-user@rhel7 trident-installer]$ oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-5z45l 1/2 Running 2 30s

trident-csi-696b685cf8-htdb2 6/6 Running 0 30s

trident-csi-b74p2 2/2 Running 0 30s

trident-csi-lrw4n 2/2 Running 0 30s

trident-operator-7c748d957-gr2gw 1/1 Running 0 36s

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 22.01.0 | 22.01.0 |

+----------------+----------------+

In some cases, customer environments might require the customization of the Trident
deployment. In these cases, it is also possible to manually install the Trident operator and
update the included manifests to customize the deployment.

Manually install the Trident Operator

1. First, set the location of the user cluster’s kubeconfig file as an environment variable so that you don’t
have to reference it, because Trident has no option to pass this file.

[netapp-user@rhel7 trident-installer]$ export KUBECONFIG=~/ocp-

install/auth/kubeconfig

2. The trident-installer directory contains manifests for defining all the required resources. Using the

appropriate manifests, create the TridentOrchestrator custom resource definition.

[netapp-user@rhel7 trident-installer]$ oc create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml

customresourcedefinition.apiextensions.k8s.io/tridentorchestrators.tride

nt.netapp.io created

3. If one does not exist, create a Trident namespace in your cluster using the provided manifest.

[netapp-user@rhel7 trident-installer]$ oc apply -f deploy/namespace.yaml

namespace/trident created

4. Create the resources required for the Trident operator deployment, such as a ServiceAccount for the

operator, a ClusterRole and ClusterRoleBinding to the ServiceAccount, a dedicated

34

PodSecurityPolicy, or the operator itself.

[netapp-user@rhel7 trident-installer]$ oc create -f deploy/bundle.yaml

serviceaccount/trident-operator created

clusterrole.rbac.authorization.k8s.io/trident-operator created

clusterrolebinding.rbac.authorization.k8s.io/trident-operator created

deployment.apps/trident-operator created

podsecuritypolicy.policy/tridentoperatorpods created

5. You can check the status of the operator after it’s deployed with the following commands:

[netapp-user@rhel7 trident-installer]$ oc get deployment -n trident

NAME READY UP-TO-DATE AVAILABLE AGE

trident-operator 1/1 1 1 23s

[netapp-user@rhel7 trident-installer]$ oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-operator-66f48895cc-lzczk 1/1 Running 0 41s

6. With the operator deployed, we can now use it to install Trident. This requires creating a

TridentOrchestrator.

[netapp-user@rhel7 trident-installer]$ oc create -f

deploy/crds/tridentorchestrator_cr.yaml

tridentorchestrator.trident.netapp.io/trident created

[netapp-user@rhel7 trident-installer]$ oc describe torc trident

Name: trident

Namespace:

Labels: <none>

Annotations: <none>

API Version: trident.netapp.io/v1

Kind: TridentOrchestrator

Metadata:

 Creation Timestamp: 2021-05-07T17:00:28Z

 Generation: 1

 Managed Fields:

 API Version: trident.netapp.io/v1

 Fields Type: FieldsV1

 fieldsV1:

 f:spec:

 .:

 f:debug:

 f:namespace:

 Manager: kubectl-create

 Operation: Update

35

 Time: 2021-05-07T17:00:28Z

 API Version: trident.netapp.io/v1

 Fields Type: FieldsV1

 fieldsV1:

 f:status:

 .:

 f:currentInstallationParams:

 .:

 f:IPv6:

 f:autosupportHostname:

 f:autosupportImage:

 f:autosupportProxy:

 f:autosupportSerialNumber:

 f:debug:

 f:enableNodePrep:

 f:imagePullSecrets:

 f:imageRegistry:

 f:k8sTimeout:

 f:kubeletDir:

 f:logFormat:

 f:silenceAutosupport:

 f:tridentImage:

 f:message:

 f:namespace:

 f:status:

 f:version:

 Manager: trident-operator

 Operation: Update

 Time: 2021-05-07T17:00:28Z

 Resource Version: 931421

 Self Link:

/apis/trident.netapp.io/v1/tridentorchestrators/trident

 UID: 8a26a7a6-dde8-4d55-9b66-a7126754d81f

Spec:

 Debug: true

 Namespace: trident

Status:

 Current Installation Params:

 IPv6: false

 Autosupport Hostname:

 Autosupport Image: netapp/trident-autosupport:21.01

 Autosupport Proxy:

