security ssh commands
ONTAP 9.13.1 commands

NetApp
February 12, 2024
Table of Contents

security ssh commands ... 1
security ssh add ... 1
security ssh modify ... 2
security ssh prepare-to-downgrade ... 3
security ssh remove ... 3
security ssh show ... 4
security ssh commands

security ssh add

Add SSH configuration options

Availability: This command is available to cluster and Vserver administrators at the admin privilege level.

Description

The `security ssh add` command adds additional SSH key exchange algorithms or ciphers or MAC algorithms to the existing configurations of the cluster or a Vserver. The added algorithms or ciphers or MAC algorithms are enabled on the cluster or Vserver. If you change the cluster configuration settings, it is used as the default for all newly created Vservers. The existing SSH key exchange algorithms, ciphers, and MAC algorithms remain unchanged in the configuration. If the SSH key exchange algorithms or ciphers or MAC algorithms are already enabled in the current configuration, the command will does not fail. Data ONTAP supports the `diffie-hellman-group-exchange-sha256` key exchange algorithm for SHA-2. Data ONTAP also supports the `diffie-hellman-group-exchange-sha1`, `diffie-hellman-group14-sha1`, and `diffie-hellman-group1-sha1` SSH key exchange algorithms for SHA-1. The SHA-2 key exchange algorithm is more secure than the SHA-1 key exchange algorithms. Data ONTAP also supports `ecdh-sha2-nistp256`, `ecdh-sha2-nistp384`, `ecdh-sha2-nistp521`, and `curve25519-sha256`. Data ONTAP also supports the AES and 3DES symmetric encryptions (also known as ciphers) of the following types: `aes256-ctr`, `aes192-ctr`, `aes128-ctr`, `aes256-cbc`, `aes192-cbc`, `aes128-cbc`, `aes128-gcm`, `aes256-gcm`, and `3des-cbc`. Data ONTAP supports MAC algorithms of the following types: `hmac-shal`, `hmac-sha1-96`, `hmac-md5`, `hmac-md5-96`, `umac-64`, `umac-64`, `umac-128`, `hmac-sha2-256`, `hmac-sha2-512`, `hmac-sha1-etm`, `hmac-sha1-96-etm`, `hmac-sha2-256-etm`, `hmac-sha2-512-etm`, `hmac-md5-etm`, `hmac-md5-96-etm`, `umac-64-etm`, and `umac-128-etm`.

Parameters

-vserver <Vserver Name> - Vserver

Identifies the Vserver to which you want to add additional SSH key exchange algorithms or ciphers.

[-key-exchange-algorithms <algorithm name>,…] - List of SSH Key Exchange Algorithms to Add

Adds the specified SSH key exchange algorithm or algorithms to the Vserver.

[-ciphers <cipher name>,…] - List of SSH Ciphers to Add

Adds the specified cipher or ciphers to the Vserver.

[-mac-algorithms <MAC name>,…] - List of SSH MAC Algorithms to Add

Adds the specified MAC algorithm or algorithms to the Vserver.

Examples

The following command adds the `diffie-hellman-group-exchange-sha256` and `diffie-hellman-group-exchange-sha1` key exchange algorithms for the cluster1 Vserver. It also adds the `aes256-cbc` and `aes192-cbc` ciphers and the `hmac-sha1` and `hmac-sha2-256` MAC algorithms to the cluster1 Vserver.
security ssh modify

Modify SSH configuration options

Availability: This command is available to cluster and Vserver administrators at the admin privilege level.

