
Workflows

ONTAP automation
NetApp
January 18, 2026

This PDF was generated from https://docs.netapp.com/us-en/ontap-
automation/workflows/prepare_workflows.html on January 18, 2026. Always check docs.netapp.com for
the latest.

Table of Contents
Workflows. 1

Prepare to use the ONTAP REST API workflows. 1

Introduction . 1

Input variables . 1

Authentication options . 3

Using the examples with Bash. 4

Cluster . 4

Get cluster configuration using the ONTAP REST API . 4

Update cluster contact using the ONTAP REST API . 5

Get job instance using the ONTAP REST API . 6

NAS . 7

File security permissions . 8

Networking . 16

List the IP interfaces using the ONTAP REST API. 16

Security . 25

Accounts . 25

Certificates and keys . 27

RBAC . 30

Storage. 39

List the aggregates using the ONTAP REST API. 39

List the disks using the ONTAP REST API . 41

Support. 43

EMS . 44

SVM . 50

List the SVMs using the ONTAP REST API . 50

Workflows

Prepare to use the ONTAP REST API workflows

You should be familiar with the structure and format of the workflows before using them
with a live ONTAP deployment.

You should make sure that your ONTAP release supports all the API calls in the workflows you
plan to use. See API reference for more information.

Introduction

A workflow is a sequence of one or more steps needed to accomplish a specific administrative task or goal.
The ONTAP workflows include the core steps and parameters you need to accomplish each task. They provide
a starting point for customizing your ONTAP automation environment.

Step types

Each step in an ONTAP workflow is one of the following types:

• REST API call (with details such as curl and JSON examples)

• Perform or invoke another ONTAP workflow

• Miscellaneous related task (such as making a configuration decision)

REST API calls

Most of the workflow steps are REST API calls. These steps use a common format which includes a curl
example and other information. See the API reference for more details about the REST API calls.

Single-step workflows

A workflow can contain only one step. These single-step workflows are formatted slightly differently than
workflows containing multiple steps. For example, the explicit step name is removed. The action or operation
should be clear based on the workflow title.

Input variables

The workflows are designed to be as general as possible so they can be used in any ONTAP environment.
With this in mind, the REST API calls use variables in the curl examples and other input. The REST API calls
can then be easily adapted to different ONTAP environments.

Base URL format

You can access the ONTAP REST API directly through curl or a programming language. In this case, the base
URL is different than the URL you use when accessing the ONTAP online documentation or System Manager.

When accessing the API directly, you need to append api to the domain or IP address. For example:

https://ontap.demo-example.com/api

See How to access the ONTAP REST API for more information.

1

https://docs.netapp.com/us-en/ontap-automation/reference/api_reference.html
https://docs.netapp.com/us-en/ontap-automation/reference/api_reference.html
https://ontap.demo-example.com/api
https://ontap.demo-example.com/api
https://ontap.demo-example.com/api
https://docs.netapp.com/us-en/ontap-automation/get-started/access_rest_api.html

Common input parameters

There are several input parameters commonly used with most of the REST API calls. These parameters are
typically not described in the individual workflows. You should be familiar with the parameters. See Input
variables controlling an API request for more information.

If additional parameters are needed for a specific REST API call, they are included in the section Additional

input parameters for the curl example for each workflow.

Variable format

The ID values and other variables used with the workflow examples are opaque and can vary with each
ONTAP cluster. To improve the readability of the examples, actual values are not used. Variables are used
instead. This approach, based on a consistent format and set of reserved names, has several benefits
including:

• The curl and JSON samples are more readable and easier to understand.

• Because all the keywords use the same format, you can quickly identify them.

• There is no security exposure because the values cannot be copied and reused.

The variables are formatted to be used in a Bash shell environment. Each variable begins with a dollar sign
and is enclosed in double quotes as needed. This makes them recognizable to Bash. Upper case is
consistently used for the names.

Here are some of the common variable keywords. This list is not exhaustive and additional variables are used
as needed. Their meaning should be obvious based on the context.

Keyword Type Description

$FQDN_IP URL The fully qualified domain name or IP address of the ONTAP
management LIF.

$CLUSTER_ID Path The UUIDv4 value identifying the ONTAP cluster where the API
operations run.

$BASIC_AUTH Header The credentials string used for HTTP basic authentication.

JSON input examples

Some of the REST API calls, such as those using POST or PATCH, require JSON input in the body of the
request. The JSON input examples are presented separately from the curl examples for clarity. You can use
the JSON input examples with one of the techniques described below.

Save to local file

You can copy the JSON input example to a file and save it locally. The curl command refers to the file using the

--data parameter with the value indicating the file name with a @ prefix.

Paste into terminal after the curl example

First you need to copy and paste the curl example into a terminal shell. Then edit the example to completely

remove the --data parameter at the end and replace it with the --data-raw parameter. Finally, copy and
paste in the JSON example so that it follows the curl command with the updated parameter. You should use
single quotes to wrap the JSON input example.

2

https://docs.netapp.com/us-en/ontap-automation/rest/input_variables.html
https://docs.netapp.com/us-en/ontap-automation/rest/input_variables.html

Authentication options

The primary authentication technique available for the REST API is HTTP basic authentication. Beginning with
ONTAP 9.14, you also have the option of using the Open Authorization (OAuth 2.0) framework with token-
based authentication and authorization.

HTTP basic authentication

When using basic authentication, the user credentials must be included with each HTTP request. There are
two options for sending the credentials.

Construct the HTTP request header

You can manually construct the Authorization header and include it with the HTTP requests. This can be done
when using a curl command in the CLI or a programming language with your automation code. The high-level
steps include:

1. Concatenate the user and password values with a colon:

admin:david123

2. Convert the entire string to base64:

YWRtaW46ZGF2aWQxMjM=

3. Construct the request header:

Authorization: Basic YWRtaW46ZGF2aWQxMjM=

The workflow curl examples include this header with the variable $BASIC_AUTH which you need to update
before using.

Use a curl parameter

Another option when using curl is to remove the Authorization header and use the curl user parameter instead.
For example:

--user username:password

You need to substitute the appropriate credentials for your environment. The credentials are not encoded in
base64. When executing the curl command with this parameter, the string is encoded and the Authorization
header is generated for you.

OAuth 2.0

When using OAuth 2.0, you need to request an access token from an external authorization server and include
it with each HTTP request. The basic high-level steps are described below. Also see Overview of the ONTAP
OAuth 2.0 implementation for more details about OAuth 2.0 and how to use it with ONTAP.