 Autosupport Serial Number:

 Debug: true

 Enable Node Prep: false

 Image Pull Secrets:

36

 Image Registry:

 k8sTimeout: 30

 Kubelet Dir: /var/lib/kubelet

 Log Format: text

 Silence Autosupport: false

 Trident Image: netapp/trident:22.01.0

 Message: Trident installed

 Namespace: trident

 Status: Installed

 Version: v22.01.0

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal Installing 80s trident-operator.netapp.io Installing

Trident

 Normal Installed 68s trident-operator.netapp.io Trident

installed

7. You can verify that Trident is successfully installed by checking the pods that are running in the namespace
or by using the tridentctl binary to check the installed version.

[netapp-user@rhel7 trident-installer]$ oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-bb64c6cb4-lmd6h 6/6 Running 0 82s

trident-csi-gn59q 2/2 Running 0 82s

trident-csi-m4szj 2/2 Running 0 82s

trident-csi-sb9k9 2/2 Running 0 82s

trident-operator-66f48895cc-lzczk 1/1 Running 0 2m39s

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 22.01.0 | 22.01.0 |

+----------------+----------------+

Prepare worker nodes for storage

NFS

Most Kubernetes distributions come with the packages and utilities to mount NFS backends installed by
default, including Red Hat OpenShift.

However, for NFSv3, there is no mechanism to negotiate concurrency between the client and the server.
Hence the maximum number of client-side sunrpc slot table entries must be manually synced with supported
value on the server to ensure the best performance for the NFS connection without the server having to

37

decrease the window size of the connection.

For ONTAP, the supported maximum number of sunrpc slot table entries is 128 i.e. ONTAP can serve 128
concurrent NFS requests at a time. However, by default, Red Hat CoreOS/Red Hat Enterprise Linux has
maximum of 65,536 sunrpc slot table entries per connection. We need to set this value to 128 and this can be
done using Machine Config Operator (MCO) in OpenShift.

To modify the maximum sunrpc slot table entries in OpenShift worker nodes, complete the following steps:

1. Log into the OCP web console and navigate to Compute > Machine Configs. Click Create Machine Config.
Copy and paste the YAML file and click Create.

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 name: 98-worker-nfs-rpc-slot-tables

 labels:

 machineconfiguration.openshift.io/role: worker

spec:

 config:

 ignition:

 version: 3.2.0

 storage:

 files:

 - contents:

 source: data:text/plain;charset=utf-

8;base64,b3B0aW9ucyBzdW5ycGMgdGNwX21heF9zbG90X3RhYmxlX2VudHJpZXM9MTI4Cg=

=

 filesystem: root

 mode: 420

 path: /etc/modprobe.d/sunrpc.conf

2. After the MCO is created, the configuration needs to be applied on all worker nodes and rebooted one by
one. The whole process takes approximately 20 to 30 minutes. Verify whether the machine config is

applied by using oc get mcp and make sure that the machine config pool for workers is updated.

[netapp-user@rhel7 openshift-deploy]$ oc get mcp

NAME CONFIG UPDATED UPDATING

DEGRADED

master rendered-master-a520ae930e1d135e0dee7168 True False

False

worker rendered-worker-de321b36eeba62df41feb7bc True False

False

38

iSCSI

To prepare worker nodes to allow for the mapping of block storage volumes through the iSCSI protocol, you
must install the necessary packages to support that functionality.

In Red Hat OpenShift, this is handled by applying an MCO (Machine Config Operator) to your cluster after it is
deployed.

To configure the worker nodes to run iSCSI services, complete the following steps:

1. Log into the OCP web console and navigate to Compute > Machine Configs. Click Create Machine Config.
Copy and paste the YAML file and click Create.

When not using multipathing:

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 labels:

 machineconfiguration.openshift.io/role: worker

 name: 99-worker-element-iscsi

spec:

 config:

 ignition:

 version: 3.2.0

 systemd:

 units:

 - name: iscsid.service

 enabled: true

 state: started

 osImageURL: ""

When using multipathing:

39

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 name: 99-worker-ontap-iscsi

 labels:

 machineconfiguration.openshift.io/role: worker

spec:

 config:

 ignition:

 version: 3.2.0

 storage:

 files:

 - contents:

 source: data:text/plain;charset=utf-

8;base64,ZGVmYXVsdHMgewogICAgICAgIHVzZXJfZnJpZW5kbHlfbmFtZXMgbm8KICAgICA

gICBmaW5kX211bHRpcGF0aHMgbm8KfQoKYmxhY2tsaXN0X2V4Y2VwdGlvbnMgewogICAgICA

gIHByb3BlcnR5ICIoU0NTSV9JREVOVF98SURfV1dOKSIKfQoKYmxhY2tsaXN0IHsKfQoK

 verification: {}

 filesystem: root

 mode: 400

 path: /etc/multipath.conf

 systemd:

 units:

 - name: iscsid.service

 enabled: true

 state: started

 - name: multipathd.service

 enabled: true

 state: started

 osImageURL: ""

2. After the configuration is created, it takes approximately 20 to 30 minutes to apply the configuration to the

worker nodes and reload them. Verify whether the machine config is applied by using oc get mcp and
make sure that the machine config pool for workers is updated. You can also log into the worker nodes to
confirm that the iscsid service is running (and the multipathd service is running if using multipathing).

40

[netapp-user@rhel7 openshift-deploy]$ oc get mcp

NAME CONFIG UPDATED UPDATING

DEGRADED

master rendered-master-a520ae930e1d135e0dee7168 True False

False

worker rendered-worker-de321b36eeba62df41feb7bc True False

False

[netapp-user@rhel7 openshift-deploy]$ ssh core@10.61.181.22 sudo

systemctl status iscsid

● iscsid.service - Open-iSCSI

 Loaded: loaded (/usr/lib/systemd/system/iscsid.service; enabled;

vendor preset: disabled)

 Active: active (running) since Tue 2021-05-26 13:36:22 UTC; 3 min ago

 Docs: man:iscsid(8)

 man:iscsiadm(8)

 Main PID: 1242 (iscsid)

 Status: "Ready to process requests"

 Tasks: 1

 Memory: 4.9M

 CPU: 9ms

 CGroup: /system.slice/iscsid.service

 └─1242 /usr/sbin/iscsid -f

[netapp-user@rhel7 openshift-deploy]$ ssh core@10.61.181.22 sudo

systemctl status multipathd

 ● multipathd.service - Device-Mapper Multipath Device Controller

 Loaded: loaded (/usr/lib/systemd/system/multipathd.service; enabled;

vendor preset: enabled)

 Active: active (running) since Tue 2021-05-26 13:36:22 UTC; 3 min ago

 Main PID: 918 (multipathd)

 Status: "up"

 Tasks: 7

 Memory: 13.7M

 CPU: 57ms

 CGroup: /system.slice/multipathd.service

 └─918 /sbin/multipathd -d -s

It is also possible to confirm that the MachineConfig has been successfully applied and

services have been started as expected by running the oc debug command with the
appropriate flags.

41

Create storage-system backends

After completing the Astra Trident Operator install, you must configure the backend for the specific NetApp
storage platform you are using. Follow the links below in order to continue the setup and configuration of Astra
Trident.

• NetApp ONTAP NFS

• NetApp ONTAP iSCSI

• NetApp Element iSCSI

NetApp ONTAP NFS configuration

To enable Trident integration with the NetApp ONTAP storage system, you must create a backend that enables
communication with the storage system.

1. There are sample backend files available in the downloaded installation archive in the sample-input

folder hierarchy. For NetApp ONTAP systems serving NFS, copy the backend-ontap-nas.json file to
your working directory and edit the file.

[netapp-user@rhel7 trident-installer]$ cp sample-input/backends-

samples/ontap-nas/backend-ontap-nas.json ./

[netapp-user@rhel7 trident-installer]$ vi backend-ontap-nas.json

2. Edit the backendName, managementLIF, dataLIF, svm, username, and password values in this file.

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-nas+10.61.181.221",

 "managementLIF": "172.21.224.201",

 "dataLIF": "10.61.181.221",

 "svm": "trident_svm",

 "username": "cluster-admin",

 "password": "password"

}

It is a best practice to define the custom backendName value as a combination of the
storageDriverName and the dataLIF that is serving NFS for easy identification.

3. With this backend file in place, run the following command to create your first backend.

42

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident create

backend -f backend-ontap-nas.json

+-------------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas+10.61.181.221 | ontap-nas | be7a619d-c81d-445c-b80c-

5c87a73c5b1e | online | 0 |

+-------------------------+----------------

+--------------------------------------+--------+---------+

4. With the backend created, you must next create a storage class. Just as with the backend, there is a
sample storage class file that can be edited for the environment available in the sample-inputs folder. Copy
it to the working directory and make necessary edits to reflect the backend created.

