

Configure the MetroCluster IP switches

ONTAP MetroCluster

NetApp April 25, 2024

This PDF was generated from https://docs.netapp.com/us-en/ontap-metrocluster/installip/task_switch_config_broadcom.html on April 25, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Configure the MetroCluster IP switches	1
Configuring Broadcom IP switches	1
Configure Cisco IP switches	19
Configure the NVIDIA IP SN2100 switch	39
Configure MetroCluster IP switches for health monitoring	49

Configure the MetroCluster IP switches

Configuring Broadcom IP switches

You must configure the Broadcom IP switches for use as the cluster interconnect and for backend MetroCluster IP connectivity.

Your configuration requires additional licenses (6 x 100-Gb port license) in the following scenarios:

- You use ports 53 and 54 as a 40-Gbps or 100-Gbps MetroCluster ISL.
- You use a platform that connects the local cluster and MetroCluster interfaces to ports 49 52.

Resetting the Broadcom IP switch to factory defaults

Before installing a new switch software version and RCFs, you must erase the Broadcom switch settings and perform basic configuration.

About this task

- You must repeat these steps on each of the IP switches in the MetroCluster IP configuration.
- You must be connected to the switch using the serial console.
- This task resets the configuration of the management network.

Steps

1. Change to the elevated command prompt (#): enable

```
(IP_switch_A_1)> enable
(IP switch A 1) #
```

- 2. Erase the startup configuration and remove the banner
 - a. Erase the startup configuration:

erase startup-config

```
(IP_switch_A_1) #erase startup-config
```

```
Are you sure you want to clear the configuration? (y/n) {\rm y}
```

```
(IP_switch_A_1) #
```

This command does not erase the banner.

b. Remove the banner:

no set clibanner

```
(IP_switch_A_1) #configure
(IP_switch_A_1)(Config) # no set clibanner
(IP_switch_A_1)(Config) #
```

3. Reboot the switch: (IP_switch_A_1) #reload

Are you sure you would like to reset the system? (y/n) y

If the system asks whether to save the unsaved or changed configuration before reloading the switch, select **No**.

4. Wait for the switch to reload, and then log in to the switch.

The default user is "admin", and no password is set. A prompt similar to the following is displayed:

```
(Routing) >
```

5. Change to the elevated command prompt:

```
enable
```

```
Routing)> enable
(Routing) #
```

6. Set the service port protocol to none:

serviceport protocol none

(Routing) #serviceport protocol none Changing protocol mode will reset ip configuration. Are you sure you want to continue? (y/n) y

(Routing) #

7. Assign the IP address to the service port:

serviceport ip ip-address netmask gateway

The following example shows a service port assigned IP address "10.10.10.10" with subnet "255.255.255.0" and gateway "10.10.10.1":

(Routing) #serviceport ip 10.10.10.10 255.255.255.0 10.10.10.1

8. Verify that the service port is correctly configured:

show serviceport

The following example shows that the port is up and the correct addresses have been assigned:

9. If desired, configure the SSH server.

The RCF file disables the Telnet protocol. If you do not configure the SSH server, you can only access the bridge using the serial port connection.

a. Generate RSA keys.

```
(Routing) #configure
(Routing) (Config)#crypto key generate rsa
```

b. Generate DSA keys (optional)

```
(Routing) #configure
(Routing) (Config)#crypto key generate dsa
```

c. If you are using the FIPS compliant version of EFOS, generate the ECDSA keys. The following example creates the keys with a length of 521. Valid values are 256, 384 or 521.

```
(Routing) #configure
(Routing) (Config)#crypto key generate ecdsa 521
```

d. Enable the SSH server.

If necessary, exit the configuration context.

```
(Routing) (Config)#end
(Routing) #ip ssh server enable
```


If keys already exist, then you might be asked to overwrite them.

10. If desired, configure the domain and name server:

configure

The following example shows the ip domain and ip name server commands:

```
(Routing) # configure
(Routing) (Config)#ip domain name lab.netapp.com
(Routing) (Config)#ip name server 10.99.99.1 10.99.99.2
(Routing) (Config)#exit
(Routing) (Config)#
```

11. If desired, configure the time zone and time synchronization (SNTP).

The following example shows the sntp commands, specifying the IP address of the SNTP server and the relative time zone.

```
(Routing) #
(Routing) (Config)#sntp client mode unicast
(Routing) (Config)#sntp server 10.99.99.5
(Routing) (Config)#clock timezone -7
(Routing) (Config)#exit
(Routing) (Config)#
```

For EFOS version 3.10.0.3 and later, use the ntp command, as shown in the following example:

```
> (Config) # ntp ?
```

```
Enables NTP authentication.
authenticate
authentication-key
                         Configure NTP authentication key.
broadcast
                         Enables NTP broadcast mode.
broadcastdelay
                         Configure NTP broadcast delay in microseconds.
                         Configure NTP server.
server
                         Configure the NTP source-interface.
source-interface
trusted-key
                         Configure NTP authentication key number for
trusted time source.
vrf
                         Configure the NTP VRF.
>(Config) # ntp server ?
ip-address|ipv6-address|hostname Enter a valid IPv4/IPv6 address or
hostname.
>(Config) # ntp server 10.99.99.5
```

12. Configure the switch name:

hostname IP_switch_A_1

The switch prompt will display the new name:

```
(Routing) # hostname IP_switch_A_1
(IP switch A 1) #
```

13. Save the configuration:

write memory

You receive prompts and output similar to the following example:

```
(IP_switch_A_1) #write memory
This operation may take a few minutes.
Management interfaces will not be available during this time.
Are you sure you want to save? (y/n) y
Config file 'startup-config' created successfully .
Configuration Saved!
(IP_switch_A_1) #
```

14. Repeat the previous steps on the other three switches in the MetroCluster IP configuration.

Downloading and installing the Broadcom switch EFOS software

You must download the switch operating system file and RCF file to each switch in the MetroCluster IP configuration.

About this task

This task must be repeated on each switch in the MetroCluster IP configuration.

Note the following:

- When upgrading from EFOS 3.4.x.x to EFOS 3.7.x.x or later, the switch must be running EFOS 3.4.4.6 (or later 3.4.x.x release). If you are running a release prior to that, then upgrade the switch to EFOS 3.4.4.6 (or later 3.4.x.x release) first, then upgrade the switch to EFOS 3.7.x.x or later.
- The configuration for EFOS 3.4.x.x and 3.7.x.x or later are different. Changing the EFOS version from 3.4.x.x to 3.7.x.x or later, or vice versa, requires the switch to be reset to factory defaults and the RCF files for the corresponding EFOS version to be (re)applied. This procedure requires access through the serial console port.
- Beginning with EFOS version 3.7.x.x or later, a non-FIPS compliant and a FIPS compliant version is available. Different steps apply when moving to from a non-FIPS compliant to a FIPS compliant version or vice versa. Changing EFOS from a non-FIPS compliant to a FIPS compliant version or vice versa will reset the switch to factory defaults. This procedure requires access through the serial console port.

Steps

 Check if your version of EFOS is FIPS compliant or non-FIPS compliant by using the show fips status command. In the following examples, IP_switch_A_1 is using FIPS compliant EFOS and IP_switch_A_2 is using non-FIPS compliant EFOS.