Prepare your ONTAP environment

Before using the REST API to access ONTAP, you need to prepare and configure the ONTAP environment. At
a high level, the steps include:

• Identify the ONTAP protected resources and clients

• Review the existing ONTAP REST role and user definitions

3

https://docs.netapp.com/us-en/ontap/authentication/overview-oauth2.html
https://docs.netapp.com/us-en/ontap/authentication/overview-oauth2.html

• Install and configure the authorization server

• Design and configure the client authorization definitions

• Configure ONTAP and enable OAuth 2.0

Request an access token

With ONTAP and the authorization server defined and active, you can make a REST API call using an OAuth
2.0 token. The first step is to request an access token from the authorization server. This is done outside of
ONTAP using one of several different techniques based on the server. ONTAP does not issue access tokens or
perform redirection.

Construct the HTTP request header

After obtaining an access token, you can construct an Authorization header and include it with the HTTP
requests. Regardless of whether you use curl or a programming language to access the REST API, you must
include the header with every client request. You can construct the header as follows:

Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSld …

Using the examples with Bash

If you use the workflow curl examples directly, you must update the variables they contain with values
appropriate for your environment. You can manually edit the examples or rely on the Bash shell to do the
substitution for you as described below.

One advantage of using Bash is that you can set the variable values one time in a shell session
instead of once per curl command.

Steps

1. Open the Bash shell provided with Linux or similar operating system.

2. Set the variable values included in the curl example you want to run. For example:

CLUSTER_ID=ce559b75-4145-11ee-b51a-005056aee9fb

3. Copy the curl example from the workflow page and paste it into the shell terminal.

4. Press ENTER which will do the following:

a. Substitute the variable values you set

b. Execute the curl command

Cluster

Get cluster configuration using the ONTAP REST API

You can retrieve the configuration for an ONTAP cluster including specific fields. You
might do this as part of assessing the state of the cluster or before updating the
configuration.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

4

HTTP method Path

GET /api/cluster

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

fields Query No Select the values you want returned. Examples include

contact and version.

Curl example: Retrieve the cluster contact information

This example illustrates how to retrieve a single field. To get the entire cluster object and configuration, you

need to remove the fields query parameter.

curl --request GET \

--location "https://$FQDN_IP/api/cluster?fields=contact" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

JSON output example

{

 "contact": "support@company-demo.com"

}

Update cluster contact using the ONTAP REST API

You can update the contact information for a cluster. Because the request is processed
asynchronously, you also need to determine if the associated background job completed
successfully.

Step 1: Update the cluster contact information

You can issue an API call to update the cluster contact information.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

PATCH /api/cluster

Processing type

Asynchronous

5

Curl example

1 curl --request PATCH \

2 --location "https://$FQDN_IP/api/cluster" \

3 --include \

4 --header "Content-Type: application/json" \

5 --header "Accept: */*" \

6 --header "Authorization: Basic $BASIC_AUTH" \

7 --data @JSONinput

JSON input example

{

 "contact": "support@company-demo.com"

}

JSON output example

A job object is returned. You should save the job identifier to use it in the next step.

{ "job": {

 "uuid": "d877f5bb-3aa7-11e9-b6c6-005056a78c89",

 "_links": {

 "self": {

 "href": "/api/cluster/jobs/d877f5bb-3aa7-11e9-b6c6-005056a78c89"

 }

 }

 }

}

Step 2: Retrieve the status of the job

Perform the workflow Get job instance and confirm the state value is success.

Step 3: Confirm the cluster contact information

Perform the workflow Get cluster configuration. You should set the fields query parameter to contact.

Get job instance using the ONTAP REST API

You can retrieve the instance of a specific ONTAP job. You would typically do this to
determine if the job and associated operation completed successfully.

You need the UUID of the job object, which is typically provided after issuing an asynchronous
request. Also review Asynchronous processing using the Job object before working with ONTAP
internal jobs.

6

https://docs.netapp.com/us-en/ontap-automation/rest/asynchronous_processing.html

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/cluster/jobs/{uuid}

Processing type

Synchronous

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

Parameter Type Required Description

$JOB_ID Path Yes Needed to identify the job being requested.

Curl example

1 curl --request GET \

2 --location "https://$FQDN_IP/api/cluster/jobs/$JOB_ID" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

JSON output example

The state value and other fields are included in the returned job object. The job in this example was run as part
of updating an ONTAP cluster.

{

 "uuid": "d877f5bb-3aa7-11e9-b6c6-005056a78c89",

 "description": "PATCH /api/cluster",

 "state": "success",

 "message": "success",

 "code": 0,

 "_links": {

 "self": {

 "href": "/api/cluster/jobs/d877f5bb-3aa7-11e9-b6c6-005056a78c89"

 }

 }

}

NAS

7

File security permissions

Prepare to manage file security and audit policies using the ONTAP REST API

You can manage the permissions and audit policies for files available through the SVMs
within an ONTAP cluster.

Overview

ONTAP uses System Access Control Lists (SACLs) and Discretionary Access Control Lists (DACLs) to assign
permissions to file objects. Beginning with ONTAP 9.9.1, the REST API includes support for managing the
SACL and DACL permissions. You can use the API to automate the administration of the file security
permissions. In many cases you can use a single REST API call instead of multiple CLI commands or ONTAPI
(ZAPI) calls.

For ONTAP releases prior to 9.9.1, you can automate the administration of the SACL and DACL
permissions using the CLI passthrough feature. See Migration considerations and Using the
private CLI passthrough with the ONTAP REST API for more information.

Several example workflows are available to illustrate how to manage the ONTAP file security services using
the REST API. Before using the workflows and issuing any of the REST API calls, make sure to review
Prepare to use the workflows.

If you use Python, also see the script file_security_permissions.py for examples of how to automate some of
the file security activities.

ONTAP REST API versus ONTAP CLI commands

For many tasks, using the ONTAP REST API requires fewer calls than the equivalent ONTAP CLI commands
or ONTAPI (ZAPI) calls. The table below includes a list of API calls and the equivalent the CLI commands
needed for each task.

