storage encryption commands **ONTAP 9.3 commands** NetApp September 27, 2022 This PDF was generated from https://docs.netapp.com/us-en/ontap-cli-93/storage-encryption-disk-destroy.html on September 27, 2022. Always check docs.netapp.com for the latest. # **Table of Contents** | storage encryption commands | | |--|----| | storage encryption disk destroy | | | storage encryption disk modify | | | storage encryption disk revert-to-original-state | | | storage encryption disk sanitize | (| | storage encryption disk show-status | | | storage encryption disk show | 10 | ## storage encryption commands ## storage encryption disk destroy Cryptographically destroy a self-encrypting disk Availability: This command is available to *cluster* administrators at the *admin* privilege level. ### **Description** The storage encryption disk destroy command cryptographically destroys a self-encrypting disk (SED), making it incapable of performing I/O operations. This command performs the following operations: - Employs the inherent erase capability of SEDs to cryptographically sanitize the disk - · Permanently locks the disk to prevent further data access - Changes the data and FIPS authentication keys to random values that are not recorded except within the SED. Use this command with extreme care. The only mechanism to restore the disk to usability (albeit without the data) is the storage encryption disk revert-to-original-state operation that is available only on disks that have the physical secure ID (PSID) printed on the disk label. The destroy command requires you to enter a confirmation phrase before proceeding with the operation. The command releases the cluster shell after launching the operation. Monitor the output of the storage encryption disk show-status command for command completion. Upon command completion, remove the destroyed SED from the system. #### **Parameters** #### -disk <disk path name> - Disk Name This parameter specifies the name of the disk you want to cryptographically destroy. See the man page for the storage disk modify command for information about disk-naming conventions. #### [-force-all-states <true>] - Destroy All Matching Disks When this parameter is false or not specified, the operation defaults to spare and broken disks only, as reported in the output of the storage disk show command. When you specify this parameter as true, it allows you to cryptographically destroy all matching disk names regardless of their state, including those in active use in aggregates. This allows a quick destroy of all system disks if you use the -disk parameter with the asterisk wildcard (*). If you destroy active disks, the nodes might not be able to continue operation, and might halt or panic. ### **Examples** The following command cryptographically destroys the disk 1.10.20: ``` cluster1::> storage encryption disk destroy 1.10.20 Warning: This operation will cryptographically destroy 1 spare or broken self-encrypting disks on 1 node. You cannot reuse destroyed disks unless you revert them to their original state using the PSID value. To continue, enter destroy disk :destroy disk :destroy disk Info: Starting destroy on 1 disk. View the status of the operation by using the "storage encryption disk show-status" command. cluster1::> ``` If you do not enter the correct confirmation phrase, the operation is aborted: ``` cluster1::> storage encryption disk destroy 1.10.2* Warning: This operation will cryptographically destroy 5 spare or broken self-encrypting disks on 1 node. You cannot reuse destroyed disks unless you revert them to their original state using the PSID value. To continue, enter destroy disk :yes No disks destroyed. cluster1::> ``` The following command quickly cryptographically destroys all system disks: ``` cluster1::> storage encryption disk destroy -force-all-states -disk * Warning: This operation will cryptographically destroy 96 self-encrypting disks on 4 nodes. To continue, enter destroy disk :destroy disk Info: Starting destroy on 96 disks. View the status of the operation by using the xref:{relative_path}storage-encryption-disk-show-status.html[storage encryption disk show-status] command. cluster1::> ``` #### **Related Links** - storage encryption disk revert-to-original-state - · storage encryption disk show-status - · storage disk show ## storage encryption disk modify Modify self-encrypting disk parameters Availability: This command is available to *cluster* administrators at the *admin* privilege level. ## **Description** The storage encryption disk modify command changes the data and FIPS-compliance protection parameters of self-encrypting disks (SEDs). The current data AK and FIPS AK of the SED are required to effect changes to the respective AKs and FIPS compliance, and must also be available from the key servers. The command releases the cluster shell after launching the operation. Monitor the output of the storage encryption disk show-status command for command completion. To properly protect data at rest on a SED and place it into compliance with its FIPS certification requirements, set both the Data and FIPS-compliance AKs to a value other than the default manufacture secure ID (MSID), indicated by a key ID with the special value 0×0 . Verify the key IDs by using the storage encryption disk show and storage encryption disk show-fips commands. #### **Parameters** -disk <disk path name> - Disk Name This parameter specifies the name of the SED that you want to modify. #### { [-data-key-id <text>] - Key ID of the New Data Authentication Key This parameter specifies the key ID associated with the data AK that you want the SED to use for future authentications. When the provided key ID is the MSID, data at rest on the SED is not protected from unauthorized access. Setting this parameter to a non-MSID value automatically engages the power-on-lock protections of the device, so