

Red Hat OpenShift Service on AWS with FSxN

NetApp Solutions

NetApp January 03, 2025

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-osn_use_case_rosa_solution_overview.html on January 03, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Red Hat OpenShift Service on AWS with FSxN	1
Red Hat OpenShift Service on AWS with NetApp ONTAP	1
Red Hat OpenShift Service on AWS with NetApp ONTAP.	C

Red Hat OpenShift Service on AWS with FSxN

Red Hat OpenShift Service on AWS with NetApp ONTAP

Overview

In this section, we will show how to utilize FSx for ONTAP as a persistent storage layer for applications running on ROSA. It will show the installation of the NetApp Trident CSI driver on a ROSA cluster, the provisioning of an FSx for ONTAP file system, and the deployment of a sample stateful application. It will also show strategies for backing up and restoring your application data. With this integrated solution, you can establish a shared storage framework that effortlessly scales across AZs, simplifying the processes of scaling, protecting, and restoring your data using the Trident CSI driver.

Prerequisites

- AWS account
- A Red Hat account
- · IAM user with appropriate permissions to create and access ROSA cluster
- AWS CLI
- ROSA CLI
- OpenShift command-line interface (oc)
- Helm 3 documentation
- A HCP ROSA cluster
- Access to Red Hat OpenShift web console

This diagram shows the ROSA cluster deployed in multiple AZs. ROSA cluster's master nodes, infrastructure nodes are in Red Hat's VPC, while the worker nodes are in a VPC in the customer's account. We'll create an FSx for ONTAP file system within the same VPC and install the Trident driver in the ROSA cluster, allowing all the subnets of this VPC to connect to the file system.

s AV	VS Cloud Availability Zone 1	Availability Zone 2	Availability Zone 2	AWS Clou OpenShift control plan	d e (API server, etcd, cont	rolier, scheduler) manage
	Private subnet	Private subnet	Private subnet	M5 instance	M5 instance	M5 instance
	F Instances	OpenShift Worker nodes. (router)	instances			
		FS				

Initial Setup

1. Provision FSx for NetApp ONTAP

Create a multi-AZ FSx for NetApp ONTAP in the same VPC as the ROSA cluster. There are several ways to do this. The details of creating FSxN using a CloudFormation Stack are provided

a.Clone the GitHub repository

```
$ git clone https://github.com/aws-samples/rosa-fsx-netapp-ontap.git
```

b.Run the CloudFormation Stack

Run the command below by replacing the parameter values with your own values:

\$ cd rosa-fsx-netapp-ontap/fsx

$ aws$ cloudformation create-stack $\$
stack-name ROSA-FSXONTAP \
template-body file://./FSxONTAP.yaml \
region <region-name> \</region-name>
parameters \
ParameterKey=Subnet1ID,ParameterValue=[subnet1_ID] \
ParameterKey=Subnet2ID,ParameterValue=[subnet2_ID] \
ParameterKey=myVpc,ParameterValue=[VPC_ID] \
ParameterKey=FSxONTAPRouteTable,ParameterValue=[routetable1_ID,routetable2
_ID] \
ParameterKey=FileSystemName,ParameterValue=ROSA-myFSxONTAP \
ParameterKey=ThroughputCapacity,ParameterValue=1024 \setminus
ParameterKey=FSxAllowedCIDR,ParameterValue=[your allowed CIDR] \
ParameterKey=FsxAdminPassword,ParameterValue=[Define Admin password] \
ParameterKey=FsxAdminPassword,ParameterValue=[Define Admin password] \ ParameterKey=SvmAdminPassword,ParameterValue=[Define SVM password] \
ParameterKey=FsxAdminPassword,ParameterValue=[Define Admin password] \ ParameterKey=SvmAdminPassword,ParameterValue=[Define SVM password] \ capabilities CAPABILITY_NAMED_IAM

Where :

region-name: same as the region where the ROSA cluster is deployed subnet1_ID : id of the Preferred subnet for FSxN subnet2_ID: id of the Standby subnet for FSxN VPC_ID: id of the VPC where the ROSA cluster is deployed routetable1_ID, routetable2_ID: ids of the route tables associated with the subnets chosen above your_allowed_CIDR: allowed CIDR range for the FSx for ONTAP security groups ingress rules to control access. You can use 0.0.0.0/0 or any appropriate CIDR to allow all traffic to access the specific ports of FSx for ONTAP. Define Admin password: A password to login to FSxN Define SVM password: A password to login to SVM that will be created.