ONTAP REST API ONTAP CLI

GET /protocols/file-

security/effective-permissions/

vserver security file-directory show-effective-

permissions

POST /protocols/file-

security/permissions/

1. vserver security file-directory ntfs create

2. vserver security file-directory ntfs dacl add

3. vserver security file-directory ntfs sacl add

4. vserver security file-directory policy create

5. vserver security file-directory policy task

add

6. vserver security file-directory apply

PATCH /protocols/file-

security/permissions/

vserver security file-directory ntfs modify

8

https://docs.netapp.com/us-en/ontap-automation/migrate/migration-considerations.html
https://netapp.io/2020/11/09/private-cli-passthrough-ontap-rest-api/
https://netapp.io/2020/11/09/private-cli-passthrough-ontap-rest-api/
https://github.com/NetApp/ontap-rest-python/blob/master/examples/rest_api/file_security_permissions.py

ONTAP REST API ONTAP CLI

DELETE /protocols/file-

security/permissions/

1. vserver security file-directory ntfs dacl

remove

2. vserver security file-directory ntfs sacl

remove

Related information

• Python script illustrating file permissions

• Simplified management of file-security permissions with ONTAP REST APIs

• Using the private CLI passthrough with the ONTAP REST API

Get the effective permissions for a file using the ONTAP REST API

You can retrieve the current effective permissions for a specific file or folder.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/protocols/file-security/effective-permissions/{svm.uuid}/{path}

Processing type

Synchronous

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

$SVM_ID Path Yes This is the UUID of the SVM containing the file.

$FILE_PATH Path Yes This is the path to the file or folder.

Curl example

curl --request GET \

--location "https://$FQDN_IP/api/protocols/file-security/effective-

permissions/$SVM_ID/$FILE_PATH" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

9

https://github.com/NetApp/ontap-rest-python/blob/master/examples/rest_api/file_security_permissions.py
https://netapp.io/2021/06/28/simplified-management-of-file-security-permissions-with-ontap-rest-apis/
https://netapp.io/2020/11/09/private-cli-passthrough-ontap-rest-api/

JSON output example

{

 "svm": {

 "uuid": "cf5f271a-1beb-11ea-8fad-005056bb645e",

 "name": "vs1"

 },

 "user": "administrator",

 "type": "windows",

 "path": "/",

 "share": {

 "path": "/"

 },

 "file_permission": [

 "read",

 "write",

 "append",

 "read_ea",

 "write_ea",

 "execute",

 "delete_child",

 "read_attributes",

 "write_attributes",

 "delete",

 "read_control",

 "write_dac",

 "write_owner",

 "synchronize",

 "system_security"

],

 "share_permission": [

 "read",

 "read_ea",

 "execute",

 "read_attributes",

 "read_control",

 "synchronize"

]

}

Get auditing information for a file using the ONTAP REST API

You can retrieve the auditing information for a specific file or folder.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

10

HTTP method Path

GET /api/protocols/file-security/permissions/{svm.uuid}/{path}

Processing type

Synchronous

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

$SVM_ID Path Yes This is the UUID of the SVM containing the file.

$FILE_PATH Path Yes This is the path to the file or folder.

Curl example

curl --request GET \

--location "https://$FQDN_IP/api/protocols/file-

security/permissions/$SVM_ID/$FILE_PATH" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

JSON output example

{

 "svm": {

 "uuid": "9479099d-5b9f-11eb-9c4e-0050568e8682",

 "name": "vs1"

 },

 "path": "/parent",

 "owner": "BUILTIN\\Administrators",

 "group": "BUILTIN\\Administrators",

 "control_flags": "0x8014",

 "acls": [

 {

 "user": "BUILTIN\\Administrators",

 "access": "access_allow",

 "apply_to": {

 "files": true,

 "sub_folders": true,

 "this_folder": true

 },

 "advanced_rights": {

 "append_data": true,

11

 "delete": true,

 "delete_child": true,

 "execute_file": true,

 "full_control": true,

 "read_attr": true,

 "read_data": true,

 "read_ea": true,

 "read_perm": true,

 "write_attr": true,

 "write_data": true,

 "write_ea": true,

 "write_owner": true,

 "synchronize": true,

 "write_perm": true

 },

 "access_control": "file_directory"

 },

 {

 "user": "BUILTIN\\Users",

 "access": "access_allow",

 "apply_to": {

 "files": true,

 "sub_folders": true,

 "this_folder": true

 },

 "advanced_rights": {

 "append_data": true,

 "delete": true,

 "delete_child": true,

 "execute_file": true,

 "full_control": true,

 "read_attr": true,

 "read_data": true,

 "read_ea": true,

 "read_perm": true,

 "write_attr": true,

 "write_data": true,

 "write_ea": true,

 "write_owner": true,

 "synchronize": true,

 "write_perm": true

 },

 "access_control": "file_directory"

 }

],

 "inode": 64,

12

 "security_style": "mixed",

 "effective_style": "ntfs",

 "dos_attributes": "10",

 "text_dos_attr": "----D---",

 "user_id": "0",

 "group_id": "0",

 "mode_bits": 777,

 "text_mode_bits": "rwxrwxrwx"

}

Apply new permissions to a file using the ONTAP REST API

You can apply a new security descriptor to a specific file or folder.

Step 1: Apply the new permissions

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/protocols/file-security/permissions/{svm.uuid}/{path}

Processing type

Asynchronous

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

$SVM_ID Path Yes This is the UUID of the SVM containing the file.

$FILE_PATH Path Yes This is the path to the file or folder.

13

Curl example

curl --request POST --location "https://$FQDN_IP/api/protocols/file-

security/permissions/$SVM_ID/$FILE_PATH?return_timeout=0" --include

--header "Accept */*" --header "Authorization: Basic $BASIC_AUTH" --data

'{ \"acls\": [{ \"access\": \"access_allow\", \"advanced_rights\": {

\"append_data\": true, \"delete\": true, \"delete_child\": true,

\"execute_file\": true, \"full_control\": true, \"read_attr\": true,

\"read_data\": true, \"read_ea\": true, \"read_perm\": true,

\"write_attr\": true, \"write_data\": true, \"write_ea\": true,

\"write_owner\": true, \"write_perm\": true }, \"apply_to\": { \"files\":

true, \"sub_folders\": true, \"this_folder\": true }, \"user\":

\"administrator\" }], \"control_flags\": \"32788\", \"group\": \"S-1-5-

21-2233347455-2266964949-1780268902-69700\", \"ignore_paths\": [

\"/parent/child2\"], \"owner\": \"S-1-5-21-2233347455-2266964949-

1780268902-69304\", \"propagation_mode\": \"propagate\"}'

JSON output example

{

 "job": {

 "uuid": "3015c294-5bbc-11eb-9c4e-0050568e8682",

 "_links": {

 "self": {

 "href": "/api/cluster/jobs/3015c294-5bbc-11eb-9c4e-0050568e8682"

 }

 }

 }

}

Step 2: Retrieve the status of the job

Perform the workflow Get job instance and confirm the state value is success.

