

Configure ONTAP on the new controllers

ONTAP MetroCluster

NetApp
February 13, 2026

This PDF was generated from https://docs.netapp.com/us-en/ontap-metrocluster/upgrade/task_clear_the_configuration_on_a_controller_module_mcc.html on February 13, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Configure ONTAP on the new controllers	1
Clearing the configuration on a controller module	1
Assigning disk ownership in AFF systems	1
Assigning disk ownership in non-AFF systems	3
Verifying the ha-config state of components	6
Booting the new controllers and joining them to the cluster	6
Configure the clusters into a MetroCluster configuration	9
Configure intercluster LIFs	9
Mirroring the root aggregates	18
Implementing the MetroCluster configuration	19
Create a mirrored data aggregate on each MetroCluster FC node	21
Configuring FC-to-SAS bridges for health monitoring	22
Moving a metadata volume in MetroCluster configurations	24
Checking the MetroCluster configuration	27

Configure ONTAP on the new controllers

Clearing the configuration on a controller module

Before using a new controller module in the MetroCluster configuration, you must clear the existing configuration.

Steps

1. If necessary, halt the node to display the `LOADER` prompt:

```
halt
```

2. At the `LOADER` prompt, set the environmental variables to default values:

```
set-defaults
```

3. Save the environment:

```
saveenv
```

4. At the `LOADER` prompt, launch the boot menu:

```
boot_ontap menu
```

5. At the boot menu prompt, clear the configuration:

```
wipeconfig
```

Respond `yes` to the confirmation prompt.

The node reboots and the boot menu is displayed again.

6. At the boot menu, select option **5** to boot the system into Maintenance mode.

Respond `yes` to the confirmation prompt.

Assigning disk ownership in AFF systems

If you are using AFF systems in a configuration with mirrored aggregates and the nodes do not have the disks (SSDs) correctly assigned, you should assign half the disks on each shelf to one local node and the other half of the disks to its HA partner node. You should create a configuration in which each node has the same number of disks in its local and remote disk pools.

About this task

The storage controllers must be in Maintenance mode.

This does not apply to configurations which have unmirrored aggregates, an active/passive configuration, or that have an unequal number of disks in local and remote pools.

This task is not required if disks were correctly assigned when received from the factory.

Pool 0 always contains the disks that are found at the same site as the storage system that owns them, while Pool 1 always contains the disks that are remote to the storage system that owns them.

Steps

1. If you have not done so, boot each system into Maintenance mode.
2. Assign the disks to the nodes located at the first site (site A):

You should assign an equal number of disks to each pool.

- a. On the first node, systematically assign half the disks on each shelf to pool 0 and the other half to the HA partner's pool 0:

```
disk assign -disk disk-name -p pool -n number-of-disks
```

If storage controller Controller_A_1 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf1 -p 0 -n 4
*> disk assign -shelf FC_switch_A_1:1-4.shelf2 -p 0 -n 4

*> disk assign -shelf FC_switch_B_1:1-4.shelf1 -p 1 -n 4
*> disk assign -shelf FC_switch_B_1:1-4.shelf2 -p 1 -n 4
```

- b. Repeat the process for the second node at the local site, systematically assigning half the disks on each shelf to pool 1 and the other half to the HA partner's pool 1:

```
disk assign -disk disk-name -p pool
```

If storage controller Controller_A_1 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1 -n 4

*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1 -n 4
```

3. Assign the disks to the nodes located at the second site (site B):

You should assign an equal number of disks to each pool.

- a. On the first node at the remote site, systematically assign half the disks on each shelf to pool 0 and the other half to the HA partner's pool 0:

```
disk assign -disk disk-name -p pool
```

If storage controller Controller_B_1 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf1 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-5.shelf2 -p 0 -n 4

*> disk assign -shelf FC_switch_A_1:1-5.shelf1 -p 1 -n 4
*> disk assign -shelf FC_switch_A_1:1-5.shelf2 -p 1 -n 4
```

b. Repeat the process for the second node at the remote site, systematically assigning half the disks on each shelf to pool 1 and the other half to the HA partner's pool 1:

```
disk assign -disk disk-name -p pool
```

If storage controller Controller_B_2 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf3 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-5.shelf4 -p 0 -n 4

*> disk assign -shelf FC_switch_A_1:1-5.shelf3 -p 1 -n 4
*> disk assign -shelf FC_switch_A_1:1-5.shelf4 -p 1 -n 4
```

4. Confirm the disk assignments:

```
storage show disk
```

5. Exit Maintenance mode:

```
halt
```

6. Display the boot menu:

```
boot_ontap menu
```

7. On each node, select option **4** to initialize all disks.

Assigning disk ownership in non-AFF systems

If the MetroCluster nodes do not have the disks correctly assigned, or if you are using DS460C disk shelves in your configuration, you must assign disks to each of the nodes in the MetroCluster configuration on a shelf-by-shelf basis. You will create a configuration in which each node has the same number of disks in its local and remote disk pools.

