Database configuration

Enterprise applications

NetApp
January 12, 2026

This PDF was generated from https://docs.netapp.com/us-en/ontap-apps-dbs/mssqgl/mssql-cpu-
configuration.html on January 12, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Database configuration
CPU configuration
Hyper-threading
Cores and licensing
CPU affinity
Max Degree of Parallelism (MAXDOP)
Max worker threads
Memory configuration
Max server memory
Nonuniform memory access
Index create memory
Min memory per query
Shared instance versus dedicated instance
Tempdb files

0 NO OO0 O WWN -2 2~ A

Database configuration

CPU configuration

SQL Server performance has multiple dependencies on the CPU and core configuration.

Hyper-threading

Hyper-threading is refers to either simultaneous multithreading (SMT) implementation, which improves
parallelization of computations performed on x86 processors. SMT is available on both Intel and AMD
processors.

Hyper-threading results in logical CPUs that appear as physical CPUs to the operating system. SQL Server
then sees the those additional CPUs and uses them as if there are more cores than physically present. This
can substantially improve performance by increasing parallelization.

The caveat here is that each SQL Server version has its own limitations on the compute power it can use. For
more information, see Compute Capacity Limits by Edition of SQL Server.

Cores and licensing

There are two options for licensing SQL Server. The first is known as a server + client access license (CAL)
model; the second is the per processor core model. Although you can access all the product features available
in SQL Server with the server + CAL strategy, there is a hardware limit of 20 CPU cores per socket. Even if you
have SQL Server Enterprise Edition + CAL for a server with more than 20 CPU cores per socket, the
application cannot use all those cores at a time on that instance.

The picture below shows the SQL Server log message after startup indicating the enforcement of the core limit.

https://learn.microsoft.com/en-us/sql/sql-server/compute-capacity-limits-by-edition-of-sql-server?view=sql-server-ver16&redirectedfrom=MSDN

2017-01-11 07:16:30.71 Server Microsoft SQL Server 2016
(RTM) - 13.0.1601.5 (X64)

Apz 29 2016 23:23:58B

Copyright (c) Microsoft Corporation

Enterprise Edition (64-bit) on Windows Server 2016
Datacenter 6.3 <XE4> (Build 14393:)

2017-01-11 07:16:30.71 Server UTS adjustment: =8:00
2017-01-11 07:16:30.71 Server {e] Microscft Corporation.
2017-01-11 07:16:30.71 Server All rights reserved.
2017-01-11 07:16:30.71 Server Server process ID is 10176.
2017-01-11 07:16:30.71 Server Svatem Manufacturer:
'FUJITSU", System Model: 'PRIMERGY RXIZ540 M1'.

2017-01-11 07:16:30.71 Server huthentication mode ia MIXED.
2017-01-11 07:16:30.71 Server Logging SQL Server messages

in file 'C:\Program Files\Microsoft S0L Sarver
AM3SQL1 3 . MISQLIERVERV\MSSQL\LoghERRORLOG" -
2017-01-11 07:16:30.71 Server The service account ia "SBEA-
TMA\EFUJIAZRI0S'. This is an informational message; no user action
is reguired.
2017-01-11 O07:16:30.71 Sarver negigtzy StAartup paArameters:
-d C:\Program Filea\Microsoft 8QL Server
AMSS0OL13 . MSSQLIERVERV\MESOLA\DATA\mastey .mdf
=g C:\Program Filea‘\Maicroscft 3QL Server
WHMS80L13 . MESQLEERVER\MES0L \ Log \ERRORL.OG
=1l C:\Program Filea\Microsoft 3QL Server
\M3SQL13.M3SQLSERVER\MSSQL\DATA\mastlog.ldf

-7 3502

=T B34
2017-01-11 07:16:30.71 Server Command Line 3tartup
Paramaters:

= " "
2017-01-11 07:16:30.72 Server 501, Sarver detected 2 =sockets

with 18 cores per socket and 36 logical processcrs per socket,
72 total logical processors; using 40 logical processors based
on 2QL Server licensing. This is an informational message; no

user action is reguired,

B4 e e o | ol) N TRl 3 R her 3 By

Therefore, to use all CPUs, you should use the per-processor core license. For detailed information about SQL
Server licensing, see SQL Server 2022: Your modern data platform.