Description

The `security ssh modify` command replaces the existing configurations of the SSH key exchange algorithms or ciphers or MAC algorithms for the cluster or a Vserver with the configuration settings you specify. If you modify the cluster configuration settings, it will be used as the default for all newly created Vservers. Data ONTAP supports the `diffie-hellman-group-exchange-sha256` key exchange algorithm for SHA-2. Data ONTAP also supports the `diffie-hellman-group-exchange-sha1`, `diffie-hellman-group14-sha1`, and `diffie-hellman-group1-sha1` SSH key exchange algorithms for SHA-1. The SHA-2 key exchange algorithm is more secure than the SHA-1 key exchange algorithms. Data ONTAP also supports the AES and 3DES symmetric encryptions (also known as ciphers) of the following types: `aes256-ctr`, `aes192-ctr`, `aes128-ctr`, `aes256-cbc`, `aes192-cbc`, `aes128-cbc`, `aes128-gcm`, `aes256-gcm`, and `3des-cbc`. Data ONTAP supports MAC algorithms of the following types: `hmac-shal`, `hmac-shal-96`, `hmac-md5`, `hmac-md5-96`, `umac-64`, `umac-64`, `umac-128`, `hmac-sha2-256`, `hmac-sha2-512`, `hmac-shal-etm`, `hmac-shal-96-etm`, `hmac-sha2-256-etm`, `hmac-sha2-512-etm`, `hmac-md5-etm`, `hmac-md5-96-etm`, `umac-64-etm`, and `umac-128-etm`.

Parameters

-vserver <Vserver Name> - Vserver

Identifies the Vserver for which you want to replace the existing SSH key exchange algorithm and cipher configurations.

[-key-exchange-algorithms <algorithm name>,...] - Key Exchange Algorithms

Enables the specified SSH key exchange algorithm or algorithms for the Vserver. This parameter also replaces all existing SSH key exchange algorithms with the specified settings.

[-ciphers <cipher name>,...] - Ciphers

Enables the specified cipher or ciphers for the Vserver. This parameter also replaces all existing ciphers with the specified settings.

[-mac-algorithms <MAC name>,...] - MAC Algorithms

Enables the specified MAC algorithm or algorithms for the Vserver. This parameter also replaces all existing MAC algorithms with the specified settings.

[-max-authentication-retry-count <integer>] - Max Authentication Retry Count

Modifies the maximum number of authentication retry count for the Vserver.
Examples

The following command enables the `diffie-hellman-group-exchange-sha256` and `diffie-hellman-group14-sha1` key exchange algorithms for the cluster1 Vserver. It also enables the `aes256-ctr`, `aes192-ctr` and `aes128-ctr` ciphers, `hmac-sha1` and `hmac-sha2-256` MAC algorithms for the cluster1 Vserver. It also modifies the maximum authentication retry count to 3 for the cluster1 Vserver:

```
cluster1::> security ssh modify -vserver cluster1 -key-exchange-algorithms
diffie-hellman-group-exchange-sha256,diffie-hellman-group14-sha1 -ciphers
aes256-ctr,aes192-ctr,aes128-ctr -mac-algorithms hmac-sha1,hmac-sha2-256
-max-authentication-retry-count 3
```

security ssh prepare-to-downgrade

Downgrade the SSH configuration to be compatible with releases earlier than Data ONTAP 9.2.0.

Availability: This command is available to cluster administrators at the advanced privilege level.

Description

This command downgrades the SSH configurations of all Vservers and the cluster to settings compatible with releases earlier than Data ONTAP 9.2.0. This command also disables the max-authentication-retry feature. You must run this command in advanced privilege mode when prompted to do so during the release downgrade. Otherwise, the release downgrade process will fail.

Examples

The following command downgrades the SSH security configurations of all Vservers and the cluster to settings compatible with releases earlier than Data ONTAP 9.2.0.

```
cluster1::*> security ssh prepare-to-downgrade
```

security ssh remove

Remove SSH configuration options

Availability: This command is available to cluster and Vserver administrators at the admin privilege level.