[netapp-user@rhel7 trident-installer]$ cp sample-input/storage-class-

samples/storage-class-csi.yaml.templ ./storage-class-basic.yaml

[netapp-user@rhel7 trident-installer]$ vi storage-class-basic.yaml

5. The only edit that must be made to this file is to define the backendType value to the name of the storage
driver from the newly created backend. Also note the name-field value, which must be referenced in a later
step.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: basic-csi

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

There is an optional field called fsType that is defined in this file. This line can be deleted in
NFS backends.

6. Run the oc command to create the storage class.

[netapp-user@rhel7 trident-installer]$ oc create -f storage-class-

basic.yaml

storageclass.storage.k8s.io/basic-csi created

43

7. With the storage class created, you must then create the first persistent volume claim (PVC). There is a

sample pvc-basic.yaml file that can be used to perform this action located in sample-inputs as well.

[netapp-user@rhel7 trident-installer]$ cp sample-input/pvc-samples/pvc-

basic.yaml ./

[netapp-user@rhel7 trident-installer]$ vi pvc-basic.yaml

8. The only edit that must be made to this file is ensuring that the storageClassName field matches the one
just created. The PVC definition can be further customized as required by the workload to be provisioned.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

9. Create the PVC by issuing the oc command. Creation can take some time depending on the size of the
backing volume being created, so you can watch the process as it completes.

[netapp-user@rhel7 trident-installer]$ oc create -f pvc-basic.yaml

persistentvolumeclaim/basic created

[netapp-user@rhel7 trident-installer]$ oc get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

basic Bound pvc-b4370d37-0fa4-4c17-bd86-94f96c94b42d 1Gi

RWO basic-csi 7s

NetApp ONTAP iSCSI configuration

To enable Trident integration with the NetApp ONTAP storage system, you must create a backend that enables
communication with the storage system.

1. There are sample backend files available in the downloaded installation archive in the sample-input

folder hierarchy. For NetApp ONTAP systems serving iSCSI, copy the backend-ontap-san.json file to
your working directory and edit the file.

44

[netapp-user@rhel7 trident-installer]$ cp sample-input/backends-

samples/ontap-san/backend-ontap-san.json ./

[netapp-user@rhel7 trident-installer]$ vi backend-ontap-san.json

2. Edit the managementLIF, dataLIF, svm, username, and password values in this file.

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "172.21.224.201",

 "dataLIF": "10.61.181.240",

 "svm": "trident_svm",

 "username": "admin",

 "password": "password"

}

3. With this backend file in place, run the following command to create your first backend.

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident create

backend -f backend-ontap-san.json

+------------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+------------------------+----------------

+--------------------------------------+--------+---------+

| ontapsan_10.61.181.241 | ontap-san | 6788533c-7fea-4a35-b797-

fb9bb3322b91 | online | 0 |

+------------------------+----------------

+--------------------------------------+--------+---------+

4. With the backend created, you must next create a storage class. Just as with the backend, there is a
sample storage class file that can be edited for the environment available in the sample-inputs folder. Copy
it to the working directory and make necessary edits to reflect the backend created.

[netapp-user@rhel7 trident-installer]$ cp sample-input/storage-class-

samples/storage-class-csi.yaml.templ ./storage-class-basic.yaml

[netapp-user@rhel7 trident-installer]$ vi storage-class-basic.yaml

5. The only edit that must be made to this file is to define the backendType value to the name of the storage
driver from the newly created backend. Also note the name-field value, which must be referenced in a later
step.

45

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: basic-csi

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

There is an optional field called fsType that is defined in this file. In iSCSI backends, this
value can be set to a specific Linux filesystem type (XFS, ext4, etc) or can be deleted to
allow OpenShift to decide what filesystem to use.

6. Run the oc command to create the storage class.

[netapp-user@rhel7 trident-installer]$ oc create -f storage-class-

basic.yaml

storageclass.storage.k8s.io/basic-csi created

7. With the storage class created, you must then create the first persistent volume claim (PVC). There is a

sample pvc-basic.yaml file that can be used to perform this action located in sample-inputs as well.