that when the device is power-cycled, the system must authenticate with the device using the AK to reenable I/O operations. #### [_fips-key-id <text>] - Key ID of the New Authentication Key for FIPS Compliance } This parameter specifies the key ID associated with the FIPS AK that you want the SED to apply to SED credentials other than the one that protects the data. When the value is not the MSID, these credentials are changed to the indicated AK, and other security-related items are set to conform to the FIPS certification requirements ("FIPS compliance mode") of the device. You may set the <code>-fips-key-id</code> to any one of the key IDs known to the system. The FIPS key ID may, but does not have to, be the same as the data key ID parameter. Setting <code>-fips-key-id</code> to the MSID key ID value disables FIPS compliance mode and restores the FIPS-related authorites and other components as required (other than data) to their default settings. The MSID is required when reverting to a version of Data ONTAP that does not manipulate the FIPS-compliance device components. ## **Examples** The following command changes both the AK and the power-cycle protection to values that protect the data at rest on the disk. Note that the <code>-data-key-id</code> and <code>-fips-key-id</code> parameters require one of the key IDs that appear in the output of the security key-manager query command. The following command changes the FIPS AK and sets the device into FIPS-compliance mode. Note that the -fips-key-id parameter requires one of the key IDs that appear in the output of the security key-manager query command. ``` cluster1::> storage encryption disk modify -fips-key-id 6A1E21D800000000000000000000000005A1FB4EE8F62FD6D8AE6754C9019F35A 2.10.* Info: Starting modify on 14 disks. View the status of the operation by using the storage encryption disk show-status command. ``` #### **Related Links** - · storage encryption disk show-status - storage encryption disk show · security key-manager query ## storage encryption disk revert-to-original-state Revert a self-encrypting disk to its original, as-manufactured state **Availability:** This command is available to *cluster* administrators at the *admin* privilege level. ## **Description** Some self-encrypting disks (SEDs) are capable of an operation that restores them as much as possible to their as-manufactured state. The storage encryption disk revert-to-original-state command invokes this special operation that is available only in SEDs that have the physical secure ID (PSID) printed on their labels. The PSID is unique to each SED, meaning the command can revert only one SED at a time. The disk must be in a "broken" or "spare" state as shown by the output of the storage disk show command. The operation in the SED accomplishes the following changes: - Sanitizes all data by changing the disk encryption key to a new random value - Sets the data authentication key (AK) and FTPS AK to the default manufacture secure ID (MSID) - · Unlocks the data band - Resets the power-on lock state to false - Initializes other vendor-unique encryption-related parameters The command releases the cluster shell after launching the operation. Monitor the output of the storage encryption disk show-status command for command completion. When the operation is complete, it is possible to return the SED to service using the storage disk unfail command in <code>advanced</code> privilege mode. To do so, you might also need to reestablish ownership of the SED using the storage disk assign command. #### **Parameters** #### -disk <disk path name> - Disk Name The name of the SED to be reverted to its as-manufactured state. See the man page for the storage disk modify command for information about disk-naming conventions. #### -psid <text> - Physical Secure ID The PSID printed on the SED label. ### **Examples** The following command shows a SED being returned to its as-manufactured state: cluster1::> storage encryption disk revert-to-original-state -disk 01.10.0 -psid AC65PYF8CG45YZABUQJKM98WV2VZGRLD #### **Related Links** - · storage disk show - storage encryption disk show-status - · storage disk unfail - · storage disk assign ## storage encryption disk sanitize Cryptographically sanitize a self-encrypting disk Availability: This command is available to *cluster* administrators at the *admin* privilege level. ## **Description** The storage encryption disk sanitize command cryptographically sanitizes one or more self-encrypting disks (SEDs), making the existing data on the SED impossible to retrieve. This operation employs the inherent erase capability of SEDs to perform all of the following changes: - Sanitizes all data by changing the disk encryption key to a new random value - Sets the data authentication key (AK) to the default manufacture secure ID (MSID) - · Unlocks the data band - Resets the power-on lock state to false There is no method to restore the disk encryption key to its previous value, meaning that you cannot recover the data on the SED. Use this command with extreme care. The sanitize command requires you to enter a confirmation phrase before proceeding with the operation. The command releases the cluster shell after launching the operation. Monitor the output of the storage encryption disk show-status command for command completion. When the operation is complete, it is possible to return the SED to service using the storage disk unfail command in <code>advanced</code> privilege mode. To do so, you might also need to reestablish ownership of the SED using the storage disk assign command. #### **Parameters** #### -disk <disk path name> - Disk Name This parameter specifies the name of the SEDs you want to cryptographically sanitize. See the man page for the storage disk modify command for information about disk-naming conventions. #### [-force-all-states <true>] - Sanitize