Verify that your file system and storage virtual machine (SVM) has been created using the Amazon FSx console, shown below:

File systems	OntapFileSystem_			Attach Actions v
File Caches Backups	▼ Summary			
ONTAP Storage virtual machines	File system ID	SSD storage capacity 1024 GiB	Update	Availability Zones us-east-2a (Preferred) 🗇
OpenZF5	Chicycle state Ø Available	Throughput capacity 1024 MB/s	Update	Creation time
Snapshots	File system type ONTAP	Provisioned IOPS 3072	Update	000011125350400
FSx on Service Quotes 🗹	Deployment type	Number of HA pairs		
Settings	Multi-AZ 1	1		

2.Install and configure Trident CSI driver for the ROSA cluster

\$ helm repo add netapp-trident https://netapp.github.io/trident-helm-chart

b.Install trident using helm

```
$ helm install trident netapp-trident/trident-operator --version
100.2406.0 --create-namespace --namespace trident
```


Depending on the version you install, the version parameter will need to be changed in the command shown. Refer to the documentation for the correct version number. For additional methods of installing Trident, refer to the Trident documentation.

c.Verify that all Trident pods are in the running state

[root@localhost hcp-testing]#				
[root@localhost hcp-testing]#				
[root@localhost hcp-testing]# oc ge	et pods	-n trident		
NAME	READY	STATUS	RESTARTS	AGE
trident-controller-f5f6796f-vd2sk	6/6	Running	0	19h
trident-node-linux-4svgz	2/2	Running	0	19h
trident-node-linux-dj9j4	2/2	Running	0	19h
trident-node-linux-jlshh	2/2	Running	0	19h
trident-node-linux-sqthw	2/2	Running	0	19h
trident-node-linux-ttj9c	2/2	Running	0	19h
trident-node-linux-vmjr5	2/2	Running	0	19h
trident-node-linux-wvqsf	2/2	Running	0	19h
<pre>trident-operator-545869857c-kgc7p [root@localhost hcp-testing]# _</pre>	1/1	Running	0	19h

3. Configure the Trident CSI backend to use FSx for ONTAP (ONTAP NAS)

The Trident back-end configuration tells Trident how to communicate with the storage system (in this case, FSx for ONTAP). For creating the backend, we will provide the credentials of the Storage Virtual machine to connect to, along with the Cluster Management and the NFS data interfaces. We will use the ontap-nas driver to provision storage volumes in FSx file system.

a. First, create a secret for the SVM credentials using the following yaml

```
apiVersion: v1
kind: Secret
metadata:
    name: backend-fsx-ontap-nas-secret
    namespace: trident
type: Opaque
stringData:
    username: vsadmin
    password: <value provided for Define SVM password as a parameter to the
Cloud Formation Stack>
```

 (\mathbf{i})

You can also retrieve the SVM password created for FSxN from the AWS Secrets Manager as shown below.

VS Secrets Manager > Secrets		
Secrets		C Store a new secret
Q. Filter secrets by nome, description, tog key, tog value, o	uning service or primary Region	C 1 3 0
Secret name	Description	Last retrieved (UTC)
HCP-ROSA-FSXONTAP-SVMAdminPassword	SVMAdminPassword	October 9, 2024
	and the second	

Secret details		C Actions ¥
Encryption key aws/secretsmanager Secret name HCP-ROSA-FSXONTAP-SVMAdminPassword Secret ARN armaws:secretsmanager:us-east-2:316088182667:secret:HCP-ROSA-FSXONTAP-SVMAdminPassword- ISIUaf	Secret description	
Dverview Rotation Versions Replication Tags		

b.Next, add the secret for the SVM credentials to the ROSA cluster using the following command

```
$ oc apply -f svm_secret.yaml
```

You can verify that the secret has been added in the trident namespace using the following command

\$ oc get secrets -n trident |grep backend-fsx-ontap-nas-secret

[root@localhost hcp-testing]#
[root@localhost hcp-testing]# oc get secrets -n trident | grep backend-fsx-ontap-nas-secret
backend-fsx-ontap-nas-secret Opaque 2 21h
[root@localhost hcp-testing]# _

c. Next, create the backend object

For this, move into the **fsx** directory of your cloned Git repository. Open the file backend-ontap-nas.yaml. Replace the following:

managementLIF with the Management DNS name **dataLIF** with the NFS DNS name of the Amazon FSx SVM and **svm** with the SVM name. Create the backend object using the following command.

