REST implementation details
ONTAP automation

NetApp
October 22, 2025

This PDF was generated from https://docs.netapp.com/us-en/ontap-
automation/rest/operational_characteristics.html on October 22, 2025. Always check docs.netapp.com for

the latest.

Table of Contents

REST implementation details
Operational characteristics of the ONTAP REST API
Request and response API transaction
Support for CRUD operations
Object identifiers
Object instances and collections
Synchronous and asynchronous operations
Security
Input variables for an ONTAP REST API request
HTTP methods
Path variables
Request headers
Request body
Filtering objects
Requesting specific object fields
Sorting objects in the output set
Pagination when retrieving objects in a collection
Size properties
Interpret an ONTAP REST API response
HTTP status code
Response headers
Response body
HAL linking
Errors
Asynchronous processing with the ONTAP REST API
Controlling how a request is processed
Querying the Job object associated with an API request
General procedure for issuing an asynchronous request
ONTAP REST API object references and access
Object access paths
Accessing an object using the UUID
Accessing an object using an object property
Cluster versus SVM context
Using PATCH and DELETE on a collection of objects
Access performance metrics with the ONTAP REST API

© ©O©W © 00 N N N NO O O ol A WWWWWN-_2 2 A A A

e N G e e e T
N = =~ =~ O O O O

REST implementation details
Operational characteristics of the ONTAP REST API

While REST establishes a common set of technologies and best practices, the details of
each API can vary based on the design choices.

Request and response API transaction

Every REST API call is performed as an HTTP request to the ONTAP system which generates an associated
response to the client. This request/response pair is considered an API transaction. Before using the API, you
should be familiar with the input variables available to control a request and the contents of the response
output.

Support for CRUD operations

Each of the resources available through the ONTAP REST API is accessed based on the CRUD model:
» Create
* Read
* Update

e Delete

For some of the resources, only a subset of the operations is supported. You should review the ONTAP API
documentation page at your ONTAP cluster for more information about each resource.

Object identifiers

Each resource instance or object is assigned a unique identifier when it is created. In most cases, the identifier
is a 128-bit UUID. These identifiers are globally unique within a specific ONTAP cluster. After issuing an API
call that creates a new object instance, a URL with the associated id value is returned to the caller in the
location header of the HTTP response. You can extract the identifier and use it on subsequent calls when
referring to the resource instance.

The content and internal structure of the object identifiers can change at any time. You should
only use the identifiers on the applicable API calls as needed when referring to the associated
objects.

Object instances and collections

Depending on the resource path and HTTP method, an API call can apply to a specific object instance or a
collection of objects.

Synchronous and asynchronous operations

There are two ways that ONTAP performs an HTTP request received from a client.

Synchronous processing
ONTAP performs the request immediately and responds with an HTTP status code of 200 or 201 if it is

successful.

Every request using the methods GET, HEAD, and OPTIONS is always performed synchronously. In
addition, requests that use POST, PATCH, and DELETE are designed to run synchronously if they are
expected to complete in less than two seconds.

Asynchronous processing

If an asynchronous request is valid, ONTAP creates a background task to process the request and a job
object to anchor the task. The 202 HTTP status is returned to the caller along with the job object. To
determine final success or failure, you must retrieve the state of the job.

Requests that use the methods POST, PATCH, and DELETE are designed to run asynchronously if they
are expected to take more than two seconds to complete.

The return_timeout query parameter is available with asynchronous API calls and can
convert an asynchronous call to complete synchronously. Refer to Asynchronous processing
using the Job object for more information.

Security

The security provided with the REST API is based primarily on the existing security features available with
ONTAP. The following security is used by the API:

Transport Layer Security

All traffic sent over the network between the client and ONTAP LIF is typically encrypted using TLS, based
on the ONTAP configuration settings.

Client authentication

The same authentication options available with ONTAP System Manager and the Network Manageability
SDK can also be used with the ONTAP REST API.

HTTP authentication
At an HTTP level, for example when accessing the ONTAP REST API directly, there are two authentication
options as described below. In each case, you need to create an HT TP authorization header and include it
with each request.

Option Description

HTTP basic The ONTAP username and password are concatenated with a colon. The string
authentication is converted to base64 and included in the request header.

OAuth 2.0 Beginning with ONTAP 9.14, you can request an access token from an external

authorization server and include it as a bearer token in the request header.