Example 1

```
IP_switch_A_1 #show fips status
System running in FIPS mode
IP_switch_A_1 #
```

Example 2

2. Use the following table to determine which method you must follow:

Procedure	Current EFOS version	New EFOS version	High level steps
Steps to upgrade EFOS between two (non) FIPS compliant versions	3.4.x.x	3.4.x.x	Install the new EFOS image using method 1) The configuration and license information is retained
	3.4.4.6 (or later 3.4.x.x)	3.7.x.x or later non-FIPS compliant	Upgrade EFOS using method 1. Reset the switch to factory defaults and apply the RCF file for EFOS 3.7.x.x or later
	3.7.x.x or later non-FIPS compliant	3.4.4.6 (or later 3.4.x.x)	Downgrade EFOS using method 1. Reset the switch to factory defaults and apply the RCF file for EFOS 3.4.x.x
		3.7.x.x or later non-FIPS compliant	Install the new EFOS image using method 1. The configuration and license information is retained
	3.7.x.x or later FIPS compliant	3.7.x.x or later FIPS compliant	Install the new EFOS image using method 1. The configuration and license information is retained

Steps to upgrade to/from a FIPS compliant EFOS version	Non-FIPS compliant	FIPS compliant	Installation of the EFOS image using method 2. The switch configuration
	FIPS compliant	Non-FIPS compliant	and license information will be lost.

- Method 1: Steps to upgrade EFOS with downloading the software image to the backup boot partition
- Method 2: Steps to upgrade EFOS using the ONIE OS installation

Steps to upgrade EFOS with downloading the software image to the backup boot partition

You can perform the following steps only if both EFOS versions are non-FIPS compliant or both EFOS versions are FIPS compliant.

Do not use these steps if one version is FIPS compliant and the other version is non-FIPS compliant.

Steps

 Copy the switch software to the switch: copy sftp://user@50.50.50.50/switchsoftware/efos-3.4.4.6.stk backup

In this example, the efos-3.4.4.6.stk operating system file is copied from the SFTP server at 50.50.50.50 to the backup partition. You need to use the IP address of your TFTP/SFTP server and the file name of the RCF file that you need to install.

```
(IP switch A 1) #copy sftp://user@50.50.50/switchsoftware/efos-
3.4.4.6.stk backup
Remote Password: ************
Mode..... SFTP
Path...../switchsoftware/
Filename..... efos-3.4.4.6.stk
Data Type..... Code
Destination Filename..... backup
Management access will be blocked for the duration of the transfer
Are you sure you want to start? (y/n) y
File transfer in progress. Management access will be blocked for the
duration of the transfer. Please wait...
SFTP Code transfer starting...
File transfer operation completed successfully.
(IP switch A 1) #
```

2. Set the switch to boot from the backup partition on the next switch reboot:

boot system backup

```
(IP_switch_A_1) #boot system backup
Activating image backup ..
(IP_switch_A_1) #
```

3. Verify that the new boot image will be active on the next boot:

show bootvar

4. Save the configuration:

write memory

(IP_switch_A_1) #write memory
This operation may take a few minutes.
Management interfaces will not be available during this time.
Are you sure you want to save? (y/n) y
Configuration Saved!
(IP_switch_A_1) #

5. Reboot the switch:

reload

```
(IP_switch_A_1) #reload Are you sure you would like to reset the system? (y/n) y
```

6. Wait for the switch to reboot.

In rare scenarios the switch may fail to boot. Follow the Steps to upgrade EFOS using the ONIE OS installation to install the new image.

- 7. If you change the switch from EFOS 3.4.x.x to EFOS 3.7.x.x or vice versa then follow the following two procedures to apply the correct configuration (RCF):
 - a. Resetting the Broadcom IP switch to factory defaults
 - b. Downloading and installing the Broadcom RCF files
- 8. Repeat these steps on the remaining three IP switches in the MetroCluster IP configuration.

Steps to upgrade EFOS using the ONIE OS installation

You can perform the following steps if one EFOS version is FIPS compliant and the other EFOS version is non-FIPS compliant. These steps can be used to install the non-FIPS or FIPS compliant EFOS 3.7.x.x image from ONIE if the switch fails to boot.

Steps

1. Boot the switch into ONIE installation mode.

During boot, select ONIE when the following screen appears:

After selecting "ONIE", the switch will then load and present you with the following choices:

The switch now will boot into ONIE installation mode.

2. Stop the ONIE discovery and configure the ethernet interface

Once the following message appears press <enter> to invoke the ONIE console:

```
Please press Enter to activate this console. Info: eth0: Checking
link... up.
ONIE:/ #
```


The ONIE discovery will continue and messages will be printed to the console.

```
Stop the ONIE discovery
ONIE:/ # onie-discovery-stop
discover: installer mode detected.
Stopping: discover... done.
ONIE:/ #
```

3. Configure the ethernet interface and add the route using ifconfig eth0 <ipAddress> netmask <netmask> up and route add default gw <gatewayAddress>

ONIE:/ # ifconfig eth0 10.10.10.10 netmask 255.255.255.0 up ONIE:/ # route add default gw 10.10.10.1

4. Verify that the server hosting the ONIE installation file is reachable:

```
ONIE:/ # ping 50.50.50.50
PING 50.50.50.50 (50.50.50.50): 56 data bytes
64 bytes from 50.50.50.50: seq=0 ttl=255 time=0.429 ms
64 bytes from 50.50.50.50: seq=1 ttl=255 time=0.595 ms
64 bytes from 50.50.50.50: seq=2 ttl=255 time=0.369 ms
^C
--- 50.50.50.50 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.369/0.464/0.595 ms
ONIE:/ #
```

5. Install the new switch software

The software will install and then reboot the switch. Let the switch reboot normally into the new EFOS version.

6. Verify that the new switch software is installed

show bootvar

7. Complete the installation

The switch will reboot with no configuration applied and reset to factory defaults. Follow the two procedures to configure the switch basic settings and apply the RCF file as outlined in the following two documents:

- a. Configure the switch basic settings. Follow step 4 and later: Resetting the Broadcom IP switch to factory defaults
- b. Create and apply the RCF file as outlined in Downloading and installing the Broadcom RCF files

Downloading and installing the Broadcom RCF files

You must download and install the switch RCF file to each switch in the MetroCluster IP configuration.

Before you begin

This task requires file transfer software, such as FTP, TFTP, SFTP, or SCP, to copy the files to the switches.

About this task

These steps must be repeated on each of the IP switches in the MetroCluster IP configuration.

There are four RCF files, one for each of the four switches in the MetroCluster IP configuration. You must use the correct RCF files for the switch model you are using.

Switch	RCF file
IP_switch_A_1	v1.32_Switch-A1.txt
IP_switch_A_2	v1.32_Switch-A2.txt
IP_switch_B_1	v1.32_Switch-B1.txt
IP_switch_B_2	v1.32_Switch-B2.txt

The RCF files for EFOS version 3.4.4.6 or later 3.4.x.x. release and EFOS version 3.7.0.4 are different. You need to make sure that you have created the correct RCF files for the EFOS version that the switch is running.

EFOS version	RCF file version
3.4.x.x	v1.3x, v1.4x
3.7.x.x	v2.x

Steps

- 1. Generate the Broadcom RCF files for MetroCluster IP.
 - a. Download the RcfFileGenerator for MetroCluster IP
 - b. Generate the RCF file for your configuration using the RcfFileGenerator for MetroCluster IP.

Modifications to the RCF files after download are not supported.