CPU affinity

You are unlikely to need to alter the processor affinity defaults unless you encounter performance problems,
but it is still worth understanding what they are and how they work.

SQL Server supports processor affinity by two options:

* CPU affinity mask
* Affinity /0 mask

SQL Server uses all CPUs available from the operating system (if the per-processor core license is chosen). It
also creates schedulers fOr each CPU to make best use of the resources for any given workload. When
multitasking, the operating system or other applications on the server can switch process threads from one
processor to another. SQL Server is a resource-intensive application, and performance can be affected when
this occurs. To minimize the impact, you can configure the processors so that all of the SQL Server load is
directed to a preselected group of processors. This is achieved by using the CPU affinity mask.

The affinity I/O mask option binds SQL Server disk I/O to a subset of CPUs. In SQL Server OLTP
environments, this extension can significantly enhance the performance of SQL Server threads issuing I/O

https://www.microsoft.com/en-us/sql-server/sql-server-2022-comparison

operations.

Max Degree of Parallelism (MAXDOP)

By default, SQL Server uses all available CPUs during query execution if the per-processor core license
chosen.

Although this is helpful for large queries, it can cause performance problems and limit concurrency. A better
approach is to limit parallelism to the number of physical cores in a single CPU socket. For example, on a
server with two physical CPU sockets with 12 cores per socket, regardless of hyper-threading, MAXDOP should
be set to 12. MAXDOP cannot restrict or dictate which CPU is to be used. Instead, it restricts the number of
CPUs that can be used by a single batch query.

NetApp recommends for DSS such as data warehouses, start with MAXDOP at 50 and explore
tuning up or down if required. Make sure you measure the critical queries in your application
when making changes.

Max worker threads

The max worker threads option helps to optimize performance when large numbers of clients are connected to
SQL Server.

Normally, a separate operating system thread is created for each query. If hundreds of simultaneous
connections are made to SQL Server, then one-thread-per-query configuration can consume excessive system
resources. The max worker threads option helps improve performance by enabling SQL Server to create a
pool of worker threads that can collectively service a larger number of query requests.

The default value is 0, which allows SQL Server to automatically configure the number of worker threads at
startup. This works for most systems. Max worker threads is an advanced option and should not be altered
without assistance from an experienced database administrator (DBA).

When should you configure SQL Server to use more worker threads? If the average work queue length for
each scheduler is above 1, you might benefit from adding more threads to the system, but only if the load is not
CPU-bound or experiencing any other heavy waits. If either of those is happening, adding more threads does
not help because they end up waiting for other system bottlenecks. For more information about max worker
threads, see Configure the max worker threads server configuration option.

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option?view=sql-server-ver16&redirectedfrom=MSDN

‘Selecta page & seipt = [y Heb

| 4 General
E‘Hmmw
e
fz?ﬁﬂgaﬂa Ewhewm#mm
= TS [Automatically set processor affinity mask for all processors
| & Database Seftings (] Automatically set O affinty mask for all processors
| % Advanced . .
| % Parmissions _ Frocessor Frocessar Affirdy 170 Affinity
{45
éﬂmmuim
Server
Connection: Meadmum worker threads:
SEA-TM\Administrator 5
#7 View connection propedies o
[Boosl SUL Server ponty
[] Use Windows fibers fightweight pooling)
5 @) Configured values O Running values

[OK | Cowe

Configuring max worker threads using SQL Server Management Studio.

The following example shows how to configure the max work threads option using T-SQL.

EXEC sp configure 'show advanced options', 1;
GO

RECONFIGURE ;

GO

EXEC sp configure 'max worker threads', 900 ;
GO

RECONFIGURE;

GO

Memory configuration

The following section explains the SQL Server memory settings required to optimize
database performance.