Update security descriptor information using the ONTAP REST API

You can update a specific security descriptor to a specific file or folder, including the
primary owner, group, or control flags.

Step 1: Update the security descriptor

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

PATCH /api/protocols/file-security/permissions/{svm.uuid}/{path}

14

Processing type

Asynchronous

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

$SVM_ID Path Yes This is the UUID of the SVM containing the file.

$FILE_PATH Path Yes This is the path to the file or folder.

Curl example

curl --request POST --location "https://$FQDN_IP/api/protocols/file-

security/permissions/$SVM_ID/$FILE_PATH?return_timeout=0" --include

--header "Accept */*" --header "Authorization: Basic $BASIC_AUTH" --data

'{ \"control_flags\": \"32788\", \"group\": \"everyone\", \"owner\":

\"user1\"}'

JSON output example

{

 "job": {

 "uuid": "6f89e612-5bbd-11eb-9c4e-0050568e8682",

 "_links": {

 "self": {

 "href": "/api/cluster/jobs/6f89e612-5bbd-11eb-9c4e-0050568e8682"

 }

 }

 }

}

Step 2: Retrieve the status of the job

Perform the workflow Get job instance and confirm the state value is success.

Delete an access control entry using the ONTAP REST API

You can delete an existing Access Control Entry (ACE) from a specific file or folder. The
change propagates to any child objects.

Step 1: Delete the ACE

HTTP method and endpoint

This REST API call uses the following method and endpoint.

15

HTTP method Path

DELETE /api/protocols/file-security/permissions/{svm.uuid}/{path}

Processing type

Asynchronous

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

$SVM_ID Path Yes This is the UUID of the SVM containing the file.

$FILE_PATH Path Yes This is the path to the file or folder.

Curl example

curl --request DELETE --location "https://$FQDN_IP/api/protocols/file-

security/permissions/$SVM_ID/$FILE_PATH?return_timeout=0" --include

--header "Accept */*" --header "Authorization: Basic $BASIC_AUTH" --data

'{ \"access\": \"access_allow\", \"apply_to\": { \"files\": true,

\"sub_folders\": true, \"this_folder\": true }, \"ignore_paths\": [

\"/parent/child2\"], \"propagation_mode\": \"propagate\"}'

JSON output example

{

 "job": {

 "uuid": "3015c294-5bbc-11eb-9c4e-0050568e8682",

 "_links": {

 "self": {

 "href": "/api/cluster/jobs/3015c294-5bbc-11eb-9c4e-0050568e8682"

 }

 }

 }

}

Step 2: Retrieve the status of the job

Perform the workflow Get job instance and confirm the state value is success.

Networking

List the IP interfaces using the ONTAP REST API

You can retrieve the IP LIFs assigned to the cluster and SVMs. You might do this to

16

confirm your network configuration or when planning to add another LIF.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/network/ip/interfaces

Processing type

Synchronous

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

Parameter Type Required Description

fields Query No Return a limited list of the relevant configuration values.

Curl example: return all LIFs with the default configuration values

1 curl --request GET \

2 --location "https://$FQDN_IP/api/network/ip/interfaces" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

Curl example: Return all LIFs with four specific configuration values

1 curl --request GET \

2 --location

17

"https://$FQDN_IP/api/network/ip/interfaces?fields=name,scope,svm.name,ip.

address" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

18

JSON output example

{

 "records": [

 {

 "uuid": "5ded9e38-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_mgmt1",

 "ip": {

 "address": "172.29.151.116"

 },

 "scope": "cluster",

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/5ded9e38-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "bb03c162-999e-11ee-acad-005056ae6bd8",

 "name": "cluster_mgmt",

 "ip": {

 "address": "172.29.186.156"

 },

 "scope": "cluster",

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/bb03c162-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "c5ffbd03-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data1",

 "ip": {

 "address": "172.29.186.150"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/c5ffbd03-999e-11ee-acad-

005056ae6bd8"

19

 }

 }

 },

 {

 "uuid": "c6612abe-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data2",

 "ip": {

 "address": "172.29.186.151"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/c6612abe-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "c6b21b94-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data3",

 "ip": {

 "address": "172.29.186.152"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/c6b21b94-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "c7025322-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data4",

 "ip": {

 "address": "172.29.186.153"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

20

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/c7025322-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "c752cc66-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data5",

 "ip": {

 "address": "172.29.186.154"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/c752cc66-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "c7a03719-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data6",

 "ip": {

 "address": "172.29.186.155"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/c7a03719-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "ccd4c59c-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data4_inet6",

 "ip": {

21

 "address": "fd20:8b1e:b255:300f::ac5"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/ccd4c59c-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "d9144c30-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data6_inet6",

 "ip": {

 "address": "fd20:8b1e:b255:300f::ac7"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/d9144c30-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "d961c13b-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data1_inet6",

 "ip": {

 "address": "fd20:8b1e:b255:300f::ac2"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/d961c13b-999e-11ee-acad-

005056ae6bd8"

 }

 }

22

 },

 {

 "uuid": "d9ac8d6a-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data5_inet6",

 "ip": {

 "address": "fd20:8b1e:b255:300f::ac6"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/d9ac8d6a-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "d9fce1a3-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data2_inet6",

 "ip": {

 "address": "fd20:8b1e:b255:300f::ac3"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/d9fce1a3-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "da4995a0-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_data3_inet6",

 "ip": {

 "address": "fd20:8b1e:b255:300f::ac4"

 },

 "scope": "svm",

 "svm": {

 "name": "vs0"

 },

 "_links": {

23

 "self": {

 "href": "/api/network/ip/interfaces/da4995a0-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "da9e7afd-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_cluster_mgmt_inet6",

 "ip": {

 "address": "fd20:8b1e:b255:300f::ac8"

 },

 "scope": "cluster",

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/da9e7afd-999e-11ee-acad-

005056ae6bd8"

 }

 }

 },

 {

 "uuid": "e6db58b4-999e-11ee-acad-005056ae6bd8",

 "name": "sti214-vsim-sr027o_mgmt1_inet6",

 "ip": {

 "address": "fd20:8b1e:b255:3008::1a0"