- 2. Copy the RCF files to the switches:
 - a. Copy the RCF files to the first switch: copy sftp://user@FTP-server-IPaddress/RcfFiles/switch-specific-RCF/BES-53248_v1.32_Switch-A1.txt nvram:script BES-53248_v1.32_Switch-A1.scr

In this example, the "BES-53248_v1.32_Switch-A1.txt" RCF file is copied from the SFTP server at "50.50.50" to the local bootflash. You need to use the IP address of your TFTP/SFTP server and the file name of the RCF file that you need to install.

```
(IP switch A 1) #copy sftp://user@50.50.50.50/RcfFiles/BES-
53248 v1.32 Switch-A1.txt nvram:script BES-53248 v1.32 Switch-A1.scr
Remote Password:**********
Mode..... SFTP
Set Server IP..... 50.50.50.50
Path...../RcfFiles/
Filename..... BES-
53248 v1.32_Switch-A1.txt
Data Type..... Config Script
Destination Filename..... BES-
53248 v1.32 Switch-Al.scr
Management access will be blocked for the duration of the transfer
Are you sure you want to start? (y/n) y
File transfer in progress. Management access will be blocked for the
duration of the transfer. Please wait...
File transfer operation completed successfully.
Validating configuration script...
config
set clibanner
******
* NetApp Reference Configuration File (RCF)
*
* Switch : BES-53248
The downloaded RCF is validated. Some output is being logged here.
. . .
Configuration script validated.
File transfer operation completed successfully.
(IP switch A 1) #
```

b. Verify that the RCF file is saved as a script:

script list

(IP_switch_A_1) #script list Configuration Script Name Size(Bytes) Date of Modification BES-53248_v1.32_Switch-Al.scr 852 2019 01 29 18:41:25 1 configuration script(s) found. 2046 Kbytes free. (IP_switch_A_1) #

c. Apply the RCF script:

```
script apply BES-53248_v1.32_Switch-A1.scr
```

d. Save the configuration:

```
write memory
```

```
(IP_switch_A_1) #write memory
This operation may take a few minutes.
Management interfaces will not be available during this time.
Are you sure you want to save? (y/n) y
Configuration Saved!
(IP_switch_A_1) #
```

e. Reboot the switch:

reload

```
(IP_switch_A_1) #reload Are you sure you would like to reset the system? (y/n) y
```

- f. Repeat the previous steps for each of the other three switches, being sure to copy the matching RCF file to the corresponding switch.
- 3. Reload the switch:

reload

IP_switch_A_1# reload

4. Repeat the previous steps on the other three switches in the MetroCluster IP configuration.

Disable unused ISL ports and port channels

NetApp recommends disabling unused ISL ports and port channels to avoid unnecessary health alerts.

1. Identify the unused ISL ports and port channels using the RCF file banner:

If the port is in breakout mode, the port name you specify in the command might be different than the name stated in the RCF banner. You can also use the RCF cabling files to find the port name.

```
For ISL port details
Run the command show port all.
For port channel details
Run the command show port-channel all.
```

2. Disable the unused ISL ports and port channels.

You must run the following commands for each identified unused port or port channel.

```
(SwtichA_1)> enable
(SwtichA_1)# configure
(SwtichA_1)(Config)# <port_name>
(SwtichA_1)(Interface 0/15)# shutdown
(SwtichA_1)(Interface 0/15)# end
(SwtichA_1)# write memory
```

Configure Cisco IP switches

Configuring Cisco IP switches

You must configure the Cisco IP switches for use as the cluster interconnect and for backend MetroCluster IP connectivity.

About this task

Several of the procedures in this section are independent procedures and you only need to execute those you are directed to or are relevant to your task.

Resetting the Cisco IP switch to factory defaults

Before installing any RCF file, you must erase the Cisco switch configuration and perform basic configuration. This procedure is required when you want to reinstall the same RCF file after a previous installation failed, or if you want to install a new version of an RCF file.

About this task

- You must repeat these steps on each of the IP switches in the MetroCluster IP configuration.
- You must be connected to the switch using the serial console.
- This task resets the configuration of the management network.

Steps

- 1. Reset the switch to factory defaults:
 - a. Erase the existing configuration:

write erase

b. Reload the switch software:

reload

The system reboots and enters the configuration wizard. During the boot, if you receive the prompt "Abort Auto Provisioning and continue with normal setup? (yes/no)[n]", you should respond yes to proceed.

- c. In the configuration wizard, enter the basic switch settings:
 - Admin password
 - Switch name
 - Out-of-band management configuration
 - Default gateway
 - SSH service (RSA)

After completing the configuration wizard, the switch reboots.

d. When prompted, enter the user name and password to log in to the switch.

The following example shows the prompts and system responses when configuring the switch. The angle brackets (<<<) show where you enter the information.

```
---- System Admin Account Setup ----
Do you want to enforce secure password standard (yes/no) [y]:y
**<<<**
Enter the password for "admin": password
Confirm the password for "admin": password
---- Basic System Configuration Dialog VDC: 1 ----
```

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

Please register Cisco Nexus3000 Family devices promptly with your supplier. Failure to register may affect response times for initial service calls. Nexus3000 devices must be registered to receive entitled support services.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

You enter basic information in the next set of prompts, including the switch name, management address, and gateway, and select SSH with RSA.

```
Would you like to enter the basic configuration dialog (yes/no): yes
 Create another login account (yes/no) [n]:
 Configure read-only SNMP community string (yes/no) [n]:
  Configure read-write SNMP community string (yes/no) [n]:
 Enter the switch name : switch-name **<<<**
  Continue with Out-of-band (mgmt0) management configuration?
(yes/no) [y]:
   Mgmt0 IPv4 address : management-IP-address **<<<**
   Mqmt0 IPv4 netmask : management-IP-netmask **<<<**</pre>
 Configure the default gateway? (yes/no) [y]: y **<<<**
    IPv4 address of the default gateway : gateway-IP-address **<<<**
 Configure advanced IP options? (yes/no) [n]:
 Enable the telnet service? (yes/no) [n]:
 Enable the ssh service? (yes/no) [y]: y **<<<**
    Type of ssh key you would like to generate (dsa/rsa) [rsa]: rsa
**<<<**
   Number of rsa key bits <1024-2048> [1024]:
 Configure the ntp server? (yes/no) [n]:
 Configure default interface layer (L3/L2) [L2]:
 Configure default switchport interface state (shut/noshut)
[noshut]: shut **<<<**</pre>
  Configure CoPP system profile (strict/moderate/lenient/dense)
[strict]:
```

The final set of prompts completes the configuration:

```
The following configuration will be applied:
 password strength-check
 switchname IP switch A 1
vrf context management
ip route 0.0.0/0 10.10.99.1
exit
 no feature telnet
 ssh key rsa 1024 force
 feature ssh
 system default switchport
 system default switchport shutdown
 copp profile strict
interface mgmt0
ip address 10.10.99.10 255.255.255.0
no shutdown
Would you like to edit the configuration? (yes/no) [n]:
Use this configuration and save it? (yes/no) [y]:
2017 Jun 13 21:24:43 A1 %$ VDC-1 %$ %COPP-2-COPP POLICY: Control-
Plane is protected with policy copp-system-p-policy-strict.
Copy complete.
User Access Verification
IP switch A 1 login: admin
Password:
Cisco Nexus Operating System (NX-OS) Software
IP switch A 1#
```

2. Save the configuration:

IP_switch-A-1# copy running-config startup-config

3. Reboot the switch and wait for the switch to reload:

IP_switch-A-1# reload

4. Repeat the previous steps on the other three switches in the MetroCluster IP configuration.

Downloading and installing the Cisco switch NX-OS software

You must download the switch operating system file and RCF file to each switch in the MetroCluster IP configuration.