[netapp-user@rhel7 trident-installer]$ cp sample-input/pvc-samples/pvc-

basic.yaml ./

[netapp-user@rhel7 trident-installer]$ vi pvc-basic.yaml

8. The only edit that must be made to this file is ensuring that the storageClassName field matches the one
just created. The PVC definition can be further customized as required by the workload to be provisioned.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

9. Create the PVC by issuing the oc command. Creation can take some time depending on the size of the
backing volume being created, so you can watch the process as it completes.

46

[netapp-user@rhel7 trident-installer]$ oc create -f pvc-basic.yaml

persistentvolumeclaim/basic created

[netapp-user@rhel7 trident-installer]$ oc get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

basic Bound pvc-7ceac1ba-0189-43c7-8f98-094719f7956c 1Gi

RWO basic-csi 3s

NetApp Element iSCSI configuration

To enable Trident integration with the NetApp Element storage system, you must create a backend that
enables communication with the storage system using the iSCSI protocol.

1. There are sample backend files available in the downloaded installation archive in the sample-input

folder hierarchy. For NetApp Element systems serving iSCSI, copy the backend-solidfire.json file to
your working directory and edit the file.

[netapp-user@rhel7 trident-installer]$ cp sample-input/backends-

samples/solidfire/backend-solidfire.json ./

[netapp-user@rhel7 trident-installer]$ vi ./backend-solidfire.json

a. Edit the user, password, and MVIP value on the EndPoint line.

b. Edit the SVIP value.

 {

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://trident:password@172.21.224.150/json-

rpc/8.0",

 "SVIP": "10.61.180.200:3260",

 "TenantName": "trident",

 "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS":

2000, "burstIOPS": 4000}},

 {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS":

6000, "burstIOPS": 8000}},

 {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS":

8000, "burstIOPS": 10000}}]

}

2. With this back-end file in place, run the following command to create your first backend.

47

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident create

backend -f backend-solidfire.json

+-------------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+----------------

+--------------------------------------+--------+---------+

| solidfire_10.61.180.200 | solidfire-san | b90783ee-e0c9-49af-8d26-

3ea87ce2efdf | online | 0 |

+-------------------------+----------------

+--------------------------------------+--------+---------+

3. With the backend created, you must next create a storage class. Just as with the backend, there is a
sample storage class file that can be edited for the environment available in the sample-inputs folder. Copy
it to the working directory and make necessary edits to reflect the backend created.

[netapp-user@rhel7 trident-installer]$ cp sample-input/storage-class-

samples/storage-class-csi.yaml.templ ./storage-class-basic.yaml

[netapp-user@rhel7 trident-installer]$ vi storage-class-basic.yaml

4. The only edit that must be made to this file is to define the backendType value to the name of the storage
driver from the newly created backend. Also note the name-field value, which must be referenced in a later
step.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: basic-csi

provisioner: csi.trident.netapp.io

parameters:

 backendType: "solidfire-san"

There is an optional field called fsType that is defined in this file. In iSCSI backends, this
value can be set to a specific Linux filesystem type (XFS, ext4, and so on), or it can be
deleted to allow OpenShift to decide what filesystem to use.

5. Run the oc command to create the storage class.

[netapp-user@rhel7 trident-installer]$ oc create -f storage-class-

basic.yaml

storageclass.storage.k8s.io/basic-csi created

48

6. With the storage class created, you must then create the first persistent volume claim (PVC). There is a

sample pvc-basic.yaml file that can be used to perform this action located in sample-inputs as well.

[netapp-user@rhel7 trident-installer]$ cp sample-input/pvc-samples/pvc-

basic.yaml ./

[netapp-user@rhel7 trident-installer]$ vi pvc-basic.yaml

7. The only edit that must be made to this file is ensuring that the storageClassName field matches the one
just created. The PVC definition can be further customized as required by the workload to be provisioned.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

8. Create the PVC by issuing the oc command. Creation can take some time depending on the size of the
backing volume being created, so you can watch the process as it completes.

[netapp-user@rhel7 trident-installer]$ oc create -f pvc-basic.yaml

persistentvolumeclaim/basic created

[netapp-user@rhel7 trident-installer]$ oc get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

basic Bound pvc-3445b5cc-df24-453d-a1e6-b484e874349d 1Gi

RWO basic-csi 5s

49

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

50

http://www.netapp.com/TM

	NetApp Storage Integrations Overview : NetApp Solutions
	Table of Contents
	NetApp Storage Integration Overview
	NetApp Astra Control Center overview
	Astra Trident Overview