 },

 "scope": "cluster",

 "_links": {

 "self": {

 "href": "/api/network/ip/interfaces/e6db58b4-999e-11ee-acad-

005056ae6bd8"

 }

 }

 }

],

 "num_records": 16,

 "_links": {

 "self": {

 "href":

"/api/network/ip/interfaces?fields=name,scope,svm.name,ip.address"

 }

 }

}

24

Security

Accounts

List the accounts using the ONTAP REST API

You can retrieve a list of the accounts. You might do this to assess your security
environment or before creating a new account.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/security/accounts

Processing type

Synchronous

Curl example

1 curl --request GET \

2 --location "https://$FQDN_IP/api/security/accounts" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

25

JSON output example

{

 "records": [

 {

 "owner": {

 "uuid": "642573a8-9d14-11ee-9330-005056aed3de",

 "name": "vs0",

 "_links": {

 "self": {

 "href": "/api/svm/svms/642573a8-9d14-11ee-9330-

005056aed3de"

 }

 }

 },

 "name": "vsadmin",

 "_links": {

 "self": {

 "href": "/api/security/accounts/642573a8-9d14-11ee-9330-

005056aed3de/vsadmin"

 }

 }

 },

 {

 "owner": {

 "uuid": "fdb6fe29-9d13-11ee-9330-005056aed3de",

 "name": "sti214nscluster-1"

 },

 "name": "admin",

 "_links": {

 "self": {

 "href": "/api/security/accounts/fdb6fe29-9d13-11ee-9330-

005056aed3de/admin"

 }

 }

 },

 {

 "owner": {

 "uuid": "fdb6fe29-9d13-11ee-9330-005056aed3de",

 "name": "sti214nscluster-1"

 },

 "name": "autosupport",

 "_links": {

 "self": {

 "href": "/api/security/accounts/fdb6fe29-9d13-11ee-9330-

005056aed3de/autosupport"

26

 }

 }

 }

],

 "num_records": 3,

 "_links": {

 "self": {

 "href": "/api/security/accounts"

 }

 }

}

Certificates and keys

List the installed certificates using the ONTAP REST API

You can list the certificates installed in your ONTAP cluster. You might do this to see if a
particular certificate is available or to get the ID of a specific certificate.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/security/certificates

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

max_records Query No Specify the number of records you want returned.

Curl example: Return three certificates

curl --request GET \

--location "https://$FQDN_IP/api/security/certificates?max_records=3" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

27

JSON output example

{

 "records": [

 {

 "uuid": "dad822c2-573c-11ee-a310-005056aecc29",

 "name": "vs0_17866DB5C933E2EA",

 "_links": {

 "self": {

 "href": "/api/security/certificates/dad822c2-573c-11ee-a310-

005056aecc29"

 }

 }

 },

 {

 "uuid": "7d8e5570-573c-11ee-a310-005056aecc29",

 "name": "BuypassClass3RootCA",

 "_links": {

 "self": {

 "href": "/api/security/certificates/7d8e5570-573c-11ee-a310-

005056aecc29"

 }

 }

 },

 {

 "uuid": "7dbb2191-573c-11ee-a310-005056aecc29",

 "name": "EntrustRootCertificationAuthority",

 "_links": {

 "self": {

 "href": "/api/security/certificates/7dbb2191-573c-11ee-a310-

005056aecc29"

 }

 }

 }

],

 "num_records": 3,

 "_links": {

 "self": {

 "href": "/api/security/certificates?max_records=3"

 },

 "next": {

 "href": "/api/security/certificates?start.svm_id=sti214nscluster-

1&start.uuid=7dbb2191-573c-11ee-a310-005056aecc29&max_records=3"

 }

 }

}

28

Install a certificate using the ONTAP REST API

You can install a signed X.509 certificate in your ONTAP cluster. You might do this as part
of configuring an ONTAP feature or protocol that requires strong authentication.

Before you begin

You must have the certificate you want to install. You should also make sure any intermediate certificates are
installed as needed.

Before using the JSON input examples included below, make sure to update the

public_certificate value with the certificate for your environment.

Step 1: Install the certificate

You can issue an API call to install the certificate.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/certificates

Curl example: Install a root CA certificate at the cluster level

curl --request POST \

--location "https://$FQDN_IP/api/security/certificates" \

--include \

--header "Content-Type: application/json" \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

29

JSON input example

{

 "type": "server_ca",

 "public_certificate":

 "-----BEGIN CERTIFICATE-----

MIID0TCCArkCFGYdznvTVvaY1VZPNfy4yCCyPph6MA0GCSqGSIb3DQEBCwUAMIGk

MQswCQYDVQQGEwJVUzELMAkGA1UECAwCTkMxDDAKBgNVBAcMA1JUUDEWMBQGA1UE

CgwNT05UQVAgRXhhbXBsZTETMBEGA1UECwwKT05UQVAgOS4xNDEcMBoGA1UEAwwT

Ki5vbnRhcC1leGFtcGxlLmNvbTEvMC0GCSqGSIb3DQEJARYgZGF2aWQucGV0ZXJz

b25Ab250YXAtZXhhbXBsZS5jb20wHhcNMjMxMDA1MTUyOTE4WhcNMjQxMDA0MTUy

OTE4WjCBpDELMAkGA1UEBhMCVVMxCzAJBgNVBAgMAk5DMQwwCgYDVQQHDANSVFAx

FjAUBgNVBAoMDU9OVEFQIEV4YW1wbGUxEzARBgNVBAsMCk9OVEFQIDkuMTQxHDAa

BgNVBAMMEyoub250YXAtZXhhbXBsZS5jb20xLzAtBgkqhkiG9w0BCQEWIGRhdmlk

LnBldGVyc29uQG9udGFwLWV4YW1wbGUuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOC

AQ8AMIIBCgKCAQEAxQgy8mhb1Jhkf0D/MBodpzgW0aSp2jGbWJ+Zv2G8BXkp1762

dPHRkv1hnx9JvwkK4Dba05GiCiD5t3gjH/jUQMSFb+VwDbVmubVFnXjkm/4Q7sea

tMtA/ZpQdZbQFZ5RKtdWz7dzzPYEl2x8Q1Jc8Kh7NxERNMtgupGWZZn7mfXKYr4O

N/+vgahIhDibS8YK5rf1w6bfmrik9E2D+PEab9DX/1DL5RX4tZ1H2OkyN2UxoBR6

Fq7l6n1Hi/5yR0Oi1xStN6sO7EPoGak+KSlK41q+EcIKRo0bP4mEQp8WMjJuiTkb

5MmeYoIpWEUgJK7S0M6Tp/3bTh2CST3AWxiNxQIDAQABMA0GCSqGSIb3DQEBCwUA

A4IBAQABfBqOuROmYxdfrj93OyIiRoDcoMzvo8cHGNUsuhnlBDnL2O3qhWEs97s0

mIy6zFMGnyNYa0t4i1cFsGDKP/JuljmYHjvv+2lHWnxHjTo7AOQCnXmQH5swoDbf

o1Vjqz8Oxz+PRJ+PA3dF5/8zqaAR6QreAN/iFR++6nUq1sbbM7w03tthBVMgo/h1

E9I2jVOZsqMFujm2CYfMs4XkZtrYmN6nZA8JcUpDjIWcAVbQYurMnna9r42oS3GB

WB/FE9n+P+FfJyHJ93KGcCXbH5RF2pi3wLlHilbvVuCjLRrhJ8U20I5mZoiXvABc

IpYuBcuKXLwAarhDEacXttVjC+Bq

-----END CERTIFICATE-----"

}

Step 2: Confirm the certificate has been installed

Perform the workflow List the installed certificates and confirm the certificate is available.

RBAC

Prepare to use RBAC using the ONTAP REST API

You can use the ONTAP RBAC capability in several different ways depending on your
environment. A few common scenarios are presented as workflows in this section. In
each case the focus is on a specific security and administrative goal.

Before creating any roles and assigning a role to an ONTAP user account, you should prepare by reviewing the
major security requirements and options presented below. Also make sure to review the general workflow
concepts at Prepare to use the workflows.

What ONTAP release are you using?

The ONTAP release determines what REST endpoints and RBAC features are available.

30

Identify the protected resources and scope

You need to identify the resources or commands to be protected and the scope (cluster or SVM).

What access should the user have?

After identifying the resources and scope, you need to determine the access level to be granted.

How will the users access ONTAP?

The user can access ONTAP through the REST API or CLI or both.

Is one of the built-in roles sufficient or is a custom role needed?

It is more convenient to use an existing built-in role but you can create a new custom role if needed.

What type of role is needed?

Based on the security requirements and the ONTAP access, you need to choose whether to create a REST or
traditional role.

Create roles

Limit access to SVM volume operations using the ONTAP REST API

You can define a role to restrict storage volume administration within an SVM.

About this workflow

A traditional role is first created to initially allow access to all the major volume administration functions except
cloning. The role is defined with the following characteristics:

• Able to perform all CRUD volume operations including get, create, modify, and delete

• Cannot create a volume clone

You can then optionally update the role as needed. In this workflow, the role is changed in the second step to
allow the user to create a volume clone.

Step 1: Create the role

You can issue an API call to create the RBAC role.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/roles

31

Curl example

curl --request POST \

--location "https://$FQDN_IP/api/security/roles" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

JSON input example

{

 "name": "role1",

 "owner": {

 "name": "cluster-1",

 "uuid": "852d96be-f17c-11ec-9d19-005056bbad91"

 },

 "privileges": [

 { "path": "volume create", "access": "all" },

 { "path": "volume delete", "access": "all" }

]

}

Step 2: Update the role

You can issue an API call to update the existing role.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/roles

Additional input parameters for curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

$SVM_ID Path Yes This is the UUID of the SVM that contains the role
definition.

$ROLE_NAME Path Yes This is the name of the role within the SVM to be updated.

32

Curl example

curl --request POST \

--location

"https://$FQDN_IP/api/security/roles/$SVM_ID/$ROLE_NAME/privileges" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

JSON input example

{

 "path": "volume clone",

 "access": "all"

}

Enable adminstration of data protection using the ONTAP REST API

You can provide a user with limited data protection capabilities.

About this workflow

The traditional role created is defined with the following characteristics:

• Able to create and delete snapshots as well as update SnapMirror relationships

• Cannot create or modify higher level objects such as volumes or SVMs

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/roles

Curl example

curl --request POST \

--location "https://$FQDN_IP/api/security/roles" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

33

JSON input example

{

 "name": "role1",

 "owner": {

 "name": "cluster-1",

 "uuid": "852d96be-f17c-11ec-9d19-005056bbad91"

 },

 "privileges": [

 {"path": "volume snapshot create", "access": "all"},

 {"path": "volume snapshot delete", "access": "all"},

 {"path": "volume show", "access": "readonly"},

 {"path": "vserver show", "access": "readonly"},

 {"path": "snapmirror show", "access": "readonly"},

 {"path": "snapmirror update", "access": "all"}

]

}

Allow generation of ONTAP reports using the ONTAP REST API

You can create a REST role to provide users with the ability to generate ONTAP reports.

About this workflow

The role created is defined with the following characteristics:

• Able to retrieve all storage object information related to capacity and performance (such as volume, qtree,
LUN, aggregates, node, and SnapMirror relationships)

• Cannot create or modify higher level objects (such as volumes or SVMs)

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/roles

Curl example

curl --request POST \

--location "https://$FQDN_IP/api/security/roles" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

34

JSON input example

{

 "name": "rest_role1",

 "owner": {

 "name": "cluster-1",

 "uuid": "852d96be-f17c-11ec-9d19-005056bbad91"

 },

 "privileges": [

 {"path": "/api/storage/volumes", "access": "readonly"},

 {"path": "/api/storage/qtrees", "access": "readonly"},

 {"path": "/api/storage/luns", "access": "readonly"},

 {"path": "/api/storage/aggregates", "access": "readonly"},

 {"path": "/api/cluster/nodes", "access": "readonly"},

 {"path": "/api/snapmirror/relationships", "access": "readonly"},

 {"path": "/api/svm/svms", "access": "readonly"}

]

}

Create a user with a role using the ONTAP REST API

You can use this workflow to create a user with an associated REST role.

About this workflow

This workflow includes the typical steps needed to create a custom REST role and associate it with a new user
account. Both the user and role have an SVM scope and are associated with a specific data SVM. Some of the
steps may be optional or need to change depending on your environment.

Step 1: List the data SVMs in the cluster

Perform the following REST API call to list the SVMs in the cluster. The UUID and name of each SVM are
provided in the output.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/svm/svms

Curl example

curl --request GET \

--location "https://$FQDN_IP/api/svm/svms?order_by=name" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

35

After you finish

Select the desired SVM from the list where you will create the new user and role.