About this task

This task requires file transfer software, such as FTP, TFTP, SFTP, or SCP, to copy the files to the switches.

These steps must be repeated on each of the IP switches in the MetroCluster IP configuration.

You must use the supported switch software version.

NetApp Hardware Universe

Steps

1. Download the supported NX-OS software file.

Cisco Software Download

2. Copy the switch software to the switch:

```
copy sftp://root@server-ip-address/tftpboot/NX-OS-file-name bootflash: vrf
management
```

In this example, the nxos.7.0.3.14.6.bin file is copied from SFTP server 10.10.99.99 to the local bootflash:

```
IP_switch_A_1# copy sftp://root@10.10.99.99/tftpboot/nxos.7.0.3.I4.6.bin
bootflash: vrf management
root@10.10.99.99's password: password
sftp> progress
Progress meter enabled
sftp> get /tftpboot/nxos.7.0.3.I4.6.bin
/bootflash/nxos.7.0.3.I4.6.bin
Fetching /tftpboot/nxos.7.0.3.I4.6.bin to /bootflash/nxos.7.0.3.I4.6.bin
/tftpboot/nxos.7.0.3.I4.6.bin 100% 666MB 7.2MB/s
01:32
sftp> exit
Copy complete, now saving to disk (please wait)...
```

3. Verify on each switch that the switch NX-OS files are present in each switch's bootflash directory:

dir bootflash:

The following example shows that the files are present on IP_switch_A_1:

4. Install the switch software:

install all nxos bootflash:nxos.version-number.bin

The switch will reload (reboot) automatically after the switch software has been installed.

The following example shows the software installation on IP_switch_A_1:

```
IP switch A 1# install all nxos bootflash:nxos.7.0.3.I4.6.bin
Installer will perform compatibility check first. Please wait.
Installer is forced disruptive
Verifying image bootflash:/nxos.7.0.3.14.6.bin for boot variable "nxos".
[#################### 100% -- SUCCESS
Verifying image type.
[##################### 100% -- SUCCESS
Preparing "nxos" version info using image
bootflash:/nxos.7.0.3.I4.6.bin.
Preparing "bios" version info using image
bootflash:/nxos.7.0.3.I4.6.bin.
-- SUCCESS
Performing module support checks.
                                     [####################### 100%
-- SUCCESS
Notifying services about system upgrade.
                                      [############################# 100%
```

Compatibility check is done: Module bootable Impact Install-type Reason _____ _____ reset default upgrade is not 1 yes disruptive hitless Images will be upgraded according to following table: Module Image Running-Version (pri:alt) New-Version Upg-Required _____ _____ ____ _____ nxos 7.0(3)I4(1) 7.0(3)I4(6) yes bios v04.24(04/21/2016) v04.24(04/21/2016) no 1 yes 1 Switch will be reloaded for disruptive upgrade. Do you want to continue with the installation (y/n)? [n] y Install is in progress, please wait. Performing runtime checks. [####################### 100% --SUCCESS Setting boot variables. Performing configuration copy. [###################### 100% -- SUCCESS Module 1: Refreshing compact flash and upgrading bios/loader/bootrom. Warning: please do not remove or power off the module at this time. Finishing the upgrade, switch will reboot in 10 seconds. IP switch A 1#

5. Wait for the switch to reload and then log in to the switch.

After the switch has rebooted the login prompt is displayed:

```
User Access Verification
IP_switch_A_1 login: admin
Password:
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2017, Cisco and/or its affiliates.
All rights reserved.
.
.
MDP database restore in progress.
IP_switch_A_1#
The switch software is now installed.
```

6. Verify that the switch software has been installed: show version

The following example shows the output:

```
IP switch A 1# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2017, Cisco and/or its affiliates.
All rights reserved.
.
Software
  BIOS: version 04.24
 NXOS: version 7.0(3)14(6) **<<< switch software version**
 BIOS compile time: 04/21/2016
 NXOS image file is: bootflash:///nxos.7.0.3.I4.6.bin
 NXOS compile time: 3/9/2017 22:00:00 [03/10/2017 07:05:18]
Hardware
  cisco Nexus 3132QV Chassis
  Intel(R) Core(TM) i3- CPU @ 2.50GHz with 16401416 kB of memory.
  Processor Board ID FOC20123GPS
  Device name: A1
 bootflash: 14900224 kB
  usb1:
                      0 kB (expansion flash)
Kernel uptime is 0 day(s), 0 hour(s), 1 minute(s), 49 second(s)
Last reset at 403451 usecs after Mon Jun 10 21:43:52 2017
  Reason: Reset due to upgrade
  System version: 7.0(3) I4(1)
  Service:
plugin
  Core Plugin, Ethernet Plugin
IP switch A 1#
```

7. Repeat these steps on the remaining three IP switches in the MetroCluster IP configuration.

Downloading and installing the Cisco IP RCF files

You must download the RCF file to each switch in the MetroCluster IP configuration.

About this task

This task requires file transfer software, such as FTP, TFTP, SFTP, or SCP, to copy the files to the switches.

These steps must be repeated on each of the IP switches in the MetroCluster IP configuration.

You must use the supported switch software version.

NetApp Hardware Universe

There are four RCF files, one for each of the four switches in the MetroCluster IP configuration. You must use the correct RCF files for the switch model you are using.

Switch	RCF file
IP_switch_A_1	NX3232_v1.80_Switch-A1.txt
IP_switch_A_2	NX3232_v1.80_Switch-A2.txt
IP_switch_B_1	NX3232_v1.80_Switch-B1.txt
IP_switch_B_2	NX3232_v1.80_Switch-B2.txt

Steps

1. Download the MetroCluster IP RCF files.

Modifications to the RCF files after download are not supported.

- 2. Copy the RCF files to the switches:
 - a. Copy the RCF files to the first switch:

```
copy sftp://root@FTP-server-IP-address/tftpboot/switch-specific-RCF
bootflash: vrf management
```

In this example, the NX3232_v1.80_Switch-A1.txt RCF file is copied from the SFTP server at 10.10.99.99 to the local bootflash. You must use the IP address of your TFTP/SFTP server and the file name of the RCF file that you need to install.

```
IP switch A 1# copy
sftp://root@10.10.99.99/tftpboot/NX3232 v1.80 Switch-A1.txt
bootflash: vrf management
root@10.10.99.99's password: password
sftp> progress
Progress meter enabled
sftp> get /tftpboot/NX3232 v1.80 Switch-A1.txt
/bootflash/NX3232 v1.80 Switch-A1.txt
Fetching /tftpboot/NX3232 v1.80 Switch-A1.txt to
/bootflash/NX3232 v1.80 Switch-A1.txt
/tftpboot/NX3232 v1.80 Switch-A1.txt
                                      100% 5141 5.0KB/s
00:00
sftp> exit
Copy complete, now saving to disk (please wait) ...
IP switch A 1#
```

- b. Repeat the previous substep for each of the other three switches, being sure to copy the matching RCF file to the corresponding switch.
- 3. Verify on each switch that the RCF file is present in each switch's bootflash directory:

dir bootflash:

The following example shows that the files are present on IP_switch_A_1:

4. Configure the TCAM regions on Cisco 3132Q-V and Cisco 3232C switches.

Skip this step if you do not have Cisco 3132Q-V or Cisco 3232C switches.

a. On Cisco 3132Q-V switch, set the following TCAM regions:

```
conf t
hardware access-list tcam region span 0
hardware access-list tcam region racl 256
hardware access-list tcam region e-racl 256
hardware access-list tcam region qos 256
```

b. On Cisco 3232C switch, set the following TCAM regions:

```
conf t
hardware access-list tcam region span 0
hardware access-list tcam region racl-lite 0
hardware access-list tcam region racl 256
hardware access-list tcam region e-racl 256
hardware access-list tcam region qos 256
```

c. After setting the TCAM regions, save the configuration and reload the switch:

```
copy running-config startup-config
reload
```

5. Copy the matching RCF file from the local bootflash to the running configuration on each switch:

copy bootflash:switch-specific-RCF.txt running-config

6. Copy the RCF files from the running configuration to the startup configuration on each switch:

copy running-config startup-config

You should see output similar to the following:

IP_switch_A_1# copy bootflash:NX3232_v1.80_Switch-A1.txt running-config IP switch-A-1# copy running-config startup-config

7. Reload the switch:

reload

IP_switch_A_1# reload

8. Repeat the previous steps on the other three switches in the MetroCluster IP configuration.

Setting Forward Error Correction for systems using 25-Gbps connectivity

If your system is configured using 25-Gbps connectivity, you need to set the Forward Error Correction (fec) parameter manually to off after applying the RCF file. The RCF file does not apply this setting.

About this task

The 25-Gbps ports must be cabled prior to performing this procedure.

Platform port assignments for Cisco 3232C or Cisco 9336C switches

This task only applies to platforms using 25-Gbps connectivity:

- AFF A300
- FAS 8200
- FAS 500f
- AFF A250

This task must be performed on all four switches in the MetroCluster IP configuration.

Steps

- 1. Set the fec parameter to off on each 25-Gbps port that is connected to a controller module, and then copy the running configuration to the startup configuration:
 - a. Enter configuration mode: config t
 - b. Specify the 25-Gbps interface to configure: interface interface-ID
 - c. Set fec to off: fec off
 - d. Repeat the previous steps for each 25-Gbps port on the switch.
 - e. Exit configuration mode: exit

The following example shows the commands for interface Ethernet1/25/1 on switch IP_switch_A_1:

```
IP_switch_A_1# conf t
IP_switch_A_1(config)# interface Ethernet1/25/1
IP_switch_A_1(config-if)# fec off
IP_switch_A_1(config-if)# exit
IP_switch_A_1(config-if)# end
IP_switch_A_1# copy running-config startup-config
```

2. Repeat the previous step on the other three switches in the MetroCluster IP configuration.

Disable unused ISL ports and port channels

NetApp recommends disabling unused ISL ports and port channels to avoid unnecessary health alerts.

1. Identify the unused ISL ports and port channels:

show interface brief

2. Disable the unused ISL ports and port channels.

You must run the following commands for each identified unused port or port channel.

Configure MACsec encryption on Cisco 9336C switches

You can configure MACsec encryption on the WAN ISL ports that run between the sites. You must configure MACsec after applying the correct RCF file.

MACsec encryption can only be applied to the WAN ISL ports.

Configure MACsec encryption on Cisco 9336C switches

You must only configure MACsec encryption on the WAN ISL ports that run between the sites. You must configure MACsec after applying the correct RCF file.

Licensing requirements for MACsec

MACsec requires a security license. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply for licenses, see the Cisco NX-OS Licensing Guide

Enable Cisco MACsec Encryption WAN ISLs in MetroCluster IP configurations

You can enable MACsec encryption for Cisco 9336C switches on the WAN ISLs in a MetroCluster IP configuration.

Steps

1. Enter global configuration mode:

```
configure terminal
```

```
IP_switch_A_1# configure terminal
IP_switch_A_1(config) #
```

2. Enable MACsec and MKA on the device:

feature macsec

IP_switch_A_1(config) # feature macsec

3. Copy the running configuration to the startup configuration:

```
copy running-config startup-config
```

IP_switch_A_1(config) # copy running-config startup-config

Configure a MACsec key chain and keys

You can create a MACsec key chain or keys on your configuration.

Key Lifetime and Hitless Key Rollover

A MACsec keychain can have multiple pre-shared keys (PSKs), each configured with a key ID and an optional lifetime. A key lifetime specifies at which time the key activates and expires. In the absence of a lifetime configuration, the default lifetime is unlimited. When a lifetime is configured, MKA rolls over to the next configured pre-shared key in the keychain after the lifetime is expired. The time zone of the key can be local or UTC. The default time zone is UTC. A key can roll over to a second key within the same keychain if you configure the second key (in the keychain) and configure a lifetime for the first key. When the lifetime of the first key expires, it automatically rolls over to the next key in the list. If the same key is configured on both sides of the link at the same time, then the key rollover is hitless (that is, the key rolls over without traffic interruption).

Steps

1. Enter the global configuration mode:

```
configure terminal
```

```
IP_switch_A_1# configure terminal
IP_switch_A_1(config)#
```

2. To hide the encrypted key octet string, replace the string with a wildcard character in the output of the show running-config and show startup-config commands:

IP_switch_A_1(config) # key-chain macsec-psk no-show

The octet string is also hidden when you save the configuration to a file.

By default, PSK keys are displayed in encrypted format and can easily be decrypted. This command applies only to MACsec key chains.

3. Create a MACsec key chain to hold a set of MACsec keys and enter MACsec key chain configuration mode:

key chain name macsec

```
IP_switch_A_1(config) # key chain 1 macsec
IP_switch_A_1(config-macseckeychain) #
```

4. Create a MACsec key and enter MACsec key configuration mode:

key key-id

The range is from 1 to 32 hex digit key-string, and the maximum size is 64 characters.

IP_switch_A_1 switch(config-macseckeychain) # key 1000
IP switch A 1 (config-macseckeychain-macseckey) #

5. Configure the octet string for the key:

```
key-octet-string octet-string cryptographic-algorithm AES_128_CMAC |
AES_256_CMAC
```

IP_switch_A_1(config-macseckeychain-macseckey) # key-octet-string abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789 cryptographic-algorithm AES 256 CMAC

The octet-string argument can contain up to 64 hexadecimal characters. The octet key is encoded internally, so the key in clear text does not appear in the output of the show running-config macsec command.

6. Configure a send lifetime for the key (in seconds):

```
send-lifetime start-time duration duration
```

IP_switch_A_1(config-macseckeychain-macseckey)# send-lifetime 00:00:00
Oct 04 2020 duration 100000

By default, the device treats the start time as UTC. The start-time argument is the time of day and date that the key becomes active. The duration argument is the length of the lifetime in seconds. The maximum length is 2147483646 seconds (approximately 68 years).