About this task

The storage controllers must be in Maintenance mode.

If your configuration does not include DS460C disk shelves, this task is not required if disks were correctly assigned when received from the factory.

 Pool 0 always contains the disks that are found at the same site as the storage system that owns them.

Pool 1 always contains the disks that are remote to the storage system that owns them.

If your configuration includes DS460C disk shelves, you should manually assign the disks using the following guidelines for each 12-disk drawer:

Assign these disks in the drawer...	To this node and pool...
0 - 2	Local node's pool 0
3 - 5	HA partner node's pool 0
6 - 8	DR partner of the local node's pool 1
9 - 11	DR partner of the HA partner's pool 1

This disk assignment pattern ensures that an aggregate is minimally affected in case a drawer goes offline.

Steps

1. If you have not done so, boot each system into Maintenance mode.
2. Assign the disk shelves to the nodes located at the first site (site A):

Disk shelves at the same site as the node are assigned to pool 0 and disk shelves located at the partner site are assigned to pool 1.

You should assign an equal number of shelves to each pool.

- a. On the first node, systematically assign the local disk shelves to pool 0 and the remote disk shelves to pool 1:

```
disk assign -shelf local-switch-name:shelf-name.port -p pool
```

If storage controller Controller_A_1 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf1 -p 0
*> disk assign -shelf FC_switch_A_1:1-4.shelf2 -p 0

*> disk assign -shelf FC_switch_B_1:1-4.shelf1 -p 1
*> disk assign -shelf FC_switch_B_1:1-4.shelf2 -p 1
```

- b. Repeat the process for the second node at the local site, systematically assigning the local disk shelves to pool 0 and the remote disk shelves to pool 1:

```
disk assign -shelf local-switch-name:shelf-name.port -p pool
```

If storage controller Controller_A_2 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1

*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1
```

3. Assign the disk shelves to the nodes located at the second site (site B):

Disk shelves at the same site as the node are assigned to pool 0 and disk shelves located at the partner site are assigned to pool 1.

You should assign an equal number of shelves to each pool.

- On the first node at the remote site, systematically assign its local disk shelves to pool 0 and its remote disk shelves to pool 1:

```
disk assign -shelf local-switch-name shelf-name -p pool
```

If storage controller Controller_B_1 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf1 -p 0
*> disk assign -shelf FC_switch_B_1:1-5.shelf2 -p 0

*> disk assign -shelf FC_switch_A_1:1-5.shelf1 -p 1
*> disk assign -shelf FC_switch_A_1:1-5.shelf2 -p 1
```

- Repeat the process for the second node at the remote site, systematically assigning its local disk shelves to pool 0 and its remote disk shelves to pool 1:

```
disk assign -shelf shelf-name -p pool
```

If storage controller Controller_B_2 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf3 -p 0
*> disk assign -shelf FC_switch_B_1:1-5.shelf4 -p 0

*> disk assign -shelf FC_switch_A_1:1-5.shelf3 -p 1
*> disk assign -shelf FC_switch_A_1:1-5.shelf4 -p 1
```

4. Confirm the shelf assignments:

```
storage show shelf
```

5. Exit Maintenance mode:

```
halt
```

6. Display the boot menu:

```
boot_ontap menu
```

7. On each node, select option **4** to initialize all disks.

Verifying the ha-config state of components

In a MetroCluster configuration, the ha-config state of the controller module and chassis components must be set to **mcc** so they boot up properly.

About this task

- The system must be in Maintenance mode.
- This task must be performed on each new controller module.

Steps

1. In Maintenance mode, display the HA state of the controller module and chassis:

```
ha-config show
```

The HA state for all components should be "mcc".

2. If the displayed system state of the controller is not correct, set the HA state for the controller module:

```
ha-config modify controller mcc
```

3. If the displayed system state of the chassis is not correct, set the HA state for the chassis:

```
ha-config modify chassis mcc
```

4. Repeat these steps on the other replacement node.

Booting the new controllers and joining them to the cluster

To join the new controllers to the cluster, you must boot each new controller module and use the ONTAP cluster setup wizard to identify the cluster will join.

Before you begin

You must have cabled the MetroCluster configuration.

You must not have configured the Service Processor prior to performing this task.

About this task

This task must be performed on each of the new controllers at both clusters in the MetroCluster configuration.

Steps

1. If you have not already done so, power up each node and let them boot completely.

If the system is in Maintenance mode, issue the `halt` command to exit Maintenance mode, and then issue the following command from the LOADER prompt:

```
boot_ontap
```

The controller module enters the node setup wizard.