Step 2: List the users defined to the SVM

Perform the following REST API call to list the users defined in the SVM you selected. You can identify the
SVM through the owner parameter.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/security/accounts

Curl example

curl --request GET \

--location "https://$FQDN_IP/api/security/accounts?owner.name=dmp" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

After you finish

Based on the users already defined in the SVM, choose a unique name for the new user.

Step 3: List the REST roles defined to the SVM

Perform the following REST API call to list the roles defined in the SVM you selected. You can identify the SVM
through the owner parameter.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/security/roles

Curl example

curl --request GET \

--location "https://$FQDN_IP/api/security/roles?owner.name=dmp" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

After you finish

Based on the roles already defined in the SVM, choose a unique name for the new role.

36

Step 4: Create a custom REST role

Perform the following REST API call to a create a custom REST role in the SVM. The role initially has only one
privilege which establishes a default access of none so that all access is denied.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/roles

Curl example

curl --request POST \

--location "https://$FQDN_IP/api/security/roles" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

JSON input example

{

 "name": "dprole1",

 "owner": {

 "name": "dmp",

 "uuid": "752d96be-f17c-11ec-9d19-005056bbad91"

 },

 "privileges": [

 {"path": "/api", "access": "none"},

]

}

After you finish

Optionally perform step 3 again to display the new role. You can also display the roles at the ONTAP CLI.

Step 5: Update the role by adding more privileges

Perform the following REST API call to modify the role by adding privileges as needed.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/roles/{owner.uuid}/{name}/privileges

Additional input parameters for curl examples

37

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl example in this step.

Parameter Type Required Description

$SVM_ID Path Yes The UUID of the SVM that contains the role definition.

$ROLE_NAME Path Yes The name of the role within the SVM to be updated.

Curl example

curl --request POST \

--location

"https://$FQDN_IP/api/security/roles/$SVM_ID/$ROLE_NAME/privileges" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

JSON input example

{

 "path": "/api/storage/volumes",

 "access": "readonly"

}

After you finish

Optionally perform step 3 again to display the new role. You can also display the roles at the ONTAP CLI.

Step 6: Create a user

Perform the following REST API call to a create a user account. The role dprole1 created above is associated
with the new user.

You can create the user without a role. In this case, the user is assigned a default role (either

admin or vsadmin) depending on whether the user is defined with cluster or SVM scope. You’ll
need to modify the user to assign a different role.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/security/accounts

38

Curl example

curl --request POST \

--location "https://$FQDN_IP/api/security/accounts" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

JSON input example

{

 "owner": {"uuid":"daf84055-248f-11ed-a23d-005056ac4fe6"},

 "name": "david",

 "applications": [

 {"application":"ssh",

 "authentication_methods":["password"],

 "second_authentication_method":"none"}

],

 "role":"dprole1",

 "password":"<password>"

}

After you finish

You can sign in to the SVM management interface using the credentials for the new user.

Storage

List the aggregates using the ONTAP REST API

You can retrieve a list of aggregates in the cluster. You might do this to assess utilization
and performance.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/storage/disks

Processing type

Synchronous

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

39

Parameter Type Required Description

node.name Query No Can be used to identify the node each aggregate is
attached to.

Curl example: return all aggregates with the default configuration values

1 curl --request GET \

2 --location "https://$FQDN_IP/api/storage/aggregates" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

Curl example: return all aggregates with a specific configuration value

1 curl --request GET \

2 --location "https://$FQDN_IP/api/storage/aggregates?fields=node.name" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

40

JSON output example

{

 "records": [

 {

 "uuid": "760d8137-fc59-47da-906a-cc28db0a1c1b",

 "name": "sti214_vsim_sr027o_aggr1",

 "node": {

 "name": "sti214-vsim-sr027o"

 },

 "_links": {

 "self": {

 "href": "/api/storage/aggregates/760d8137-fc59-47da-906a-

cc28db0a1c1b"

 }

 }

 }

],

 "num_records": 1,

 "_links": {

 "self": {

 "href": "/api/storage/aggregates?fields=node.name"

 }

 }

}

List the disks using the ONTAP REST API

You can retrieve a list of disks in the cluster. You might do this to locate one or more
spares to use as part of creating an aggregate.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/storage/disks

Processing type

Synchronous

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

41

Parameter Type Required Description

state Query No Can be used to identify the spare disks available for new
aggregates.

Curl example: return all the disks

1 curl --request GET \

2 --location "https://$FQDN_IP/api/storage/disks" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

Curl example: return spare disks

1 curl --request GET \

2 --location "https://$FQDN_IP/api/storage/disks?state=spare" \

3 --include \

4 --header "Accept: */*" \

5 --header "Authorization: Basic $BASIC_AUTH"

42

JSON output example

{

 "records": [

 {

 "name": "NET-1.20",

 "state": "spare",

 "_links": {

 "self": {

 "href": "/api/storage/disks/NET-1.20"

 }

 }

 },

 {

 "name": "NET-1.12",

 "state": "spare",

 "_links": {

 "self": {

 "href": "/api/storage/disks/NET-1.12"

 }

 }

 },

 {

 "name": "NET-1.7",

 "state": "spare",

 "_links": {

 "self": {

 "href": "/api/storage/disks/NET-1.7"

 }

 }

 }

],

 "num_records": 3,

 "_links": {

 "self": {

 "href": "/api/storage/disks?state=spare"

 }

 }

}

Support

43

EMS

Prepare to manage EMS support services using the ONTAP REST API

You can configure Event Management System (EMS) processing for an ONTAP cluster
as well as retrieve EMS messages as needed.

Overview

There are several example workflows available that illustrate how to use the ONTAP EMS services. Before
using the workflows and issuing any of the REST API calls, make sure to review Prepare to use the workflows.

If you use Python, also see the scripy events.py for examples of how to automate some of the EMS-related
activities.

ONTAP REST API versus ONTAP CLI commands

For many tasks, using the ONTAP REST API requires fewer calls than the equivalent ONTAP CLI commands.
The table below includes a list of API calls and the equivalent the CLI commands needed for each task.