For more details about OAuth 2.0 and how it is implemented in ONTAP, see Overview of the ONTAP OAuth
2.0 implementation. Also see Prepare to use the workflows below at this site.

ONTAP authorization

ONTAP implements a role-based authorization model. The account you use when accessing the ONTAP
REST API or APl documentation page should have the proper authority.

https://docs.netapp.com/us-en/ontap/authentication/overview-oauth2.html
https://docs.netapp.com/us-en/ontap/authentication/overview-oauth2.html
https://docs.netapp.com/us-en/ontap-automation/workflows/prepare_workflows.html

Input variables for an ONTAP REST API request

You can control how an API call is processed through parameters and variables set in the
HTTP request.

HTTP methods

The HTTP methods supported by the ONTAP REST API are shown in the following table.

@ Not all the HTTP methods are available at each of the REST endpoints. Also, both PATCH and
DELETE can be used on a collection. See Object references and access for more information.

HTTP method Description

GET Retrieves object properties on a resource instance or collection.
POST Creates a new resource instance based on the supplied input.
PATCH Updates an existing resource instance based on the supplied input.
DELETE Deletes an existing resource instance.

HEAD Effectively issues a GET request but only returns the HTTP headers.
OPTIONS Determine what HTTP methods are supported at a specific endpoint.

Path variables

The endpoint path used with each REST API call can include various identifiers. Each ID corresponds to a
specific resource instance. Examples include cluster ID and SVM ID.

Request headers

You must include several headers in the HTTP request.

Content-type
If the request body includes JSON, this header must be set to application/json.

Accept

This header should be set to application/hal+json. Ifitis instead set to application/json none of
the HAL links will be returned except a link needed to retrieve the next batch of records. If the header is
anything else aside from these two values, the default value of the content-type header in the response
will be application/hal+json

Authorization

Basic authentication must be set with the user name and password encoded as a base64 string. For
example:

Authorization: Basic YWRtaWdo6cGV0zZXJzb24=.

Request body

The content of the request body varies depending on the specific call. The HTTP request body consists of one

of the following:
* JSON object with input variables
* Empty JSON object

Filtering objects

When issuing an API call with the GET method, you can limit or filter the returned objects based on any
attribute using a query parameter.

Parsing and interpreting query parameters

A set of one or more parameters can be appended to the URL string beginning after the ? character. If more
than one parameter is provided, the query parameters are split based on the & character. Each key and value
in the parameter are split at the = character.

For example, you can specify an exact value to match using the equal sign:

<field>=<value>

For a more complex query, the additional operator is placed after the equal sign. For example, to select the set
of objects based on a specific field that is greater than or equal to some value, the query would be:

<field>=>=<value>

Filtering operators

In addition to the examples provided above, additional operators are available to return objects over a range of
values. A summary of the filtering operators supported by the ONTAP REST API is shown in the table below.

@ Any fields that are not set are generally excluded from matching queries.
Operator Description
= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
! Not equal to

Greedy wildcard

You can also return a collection of objects based on whether a specific field is set or not set by using the null
keyword or its negation !null as part of the query.

Workflow examples
Some examples are included below from the REST API workflows at this site.

« List disks

Filter based on the state variable to select the spare disks.

https://docs.netapp.com/us-en/ontap-automation/workflows/wf_stor_list_disks.html

Requesting specific object fields

By default, issuing an API call using GET returns only the attributes that uniquely identify the object or objects,
along with a HAL self link. This minimum set of fields acts as a key for each object and varies based on the
object type. You can select additional object properties using the fields query parameter in the following
ways:

 Common or standard fields

Specify fields=*" to retrieve the most commonly used object fields. These fields are typically maintained
in local server memory or require little processing to access. These are the same properties returned for an
object after using GET with a URL path key (UUID).

« All fields

Specify fields=** to retrieve all the object fields, including those requiring additional server processing
to access.

» Custom field selection

Use fields=<field name> to specify the exact field you want. When requesting multiple fields, the
values must be separated using commas without spaces.

As a best practice, you should always identify the specific fields you want. You should only
retrieve the set of common fields or all fields when needed. Which fields are classified as

common, and returned using fields=*, is determined by NetApp based on internal

performance analysis. The classification of a field might change in future releases.