Create the backend object using the following command.

\$ oc apply -f backend-ontap-nas.yaml

You can get the Management DNS name, NFS DNS name and the SVM name from the Amazon FSx Console as shown in the screenshot below

Amazon <mark>F</mark> Sx	×	Summary		
File systems Volumes File Caches Backups V ONTAP Storage virtual machines V OpenZFS Snapshots F5x on Service Quotas [2] Settings		SVM ID Creation time svm-07a733da2584f2045 () Creation time SVM name Lifecycle state SVM1 () Ifecycle state SVM1 () Ifecycle state UUID Subtype a845e7bf-8653-11ef-8f27-0f43b1500927 DEFAULT File system ID File system ID fs-03a16050beae7ca24 () Resource ARN amaws:fscus-east-2316088182667:storage-virtual-machine/fs-03a16050beae7ca24/svm- Ifecource ARN	00	Active Directory
		Endpoints Administration Volumes Tags Endpoints		
		Management DNS name svm-07a733da2584f2045.fs-03a16050beae7ca24.fsx.us-east-2.amazonavis.com 🗗 NFS DNS name svm-07a733da2584f2045.fs-03a16050beae7ca24.fsx.us-east-2.amazonavis.com 🗇	Management IP address 198.19.255.182 (7) NFS IP address 198.19.255.182 (7)	
		iSCSI DNS name iscsi.svm-07a733da2584f2045.fs-03a16050beae7ca24.fsx.us-east-2.amazonaws.com Ø	iSCSI IP addresses 10.10.9.32, 10.10.26.28 🗗	

d. Now, run the following command to verify that the backend object has been created and Phase is

[root@localhost hcp-testing]# [root@localhost hcp-testing]# [root@localhost hcp-testing]# oc apply -f backend-ontap-nas.yaml tridentbackendconfig.trident.netapp.io/backend-fsx-ontap-nas created [root@localhost hcp-testing]# oc get tbc -n trident BACKEND NAME NAME BACKEND UUID PHASE STATUS acc65405-56be-4719-999d-27b448a50e29 backend-fsx-ontap-nas fsx-ontap Bound Success [root@localhost hcp-testing]# _

4. Create Storage Class

Now that the Trident backend is configured, you can create a Kubernetes storage class to use the backend. Storage class is a resource object made available to the cluster. It describes and classifies the type of storage that you can request for an application.

