# Manage FC network interfaces ONTAP 9.9.1 REST API reference NetApp April 02, 2024 This PDF was generated from https://docs.netapp.com/us-en/ontap-restapi-991/ontap/network\_fc\_interfaces\_endpoint\_overview.html on April 02, 2024. Always check docs.netapp.com for the latest. # **Table of Contents** | nage FC network interfaces | 1 | |------------------------------------------------------|---| | Network FC interfaces endpoint overview | 1 | | Retrieve FC interfaces | 4 | | Create an FC interface | 6 | | Delete an FC interface | 3 | | Retrieve an FC interface | ç | | Jpdate an FC interface | Ę | | Retrieve FC interface historical performance metrics | 3 | # Manage FC network interfaces # **Network FC interfaces endpoint overview** #### Overview Fibre Channel (FC) interfaces are the logical endpoints for FC network connections to an SVM. An FC interface provides FC access to storage within the interface SVM using either Fibre Channel Protocol or NVMe over FC (NVMe/FC). The Fibre Channel interface REST API allows you to create, delete, update, and discover FC interfaces, and obtain status information for FC interfaces. An FC interface is created on an FC port which is located on a cluster node. The FC port must be specified to identify the location of the interface for a POST or PATCH request that relocates an interface. You can identify the port by supplying either the node and port names or the port UUID. # **Performance monitoring** Performance of an FC interface can be monitored by observing the metric.\* and statistics.\* properties. These properties show the performance of an FC interface in terms of IOPS, latency, and throughput. The metric.\* properties denote an average, whereas statistics.\* properties denote a real-time monotonically increasing value aggregated across all nodes. ### **Examples** #### Creating an FC interface using the port node and name to identify the location This example uses the return\_records query parameter to retrieve the newly created FC interface in the POST response. ``` "name": "svm1", " links": { "self": { "href": "/api/svm/svms/cf300f5c-db83-11e8-bd46-005056bba0e0" } }, "uuid": "f6045b92-dec7-11e8-a733-005056bba0e0", "name": "lif1", "location": { "home node": { "uuid": "bafe9b9f-db81-11e8-bd46-005056bba0e0", "name": "node1", " links": { "self": { "href": "/api/cluster/nodes/bafe9b9f-db81-11e8-bd46- 005056bba0e0" } }, "home port": { "uuid": "300clae3-db82-11e8-bd46-005056bba0e0", "name": "0a", "node": { "name": "node1" }, " links": { "self": { "href": "/api/network/fc/ports/300clae3-db82-lle8-bd46- 005056bba0e0" } } }, "uuid": "bafe9b9f-db81-11e8-bd46-005056bba0e0", "name": "node1", " links": { "self": { "href": "/api/cluster/nodes/bafe9b9f-db81-11e8-bd46- 005056bba0e0" }, "port": { "uuid": "300clae3-db82-11e8-bd46-005056bba0e0", "name": "0a", ``` ``` "node": { "name": "node1" }, " links": { "self": { "href": "/api/network/fc/ports/300clae3-db82-11e8-bd46- 005056bba0e0" } "enabled": true, "state": "down", "data protocol": "fcp", "wwpn": "20:04:00:50:56:bb:a0:e0", "wwnn": "20:00:00:50:56:bb:a0:e0", "port address": "9da2cb1", " links": { "self": { "href": "/api/network/fc/interfaces/f6045b92-dec7-11e8-a733- 005056bba0e0" } } } ] } ``` #### Creating an FC interface using the port UUID to identify the location This example uses the return\_records query parameter to retrieve the newly created FC interface in the POST response. ``` # The API: POST /api/network/fc/interfaces # The call: curl -X POST 'https://<mgmt- ip>/api/network/fc/interfaces?return_records=true' -H 'accept: application/hal+json' -d '{ "svm": { "name": "svm3" }, "name": "lif2", "location": { "home_port": { "uuid": "24bb636a-db83-11e8-9a49- 005056bblec6" } }, "data_protocol": "fc_nvme" }' # The response: { ``` ``` "num records": 1, "records": [ { "svm": { "uuid": "a5060466-dbab-11e8-bd46-005056bba0e0", "name": "svm3", " links": { "self": { "href": "/api/svm/svms/a5060466-dbab-11e8-bd46-005056bba0e0" } "uuid": "cdeb5591-dec9-11e8-a733-005056bba0e0", "name": "lif2", "location": { "home node": { "uuid": "e85aa147-db83-11e8-9a48-005056bb1ec6", "name": "node3", " links": { "self": { "href": "/api/cluster/nodes/e85aa147-db83-11e8-9a48- 