Description

The `security ssh remove` command removes the specified SSH key exchange algorithms or ciphers from the existing configurations of the cluster or a Vserver. The removed algorithms or ciphers are disabled on the cluster or Vserver. If you changed the cluster configuration settings, it will be used as the default for all newly created Vservers. If the SSH key exchange algorithms or ciphers that you specify with this command are not currently enabled, the command does not fail. Data ONTAP supports the `diffie-hellman-group-exchange-sha256` key exchange algorithm for SHA-2. Data ONTAP also supports the `diffie-hellman-`
group-exchange-sha1, diffie-hellman-group14-sha1, and diffie-hellman-group1-sha1
SSH key exchange algorithms for SHA-1. The SHA-2 key exchange algorithm is more secure than the SHA-1 key exchange algorithms. Data ONTAP also supports ecdh-sha2-nistp256, ecdh-sha2-nistp384, ecdh-sha2-nistp521, and curve25519-sha256. Data ONTAP also supports the AES and 3DES symmetric encryption (also known as ciphers) of the following types: aes256-ctr, aes192-ctr, aes128-ctr, aes256-cbc, aes192-cbc, aes128-cbc, aes128-gcm, aes256-gcm and 3des-cbc. Data ONTAP supports MAC algorithms of the following types: hmac-sha1, hmac-sha1-96, hmac-md5, hmac-md5-96, umac-64, umac-64, umac-128, hmac-sha2-256, hmac-sha2-512, hmac-sha1-etm, hmac-sha1-96-etm, hmac-sha2-256-etm, hmac-sha2-512-etm, hmac-md5-etm, hmac-md5-96-etm, umac-64-etm, and umac-128-etm.

Parameters

-vserver <Vserver Name> - Vserver
Identifies the Vserver from which you want to remove the SSH key exchange algorithms or ciphers.

[-key-exchange-algorithms <algorithm name>,...] - List of SSH Key Exchange Algorithms to Remove
Removes the specified key exchange algorithm or algorithms from the Vserver.

[-ciphers <cipher name>,...] - List of SSH Ciphers to Remove
Removes the specified cipher or ciphers from the Vserver.

[-mac-algorithms <MAC name>,...] - List of SSH MAC algorithms to Remove
Removes the specified MAC algorithm or algorithms from the Vserver.

Examples

The following command removes the diffie-hellman-group1-sha1 and diffie-hellman-group-exchange-sha1 key exchange algorithms from the cluster1 Vserver. It also removes the aes128-cbc and 3des-cbc ciphers and the hmac-sha1-96 and hmac-sha2-256 MAC algorithms from the cluster1 Vserver.

cluster1::> security ssh remove -vserver cluster1 -key-exchange-algorithms diffie-hellman-group1-sha1,diffie-hellman-group-exchange-sha1 -ciphers aes128-cbc,3des-cbc -mac-algorithms hmac-sha1-96,hmac-sha2-256

security ssh show

Display SSH configuration options

Availability: This command is available to cluster and Vserver administrators at the admin privilege level.

Description
The `security ssh show` command displays the configurations of the SSH key exchange algorithms, ciphers, MAC algorithms and maximum authentication retry count for the cluster and Vservers. The SSH protocol uses a Diffie-Hellman based key exchange method to establish a shared secret key during the SSH negotiation phrase. The key exchange method specifies how one-time session keys are generated for encryption and authentication and how the server authentication takes place. Data ONTAP supports the `diffie-hellman-group-exchange-sha256` key exchange algorithm for SHA-2. Data ONTAP also supports the `diffie-hellman-group-exchange-sha1`, `diffie-hellman-group14-sha1`, and `diffie-hellman-group1-sha1` key exchange algorithms for SHA-1. Data ONTAP also supports `ecdh-sha2-nistp256`, `ecdh-sha2-nistp384`, `ecdh-sha2-nistp521`, `curve25519-sha256`. Data ONTAP also supports the AES and 3DES symmetric encryptions (also known as ciphers) of the following types: `aes256-ctr`, `aes192-ctr`, `aes128-ctr`, `aes256-cbc`, `aes192-cbc`, `aes128-cbc`, `aes128-gcm`, `aes256-gcm`, and `3des-cbc`. Data ONTAP supports MAC algorithms of the following types: `hmac-sha1`, `hmac-sha1-96`, `hmac-md5`, `hmac-md5-96`, `umac-64`, `umac-128`, `hmac-sha2-256`, `hmac-sha2-512`, `hmac-sha3-96-etm`, `hmac-sha3-96-etm`, `hmac-sha2-256-etm`, `hmac-sha2-512-etm`, `hmac-md5-etm`, `hmac-md5-96-etm`, `umac-64-etm`, `umac-128-etm`.