a. Review the file storage-class-csi-nas.yaml in the fsx folder.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: trident-csi
provisioner: csi.trident.netapp.io
parameters:
   backendType: "ontap-nas"
   fsType: "ext4"
allowVolumeExpansion: True
reclaimPolicy: Retain
```

b. Create Storage Class in ROSA cluster and verify that trident-csi storage class has been created.

[root@localhost hcp [root@localhost hcp [root@localhost hcp	p-testing]# p-testing]# p-testing]# oc apply -f :	storage-class-cs	i-nas.vaml		
storageclass.stora	ge.k8s.io/trident-csi cro	eated			
LLOOT@TOC9TUO21 UC	PROVISIONER	RECLATMPOLTCY	VOLUMERTNDTNGMODE	ALL OWNOLLIMEEXPANSTON	AGE
p2-csi	ebs.csi.aws.com	Delete	WaitForFirstConsumer	true	2d16h
p3-csi (default)	ebs.csi.aws.com	Delete	WaitForFirstConsumer	true	2d16h
trident-csi [root@localhost hcj	csi.trident.netapp.io p-testing]# _	Retain	Immediate	true	4s

This completes the installation of Trident CSI driver and its connectivity to FSx for ONTAP file system. Now you can deploy a sample Postgresql stateful application on ROSA using file volumes on FSx for ONTAP.

c. Verify that there are no PVCs and PVs created using the trident-csi storage class.

rootglocalnost ncp-tetting # [rootglocalhost hcp-testing]# oc get NaWESPACE openshift-monitoring openshift-wirtualization-os-inages openshift-virtualization-os-inages openshift-virtualization-os-inages openshift-virtualization-os-inages openshift-virtualization-os-inages	pvc -A NAME prometheus-data prometheus-data centos-stream9-i centos-stream9-i fedora-21a0f3e6 rhe18-0052df0eb rhe18-052df0eb	prometheus-kdts- prometheus-kdts- baellicddSal 802441241044 8026 259 664	STATUS V e Bound p Bound p Bound p Bound p Bound p Bound p Bound p	0LUME vc-9a4553a5 vc-7d949aef vc-8bb01464 vc-8bb084a vc-64f375ad vc-2dc6de48 vc-74374ce7	+07e9-440a-8200-994384c97624 +0904-409a-856-514e4055fbab2 -cb3f-4409-8074-394028496c16 +5ef-4522-1690-10004f4102c1 4077-4566-3308-56864138e79c 5936-411e-0c33-09206f308046 55684-447c-0535-9220cf45444	CAPACITY 100Gi 100Gi 30Gi 30Gi 30Gi 30Gi 30Gi	ACCESS HODES RHO RHO RHO RHO RHO RHO RHO RHO RHO	STORAGECLAS gp3-csi gp3-csi gp3-csi gp3-csi gp3-csi gp3-csi gp3-csi	S VOLUMEATT CURSETS CURSETS CURSETS CURSETS CURSETS CURSETS	RIBUTESCLASS	AGE 2d16h 2d16h 2dh 44b 44h 44h
[root@localhost hcp-testing]# oc_get NAME prc-2dc6de48-5916-411e-9cb3-99598f50b prc-647375d-d377-456d-83a8-306e433a8 prc-7d949aef=e00d-409a-8154-514e485f prc-820498ta-65ef-452b-bf90-teae6fe10	pv CAPACITY e4c 3061 7% 3061 ab2 10061 2c1 3061	ACCESS MODES RAD RAD RAD	RECLAIM POLIC Delete Delete Delete	Y STATUS Bound Bound Bound	CLAIM openshift-virtualization-os openshift-virtualization-os openshift-monitoring/prometi openshift-virtualization-os	-images/rhe -images/fed heus-data-p -images/ceo	18-0652df0e6259 ora-21a6f3e628c rometheus-k0s-1 tos-stream-d82	d B ff4a141a4	TORAGECLASS p3-C51 p3-C51 p3-C51 p3-C51	VOLUMEATTREE Cunset> Cunset> Cunset>	UTESCLASS
pvc-9a4553a5-0709-440a-8a90-990384c07 pvc-deb61444-cb3f-4496-807d-390028400 pvc-f4374ce7-568d-4afc-bb35-0228cf454 [root@localbost hcp-testing]# _	624 10001 c16 3001 4d4 3001	Ruo Ruo Ruo	Delete Delete	Bound Bound Bound	openshift-monitoring/promet openshift-virtualization-os openshift-virtualization-os	heus-data-p -images/cen -images/rhe	rometheus-kBs-0 tos-stream9-bae 19-2521bd116e64	111cdd5a g	p3-csi p3-csi p3-csi	cunset> cunset> cunset>	

d. Verify that applications can create PV using Trident CSI.

Create a PVC using the pvc-trident.yaml file provided in the **fsx** folder.

```
pvc-trident.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
   name: basic
spec:
   accessModes:
    - ReadWriteMany
resources:
    requests:
     storage: 10Gi
storageClassName: trident-csi
```

You can issue the following commands to create a pvc and verify that it has been created.

[root@ [root@ persist [root@	localhost localhost tentvolume localhost	hcp-testing]# hcp-testing]# oc create -f pvc-trident.yam] eclaim/basic created hcp-testing]# oc get pvc -n trident	l -n triden	t			
NAME	STATUS	VOLUME	CAPACITY	ACCESS MODES	STORAGECLASS	VOLUMEATTRIBUTESCLASS	AGE
basic	Bound	pvc-adb709b8-fe12-4d4e-9a6b-2afb345bad29	10Gi	RWX	trident-csi	<unset></unset>	95

5. Deploy a sample Postgresql stateful application

a. Use helm to install postgresql