The output should be similar to the following:

```
Welcome to node setup
```

```
You can enter the following commands at any time:
```

```
"help" or "?" - if you want to have a question clarified,  
"back" - if you want to change previously answered questions, and  
"exit" or "quit" - if you want to quit the setup wizard.
```

```
Any changes you made before quitting will be saved.
```

```
To accept a default or omit a question, do not enter a value.
```

```
.
```

2. Enable the AutoSupport tool by following the directions provided by the system.
3. Respond to the prompts to configure the node management interface.

The prompts are similar to the following:

```
Enter the node management interface port: [e0M]:
```

```
Enter the node management interface IP address: 10.228.160.229
```

```
Enter the node management interface netmask: 225.225.252.0
```

```
Enter the node management interface default gateway: 10.228.160.1
```

4. Confirm that nodes are configured in high-availability mode:

```
storage failover show -fields mode
```

If not, you must issue the following command on each node, and then reboot the node:

```
storage failover modify -mode ha -node localhost
```

This command configures high availability mode but does not enable storage failover. Storage failover is automatically enabled when you issue the `metrocluster configure` command later in the configuration process.

5. Confirm that you have four ports configured as cluster interconnects:

```
network port show
```

The following example shows output for two controllers in cluster_A. If it is a two-node MetroCluster configuration, the output shows only one node.

```

cluster_A::> network port show
                                         Speed
                                         (Mbps)
Node    Port      IPspace      Broadcast Domain Link    MTU    Admin/Oper
-----  -----  -----  -----  -----  -----  -----  -----
-----  -----
node_A_1
    **e0a      Cluster      Cluster      up      1500
auto/1000
    e0b      Cluster      Cluster      up      1500
auto/1000**
    e0c      Default      Default      up      1500  auto/1000
    e0d      Default      Default      up      1500  auto/1000
    e0e      Default      Default      up      1500  auto/1000
    e0f      Default      Default      up      1500  auto/1000
    e0g      Default      Default      up      1500  auto/1000
node_A_2
    **e0a      Cluster      Cluster      up      1500
auto/1000
    e0b      Cluster      Cluster      up      1500
auto/1000**
    e0c      Default      Default      up      1500  auto/1000
    e0d      Default      Default      up      1500  auto/1000
    e0e      Default      Default      up      1500  auto/1000
    e0f      Default      Default      up      1500  auto/1000
    e0g      Default      Default      up      1500  auto/1000
14 entries were displayed.

```

6. Because you are using the CLI to set up the cluster, exit the Node Setup wizard:

```
exit
```

7. Log in to the admin account by using the `admin` user name.

8. Start the Cluster Setup wizard, and then join the existing cluster:

```
cluster setup
```

```
::> cluster setup
```

Welcome to the cluster setup wizard.

You can enter the following commands at any time:

"help" or "?" - if you want to have a question clarified,
"back" - if you want to change previously answered questions, and
"exit" or "quit" - if you want to quit the cluster setup wizard.

Any changes you made before quitting will be saved.

You can return to cluster setup at any time by typing "cluster setup".
To accept a default or omit a question, do not enter a value.

Do you want to create a new cluster or join an existing cluster?

```
{create, join}:`join`
```

9. After you complete the **Cluster Setup** wizard and it exits, verify that the cluster is active and the node is healthy:

```
cluster show
```

The following example shows a cluster in which the first node (cluster1-01) is healthy and eligible to participate:

```
cluster_A::> cluster show
Node          Health  Eligibility
-----
node_A_1      true    true
node_A_2      true    true
node_A_3      true    true
```

If it becomes necessary to change any of the settings you entered for the admin SVM or node SVM, you can access the **Cluster Setup** wizard by using the `cluster setup` command.

Configure the clusters into a MetroCluster configuration

Configure intercluster LIFs

Learn how to configure intercluster LIFs on dedicated and shared ports.

Configure intercluster LIFs on dedicated ports

You can configure intercluster LIFs on dedicated ports to increase the available bandwidth for replication traffic.

Steps

1. List the ports in the cluster:

```
network port show
```

For complete command syntax, see the man page.