Sorting objects in the output set

The records in a resource collection are returned in the default order defined by the object. You can change the
order using the order by query parameter with the field name and sort direction as follows:

order by=<field name> asc|desc
For example, you can sort the type field in descending order followed by id in ascending order:
order by=type desc, id asc
Note the following:
« If you specify a sort field but don’t provide a direction, the values are sorted in ascending order.

* When including multiple parameters, you must separate the fields with a comma.

Pagination when retrieving objects in a collection

When issuing an API call using GET to access a collection of objects of the same type, ONTAP attempts to
return as many objects as possible based on two constraints. You can control each of these constraints using
additional query parameters on the request. The first constraint reached for a specific GET request terminates
the request and therefore limits the number of records returned.

@ If a request ends before iterating over all the objects, the response contains the link needed to
retrieve the next batch of records.

Limiting the number of objects

By default, ONTAP returns a maximum of 10,000 objects for a GET request. You can change this limit using
the max records query parameter. For example:

max records=20

The number of objects actually returned can be less than the maximum in effect, based on the related time
constraint as well as the total number of objects in the system.

Limiting the time used to retrieve the objects

By default, ONTAP returns as many objects as possible within the time allowed for the GET request. The
default timeout is 15 seconds. You can change this limit using the return timeout query parameter. For
example:

return timeout=>5

The number of objects actually returned can be less than the maximum in effect, based on the related
constraint on the number of objects as well as the total number of objects in the system.

Narrowing the result set

If needed, you can combine these two parameters with additional query parameters to narrow the result set.
For example, the following returns up to 10 ems events generated after the specified time:

time=> 2018-04-04T15:41:29.140265Z&max records=10

You can issue multiple requests to page through the objects. Each subsequent API call should use a new
time value based on the latest event in the last result set.

Size properties

The input values used with some API calls as well as certain query parameters are numeric. Rather than
provide an integer in bytes, you can optionally use a suffix as shown in the following table.

Suffix Description

KB KB Kilobytes (1024 bytes) or kibibytes

MB MB Megabytes (KB x 1024 bytes) or mebibytes
GB GB Gigabytes (MB x 1024 bytes) or gibibytes
TB TB Terabytes (GB x 1024 bytes) or tebibytes
PB PB Petabytes (TB x 1024 bytes) or pebibytes

Related information

* Object references and access

Interpret an ONTAP REST API response

Each API request generates a response back to the client. You should examine the
response to determine whether it was successful and retrieve additional data as needed.

HTTP status code

The HTTP status codes used by the ONTAP REST API are described below.

Code
200
201

202

400
401
403
404
405

409

500

Reason phrase
OK
Created

Accepted

Bad request
Unauthorized
Forbidden
Not found

Method not allowed

Conflict

Internal error

Response headers

Description
Indicates success for calls that do not create a new object.

An object is successfully created. The location header in the
response includes the unique identifier for the object.

A background job has been started to perform the request, but
has not completed yet.

The request input is not recognized or is inappropriate.
User authentication has failed.

Access is denied due to an authorization error.

The resource referred to in the request does not exist.

The HTTP method in the request is not supported for the
resource.

An attempt to create an object failed because a different object
must be created first or the requested object already exists.

A general internal error occurred at the server.

Several headers are included in the HTTP response generated by the ONTAP.

Location

When an object is created, the location header includes the complete URL to the new object including the

unique identifier assigned to the object.

Content-type

This will normally be application/hal+json.

Response body

The content of the response body resulting from an API request differs based on the object, processing type,
and the success or failure of the request. The response is always rendered in JSON.

 Single object

A single object can be returned with a set of fields based on the request. For example, you can use GET to

retrieve selected properties of a cluster using the unique identifier.

Multiple objects

Multiple objects from a resource collection can be returned. In all cases, there is a consistent format used,
with num records indicating the number of records and records containing an array of the object
instances. For example, you can retrieve the nodes defined in a specific cluster.

Job object

If an API call is processed asynchronously, a Job object is returned which anchors the background task.
For example, the PATCH request used to update the cluster configuration is processed asynchronously
and returns a Job object.

Error object

If an error occurs, an Error object is always returned. For example, you will receive an error when
attempting to change a field not defined for a cluster.

Empty JSON object

In certain cases, no data is returned and the response body includes an empty JSON object.