All Matching Disks When this parameter is false or not specified, the operation defaults to spare and broken disks only, as reported in the output of the storage disk show command. When you specify this parameter as true, it allows you to cryptographically sanitize all matching disk names regardless of their state, including those in active use in aggregates. This allows a quick erasure of all system data if you use the -disk parameter with the asterisk wildcard (*). If you sanitize active disks, the nodes might not be able to continue operation, and might halt or panic. ## **Examples** The following command sanitizes the disk 1.10.20: ``` cluster1::> storage encryption disk sanitize 1.10.20 Warning: This operation will cryptographically sanitize 1 spare or broken self-encrypting disk on 1 node. To continue, enter sanitize disk :sanitize disk :sanitize disk Info: Starting sanitize on 1 disk. View the status of the operation using the xref:{relative_path}storage-encryption-disk-show-status.html[storage encryption disk show-status] command. cluster1::> ``` If you do not enter the correct confirmation phrase, the operation is aborted: The following command quickly cryptographically sanitizes all system disks: ``` cluster1::> storage encryption disk sanitize -force-all-states -disk * Warning: This operation will cryptographically sanitize 96 self-encrypting disks on 4 nodes. To continue, enter sanitize disk :sanitize disk Info: Starting sanitize on 96 disks. View the status of the operation by using the xref:{relative_path}storage-encryption-disk-show-status.html[storage encryption disk show-status] command. cluster1::> ``` #### **Related Links** - storage encryption disk show-status - · storage disk unfail - · storage disk assign - · storage disk show ## storage encryption disk show-status Display status of disk encryption operation **Availability:** This command is available to *cluster* administrators at the *admin* privilege level. ## **Description** The storage encryption disk show-status command displays the results of the latest destroy, modify, or sanitize operation of the storage encryption disk command family. Use this command to view the progress of these operations on self-encrypting disks (SEDs). #### **Parameters** ``` { [-fields <fieldname>,...] ``` If you specify the -fields <fieldname>, ... parameter, the command output also includes the specified field or fields. You can use '-fields?' to display the fields to specify. #### |[-instance]} If you specify the -instance parameter, the command displays detailed information about all fields. #### [-node <nodename>] - Node Name If you specify this parameter, the command displays disk encryption status for the nodes that match this parameter. ## [-is-sed-support {true|false}] - Node Supports Self-Encrypting Disks If you specify this parameter, the command displays disk encryption status for the nodes that match this parameter (*true* means the node supports SEDs). ### [-latest-op <Storage Disk Encryption Operation>] - Latest Operation Requested If you specify this parameter, the command displays disk encryption status for the nodes with a most recent storage encryption disk operation that matches this parameter (one of destroy, modify, revert-to-original-state, sanitize, or unknown). #### [-op-start-time <MM/DD/YYYY HH:MM:SS>] - Operation Start Time Selects the nodes with operation start times that match this parameter. ## [-op-execute-time <integer>] - Execution Time in Seconds If you specify this parameter, the command displays disk encryption status for the nodes with operation execution time that matches this parameter. The operation may be partial or completed. #### [-disk-start-count <integer>] - Number of Disks Started If you specify this parameter, the command displays disk encryption status for the nodes that started this number of SEDs in their latest operation. ### [-disk-done-count <integer>] - Number of Disks Done Selects the nodes that report this number of SEDs having completed the latest operation, successfully or not. ## [-disk-success-count <integer>] - Number of Disks Successful If you specify this parameter, the command displays disk encryption status for the nodes that report this number of SEDs that successfully completed the latest operation. When the operation is finished, if the success count is not the same as the started count, some additional detail is available using the <code>-instance</code> or <code>-node</code> parameters. #### [-disk-no-key-id-count <integer>] - Number of Disks with Key ID Not Found If you specify this parameter, the command displays disk encryption status for the nodes that report this number of SEDs that failed the latest operation because Data ONTAP could not find the Key IDs associated with the required authentication key of the SED. #### [-disk-no-authent-count <integer>] - Number of Disks Not Authenticated If you specify this parameter, the command displays disk encryption status for the nodes that report this number of SEDs that failed the latest operation because the identified Authentication Key could not authenticate with the SED. ### **Examples** When no operation has been requested since node boot, the status for that node is empty. If you enter a node name, the output is in the same format as for the -instance parameter. Once an operation begins, the status is dynamic until all devices have completed. When disks are modified, sanitized, or destroyed, sequential executions of storage encryption disk show-status appear as in this example that shows the progress of a modify operation on three SEDs on each node of a two-node cluster: | | SED | Latest | Start | Exec | cution | Disks | Disks | |------------------------------------|------------------|---------------------|-------------------------------|------|--------|-------|-------| | Disk | | | | | | | | | Node | Support | Request | Timestamp | Time | (sec) | Begun | Done | | Success | sful | node