7. Copy the running configuration to the startup configuration:

```
copy running-config startup-config
```

IP_switch_A_1(config) # copy running-config startup-config

8. Displays the keychain configuration:

IP_switch_A_1(config-macseckeychain-macseckey) # show key chain 1

Configure a MACsec policy

Steps

1. Enter global configuration mode:

configure terminal

IP_switch_A_1# configure terminal
IP switch A 1(config)#

2. Create a MACsec policy:

```
macsec policy name
```

IP_switch_A_1(config) # macsec policy abc
IP_switch_A_1(config-macsec-policy) #

 Configure one of the following ciphers, GCM-AES-128, GCM-AES-256, GCM-AES-XPN-128, or GCM-AES-XPN-256:

cipher-suite name

IP_switch_A_1(config-macsec-policy) # cipher-suite GCM-AES-256

4. Configure the key server priority to break the tie between peers during a key exchange:

key-server-priority number

switch(config-macsec-policy)# key-server-priority 0

5. Configure the security policy to define the handling of data and control packets:

security-policy security policy

Choose a security policy from the following options:

- must-secure packets not carrying MACsec headers are dropped
- should-secure packets not carrying MACsec headers are permitted (this is the default value)

IP_switch_A_1(config-macsec-policy)# security-policy should-secure

6. Configure the replay protection window so the secured interface does not accept a packet that is less than the configured window size: window-size number

The replay protection window size represents the maximum out-of-sequence frames that MACsec accepts and are not discarded. The range is from 0 to 596000000.

IP switch A 1(config-macsec-policy)# window-size 512

7. Configure the time in seconds to force an SAK rekey:

```
sak-expiry-time time
```

You can use this command to change the session key to a predictable time interval. The default is 0.

IP switch A 1(config-macsec-policy)# sak-expiry-time 100

8. Configure one of the following confidentiality offsets in the layer 2 frame where encryption begins:

```
conf-offsetconfidentiality offset
```

Choose from the following options:

- CONF-OFFSET-0.
- CONF-OFFSET-30.
- CONF-OFFSET-50.

IP switch A 1(config-macsec-policy) # conf-offset CONF-OFFSET-0

This command might be necessary for intermediate switches to use packet headers (dmac, smac, etype) like MPLS tags.

9. Copy the running configuration to the startup configuration:

```
copy running-config startup-config
```

IP_switch_A_1(config) # copy running-config startup-config

10. Display the MACsec policy configuration:

```
show macsec policy
```

IP_switch_A_1(config-macsec-policy)# show macsec policy

Enable Cisco MACsec encryption on the interfaces

1. Enter global configuration mode:

configure terminal

```
IP_switch_A_1# configure terminal
IP switch A 1(config)#
```

2. Select the interface that you configured with MACsec encryption.

You can specify the interface type and identity. For an Ethernet port, use ethernet slot/port.

```
IP_switch_A_1(config) # interface ethernet 1/15
switch(config-if)#
```

3. Add the keychain and policy to be configured on the interface to add the MACsec configuration:

macsec keychain keychain-name policy policy-name

IP_switch_A_1(config-if) # macsec keychain 1 policy abc

- 4. Repeat steps 1 and 2 on all interfaces where MACsec encryption is to be configured.
- 5. Copy the running configuration to the startup configuration:

copy running-config startup-config

IP_switch_A_1(config) # copy running-config startup-config

Disable Cisco MACsec Encryption WAN ISLs in MetroCluster IP configurations

You might need to disable MACsec encryption for Cisco 9336C switches on the WAN ISLs in a MetroCluster IP configuration.

Steps

1. Enter global configuration mode:

```
configure terminal
```

```
IP_switch_A_1# configure terminal
IP_switch_A_1(config) #
```

2. Disable the MACsec configuration on the device:

macsec shutdown

IP switch A 1(config) # macsec shutdown

Selecting the "no" option restores the MACsec feature.

3. Select the interface that you already configured with MACsec.

You can specify the interface type and identity. For an Ethernet port, use ethernet slot/port.

```
IP_switch_A_1(config)# interface ethernet 1/15
switch(config-if)#
```

4. Remove the keychain and policy configured on the interface to remove the MACsec configuration:

no macsec keychain keychain-name policy policy-name

IP switch A 1(config-if) # no macsec keychain 1 policy abc

- 5. Repeat steps 3 and 4 on all interfaces where MACsec is configured.
- 6. Copy the running configuration to the startup configuration:

copy running-config startup-config

IP_switch_A_1(config) # copy running-config startup-config

Verifying the MACsec configuration

Steps

- 1. Repeat **all** of the previous procedures on the second switch within the configuration to establish a MACsec session.
- 2. Run the following commands to verify that both switches are successfully encrypted:
 - a. Run: show macsec mka summary
 - b. Run: show macsec mka session
 - C. Run: show macsec mka statistics

You can verify the MACsec configuration using the following commands:

Command	Displays information about
show macsec mka session interface typeslot/port number	The MACsec MKA session for a specific interface or for all interfaces
show key chain name	The key chain configuration
show macsec mka summary	The MACsec MKA configuration
show macsec policy policy-name	The configuration for a specific MACsec policy or for all MACsec policies

Configure the NVIDIA IP SN2100 switch

You must configure the NVIDIA SN2100 IP switches for use as the cluster interconnect and for backend MetroCluster IP connectivity.

Reset the NVIDIA IP SN2100 switch to factory defaults

You can choose from the following methods to reset a switch to factory default settings.

- Reset the switch using the RCF file option
- Reset the switch using the Cumulus install option

Reset the switch using the RCF file option

Before installing a new RCF configuration you must revert the NVIDIA switch settings.

About this task

To restore the switch to default settings, run the RCF file with the restoreDefaults option. This option copies the original backed up files to their original location and then reboots the switch. After reboot, the switch comes online with the original configuration that existed when you first ran the RCF file to configure the switch.

The following configuration details are not reset:

- User and credential configuration
- · Configuration of the management network port, eth0

All other configuration changes that occur during application of the RCF file are reverted to the original configuration.

Before you begin

- You must configure the switch according to Download and install the NVIDIA RCF file. If you have not configured in this manner, or you have configured additional features before running the RCF file, you cannot use this procedure.
- You must repeat these steps on each of the IP switches in the MetroCluster IP configuration.

- You must be connected to the switch with a serial console connection.
- This task resets the configuration of the management network.

Steps

1. Verify that the RCF configuration was successfully applied with the same or a compatible RCF file version and that the backup files exist.

The output can show backup files, preserved files, or both. If backup files or preserved files do not appear in the output, you cannot use this procedure.

```
cumulus@IP switch A 1:mgmt:~$ sudo python3 MSN2100 v1.0 IP switch A 1.py
[sudo] password for cumulus:
>>> Opened RcfApplyLog
A RCF configuration has been successfully applied.
  Backup files exist.
    Preserved files exist.
    Listing completion of the steps:
        Success: Step: 1: Performing Backup and Restore
        Success: Step: 2: updating MOTD file
        Success: Step: 3: Disabling apt-get
        Success: Step: 4: Disabling cdp
        Success: Step: 5: Adding lldp config
        Success: Step: 6: Creating interfaces
        Success: Step: 7: Configuring switch basic settings: Hostname,
SNMP
        Success: Step: 8: Configuring switch basic settings: bandwidth
allocation
        Success: Step: 9: Configuring switch basic settings: ecn
        Success: Step: 10: Configuring switch basic settings: cos and
dscp remark
        Success: Step: 11: Configuring switch basic settings: generic
egress cos mappings
        Success: Step: 12: Configuring switch basic settings: traffic
classification
        Success: Step: 13: Configuring LAG load balancing policies
        Success: Step: 14: Configuring the VLAN bridge
        Success: Step: 15: Configuring local cluster ISL ports
        Success: Step: 16: Configuring MetroCluster ISL ports
        Success: Step: 17: Configuring ports for MetroCluster-1, local
cluster and MetroCluster interfaces
        Success: Step: 18: Configuring ports for MetroCluster-2, local
cluster and MetroCluster interfaces
        Success: Step: 19: Configuring ports for MetroCluster-3, local
cluster and MetroCluster interfaces
        Success: Step: 20: Configuring L2FC for MetroCluster interfaces
        Success: Step: 21: Configuring the interface to UP
        Success: Step: 22: Final commit
        Success: Step: 23: Final reboot of the switch
    Exiting ...
<<< Closing RcfApplyLog
cumulus@IP switch A 1:mgmt:~$
```

2. Run the RCF file with the option to restore defaults: restoreDefaults

```
cumulus@IP_switch_A_1:mgmt:~$ sudo python3 MSN2100_v1.0_IP_switch_A_2.py
restoreDefaults
[sudo] password for cumulus:
>>> Opened RcfApplyLog
Can restore from backup directory. Continuing.
This will reboot the switch !!!
Enter yes or no: yes
```

- 3. Respond 'yes' to the prompt. The switch reverts to the original configuration and reboots.
- 4. Wait for the switch to reboot.