```
$ helm install postgresql bitnami/postgresql -n postgresql --create
-namespace
```

vod@localhost hcp-testing]# helm install postgresql bitnami/postgresql -n postgresqlcreate-namespace
WE: postgresql
ST DEPLOYED: Non OCt 14 96:52:58 2024
VEDYALE: postgresq1 Attic: den land
ST SUITE Mone
IFS:
NART NAME: postgresal
IART VERSION: 15.5.21
P VERSION: 16.4.0
Please be patient while the chart is being deployed **
stgreSQL can be accessed via port 5432 on the following DNS names from within your cluster:
postgresql.postgresql.svc.cluster.local - Read/Write connection
get the password for "postgres" run:
export POSTGRES_PASSWORD=\$(kubectl get secretnamespace postgresql postgresql -o jsonpath="(.data.postgres-password)" base64 -d)
connect to your database run the following command:
<pre>kubectl run postgresql-clientrmtty -irestart='Never'namespace postgresqlimage docker.io/bitnami/postgresql:16.4.0-debian-12-r0 command psqlhost postgresql -U postgres -d postgres -p 5432</pre>
> NOTE: If you access the container using bash, make sure that you execute "/opt/bitnami/scripts/postgresql/entrypoint.sh /bin/bash" in order to 1001} does not exist"
connect to your database from outside the cluster execute the following commands:
kubectl port-forwardnamespace postgresql svc/postgresql 5432:5432 & PGPASSWORD="\$POSTGRES_PASSWORD" psqlhost 127.0.0.1 -U postgres -d postgres -p 5432
RNING: The configured password will be ignored on new installation in case when previous PostgreSQL release was deleted through the helm command. word, and setting it through helm won't take effect. Deleting persistent volumes (PVs) will solve the issue.

b. Verify that the application pod is running, and a PVC and PV is created for the application.

[root@localhos	t hcp-te	esting]# oc	get pods	-n postgresql	
NAME	READY	STATUS	RESTARTS	AGE	
postgresql-0	1/1	Running	0	29m	

NAME	STATUS	VOLUME	a7-4a4a-b935-f1c090fd8db6	CAPACITY	ACCESS MODES	STORAGECLASS
data-postgresql-0	Bound	pvc-e3ddd9bd-e6a		8Gi	RWO	trident-csi
[root@]ocalbost_bon_to	sting]# or	get ny gren nostgr	aral			

c. Deploy a Postgresql client

Use the following command to get the password for the postgresql server that was installed.

```
$ export POSTGRES_PASSWORD=$(kubectl get secret --namespace postgresql
postgresql -o jsoata.postgres-password}" | base64 -d)
```

Use the following command to run a postgresql client and connect to the server using the password

d. Create a database and a table. Create a schema for the table and insert 2 rows of data into the table.

Red Hat OpenShift Service on AWS with NetApp ONTAP

This document will outline how to use NetApp ONTAP with the Red Hat OpenShift Service on AWS (ROSA).

Create Volume Snapshot

1. Create a Snapshot of the app volume

In this section, we will show how to create a trident snapshot of the volume associated with the app. This will be a point in time copy of the app data. If the application data is lost, we can recover the data from this point in time copy.

NOTE: This snapshot is stored in the same aggregate as the original volume in ONTAP(on-premises or in the cloud). So if the ONTAP storage aggregate is lost, we cannot recover the app data from its snapshot.

**a. Create a VolumeSnapshotClass

Save the following manifest in a file called volume-snapshot-class.yaml

```
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
   name: fsx-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete
```

Create a snapshot by using the above manifest.

[root@localhost hcp-testing]# oc create -f volume-snapshot-class.yaml
volumesnapshotclass.snapshot.storage.k8s.io/fsx-snapclass created
[root@localhost hcp-testing]# _

b. Next, create a snapshot

Create a snapshot of the existing PVC by creating VolumeSnapshot to take a point-in-time copy of your Postgresql data. This creates an FSx snapshot that takes almost no space in the filesystem backend. Save the following manifest in a file called volume-snapshot.yaml:

```
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
  name: postgresql-volume-snap-01
spec:
  volumeSnapshotClassName: fsx-snapclass
  source:
    persistentVolumeClaimName: data-postgresql-0
```

c. Create the volume snapshot and confirm that it is created

Delete the database to simulate the loss of data (data loss can happen due to a variety of reasons, here we are just simulating it by deleting the database)

d. Delete the database to simulate the loss of data (data loss can happen due to a variety of reasons, here we are just simulating it by deleting the database)

connection to server at "postgresql" (172.30.103.67), port 5432 failed: FATAL: database "erp" does not exist Previous connection kept postgres=# _

Restore from Volume Snapshot

1. Restore from Snapshot

In this section, we will show how to restore an application from the trident snapshot of the app volume.

a. Create a volume clone from the snapshot

To restore the volume to its previous state, you must create a new PVC based on the data in the snapshot you took. To do this, save the following manifest in a file named pvc-clone.yaml

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: postgresql-volume-clone
spec:
  accessModes:
    - ReadWriteOnce
  storageClassName: trident-csi
  requests:
    requests:
    storage: 8Gi
dataSource:
    name: postgresql-volume-snap-01
    kind: VolumeSnapshot
    apiGroup: snapshot.storage.k8s.io
```