The following example shows the network ports in cluster01:

```

cluster01::> network port show
                                         Speed
                                         (Mbps)
Node    Port      IPspace      Broadcast Domain Link      MTU
Admin/Oper
-----
-----
cluster01-01
    e0a      Cluster      Cluster      up      1500
auto/1000
    e0b      Cluster      Cluster      up      1500
auto/1000
    e0c      Default      Default      up      1500
auto/1000
    e0d      Default      Default      up      1500
auto/1000
    e0e      Default      Default      up      1500
auto/1000
    e0f      Default      Default      up      1500
auto/1000
cluster01-02
    e0a      Cluster      Cluster      up      1500
auto/1000
    e0b      Cluster      Cluster      up      1500
auto/1000
    e0c      Default      Default      up      1500
auto/1000
    e0d      Default      Default      up      1500
auto/1000
    e0e      Default      Default      up      1500
auto/1000
    e0f      Default      Default      up      1500
auto/1000

```

2. Determine which ports are available to dedicate to intercluster communication:

```
network interface show -fields home-port,curr-port
```

For complete command syntax, see the man page.

The following example shows that ports "e0e" and "e0f" have not been assigned LIFs:

```
cluster01::> network interface show -fields home-port,curr-port
vserver lif           home-port curr-port
-----
Cluster cluster01-01_clus1  e0a      e0a
Cluster cluster01-01_clus2  e0b      e0b
Cluster cluster01-02_clus1  e0a      e0a
Cluster cluster01-02_clus2  e0b      e0b
cluster01
    cluster_mgmt      e0c      e0c
cluster01
    cluster01-01_mgmt1 e0c      e0c
cluster01
    cluster01-02_mgmt1 e0c      e0c
```

3. Create a failover group for the dedicated ports:

```
network interface failover-groups create -vserver <system_SVM> -failover
-group <failover_group> -targets <physical_or_logical_ports>
```

The following example assigns ports "e0e" and "e0f" to the failover group "intercluster01" on the system SVM "cluster01":

```
cluster01::> network interface failover-groups create -vserver
cluster01 -failover-group
intercluster01 -targets
cluster01-01:e0e,cluster01-01:e0f,cluster01-02:e0e,cluster01-02:e0f
```

4. Verify that the failover group was created:

```
network interface failover-groups show
```

For complete command syntax, see the man page.

```

cluster01::> network interface failover-groups show
                           Failover
Vserver          Group          Targets
-----
-----
Cluster
      Cluster
          cluster01-01:e0a, cluster01-
01:e0b,
          cluster01-02:e0a, cluster01-02:e0b
cluster01
      Default
          cluster01-01:e0c, cluster01-
01:e0d,
          cluster01-02:e0c, cluster01-
02:e0d,
          cluster01-01:e0e, cluster01-01:e0f
          cluster01-02:e0e, cluster01-02:e0f
      intercluster01
          cluster01-01:e0e, cluster01-01:e0f
          cluster01-02:e0e, cluster01-02:e0f

```

5. Create intercluster LIFs on the system SVM and assign them to the failover group.

ONTAP version	Command
9.6 and later	network interface create -vserver <system_SVM> -lif <LIF_name> -service-policy default-intercluster -home-node <node> -home-port <port> -address <port_IP> -netmask <netmask> -failover-group <failover_group>
9.5 and earlier	network interface create -vserver system_SVM -lif <LIF_name> -role intercluster -home-node <node> -home-port <port> -address <port_IP> -netmask <netmask> -failover-group <failover_group>

For complete command syntax, see the man page.

The following example creates intercluster LIFs "cluster01_icl01" and "cluster01_icl02" in the failover group "intercluster01":

```

cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0e
-address 192.168.1.201
-netmask 255.255.255.0 -failover-group intercluster01

cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0e
-address 192.168.1.202
-netmask 255.255.255.0 -failover-group intercluster01

```

6. Verify that the intercluster LIFs were created:

In ONTAP 9.6 and later:

```
network interface show -service-policy default-intercluster
```

In ONTAP 9.5 and earlier:

```
network interface show -role intercluster
```

For complete command syntax, see the man page.

```

cluster01::> network interface show -service-policy default-
intercluster
          Logical      Status      Network      Current
Current Is
Vserver      Interface  Admin/Oper Address/Mask      Node
Port      Home
-----  -----
-----  -----
cluster01
          cluster01_icl01
          up/up      192.168.1.201/24  cluster01-01
e0e      true
          cluster01_icl02
          up/up      192.168.1.202/24  cluster01-02
e0f      true

```

7. Verify that the intercluster LIFs are redundant:

In ONTAP 9.6 and later:

```
network interface show -service-policy default-intercluster -failover
```

In ONTAP 9.5 and earlier:

```
network interface show -role intercluster -failover
```

For complete command syntax, see the man page.

The following example shows that the intercluster LIFs "cluster01_icl01" and "cluster01_icl02" on the SVM "e0e" port will fail over to the "e0f" port.

```
cluster01::> network interface show -service-policy default-
intercluster -failover
      Logical          Home          Failover
      Failover
  Vserver  Interface      Node:Port      Policy      Group
-----  -----  -----
-----  -----
cluster01
      cluster01_icl01  cluster01-01:e0e  local-only
intercluster01
      Failover Targets:  cluster01-01:e0e,
                           cluster01-01:e0f
      cluster01_icl02  cluster01-02:e0e  local-only
intercluster01
      Failover Targets:  cluster01-02:e0e,
                           cluster01-02:e0f
```

Configure intercluster LIFs on shared data ports

You can configure intercluster LIFs on ports shared with the data network to reduce the number of ports you need for intercluster networking.