The switch is reset and retains the initial configuration such as management network configuration and current credentials as they existed before applying the RCF file. After reboot you can apply a new configuration by using the same or a different version of the RCF file.

Reset the switch using the Cumulus install option

About this task

Use these steps if you want to reset the switch completely by applying the Cumulus image.

Before you begin

- You must be connected to the switch with a serial console connection.
- The Cumulus switch software image is accessible through HTTP.

For more information about installing Cumulus Linux, see Overview of installation and configuration for NVIDIA SN2100 switches

• You must have the root password for sudo access to the commands.

Steps

1. From the Cumulus console download and queue the switch software installation with the command onieinstall -a -i followed by the file path to the switch software:

In this example the firmware file cumulus-linux-4.4.2-mlx-amd64.bin is copied from the HTTP server '50.50.50.50' to the local switch.

s in the future tar: ./kernel: time stamp 2021-01-30 17:00:58 is 53895092.582826352 s in the future tar: ./initrd: time stamp 2021-01-30 17:00:58 is 53895092.509682557 s in the future tar: ./embedded-installer/bootloader/grub: time stamp 2020-12-10 15:25:16 is 49482950.509433937 s in the future tar: ./embedded-installer/bootloader/init: time stamp 2020-12-10 15:25:16 is 49482950.509336507 s in the future tar: ./embedded-installer/bootloader/uboot: time stamp 2020-12-10 15:25:16 is 49482950.509213637 s in the future tar: ./embedded-installer/bootloader: time stamp 2020-12-10 15:25:16 is 49482950.509153787 s in the future tar: ./embedded-installer/lib/init: time stamp 2020-12-10 15:25:16 is 49482950.509064547 s in the future tar: ./embedded-installer/lib/logging: time stamp 2020-12-10 15:25:16 is 49482950.508997777 s in the future tar: ./embedded-installer/lib/platform: time stamp 2020-12-10 15:25:16 is 49482950.508913317 s in the future tar: ./embedded-installer/lib/utility: time stamp 2020-12-10 15:25:16 is 49482950.508847367 s in the future tar: ./embedded-installer/lib/check-onie: time stamp 2020-12-10 15:25:16 is 49482950.508761477 s in the future tar: ./embedded-installer/lib: time stamp 2020-12-10 15:25:47 is 49482981.508710647 s in the future tar: ./embedded-installer/storage/blk: time stamp 2020-12-10 15:25:16 is 49482950.508631277 s in the future tar: ./embedded-installer/storage/gpt: time stamp 2020-12-10 15:25:16 is 49482950.508523097 s in the future tar: ./embedded-installer/storage/init: time stamp 2020-12-10 15:25:16 is 49482950.508437507 s in the future tar: ./embedded-installer/storage/mbr: time stamp 2020-12-10 15:25:16 is 49482950.508371177 s in the future tar: ./embedded-installer/storage/mtd: time stamp 2020-12-10 15:25:16 is 49482950.508293856 s in the future tar: ./embedded-installer/storage: time stamp 2020-12-10 15:25:16 is 49482950.508243666 s in the future tar: ./embedded-installer/platforms.db: time stamp 2020-12-10 15:25:16 is 49482950.508179456 s in the future tar: ./embedded-installer/install: time stamp 2020-12-10 15:25:47 is 49482981.508094606 s in the future tar: ./embedded-installer: time stamp 2020-12-10 15:25:47 is 49482981.508044066 s in the future tar: ./control: time stamp 2021-01-30 17:00:58 is 53895092.507984316 s in the future tar: .: time stamp 2021-01-30 17:00:58 is 53895092.507920196 s in the

```
future
Staging installer image...done.
WARNING:
WARNING: Activating staged installer requested.
WARNING: This action will wipe out all system data.
WARNING: Make sure to back up your data.
WARNING:
Are you sure (y/N)? y
Activating staged installer...done.
Reboot required to take effect.
cumulus@IP_switch_A_1:mgmt:~$
```

- 2. Respond y to the prompt to confirm the installation when the image is downloaded and verified.
- 3. Reboot the switch to install the new software: sudo reboot

cumulus@IP switch A 1:mgmt:~\$ sudo reboot

The switch reboots and enters the switch software installation which takes some time. When the installation is complete, the switch reboots and remains at the 'log-in' prompt.

- 4. Configure the basic switch settings
 - a. When the switch is booted and at the log-in prompt, log in and change the password.

The username is 'cumulus' and the default password is 'cumulus'.

```
Debian GNU/Linux 10 cumulus ttyS0
cumulus login: cumulus
Password:
You are required to change your password immediately (administrator
enforced)
Changing password for cumulus.
Current password:
New password:
Retype new password:
Linux cumulus 4.19.0-cl-1-amd64 #1 SMP Cumulus 4.19.206-1+cl4.4.2u1
(2021-12-18) x86 64
Welcome to NVIDIA Cumulus (R) Linux (R)
For support and online technical documentation, visit
http://www.cumulusnetworks.com/support
The registered trademark Linux (R) is used pursuant to a sublicense from
LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a world-
wide
basis.
cumulus@cumulus:mgmt:~$
```

5. Configure the management network interface.

The following example shows how to configure the hostname (IP_switch_A_1), IP address (10.10.10.10), netmask (255.255.255.0 (24)), and gateway (10.10.10.1) using the commands: net add hostname <hostname>, net add interface eth0 ip address <IPAddress/mask>, and net add interface eth0 ip gateway <Gateway>.

```
cumulus@cumulus:mgmt:~$ net add hostname IP switch A 1
cumulus@cumulus:mgmt:~$ net add interface eth0 ip address 10.0.10.10/24
cumulus@cumulus:mgmt:~$ net add interface eth0 ip gateway 10.10.10.1
cumulus@cumulus:mgmt:~$ net pending
.
cumulus@cumulus:mgmt:~$ net commit
net add/del commands since the last "net commit"
User Timestamp Command
cumulus 2021-05-17 22:21:57.437099 net add hostname Switch-A-1
cumulus 2021-05-17 22:21:57.538639 net add interface eth0 ip address
10.10.10.10/24
cumulus 2021-05-17 22:21:57.635729 net add interface eth0 ip gateway
10.10.10.1
cumulus@cumulus:mgmt:~$
```

6. Reboot the switch using the sudo reboot command.

```
cumulus@cumulus:~$ sudo reboot
```

When the switch reboots, you can apply a new configuration using the steps in Download and install the NVIDIA RCF file.

