Database configuration

Enterprise applications

NetApp
February 10, 2026

This PDF was generated from https://docs.netapp.com/us-en/ontap-apps-dbs/postgres/postgres-
architecture.html on February 10, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Database configuration
Architecture
Initialization parameters
Settings

TOAST
VACUUM
Tablespaces

AW WOWDNDDN-_2 -~

Database configuration

Architecture

PostgreSQL is an RDBMS based on client and server architecture. A PostgreSQL
instance is known as a database cluster, which is a collection of databases as opposed to
a collection of servers.

PostgreSQL Basic Architecture

I ‘/Vﬁhimﬂ Memary _4'-— § b _

There are three major elements in a PostgreSQL database: the postmaster, the front end (client), and the back
end. The client sends requests to the postmaster with information such as IP protocol and which database to
connect to. The postmaster authenticates the connection and passes it to the back-end process for further
communication. The back-end process executes the query and sends results directly to the front end (client).

A PostgreSQL instance is based on a multiprocess model instead of a multithreaded model. It spawns multiple
processes for different jobs, and each process has its own functionality. The major processes include the client
process, the WAL writer process, the background writer process, and the checkpointer process:

* When a client (foreground) process sends read or write requests to the PostgreSQL instance, it doesn’t
read or write data directly to the disk. It first buffers the data in shared buffers and write-ahead logging
(WAL) buffers.

» A WAL writer process manipulates the content of the shared buffers and WAL buffers to write into the WAL
logs. WAL logs are typically transaction logs of PostgreSQL and are sequentially written. Therefore, to
improve the response time from the database, PostgreSQL first writes into the transaction logs and
acknowledges the client.

» To put the database in a consistent state, the background writer process checks the shared buffer
periodically for dirty pages. It then flushes the data onto the data files that are stored on NetApp volumes or
LUNSs.

* The checkpointer process also runs periodically (less frequently than the background process) and
prevents any modification to the buffers. It signals to the WAL writer process to write and flush the

checkpoint record to the end of WAL logs that are stored on the NetApp disk. It also signals the
background writer process to write and flush all dirty pages to the disk.

Initialization parameters

You create a new database cluster by using the initdb program. An initdb script
creates the data files, system tables, and template databases (template0 and template1)
that define the cluster.

The template database represents a stock database. It contains definitions for system tables, standard views,
functions, and data types. pgdata acts as an argument to the initdb script that specifies the location of the
database cluster.

All the database objects in PostgreSQL are internally managed by respective OIDs. Tables and indexes are
also managed by individual OIDs. The relationships between database objects and their respective OIDs are
stored in appropriate system catalog tables, depending on the type of object. For example, OIDs of databases
and heap tables are stored in pg_database and "pg_class, respectively. You can determine the OIDs by
issuing queries on the PostgreSQL client.

Every database has its own individual tables and index files that are restricted to 1GB. Each table has two
associated files, suffixed respectively with fsmand _vm. They are referred to as the free space map and the
visibility map. These files store the information about free space capacity and have visibility on each page in
the table file. Indexes only have individual free space maps and don’t have visibility maps.

The pg_xlog/pg wal directory contains the write-ahead logs. Write-ahead logs are used to improve
database reliability and performance. Whenever you update a row in a table, PostgreSQL first writes the
change to the write-ahead log, and later writes the modifications to the actual data pages to a disk. The
pg_xlog directory usually contains several files, but initdb creates only the first one. Extra files are added as
needed. Each xlog file is 16MB long.

Settings
There are several PostgreSQL tuning configurations that can improve performance.
The most commonly used parameters are as follows:

* max_connections = <num>: The maximum number of database connections to have at one time. Use
this parameter to restrict swapping to disk and killing the performance. Depending on your application
requirement, you can also tune this parameter for the connection pool settings.

* shared buffers = <num>: The simplest method for improving the performance of your database
server. The default is low for most modern hardware. It is set during deployment to approximately 25% of
available RAM on the system. This parameter setting varies depending on how it works with particular
database instances; you might have to increase and decrease the values by trial and error. However,
setting it high is likely to degrade performance.

* effective cache size = <num>: This value tells PostgreSQL’s optimizer how much memory
PostgreSQL has available for caching data and helps in determining whether to use an index. A larger
value increases the likelihood of using an index. This parameter should be set to the amount of memory
allocated to shared buffers plus the amount of OS cache available. Often this value is more than 50%
of the total system memory.

* work mem = <num>: This parameter controls the amount of memory to be used in sort operations and
hash tables. If you do heavy sorting in your application, you might need to increase the amount of memory,

but be cautious. It isn’t a system wide parameter, but a per-operation one. If a complex query has several
sort operations in it, it uses multiple work_mem units of memory, and multiple back ends could be doing
this simultaneously. This query can often lead your database server to swap if the value is too large. This
option was previously called sort_mem in older versions of PostgreSQL.