HAL linking

The ONTAP REST API uses HAL as the mechanism to support Hypermedia as the Engine of Application State
(HATEOAS). When an object or attribute is returned that identifies a specific resource, a HAL-encoded link is
also included allowing you to easily locate and determine additional details about the resource.

Errors
If an error occurs, an error object is returned in the response body.

Format
An error object has the following format:

"error": {

"message": "<string>",
"code": <integer>[,
"target": "<string>"]

}

You can use the code value to determine the general error type or category, and the message to determine
the specific error. When available, the target field includes the specific user input associated with the error.

Common error codes
The common error codes are described in the following table. Specific API calls can include additional error

codes.
Code Description

1 409 An object with the same identifier
already exists.

Code Description

2 400 The value for a field has an invalid
value or is missing, or an extra
field was provided.

3 400 The operation is not supported.

4 405 An object with the specified
identifier cannot be found.

6 403 Permission to perform the request
is denied.

8 409 The resource is in use.

Asynchronous processing with the ONTAP REST API

After issuing an API request that is designed to run asynchronously, a job object is always
created and returned to the caller. The job describes and anchors a background task that
processes the request. Depending on the HTTP status code, you must retrieve the state
of the job to determine if the request was successful.

Refer to API| reference to determine which API calls are designed to be performed asynchronously.

Controlling how a request is processed

You can use the return_timeout query parameter to control how an asynchronous API call is processed.
There are two possible outcomes when using this parameter.

Timer expires before the request completes

For valid requests, ONTAP returns a 202 HTTP status code along with the job object. You must retrieve the
state of the job to determine if the request completed successfully.

Request is completed before the timer expires

If the request is valid and completes successfully before the time expires, ONTAP returns a 200 HTTP
status code along with the job object. Because the request is completed synchronously, as indicated by the
200, you do not need to retrieve the job state.

@ The default value for the return timeout parameter is zero seconds. Therefore, if you
don’t include the parameter, the 202 HTTP status code is always returned for a valid request.

Querying the Job object associated with an API request

The Job object returned in the HTTP response contains several properties. You can query the state property in
a subsequent API call to determine if the request completed successfully. A Job object is always in one of the
following states:

Non-terminal states
e Queued

* Running

https://docs.netapp.com/us-en/ontap-automation/reference/api_reference.html

» Paused

Terminal states
» Success

e Failure

General procedure for issuing an asynchronous request

You can use the following high-level procedure to complete an asynchronous API call. This example assumes
the return timeout parameter is not used, or that the time expires before the background job completes.

1. Issue an API call that is designed to be performed asynchronously.
2. Receive an HTTP response 202 indicating acceptance of a valid request.
3. Extract the identifier for the Job object from the response body.
4. Within a timed loop, perform the following in each cycle:
a. Get the current state of the Job.
b. If the Job is in a non-terminal state, perform loop again.

5. Stop when the Job reaches a terminal state (success, failure).

Related information
» Update cluster contact

* Get job instance

ONTAP REST API object references and access

The resource instances or objects exposed through the ONTAP REST API can be
referenced and accessed in several different ways.

Object access paths
At a high level, there are two path types when accessing an object:
* Primary
The object is the primary or direct target of the API call.
» Foreign
The object is not the primary reference of the API call, but rather is linked to from the primary object. It is
therefore a foreign or downstream object and referenced through a field in the primary object.
Accessing an object using the UUID
Every object is assigned a unique identifier when it is created, which in most cases is a 128-bit UUID. The
assigned UUID values are immutable and are used internally within ONTAP to access and manage the

resources. Because of this, the UUID generally provides the fastest and most stable way to access objects.

For many of the resource types, a UUID value can be provided as part of the path key in the URL to access a

10

https://docs.netapp.com/us-en/ontap-automation/workflows/wf_cls_update_contact.html
https://docs.netapp.com/us-en/ontap-automation/workflows/wf_jobs_get_job.html

specific object. For example, you can use the following to access a node instance:
*/cluster/nodes/{uuid}

Accessing an object using an object property

In addition to a UUID, you can also access an object using an object property. In most cases, it is convenient to
use the name property. For example, you can use the following query parameter in the URL string to access a
node instance by its name: /cluster/nodes?name=node_one. In addition to a query parameter, a foreign
object can be accessed through a property in the primary object.