Max server memory

The max server memory option sets the maximum amount of memory that the SQL Server instance can use. It
is generally used if multiple applications are running on the same server where SQL Server is running and you
want to guarantee that these applications have sufficient memory to function properly.

Some applications only use whatever memory is available when they start and do not request additional
memory, even if they are under memory pressure. That is where the max server memory setting comes into

play.

On a SQL Server cluster with several SQL Server instances, each instance could be competing for resources.
Setting a memory limit for each SQL Server instance can help guarantee best performance for each instance.

NetApp recommends leaving at least 4GB to 6GB of RAM for the operating system to avoid
performance issues.

;sttﬂﬂll i)
i g 3 seipt ~ [Hep
g Vmiony
* Processors
E" Server memory options
% Connactions
| 28 Database Settings
| # Advanced
| % Parmissions Minimum server memory fin ME)
0 =
Maodmum senver memory in ME):
120832 .
Other memarny optiona
Connecton Index creation memary (in KB, 0 = dynamic memory):
Server 0]
Minimum memony per query fin KB):
Connection;
SEA-TM\Admiristrator 11024 =4
My View connedtion propedies
Progress
iy (@) Corfigured values () Running values

[ok] come

Adjusting minimum and maximum server memory using SQL Server Management Studio.

Using SQL Server Management Studio to adjust minimum or maximum server memory requires a restart of the
SQL Server service. You can also adjust server memory using transact SQL (T-SQL) using this code:

EXECUTE sp configure 'show advanced options', 1

GO
EXECUTE sp configure 'min server memory (MB)', 2048
GO
EXEC sp configure 'max server memory (MB)', 120832
GO

RECONFIGURE WITH OVERRIDE

Nonuniform memory access

Nonuniform memory access (NUMA) is a memory-access optimization technology that helps avoid extra the
load on the processor bus.

If NUMA is configured on a server where SQL Server is installed, no additional configuration is required
because SQL Server is NUMA-aware and performs well on NUMA hardware.

Index create memory

The index create memory option is another advanced option that should not normally need to be changed from
defaults.

It controls the maximum amount of RAM initially allocated for creating indexes. The default value for this option
is 0, which means that it is managed by SQL Server automatically. However, if you encounter difficulties
creating indexes, consider increasing the value of this option.

Min memory per query

When a query is run, SQL Server tries to allocate the optimum amount of memory to run efficiently.

By default, the min memory per query setting allocates >= to 1024KB for each query to run. It is a best practice
is to leave this setting at the default value in order to allow SQL Server to dynamically manage the amount of
memory allocated for index creation operations. However, if SQL Server has more RAM than it needs to run
efficiently, the performance of some queries can be boosted if you increase this setting. Therefore, as long as
memory is available on the server that is not being used by SQL Server, any other applications, or the
operating system, then boosting this setting can help overall SQL Server performance. If no free memory is
available, increasing this setting might hurt overall performance.

Select a page ;Eﬂ'ﬂ - [} Heb

Ty
Processoms ;
:";' Server memary oplions
= Datsbase Settings
:" Advanced
f Parmizsians Mmnimum server memarny n MB):
0 7
Madmum server memary (n MEB)
120832
(thar memory options
‘Connection " Index creation memory fin KB, 0 = dynamsc memory).
Server, 0 s
Munimum memany per querny [in KE}:
Connaction;
SEA-TM'\Adminisirator 1024 |=
34 View connection properies
Progress
. (%) Configured valuss (") Running values

| oK || Cencel

Shared instance versus dedicated instance

SQL Server can be configured as a single instance per server or as multiple instances.
The right decision usually depends on factors such as whether the server is to be used
for production or development, whether the instance is considered critical to business
operations and performance goals.

Shared instance configurations may be initially easier to configure, but it can lead to problems where resources
become divided or locked, which in turn causes performance issues for other applications that have databases
hosted on the shared SQL Server instance.