* fsync = <boolean> (on or off): This parameter determines whether all your WAL pages should be
synchronized to disk by using fsync() before a transaction is committed. Turning it off can sometimes
improve write performance and turning it on increases protection from the risk of corruption when the
system crashes.

* checkpoint_ timeout: The checkpoint process flushes committed data to disk. This involves a lot of
read/write operations on disk. The value is set in seconds and lower values decrease crash recovery time
and increasing values can reduce the load on system resources by reducing the checkpoint calls.
Depending on application criticality, usage, database availability, set the value of checkpoint_timeout.

* commit delay = <num>and commit siblings = <num>: These options are used together to help
improve performance by writing out multiple transactions that are committing at once. If there are several
commit_siblings objects active at the instant your transaction is committing, the server waits for
commit_delay microseconds to try to commit multiple transactions at once.

* max worker processes / max parallel workers: Configure the optimal number of workers for
processes. Max_parallel_workers correspond to the number of CPUs available. Depending on application
design, queries might require a lesser number of workers for parallel operations. It is better to keep the
value for both parameters the same but adjust the value after testing.

* random_page cost = <num>: This value controls the way PostgreSQL views non-sequential disk
reads. A higher value means PostgreSQL is more likely to use a sequential scan instead of an index scan,
indicating that your server has fast disks Modify this setting after evaluating other options like plan-based
optimization, vacuuming, indexing to altering queries or schema.

effective io concurrency = <num>:This parameter sets the number of concurrent disk 1/0
operations that PostgreSQL attempts to execute simultaneously. Raising this value increases the number
of 1/0 operations that any individual PostgreSQL session attempts to initiate in parallel. The allowed range
is 1 to 1,000, or zero to disable issuance of asynchronous I/O requests. Currently, this setting only affects
bitmap heap scans. Solid-state drives (SSDs) and other memory-based storage (NVMe) can often process
many concurrent requests, so the best value can be in the hundreds.

See the PostgreSQL documentation for a complete list of PostgreSQL configuration parameters.

TOAST

TOAST stands for The Oversized-Attribute Storage Technique. PostgreSQL uses a fixed page size (commonly
8KB) and does not allow tuples to span multiple pages. Therefore, it is not possible to store large field values
directly. When you attempt to store a row that exceeds this size, TOAST breaks up the data of large columns
into smaller “pieces” and stores them in a TOAST table.

The large values of toasted attributes are pulled out (if selected at all) only at the time the result set is sent to
the client. The table itself is much smaller and can fit more rows into the shared buffer cache than it could
without any out-of-line storage (TOAST).

VACUUM

In normal PostgreSQL operation, tuples that are deleted or made obsolete by an update are not physically
removed from their table; they remain present until VACUUM is run. Therefore, you must run VACUUM
periodically, especially on frequently updated tables. The space it occupies must then be reclaimed for reuse
by new rows, to avoid disk space outage. However, it does not return the space to the operating system.

The free space inside a page is not fragmented. VACUUM rewrites the entire block, efficiently packing the
remaining rows and leaving a single contiguous block of free space in a page.

In contrast, VACUUM FULL actively compacts tables by writing a completely new version of the table file with
no dead space. This action minimizes the size of the table but can take a long time. It also requires extra disk
space for the new copy of the table until the operation completes. The goal of routine VACUUM is to avoid
VACUUM FULL activity. This process not only keeps tables at their minimum size, but also maintains steady-
state usage of disk space.

Tablespaces
Two tablespaces are automatically created when the database cluster is initialized.

The pg_global tablespace is used for shared system catalogs. The pg default tablespace is the default
tablespace of the template1 and template0 databases. If the partition or volume on which the cluster was
initialized runs out of space and cannot be extended, a tablespace can be created on a different partition and
used until the system can be reconfigured.

An index that is heavily used can be placed on a fast, highly available disk, like a solid-state device. Also, a
table storing archived data that is rarely used or not performance critical can be stored on a less expensive,
slower disk system like SAS or SATA drives.

Tablespaces are a part of the database cluster and cannot be treated as an autonomous collection of data
files. They depend on metadata contained in the main data directory, and therefore cannot be attached to a
different database cluster or backed up individually. Similarly, if you lose a tablespace (through file deletion,
disk failure, and so on), the database cluster might become unreadable or unable to start. Placing a tablespace
on a temporary file system like a RAM disk risks the reliability of the entire cluster.

After it is created, a tablespace can be used from any database if the requesting user has sufficient privileges.
PostgreSQL uses symbolic links to simplify the implementation of tablespaces. PostgreSQL adds a row to the
pg_tablespace table (a clusterwide table) and assigns a new object identifier (OID) to that row. Finally, the
server uses the OID to create a symbolic link between your cluster and the given directory. The directory
$PGDATA/pg_tblspc contains symbolic links that point to each of the non-built-in tablespaces defined in the
cluster.

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

http://www.netapp.com/TM

	Database configuration : Enterprise applications
	Table of Contents
	Database configuration
	Architecture
	Initialization parameters
	Settings
	TOAST
	VACUUM

	Tablespaces