While you can use the name or other property to access an object instead of the UUID, there are several
possible disadvantages:

» The name field is not immutable and can be changed. If the name of an object is changed before
accessing an object, the wrong object will be returned or an object access error will fail.

@ This issue can occur with a POST or PATCH method on a foreign object or with a GET
method on a primary object.

* ONTAP must translate the name field into the corresponding UUID. This is a type of indirect access which
can become a performance issue.

In particular, a performance degradation is possible when one or more of the following is true:

* GET method is used
» Alarge collection of objects is accessed

* A complex or elaborate query is used

Cluster versus SVM context

There are several REST endpoints that support both a cluster and SVM. When using one of these endpoints,
you can indicate the context of the API call through the scope=[svm|cluster] value. Examples of
endpoints supporting a dual context include IP interfaces and security roles.

@ The scope value has a default value base on the properties provided for each API call.

Using PATCH and DELETE on a collection of objects

Every REST endpoint supporting PATCH or DELETE on a resource instance also supports the same method
on a collection of objects. The only requirement is that at least one field must be provided through a query
parameter in the URL string. When issuing a PATCH or DELETE over a collection, this is equivalent to doing
the following internally:

* Query-based GET to retrieve the collection
« Serial sequence of PATCH or DELETE calls on each object in the collection
The time out for the operation can be set by return timeout with a default of 15 seconds. If not completed

before the timeout, the response includes a link to the next object. You must reissue the same HTTP method
using the next link to continue the operation.

11

Access performance metrics with the ONTAP REST API

ONTAP collects performance metrics about selected SVM storage objects and protocols,
and reports this information through the REST API. You can use this data to monitor the
performance of an ONTAP system.

For a given storage object or protocol, the performance data falls into three categories:

* |OPS
 Latency

* Throughput
Within each category, one or more of the following types of data is available:

* Read ®
» Write (W)
* Other (O)
* Total (T)
The following table summarizes the performance data available through the ONTAP REST API, including the

release when it was added. Refer to the REST API online documentation page at your ONTAP system for
more information.

Storage objector IOPS Latency Throughput ONTAP release
protocol

Ethernet port Not applicable Not applicable RWT 9.8
FC port RWOT RWOT RWT 9.8
IP interface Not applicable Not applicable RWT 9.8
FC interface RWOT RWOT RWT 9.8
NVMe namespace RWOT RWOT RWOT 9.8
Qtree statistics Raw RWOT Not applicable Raw RWOT 9.8
Volume Flexcache = RWOT RWOT RWT 9.8
Node — process Process utilization ~ Process utilization =~ Process utilization 9.8
utilization as a numerical value as a numerical value as a numerical value
Cloud volume RWOT RWOT Not appliable 9.7
LUN RWOT RWOT RWOT 9.7
Aggregate RWOT RWOT RWOT 9.7
SVM NFS protocol RWOT RWOT RWT 9.7
SVM CIFS protocol RWOT RWOT RWT 9.7
SVM FCP protocol RWOT RWOT RWT 9.7

SVM iSCSI protocol RWOT RWOT RWT 9.7

12

Storage object or IOPS
protocol

SVM NVMe protocol RWOT
Cluster RWOT
Volumes RWOT

Latency

RWOT
RWOT
RWOT

Throughput

RWT
RWOT
RWOT

ONTAP release

9.7
9.6
9.6

13

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

14

http://www.netapp.com/TM

	REST implementation details : ONTAP automation
	Table of Contents
	REST implementation details
	Operational characteristics of the ONTAP REST API
	Request and response API transaction
	Support for CRUD operations
	Object identifiers
	Object instances and collections
	Synchronous and asynchronous operations
	Security

	Input variables for an ONTAP REST API request
	HTTP methods
	Path variables
	Request headers
	Request body
	Filtering objects
	Requesting specific object fields
	Sorting objects in the output set
	Pagination when retrieving objects in a collection
	Size properties

	Interpret an ONTAP REST API response
	HTTP status code
	Response headers
	Response body
	HAL linking
	Errors

	Asynchronous processing with the ONTAP REST API
	Controlling how a request is processed
	Querying the Job object associated with an API request
	General procedure for issuing an asynchronous request

	ONTAP REST API object references and access
	Object access paths
	Accessing an object using the UUID
	Accessing an object using an object property
	Cluster versus SVM context
	Using PATCH and DELETE on a collection of objects

	Access performance metrics with the ONTAP REST API