Steps

1. List the ports in the cluster:

```
network port show
```

For complete command syntax, see the man page.

The following example shows the network ports in cluster01:

```

cluster01::> network port show
                                         Speed
                                         (Mbps)
Node    Port      IPspace      Broadcast Domain Link      MTU
Admin/Oper
-----
-----
cluster01-01
    e0a      Cluster      Cluster      up      1500
auto/1000
    e0b      Cluster      Cluster      up      1500
auto/1000
    e0c      Default      Default      up      1500
auto/1000
    e0d      Default      Default      up      1500
auto/1000
cluster01-02
    e0a      Cluster      Cluster      up      1500
auto/1000
    e0b      Cluster      Cluster      up      1500
auto/1000
    e0c      Default      Default      up      1500
auto/1000
    e0d      Default      Default      up      1500
auto/1000

```

2. Create intercluster LIFs on the system SVM:

In ONTAP 9.6 and later:

```
network interface create -vserver <system_SVM> -lif <LIF_name> -service
-policy default-intercluster -home-node <node> -home-port <port> -address
<port_IP> -netmask <netmask>
```

In ONTAP 9.5 and earlier:

```
network interface create -vserver <system_SVM> -lif <LIF_name> -role
intercluster -home-node <node> -home-port <port> -address <port_IP>
-netmask <netmask>
```

For complete command syntax, see the man page.

The following example creates intercluster LIFs `cluster01_icl01` and `cluster01_icl02`:

```

cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0c
-address 192.168.1.201
-netmask 255.255.255.0

cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0c
-address 192.168.1.202
-netmask 255.255.255.0

```

3. Verify that the intercluster LIFs were created:

In ONTAP 9.6 and later:

```
network interface show -service-policy default-intercluster
```

In ONTAP 9.5 and earlier:

```
network interface show -role intercluster
```

For complete command syntax, see the man page.

```

cluster01::> network interface show -service-policy default-
intercluster
          Logical      Status      Network      Current
Current Is
Vserver      Interface  Admin/Oper Address/Mask      Node
Port      Home
-----  -----
-----  -----
cluster01
          cluster01_icl01
          up/up      192.168.1.201/24  cluster01-01
e0c      true
          cluster01_icl02
          up/up      192.168.1.202/24  cluster01-02
e0c      true

```

4. Verify that the intercluster LIFs are redundant:

In ONTAP 9.6 and later:

```
network interface show -service-policy default-intercluster -failover
```

In ONTAP 9.5 and earlier:

```
network interface show -role intercluster -failover
```

For complete command syntax, see the man page.

The following example shows that the intercluster LIFs "cluster01_icl01" and "cluster01_icl02" on the "e0c" port will fail over to the "e0d" port.

```
cluster01::> network interface show -service-policy default-
intercluster -failover
      Logical          Home          Failover
      Failover
  Vserver  Interface      Node:Port      Policy      Group
-----  -----  -----
-----  -----
cluster01
      cluster01_icl01  cluster01-01:e0c  local-only
  192.168.1.201/24
                           Failover Targets: cluster01-01:e0c,
                                         cluster01-01:e0d
      cluster01_icl02  cluster01-02:e0c  local-only
  192.168.1.201/24
                           Failover Targets: cluster01-02:e0c,
                                         cluster01-02:e0d
```

Mirroring the root aggregates

You must mirror the root aggregates to provide data protection.

By default, the root aggregate is created as RAID-DP type aggregate. You can change the root aggregate from RAID-DP to RAID4 type aggregate. The following command modifies the root aggregate for RAID4 type aggregate:

```
storage aggregate modify -aggregate aggr_name -raidtype raid4
```


On non-ADP systems, the RAID type of the aggregate can be modified from the default RAID-DP to RAID4 before or after the aggregate is mirrored.

Steps

1. Mirror the root aggregate:

```
storage aggregate mirror aggr_name
```

The following command mirrors the root aggregate for controller_A_1:

```
controller_A_1::> storage aggregate mirror aggr0_controller_A_1
```

This mirrors the aggregate, so it consists of a local plex and a remote plex located at the remote MetroCluster site.

2. Repeat the previous step for each node in the MetroCluster configuration.

Implementing the MetroCluster configuration

You must run the `metrocluster configure -refresh true` command to start data protection on the nodes that you have added to a MetroCluster configuration.