Troubleshooting performance issues can be complicated because you must figure out which instance is the
root cause. This question is weighed against the costs of operating system licenses and SQL Server licenses.
If application performance is paramount, then a dedicated instance is highly recommended.

Microsoft licenses SQL Server per core at the server level and not per instance. For this reason, database
administrators are tempted to install as many SQL Server instances as the server can handle to save on
licensing costs, which can lead to major performance issues later.

NetApp recommends choosing dedicated SQL Server instances whenever possible to obtain
optimal performance.

Tempdb files

The Tempdb database can be heavily utilized. In addition to optimal placement of user
database files on ONTAP, tempdb datafiles placement is also critical to reduce allocation
contention. Tempdb should be placed on separate disk and not shared with user
datafiles.

Page contention can occur on the global allocation map (GAM), shared global allocation map (SGAM), or page
free space (PFS) pages when SQL Server must write to special system pages to allocate new objects. Latches
lock these pages in memory. On a busy SQL Server instance, it can take a long time to get a latch on a system
page in tempdb. This results in slower query run times and is known as latch contention. See the following best
practices for creating tempdb data files:

* For < or = to 8 cores: tempdb data files = number of cores

» For > 8 cores: 8 tempdb data files

» The tempdb datafile should be created with equal size

The following example script modifies tempdb by creating eight tempdb files of equal size and moving tempdb
to the mount point ¢ : \MSSQL\ tempdb for SQL Server 2012 and later.

use master

go

-— Change logical tempdb file name first since SQL Server shipped with
logical file name called tempdev

alter database tempdb modify file (name = 'tempdev', newname =
'tempdev01l"') ;

-— Change location of tempdev0l and log file

alter database tempdb modify file (name = 'tempdev0l', filename =
'C:\MSSQL\ tempdb\tempdev0l.mdf") ;

alter database tempdb modify file (name
'C:\MSSQL\tempdb\templog.1ldf"') ;

'"templog', filename =

GO

-- Assign proper size for tempdevOl

ALTER DATABASE [tempdb] MODIFY FILE (NAME

N'tempdev0l', SIZE = 10GB);

ALTER DATABASE [tempdb] MODIFY FILE (NAME = N'templog', SIZE = 10GB);

GO

—-— Add more tempdb files

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdev(02', FILENAME =
N'C:\MSSQL\tempdb\tempdev02.ndf' , SIZE = 10GB , FILEGROWTH = 10%);

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdev(03', FILENAME =
N'C:\MSSQL\tempdb\tempdev03.ndf' , SIZE = 10GB , FILEGROWTH = 10%);

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdev(04', FILENAME =
N'C:\MSSQL\tempdb\tempdev04.ndf' , SIZE = 10GB , FILEGROWTH = 10%);

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdev(05', FILENAME =
N'C:\MSSQL\tempdb\tempdev05.ndf' , SIZE = 10GB , FILEGROWTH = 10%);

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdeVO6', FILENAME =
N'C:\MSSQL\tempdb\tempdev06.ndf' , SIZE = 10GB , FILEGROWTH = 10%);

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdeVO7', FILENAME =
N'C:\MSSQL\tempdb\tempdev07.ndf' , SIZE = 10GB , FILEGROWTH = 10%);

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdeVO8', FILENAME =
N'C:\MSSQL\tempdb\tempdev08.ndf' , SIZE = 10GB , FILEGROWTH = 10%);

GO

Beginning with SQL Server 2016, the number of CPU cores visible to the operating system is automatically
detected during installation and, based on that number, SQL Server calculates and configures the number of
tempdb files required for optimum performance.

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

10

http://www.netapp.com/TM

	Database configuration : Enterprise applications
	Table of Contents
	Database configuration
	CPU configuration
	Hyper-threading
	Cores and licensing
	CPU affinity
	Max Degree of Parallelism (MAXDOP)
	Max worker threads

	Memory configuration
	Max server memory
	Nonuniform memory access
	Index create memory
	Min memory per query

	Shared instance versus dedicated instance
	Tempdb files