Parameters

```
[-fields <fieldname>,...]
```
If you specify the `-fields <fieldname>,...` parameter, the command output also includes the specified field or fields. You can use `-fields ?` to display the fields to specify.

```
[-instance]
```
If you specify the `-instance` parameter, the command displays detailed information about all fields.

```
[-vserver <Vserver Name>] - Vserver
```
Identifies the Vserver for which you want to display the SSH key exchange algorithm, cipher, and MAC algorithm configurations.

```
[-key-exchange-algorithms <algorithm name>,...] - Key Exchange Algorithms
```
Displays the Vserver or Vservers that have the specified key exchange algorithms enabled.

```
[-ciphers <cipher name>,...] - Ciphers
```
Displays the Vserver or Vservers that have the specified ciphers enabled.

```
[-mac-algorithms <MAC name>,...] - MAC Algorithms
```
Displays the Vserver or Vservers that have the specified MAC algorithm or algorithms.
[-max-authentication-retry-count <integer>] - Max Authentication Retry Count

Displays Vservers with a matching maximum authentication retry count value.

Examples

The following command displays the enabled SSH key exchange algorithms, ciphers, MAC algorithms and maximum number of authentication retry count for the cluster and all Vservers. The cluster settings are used as the default for all newly created Vservers:
```
cluster-1::> security ssh show

<table>
<thead>
<tr>
<th>Authentication Vserver</th>
<th>Ciphers</th>
<th>Key Exchange</th>
<th>MAC</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster-1</td>
<td>3des-cbc</td>
<td></td>
<td>diffie-</td>
<td>hmac-sha1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hellman-</td>
<td>group-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>exchange-</td>
<td>sha256</td>
</tr>
<tr>
<td>vs1</td>
<td>aes256-</td>
<td></td>
<td>diffie-</td>
<td>hmac-sha1,</td>
</tr>
<tr>
<td></td>
<td>ctr,</td>
<td></td>
<td>hellman-</td>
<td>hmac-sha1-96,</td>
</tr>
<tr>
<td></td>
<td>aes192-</td>
<td></td>
<td>group-</td>
<td>hmac-sha2-256,</td>
</tr>
<tr>
<td></td>
<td>ctr,</td>
<td></td>
<td>exchange-</td>
<td>hmac-sha2-512,</td>
</tr>
<tr>
<td></td>
<td>aes128-</td>
<td></td>
<td>sha256,</td>
<td>hmac-sha1-etr,</td>
</tr>
<tr>
<td></td>
<td>ctr,</td>
<td></td>
<td>diffie-</td>
<td>hmac-sha1-96-etr,</td>
</tr>
<tr>
<td></td>
<td>aes256-</td>
<td></td>
<td>hellman-</td>
<td>etm,</td>
</tr>
<tr>
<td></td>
<td>cbc,</td>
<td></td>
<td>group-</td>
<td>hmac-sha2-256-etr,</td>
</tr>
<tr>
<td></td>
<td>aes192-</td>
<td></td>
<td>exchange-</td>
<td>etm,</td>
</tr>
<tr>
<td></td>
<td>cbc,</td>
<td></td>
<td>sha1,</td>
<td>hmac-sha2-512-etr,</td>
</tr>
<tr>
<td></td>
<td>aes128-</td>
<td></td>
<td>diffie-</td>
<td>etm, hmac-md5,</td>
</tr>
<tr>
<td></td>
<td>cbc,</td>
<td></td>
<td>hellman-</td>
<td>hmac-md5-96,</td>
</tr>
<tr>
<td></td>
<td>3des-cbc</td>
<td></td>
<td>group14-</td>
<td>umac-64,</td>
</tr>
<tr>
<td></td>
<td>aes128-</td>
<td></td>
<td>sha1,</td>
<td>umac-128,</td>
</tr>
<tr>
<td></td>
<td>gcm,</td>
<td></td>
<td>ecdh-sha2-</td>
<td>hmac-md5-etr,</td>
</tr>
<tr>
<td></td>
<td>aes256-gcm</td>
<td></td>
<td>nistp256,</td>
<td>hmac-md5-96-etr,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ecdh-sha2-</td>
<td>etm,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nistp384,</td>
<td>umac-64-etr,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ecdh-sha2-</td>
<td>umac-128-etr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nistp521,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>curve25519-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sha256</td>
<td></td>
</tr>
</tbody>
</table>

2 entries were displayed.
```