Download and install the NVIDIA RCF files

You must download and install the switch RCF file to each switch in the MetroCluster IP configuration.

Before you begin

- You must have the root password for sudo access to the commands.
- The switch software is installed and the management network is configured.

- You followed the steps to initially install the switch by using either method 1 or method 2.
- You did not apply any additional configuration after the initial installation.

If you perform further configuration after resetting the switch and before applying the RCF file, you cannot use this procedure.

About this task

You must repeat these steps on each of the IP switches in the MetroCluster IP configuration (new installation) or on the replacement switch (switch replacement).

Steps

- 1. Generate the NVIDIA RCF files for MetroCluster IP.
 - a. Download the RcfFileGenerator for MetroCluster IP.
 - b. Generate the RCF file for your configuration by using the RcfFileGenerator for MetroCluster IP.
 - c. Navigate to your home directory. If you are logged as 'cumulus', the file path is /home/cumulus.

```
cumulus@IP_switch_A_1:mgmt:~$ cd ~
cumulus@IP_switch_A_1:mgmt:~$ pwd
/home/cumulus
cumulus@IP_switch_A_1:mgmt:~$
```

d. Download the RCF file to this directory. The following example shows that you use SCP to download the file MSN2100_v1.0_IP_switch_A_1.txt from server '50.50.50.50' to your home directory and save it as MSN2100_v1.0_IP_switch_A_1.py:

```
cumulus@Switch-A-1:mgmt:~$ scp
username@50.50.50.50:/RcfFiles/MSN2100 v1.0 IP switch A 1.txt
./MSN2100 v1.0 IP switch-A1.py
The authenticity of host '50.50.50.50 (50.50.50.50)' can't be
established.
RSA key fingerprint is
SHA256:B5gBtOmNZvdKiY+dPhh8=ZK9DaKG7g6sv+2gFlGVF8E.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '50.50.50.50' (RSA) to the list of known
hosts.
* *
Banner of the SCP server
**
username@50.50.50's password:
MSN2100 v1.0-X2 IP switch A1.txt 100% 55KB 1.4MB/s 00:00
cumulus@IP switch A 1:mgmt:~$
```

Execute the RCF file. The RCF file requires an option to apply one or more steps. Unless instructed by technical support, run the RCF file without the command line option. To verify the completion status of the various steps of the RCF file, use the option '-1' or 'all' to apply all (pending) steps.

```
cumulus@IP_switch_A_1:mgmt:~$ sudo python3 MSN2100_v1.0_IP_switch_A_1.py
all
[sudo] password for cumulus:
The switch will be rebooted after the step(s) have been run.
Enter yes or no: yes
... the steps will apply - this is generating a lot of output ...
Running Step 24: Final reboot of the switch
... The switch will reboot if all steps applied successfully ...
```

Disable unused ISL ports and port channels

NetApp recommends disabling unused ISL ports and port channels to avoid unnecessary health alerts.

1. Identify the unused ISL ports and port channels using the RCF file banner:

If the port is in breakout mode, the port name you specify in the command might be different than the name stated in the RCF banner. You can also use the RCF cabling files to find the port name.

net show interface

2. Disable the unused ISL ports and port channels using the RCF file.

cumulus@mcc1-integrity-a1:mgmt:~\$ sudo python3 SN2100 v2.0 IP Switch-Al.py runCmd [sudo] password for cumulus: Running cumulus version : 5.4.0 Running RCF file version : v2.0 Help for runCmd: To run a command execute the RCF script as follows: sudo python3 <script> runCmd <option-1> <option-2> <option-x> Depending on the command more or less options are required. Example to 'up' port 'swp1' sudo python3 SN2100 v2.0 IP Switch-A1.py runCmd swp1 up Available commands: UP / DOWN the switchport sudo python3 SN2100 v2.0 IP Switch-A1.py runCmd <switchport> state <up | down> Set the switch port speed sudo python3 SN2100 v2.0 Switch-A1.py runCmd <switchport> speed <10 | 25 | 40 | 100 | AN> Set the fec mode on the switch port sudo python3 SN2100 v2.0 Switch-A1.py runCmd <switchport> fec <default | auto | rs | baser | off> Set the [localISL | remoteISL] to 'UP' or 'DOWN' state sudo python3 SN2100 v2.0 Switch-A1.py runCmd [localISL | remoteISL] state [up | down] Set the option on the port to support DAC cables. This option does not support port ranges. You must reload the switch after changing this option for the required ports. This will disrupt traffic. This setting requires Cumulus 5.4 or a later 5.x release. sudo python3 SN2100 v2.0 Switch-A1.py runCmd <switchport> DacOption [enable | disable] cumulus@mcc1-integrity-a1:mgmt:~\$

The following example command disables port "swp14":

sudo python3 SN2100_v2.0_Switch-A1.py runCmd swp14 state down

Repeat this step for each identified unused port or port channel.

Configure MetroCluster IP switches for health monitoring

In MetroCluster IP configurations, you can configure SNMPv3 to monitor the health of IP switches.

Step 1: Configure the SNMPv3 user on MetroCluster IP switches

Use the following steps to configure the SNMPv3 user on the MetroCluster IP switches.

You must use both the authentication and privacy protocols in the commands. Using authentication without privacy is not supported.

For Broadcom IP switches

Steps

1. If the 'network-admin' user group doesn't already exist, create it:

```
(IP_switch_1) (Config)# snmp-server group network-admin v3 auth read
"Default"
```

2. Confirm the 'network-admin' group has been created:

```
(IP_switch_1) (Config) # show snmp group
```

3. Configure the SNMPv3 user on Broadcom IP switches:

```
(IP_switch_1) # config
(IP_switch_1) (Config) # snmp-server user <user_name> network-admin
[auth-md5/auth-sha/noauth] "<auth_password>" [priv-aes128/priv-des]
"<priv_password>"
```

You must use quotation marks around the authentication and privacy passwords, as shown in the following example:

```
snmp-server user admin1 network-admin auth-md5 "password" priv-des
"password"
```

For Cisco IP switches

Steps

1. Run the following commands to configure the SNMPv3 user on a Cisco IP switch:

```
IP_switch_A_1 # configure terminal
IP_switch_A_1 (config) # snmp-server user <user_name> auth
[md5/sha/sha-256] <auth_password> priv (aes-128) <priv_password>
```

2. Verify that the SNMPv3 user is configured on the switch:

IP switch A 1(config) # show snmp user <user name>

The following example output shows that the user admin is configured for SNMPv3:

User	Auth	Priv(enforce)	Groups
acl_filter			
admin	md5	aes-128 (no)	network-admin

Step 2: Configure the SNMPv3 user in ONTAP

Use the following steps to configure the SNMPv3 user in ONTAP.

1. Configure the SNMPv3 user in ONTAP:

```
security login create -user-or-group-name <user_name> -application snmp
-authentication-method usm -remote-switch-ipaddress <ip address>
```

2. Configure switch health monitoring to monitor the switch using the new SNMPv3 user:

```
system switch ethernet modify -device <device_id> -snmp-version SNMPv3
-community-or-username <user name>
```

- 3. Verify that the device serial number that will be monitored with the newly created SNMPv3 user is correct:
 - a. Display the switch health monitoring polling time period:

system switch ethernet polling-interval show

b. Run the following command after the polling time period has elapsed:

system switch ethernet show-all -instance -device <device serial number>

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.