0 | true | modify | 9/22/2014 13:58:53 | | 4 | 3 | 0 | | node1 | true | modify | 9/22/2014 13:58:53 | | 4 | 3 | 0 | | 0 | | | | | | | | | cluster | | rage encr
Latest | yption disk show-sta
Start | | cution | Disks | Disks | | cluster
Disk | SED
Support | Latest | | Exec | | | | | cluster
Disk
Node | SED
Support | Latest | Start | Exec | | | | | cluster
Disk
Node | SED
Support | Latest | Start | Exec | | | | | cluster
Disk
Node
Success | SED Support sful | Latest Request | Start | Exec | (sec) | | Done | ## storage encryption disk show Display self-encrypting disk attributes Availability: This command is available to *cluster* administrators at the *admin* privilege level. ### **Description** The storage encryption disk show command displays information about self-encrypting disks (SEDs). By default, the command displays the following information about all SEDS: - · Disk name - The protection mode of the SED - The key ID associated with the data authentication key (data AK) You can use the following parameters together with the <code>-disk</code> parameter to narrow the selection of displayed SEDs or the information displayed about them. #### **Parameters** #### { [-fields <fieldname>,...] If you specify the <code>-fields</code> <fieldname>, ... parameter, the command output also includes the specified field or fields. You can use '-fields?' to display the fields to specify. #### |[-fips] If you specify this parameter, the command displays the key ID associated with the FIPS-compliance authentication key ("FIPS AK") instead of the data key ID. #### |[-instance]} If you specify this parameter, the command displays detailed disk information about all disks, or only those specified by a -disk parameter. #### [-disk <disk path name>] - Disk Name If you specify this parameter, the command displays information about the specified disks. If you specify a single disk path name, the output is the same as when you use the -instance parameter. See the man page for the storage disk modify command for information about disk-naming conventions. Default is all self-encrypting disks. #### [-container-name <text>] - Container Name This parameter specifies the container name associated with a SED. If you specify an aggregate name or other container name, only the SEDs in that container are displayed. See the man page for the storage disk show command for a description of the container name. Use the storage aggregate show-status and storage disk show commands to determine which aggregates the SEDs are in. ``` [-container-type {aggregate | broken | foreign | labelmaint | maintenance | mediator | remote | shared | spare | unassigned | unknown | unsupported}] - Container Type ``` This parameter specifies the container type associated with a SED. If you specify a container type, only the SEDs with that container type are displayed. See the man page for the storage disk show command for a description of the container type. #### [-data-key-id <text>] - Key ID of the Current Data Authentication Key This parameter specifies the key ID associated with the data AK that the SED requires for authentication with the data-protection authorities in the SED. The special key ID $\partial x \partial$ indicates that the current data AK of the SED is the default manufacture secure ID (MSID) that is not secret. To properly protect data at rest on the device, modify the data AK using a key ID that is not the MSID. When you modify the data AK with a non-MSID key ID, the system automatically sets the device's power-on lock enable control so that authentication with the data AK is required after a device power-cycle. Use storage encryption disk modify $-data-key-id \cdot key-id \cdot to$ protect the data. Use storage encryption disk modify-fips -key-id to place the SED into FIPS-compliance mode. #### [-fips-key-id <text>] - Key ID of the Current FIPS Authentication Key This parameter specifies the key ID associated with the FIPS authentication key ("FIPS AK") that the system must use to authenticate with FIPS-compliance authorities in the SED. #### [-is-power-on-lock-enabled {true|false}] - Is Power-On Lock Protection Enabled? This parameter specifies the state of the SED control that determines whether the SED requires authentication with the data AK after a power-cycle. The system enables this control parameter automatically when you use the storage encryption disk modify-data-key-id command to set the data AK to a value other than the MSID. Data is protected only when this parameter is true and the data AK is not the MSID. Compare with the values of the -protection-mode parameter below. ## [-protection-mode <text>] - Mode of SED Data and FIPS-Compliance Protection The protection mode that the SED is in: - · open data is unprotected; SED is not in FIPS-compliance mode - · data data is protected; SED is not in FIPS-complance mode - part data is unprotected; SED is in FIPS-compliance mode - full data is protected; SED is in FIPS-compliance mode ## **Examples** The following command displays information about all SEDs: Note in the example that only disk 1.10.2 is fully protected with FIPS mode, power-on-lock enable, and an AK that is not the default MSID. The following command displays information about the protection mode and FIPS key ID for all SEDs: Note again that only disk 1.10.2 is fully protected with FIPS-compliance mode set, power-on-lock enabled, and a data AK that is not the default MSID. The following command displays the individual fields for disk 1.10.1: #### **Related Links** - · storage disk show - · storage aggregate show-status - · storage encryption disk modify #### **Copyright Information** Copyright © 2022 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987). #### **Trademark Information** NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.