About this task

You issue the `metrocluster configure -refresh true` command once, on one of the newly added nodes, to refresh the MetroCluster configuration. You do not need to issue the command on each of the sites or nodes.

The `metrocluster configure -refresh true` command automatically pairs the two nodes with the lowest system IDs in each of the two clusters as disaster recovery (DR) partners. In a four-node MetroCluster configuration, there are two DR partner pairs. The second DR pair is created from the two nodes with higher system IDs.

Steps

1. Refresh the MetroCluster configuration:

- a. Enter advanced privilege mode:

```
set -privilege advanced
```

- b. Refresh the MetroCluster configuration on one of the new nodes:

```
metrocluster configure -refresh true
```

The following example shows the MetroCluster configuration refreshed on both DR groups:

```
controller_A_2::*> metrocluster configure -refresh true
```

```
[Job 726] Job succeeded: Configure is successful.
```

```
controller_A_4::*> metrocluster configure -refresh true
```

```
[Job 740] Job succeeded: Configure is successful.
```

- c. Return to admin privilege mode:

```
set -privilege admin
```

2. Verify the networking status on site A:

```
network port show
```

The following example shows the network port usage on a four-node MetroCluster configuration:

```
cluster_A::> network port show
                                         Speed (Mbps)
Node  Port      IPspace   Broadcast Domain Link    MTU     Admin/Oper
----- ----- ----- ----- ----- ----- -----
controller_A_1
    e0a      Cluster   Cluster      up    9000  auto/1000
    e0b      Cluster   Cluster      up    9000  auto/1000
    e0c      Default   Default      up    1500  auto/1000
    e0d      Default   Default      up    1500  auto/1000
    e0e      Default   Default      up    1500  auto/1000
    e0f      Default   Default      up    1500  auto/1000
    e0g      Default   Default      up    1500  auto/1000
controller_A_2
    e0a      Cluster   Cluster      up    9000  auto/1000
    e0b      Cluster   Cluster      up    9000  auto/1000
    e0c      Default   Default      up    1500  auto/1000
    e0d      Default   Default      up    1500  auto/1000
    e0e      Default   Default      up    1500  auto/1000
    e0f      Default   Default      up    1500  auto/1000
    e0g      Default   Default      up    1500  auto/1000
14 entries were displayed.
```

3. Verify the MetroCluster configuration from both sites in the MetroCluster configuration:

a. Verify the configuration from site A:

```
metrocluster show
```

```
cluster_A::> metrocluster show

Configuration: IP fabric

Cluster          Entry Name      State
----- -----
Local: cluster_A Configuration state configured
                  Mode          normal
Remote: cluster_B Configuration state configured
                  Mode          normal
```

b. Verify the configuration from site B:

```
metrocluster show
```

```
cluster_B::> metrocluster show

Configuration: IP fabric

Cluster           Entry Name      State
-----
Local: cluster_B Configuration state configured
                  Mode          normal
Remote: cluster_A Configuration state configured
                  Mode          normal
```

Create a mirrored data aggregate on each MetroCluster FC node

You must create a mirrored data aggregate on each node in the DR group.

About this task

- You should know what drives will be used in the new aggregate.
- If you have multiple drive types in your system (heterogeneous storage), you should understand how you can make sure that the correct drive type is selected.
- Drives are owned by a specific node; when you create an aggregate, all drives in that aggregate must be owned by the same node, which becomes the home node for that aggregate.

In systems using ADP, aggregates are created using partitions in which each drive is partitioned into P1, P2 and P3 partitions.

- Aggregate names should conform to the naming scheme you determined when you planned your MetroCluster configuration.

[Disk and aggregate management](#)

- Aggregate names must be unique across the MetroCluster sites. This means that you cannot have two different aggregates with the same name on site A and site B.

 It's recommended you maintain at least 20% free space for mirrored aggregates for optimal storage performance and availability. Although the recommendation is 10% for non-mirrored aggregates, the additional 10% of space can be used by the filesystem to absorb incremental changes. Incremental changes increase space utilization for mirrored aggregates due to ONTAP's copy-on-write Snapshot-based architecture. Failure to adhere to these best practices might have a negative impact on performance.

Steps

1. Display a list of available spares:

```
storage disk show -spare -owner <node_name>
```

2. Create the aggregate:

```
storage aggregate create -mirror true
```

If you are logged in to the cluster on the cluster management interface, you can create an aggregate on any node in the cluster. To verify that the aggregate is created on a specific node, use the `-node` parameter or specify drives that are owned by that node.

You can specify the following options:

- Aggregate's home node (that is, the node that owns the aggregate in normal operation)
- List of specific drives that are to be added to the aggregate
- Number of drives to include

In the minimum supported configuration, in which a limited number of drives are available, you must use the `force-small-aggregate` option to allow the creation of a three disk RAID-DP aggregate.