ONTAP REST API ONTAP CLI

GET /support/ems event config show

POST
/support/ems/destinations

1. event notification destination create

2. event notification create

GET /support/ems/events event log show

POST

/support/ems/filters

1. event filter create -filter-name <filtername>

2. event filter rule add -filter-name <filtername>

Related information

• Python script illustrating EMS

• ONTAP REST APIs: Automate Notification of High-Severity Events

List the EMS log events using the ONTAP REST API

You can retrieve all event notification messages or only those with specific
characteristics.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/support/ems/events

Processing type

Synchronous

44

https://github.com/NetApp/ontap-rest-python/blob/master/examples/rest_api/events.py
https://github.com/NetApp/ontap-rest-python/blob/master/examples/rest_api/events.py
https://blog.netapp.com/ontap-rest-apis-automate-notification

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

Parameter Type Required Description

fields Query No Used to request specific fields to be included in the
response.

max_records Query No Can be used to limit the number of records returned in a
single request.

log_message Query No Used to search for a specific text value and only return the
matching messages.

message.severity Query No Limit the returned messages to those with a specific

severity such as alert.

Curl example: Return the latest message and the name value

curl --request GET \

--location

"https://$FQDN_IP/api/support/ems/events?fields=message.name&max_records=1

" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

Curl example: Return a message containing specific text and severity

curl --request GET \

--location

"https://$FQDN_IP/api/support/ems/events?log_message=*disk*&message.severi

ty=alert" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

45

JSON output example

{

 "records": [

 {

 "node": {

 "name": "malha-vsim1",

 "uuid": "da4f9e62-9de3-11ec-976a-005056b369de",

 "_links": {

 "self": {

 "href": "/api/cluster/nodes/da4f9e62-9de3-11ec-976a-

005056b369de"

 }

 }

 },

 "index": 4602,

 "time": "2022-03-18T06:37:46-04:00",

 "message": {

 "severity": "alert",

 "name": "raid.autoPart.disabled"

 },

 "log_message": "raid.autoPart.disabled: Disk auto-partitioning is

disabled on this system: the system needs a minimum of 4 usable internal

hard disks.",

 "_links": {

 "self": {

 "href": "/api/support/ems/events/malha-vsim1/4602"

 }

 }

 }

],

 "num_records": 1,

 "_links": {

 "self": {

 "href":

"/api/support/ems/events?log_message=*disk*&message.severity=alert&max_rec

ords=1"

 },

 "next": {

 "href": "/api/support/ems/events?start.keytime=2022-03-

18T06%3A37%3A46-04%3A00&start.node.name=malha-

vsim1&start.index=4602&log_message=*disk*&message.severity=alert"

 }

 }

}

46

Get the EMS configuration using the ONTAP REST API

You can retrieve the current EMS configuration for an ONTAP cluster. You might do this
before updating the configuration or creating a new EMS notification.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/support/ems

Processing type

Synchronous

Curl example

curl --request GET \

--location "https://$FQDN_IP/api/support/ems" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

JSON output example

{

 "proxy_url": "https://proxyserver.mycompany.com",

 "proxy_user": "proxy_user",

 "mail_server": "mail@mycompany.com",

 "_links": {

 "self": {

 "href": "/api/resourcelink"

 }

 },

 "pubsub_enabled": "1",

 "mail_from": "administrator@mycompany.com"

}

Create an EMS notification using the ONTAP REST API

You can use the following workflow to create a new EMS notification destination to
receive selected event messages.

Step 1: Configure the system-wide email settings

You can issue the following API call to configure the system-wide email settings.

HTTP method and endpoint

47

This REST API call uses the following method and endpoint.

HTTP method Path

PATCH /api/support/ems

Processing type

Synchronous

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

Parameter Type Required Description

mail_from Query Yes Sets the from field in the notification email messages.

mail_server Query Yes Configures the target SMTP mail server.

Curl example

curl --request PATCH \

--location

"https://$FQDN_IP/api/support/ems?mail_from=administrator@mycompany.com&ma

il_server=mail@mycompany.com" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

Step 2: Define a message filter

You can issue an API call to define a filter rule to match the messages.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/support/ems/filters

Processing type

Synchronous

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

Parameter Type Required Description

Filter Body Yes Includes the values for the filter configuration.

48

Curl example

curl --request POST \

--location "https://$FQDN_IP/api/support/ems/filters" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

JSON input example

{

 "name": "test-filter",

 "rules.type": ["include"],

 "rules.message_criteria.severities": ["emergency"]

}

Step 3: Create a message destination

You can issue an API call to create a message destination.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

POST /api/support/ems/destinations

Processing type

Synchronous

Additional input parameters for the Curl examples

In addition to the parameters common with all REST API calls, the following parameters are also used in the
curl examples for this step.

Parameter Type Required Description

Destination configuration Body Yes Includes the values for the event destination.

Curl example

curl --request POST \

--location "https://$FQDN_IP/api/support/ems/destinations" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH" \

--data @JSONinput

49

JSON input example

{

 "name": "test-destination",

 "type": "email",

 "destination": "administrator@mycompany.com",

 "filters.name": ["important-events"]

}

SVM

List the SVMs using the ONTAP REST API

You can list the Storage Virtual Machines (SVMs) defined within an ONTAP cluster. You
might do this as part of finding the identifier for a specific SVM or to assure name
uniqueness before creating a new SVM.

HTTP method and endpoint

This REST API call uses the following method and endpoint.

HTTP method Path

GET /api/svm/svms

Curl example

curl --request GET \

--location "https://$FQDN_IP/api/svm/svms" \

--include \

--header "Accept: */*" \

--header "Authorization: Basic $BASIC_AUTH"

50

JSON output example

{

 "records": [

 {

 "uuid": "71bd74f8-40dc-11ee-b51a-005056aee9fa",

 "name": "vs0",

 "_links": {

 "self": {

 "href": "/api/svm/svms/71bd74f8-40dc-11ee-b51a-005056aee9fa"

 }

 }

 }

],

 "num_records": 1,

 "_links": {

 "self": {

 "href": "/api/svm/svms"

 }

 }

}

51

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

52

http://www.netapp.com/TM

	Workflows : ONTAP automation
	Table of Contents
	Workflows
	Prepare to use the ONTAP REST API workflows
	Introduction
	Input variables
	Authentication options
	Using the examples with Bash

	Cluster
	Get cluster configuration using the ONTAP REST API
	Update cluster contact using the ONTAP REST API
	Get job instance using the ONTAP REST API

	NAS
	File security permissions

	Networking
	List the IP interfaces using the ONTAP REST API

	Security
	Accounts
	Certificates and keys
	RBAC

	Storage
	List the aggregates using the ONTAP REST API
	List the disks using the ONTAP REST API

	Support
	EMS

	SVM
	List the SVMs using the ONTAP REST API