Create a clone of the volume by creating a PVC using the snapshot as the source using the above manifest. Apply the manifest and ensure that the clone is created.

[root@localhost hcp-test persistentvolumeclaim/po [root@localhost hcp-test	ing]# oc stgresql- ing]# oc	create -f postgresql-pvc-clone.yaml -n post volume-clone created get pvc -n postgresql	gresql		
NAME	STATUS	VOLUME	CAPACITY	ACCESS MODES	STORAGECLASS
data-postgresql-0	Bound	pvc-e3ddd9bd-e6a7-4a4a-b935-f1c090fd8db6	8Gi	RWO	trident-csi
postgresql-volume-clone [root@localhost hcp-test:	Bound ing]# _	pvc-b38fbc54-55dc-47e8-934d-47f181fddac6	8Gi	RWO	trident-csi

b. Delete the original postgresql installation

```
[root@localhost hcp-testing]#
[root@localhost hcp-testing]# helm uninstall postgresql -n postgresql
release "postgresql" uninstalled
[root@localhost hcp-testing]# oc get pods -n postgresql
No resources found in postgresql namespace.
[root@localhost hcp-testing]# _
```

c. Create a new postgresql application using the new clone PVC

```
$ helm install postgresql bitnami/postgresql --set
primary.persistence.enabled=true --set
primary.persistence.existingClaim=postgresql-volume-clone -n postgresql
```

[root@localhost hcp-testing]# [root@localhost hcp-testing]# helm install postgresql bitnami/postgresqlset primary.persistence.enabled=true \ >set primary.persistence.existingClaim=postgresql-volume-clone -n postgresql NAME: noctangesql
LAST DEPLOYED: Mon Oct 14 12:03:31 2024
NAMESPACE: postgresgi STATUS: deployed
REVISION: 1 TEST SUTTE: None
NOTES:
CHART NAME: postgresql CHART VERSION: 15.5.21
APP VERSION: 16.4.0
** Please be patient while the chart is being deployed **
PostgreSQL can be accessed via port 5432 on the following DNS names from within your cluster:
postgresql.postgresql.svc.cluster.local - Read/Write connection
To get the password for "postgres" run:
export POSTGRES_PASSWORD=\$(kubectl get secretnamespace postgresql postgresql -o jsonpath="{.data.postgres-password}" bas
To connect to your database run the following command:
<pre>kubectl run postgresql-clientrmtty -irestart='Never'namespace postgresqlimage docker.io/bitnami/postgresql:16 command psqlhost postgresql -U postgres -d postgres -p 5432</pre>
> NOTE: If you access the container using bash, make sure that you execute "/opt/bitnami/scripts/postgresql/entrypoint.sh /b: 1001} does not exist"
To connect to your database from outside the cluster execute the following commands:
kubectl port-forwardnamespace postgresql svc/postgresql 5432:5432 & PGPASSWORD="\$POSTGRES_PASSWORD" psqlhost 127.0.0.1 -U postgres -d postgres -p 5432
WARNING: The configured password will be ignored on new installation in case when previous PostgreSQL release was deleted throug sword, and setting it through helm won't take effect. Deleting persistent volumes (PVs) will solve the issue.
WARNING: There are "resources" sections in the chart not set. Using "resourcesPreset" is not recommended for production. For production
- primary.resources
- readReplicas.resources
<pre>[root@localhost hcp-testing]# _</pre>

d. Verify that the application pod is in the running state

[root@localhos	st hcp-te	esting]# oc	get pods	-n postgresql
NAME	READY	STATUS	RESTARTS	AGE
oostgresql-0	1/1	Running	0	2m1s
[root@localhos	st hcp-te	esting]#		

e. Verify that the pod uses the clone as its PVC

root@localhost hcp-testing]# root@localhost hcp-testing]# oc describe pod/postgresql-0 -n postgresql_