- Checksum style to use for the aggregate
- Type of drives to use
- Size of drives to use
- Drive speed to use
- RAID type for RAID groups on the aggregate
- Maximum number of drives that can be included in a RAID group
- Whether drives with different RPM are allowed

For more information about these options, see the `storage aggregate create` man page.

The following command creates a mirrored aggregate with 10 disks:

```
cluster_A::> storage aggregate create aggr1_node_A_1 -diskcount 10
-node node_A_1 -mirror true
[Job 15] Job is queued: Create aggr1_node_A_1.
[Job 15] The job is starting.
[Job 15] Job succeeded: DONE
```

3. Verify the RAID group and drives of your new aggregate:

```
storage aggregate show-status -aggregate <aggregate-name>
```

Configuring FC-to-SAS bridges for health monitoring

Learn how to configure the FC-to-SAS bridges for health monitoring.

About this task

- Third-party SNMP monitoring tools are not supported for FibreBridge bridges.

- Beginning with ONTAP 9.8, FC-to-SAS bridges are monitored via in-band connections by default, and additional configuration is not required.

 Beginning with ONTAP 9.8, the `storage bridge` command is replaced with `system bridge`. The following steps show the `storage bridge` command, but if you are running ONTAP 9.8 or later, the `system bridge` command is preferred.

Step

- From the ONTAP cluster prompt, add the bridge to health monitoring:

- Add the bridge, using the command for your version of ONTAP:

ONTAP version	Command
9.5 and later	<code>storage bridge add -address 0.0.0.0 -managed-by in-band -name bridge-name</code>
9.4 and earlier	<code>storage bridge add -address bridge-ip-address -name bridge-name</code>

- Verify that the bridge has been added and is properly configured:

```
storage bridge show
```

It might take as long as 15 minutes to reflect all data because of the polling interval. The ONTAP health monitor can contact and monitor the bridge if the value in the "Status" column is "ok", and other information, such as the worldwide name (WWN), is displayed.

The following example shows that the FC-to-SAS bridges are configured:

```
controller_A_1::> storage bridge show

Bridge          Symbolic Name Is Monitored  Monitor Status
Vendor Model      Bridge WWN
-----  -----
-----  -----
ATTO_10.10.20.10  atto01      true        ok        Atto
FibreBridge 7500N  20000010867038c0
ATTO_10.10.20.11  atto02      true        ok        Atto
FibreBridge 7500N  20000010867033c0
ATTO_10.10.20.12  atto03      true        ok        Atto
FibreBridge 7500N  20000010867030c0
ATTO_10.10.20.13  atto04      true        ok        Atto
FibreBridge 7500N  2000001086703b80

4 entries were displayed

controller_A_1::>
```

Moving a metadata volume in MetroCluster configurations

You can move a metadata volume from one aggregate to another aggregate in a MetroCluster configuration. You might want to move a metadata volume when the source aggregate is decommissioned or unmirrored, or for other reasons that make the aggregate ineligible.

About this task

- You must have cluster administrator privileges to perform this task.
- The target aggregate must be mirrored and should not be in the degraded state.
- The available space in the target aggregate must be larger than the metadata volume that you are moving.

Steps

1. Set the privilege level to advanced:

```
set -privilege advanced
```

2. Identify the metadata volume that should be moved:

```
volume show MDV_CRS*
```

```

Cluster_A::> volume show MDV_CRS*
Vserver      Volume          Aggregate      State      Type      Size
Available    Used%
-----  -----
-----  -----
Cluster_A
    MDV_CRS_14c00d4ac9f311e7922800a0984395f1_A
        Node_A_1_aggr1
                    online      RW      10GB
9.50GB      5%
Cluster_A
    MDV_CRS_14c00d4ac9f311e7922800a0984395f1_B
        Node_A_2_aggr1
                    online      RW      10GB
9.50GB      5%
Cluster_A
    MDV_CRS_15035e66c9f311e7902700a098439625_A
        Node_B_1_aggr1
                    -          RW      -
-
-
Cluster_A
    MDV_CRS_15035e66c9f311e7902700a098439625_B
        Node_B_2_aggr1
                    -          RW      -
-
-
4 entries were displayed.

Cluster_A::>

```

3. Identify an eligible target aggregate:

```
metrocluster check config-replication show-aggregate-eligibility
```

The following command identifies the aggregates in cluster_A that are eligible to host metadata volumes:

```
Cluster_A::* metrocluster check config-replication show-aggregate-eligibility

Aggregate Hosted Config Replication Vols Host Addl Vols Comments
----- -----
----- 
Node_A_1_aggr0 - false Root Aggregate
Node_A_2_aggr0 - false Root Aggregate
Node_A_1_aggr1 MDV CRS 1bc7134a5ddf11e3b63f123478563412_A true -
Node_A_2_aggr1 MDV CRS 1bc7134a5ddf11e3b63f123478563412_B true -
Node_A_1_aggr2 - true
Node_A_2_aggr2 - true
Node_A_1_Aggr3 - false Unable to determine available space of aggregate
Node_A_1_aggr5 - false Unable to determine mirror configuration
Node_A_2_aggr6 - false Mirror configuration does not match requirement
Node_B_1_aggr4 - false NonLocal Aggregate
```


In the previous example, Node_A_1_aggr2 and Node_A_2_aggr2 are eligible.

4. Start the volume move operation:

```
volume move start -vserver svm_name -volume metadata_volume_name -destination
-aggregate destination_aggregate_name*
```

The following command moves metadata volume "MDV CRS 14c00d4ac9f311e7922800a0984395f1" from "aggregate Node_A_1_aggr1" to "aggregate Node_A_1_aggr2":

```
Cluster_A::* volume move start -vserver svm_cluster_A -volume
MDV CRS 14c00d4ac9f311e7922800a0984395f1
-destination-aggregate aggr_cluster_A_02_01

Warning: You are about to modify the system volume
"MDV CRS 9da04864ca6011e7b82e0050568be9fe_A". This may cause
severe
    performance or stability problems. Do not proceed unless
directed to
    do so by support. Do you want to proceed? {y|n}: y
[Job 109] Job is queued: Move
"MDV CRS 9da04864ca6011e7b82e0050568be9fe_A" in Vserver
"svm_cluster_A" to aggregate "aggr_cluster_A_02_01".
Use the "volume move show -vserver svm_cluster_A -volume
MDV CRS 9da04864ca6011e7b82e0050568be9fe_A" command to view the status
of this operation.
```

5. Verify the state of the volume move operation:

```
volume move show -volume vol_constituent_name
```

6. Return to the admin privilege level:

```
set -privilege admin
```

Checking the MetroCluster configuration

You can check that the components and relationships in the MetroCluster configuration are working correctly. You should do a check after initial configuration and after making any changes to the MetroCluster configuration. You should also do a check before a negotiated (planned) switchover or a switchback operation.

About this task

If the `metrocluster check run` command is issued twice within a short time on either or both clusters, a conflict can occur and the command might not collect all data. Subsequent `metrocluster check show` commands do not show the expected output.

Steps

1. Check the configuration:

```
metrocluster check run
```

The command runs as a background job and might not be completed immediately.

```
cluster_A::> metrocluster check run
The operation has been started and is running in the background. Wait
for
it to complete and run "metrocluster check show" to view the results. To
check the status of the running metrocluster check operation, use the
command,
"metrocluster operation history show -job-id 2245"
```

```
cluster_A::> metrocluster check show
```

Component	Result
nodes	ok
lifs	ok
config-replication	ok
aggregates	ok
clusters	ok
connections	ok
volumes	ok

7 entries were displayed.

2. Display more detailed results from the most recent metrocluster check run command:

```
metrocluster check aggregate show  
  
metrocluster check cluster show  
  
metrocluster check config-replication show  
  
metrocluster check lif show  
  
metrocluster check node show
```

The `metrocluster check show` commands show the results of the most recent `metrocluster check run` command. You should always run the `metrocluster check run` command prior to using the `metrocluster check show` commands so that the information displayed is current.

The following example shows the `metrocluster check aggregate show` command output for a healthy four-node MetroCluster configuration:

```
controller_A_2           controller_A_2_aggr0
                           mirroring-status
ok
                           disk-pool-allocation
ok
                           ownership-state
ok
controller_A_2_aggr1
                           mirroring-status
ok
                           disk-pool-allocation
ok
                           ownership-state
ok
controller_A_2_aggr2
                           mirroring-status
ok
                           disk-pool-allocation
ok
                           ownership-state

18 entries were displayed.
```

The following example shows the `metrocluster check cluster show` command output for a healthy four-node MetroCluster configuration. It indicates that the clusters are ready to perform a negotiated switchover if necessary.

Last Checked On: 9/13/2017 20:47:04

Cluster	Check	Result
<hr/>		
mccint-fas9000-0102	negotiated-switchover-ready	not-applicable
	switchback-ready	not-applicable
	job-schedules	ok
	licenses	ok
	periodic-check-enabled	ok
mccint-fas9000-0304	negotiated-switchover-ready	not-applicable
	switchback-ready	not-applicable
	job-schedules	ok
	licenses	ok
	periodic-check-enabled	ok

10 entries were displayed.

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.