ContainersRead	ly Tru	ie			
PodScheduled	Tru	ie			
Volumes:					
empty-dir:					
Type:	EmptyDir (a tempo	orary di	rectory that shares a poo	l's lifetime)	
Medium:					
SizeLimit:	<unset></unset>				
dshm:					
Type: Medium:	EmptyDir (a tempo Memory	orary di	rectory that shares a poo	l's lifetime)	
SizeLimit:	<unset></unset>				
data:					
Type:	PersistentVolume	Claim (a reference to a Persiste	entVolumeClaim in the same namespa	ace)
ClaimName:	postgresql-volum	e-clone			
ReadOnly:	false				
QoS Class:	Burstable				
Node-Selectors:	<none></none>		=		
Tolerations:	node.kubernetes.	io/memc	ory-pressure:NoSchedule op)=Exists	
	node.kubernetes.	io/not-	ready:NoExecute op=Exists	for 300s	
	node.kubernetes.	10/unre	achable:Notxecute op=txis	its for 300s	
events:					
Type Reason	1	Age	From	message	
Normal Cohode		3-55-	default estedules	Consectually and extensed	1/2224-222
wormal Schedu	ited	30555	default-scheduler	Successfully assigned postgresd	L/postgres
Normal Succos	cfulAttachVolumo	20540	attachdotach_controllor	AttachVolume Attach succeeded for	
R-03/d-17f181fd	ac6"	5111545	actachuetach-controller	Actacityorume. Actacit succeeded to	of vorume
Normal Added	nterface	3m/13c	multus	Add ath0 [10 129 2 126/23] from	ovn-kuber
Normal Pulled	incerrace.	3m43s	kubelet	Container image "docker io/bitn	ami/nostgr
r0" already pres	ent on machine	200,02.2	RODELES	concurrer image worker i zo/ bi en	mat hoseB.
Normal Create	d	3m42s	kubelet	Created container postgresgl	Activat
Normal Starte	ed .	3m42s	kubelet	Started container postgresql	Go to Set
[root@localhost	hcp-testing]#				

f) To validate that the database has been restored as expected, go back to the container console and show the existing databases

[root@local \$POSTGRES_P/ Warning: wor capabilitic Root=true), If you don't postgres=#	host hcp-te ASSWORD" - uld violate es (contain seccompPro t see a com \l	sting]# kub -command PodSecurity er "postgre file (pod o mand prompt	ectl run postgresq psglhost postg y "restricted:v1.2 sql-client" must s r container "postg , try pressing ent	l-clientrm resql -U postg 4": allowPrivi et securityCon resql-client" er. List of da	tty -ires res -d postgre legeEscalation text.capabilit must set secur tabases	tart='Never' s -p 5432 l= false (co ies.drop=["AL ityContext.se	namespace ntainer "pos L"]), runAsN ccompProfile	postgresqlimage docke tgresql-client" must set onRoot != true (pod or c .type to "RuntimeDefault"	r.io/bitnami/postgresql: securityContext.allowPr ontainer "postgresql-cli " or "Localhost")
		+					+	+	
erp	postgres	L UTER	1100	en_us.urr-8	en_us.urr-8	-2		*	
postgres	postgres		1100	en_us.urr-8	en_US.UIF-8			and another and	
cempiaceo	postgres	0170	1100	en_05.01F-8	en_us.urr-8			hostanas-CTe/nostanas	
Second Second	0000000000000000	11750	1160	IN US INTO O	AT US ITTE O		- 1	postgresscic/postgres	
cempiatei	postgres	Ulra	1100	en_us.uir-a	en_us.uir-a			<pre>postgres + postgres_CTc/postgres</pre>	
(A rous)	<u>,</u>		t i		k 0.			postgres=cit/postgres	
postgres=# ' psql (16.2, You are now erp=# \dt L: Schema 1 public pu (1 row) erp=# SELEC id firstu 1 John 2 Jane (2 rows)	<pre>\c erp; server 16. connected Name Ty ersons ta T * FROM PE name last Doe Scot</pre>	4) to database tions pe Owne ble postg ksons; name t	"erp" as user "po r res	stgres".					

Demo video

Amazon FSx for NetApp ONTAP wth Red Hat OpenShift Service on AWS using Hosted Control Plane

More videos on Red Hat OpenShift and OpenShift solutions can be found here.

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.