005056bblec6" } } }, "home_port": { "uuid": "24bb636a-db83-11e8-9a49-005056bb1ec6", "name": "1b", "node": { "name": "node3" }, " links": { "self": { "href": "/api/network/fc/ports/24bb636a-db83-11e8-9a49- 005056bblec6" } } }, "node": { "uuid": "e85aa147-db83-11e8-9a48-005056bb1ec6", "name": "node3", " links": { "self": { "href": "/api/cluster/nodes/e85aa147-db83-11e8-9a48- 005056bblec6" } ``` ``` }, "port": { "uuid": "24bb636a-db83-11e8-9a49-005056bb1ec6", "name": "1b", "node": { "name": "node3" }, " links": { "self": { "href": "/api/network/fc/ports/24bb636a-db83-11e8-9a49- 005056bb1ec6" } } } }, "enabled": true, "state": "down", "data_protocol": "fc_nvme", "wwpn": "20:05:00:50:56:bb:a0:e0", "wwnn": "20:02:00:50:56:bb:a0:e0", "port address": "612e202b", " links": { "self": { "href": "/api/network/fc/interfaces/cdeb5591-dec9-11e8-a733- 005056bba0e0" } } ] } ``` #### Retrieving all properties for all FC interfaces This example uses the fields query parameter to retrieve all properties. ``` # The API: GET /api/network/fc/interfaces # The call: curl -X GET 'https://<mgmt-ip>/api/network/fc/interfaces?fields=*' -H 'accept: application/hal+json' # The response: ``` ``` "records": [ { "svm": { "uuid": "a5060466-dbab-11e8-bd46-005056bba0e0", "name": "svm3", " links": { "self": { "href": "/api/svm/svms/a5060466-dbab-11e8-bd46-005056bba0e0" } "uuid": "cdeb5591-dec9-11e8-a733-005056bba0e0", "name": "lif2", "location": { "home node": { "uuid": "e85aa147-db83-11e8-9a48-005056bb1ec6", "name": "node3", " links": { "self": { "href": "/api/cluster/nodes/e85aa147-db83-11e8-9a48- 005056bblec6" } }, "home_port": { "uuid": "24bb636a-db83-11e8-9a49-005056bb1ec6", "name": "1b", "node": { "name": "node3" }, " links": { "self": { "href": "/api/network/fc/ports/24bb636a-db83-11e8-9a49- 005056bblec6" } } }, "node": { "uuid": "e85aa147-db83-11e8-9a48-005056bb1ec6", "name": "node3", " links": { "self": { "href": "/api/cluster/nodes/e85aa147-db83-11e8-9a48- 005056bb1ec6" } ``` ``` }, "port": { "uuid": "24bb636a-db83-11e8-9a49-005056bb1ec6", "name": "1b", "node": { "name": "node3" }, " links": { "self": { "href": "/api/network/fc/ports/24bb636a-db83-11e8-9a49- 005056bb1ec6" } } }, "enabled": true, "state": "down", "data_protocol": "fc_nvme", "wwpn": "20:05:00:50:56:bb:a0:e0", "wwnn": "20:02:00:50:56:bb:a0:e0", "port address": "612e202b", " links": { "self": { "href": "/api/network/fc/interfaces/cdeb5591-dec9-11e8-a733- 005056bba0e0" } }, "svm": { "uuid": "cf300f5c-db83-11e8-bd46-005056bba0e0", "name": "svm1", " links": { "self": { "href": "/api/svm/svms/cf300f5c-db83-11e8-bd46-005056bba0e0" } } "uuid": "f6045b92-dec7-11e8-a733-005056bba0e0", "name": "lif1", "location": { "home node": { "uuid": "bafe9b9f-db81-11e8-bd46-005056bba0e0", "name": "node1", " links": { ``` ``` "href": "/api/cluster/nodes/bafe9b9f-db81-11e8-bd46- 005056bba0e0" } } }, "home port": { "uuid": "300clae3-db82-11e8-bd46-005056bba0e0", "name": "0a", "node": { "name": "node1" }, " links": { "self": { "href": "/api/network/fc/ports/300clae3-db82-11e8-bd46- 005056bba0e0" } } }, "node": { "uuid": "bafe9b9f-db81-11e8-bd46-005056bba0e0", "name": "node1", " links": { "self": { "href": "/api/cluster/nodes/bafe9b9f-db81-11e8-bd46- 005056bba0e0" } }, "port": { "uuid": "300clae3-db82-11e8-bd46-005056bba0e0", "name": "0a", "node": { "name": "node1" } , " links": { "self": { "href": "/api/network/fc/ports/300clae3-db82-11e8-bd46- 005056bba0e0" } "enabled": true, "state": "down", "data protocol": "fcp", ``` ``` "wwpn": "20:04:00:50:56:bb:a0:e0", "wwnn": "20:00:00:50:56:bb:a0:e0", "port address": "9da2cb1", " links": { "self": { "href": "/api/network/fc/interfaces/f6045b92-dec7-11e8-a733- 005056bba0e0" } } } ], "num records": 2, " links": { "self": { "href": "/api/network/fc/interfaces?fields=*" } } } ``` #### Retrieving a list of selected FC interfaces This example uses property query parameters to retrieve FC interfaces configured for the FC Protocol that are set to *up*. ``` # The API: GET /api/network/fc/interfaces # The call: curl -X GET 'https://<mgmt-</pre> ip>/api/network/fc/interfaces?data protocol=fcp&state=up' -H 'accept: application/hal+json' # The response: "records": [ "svm": { "uuid": "cf300f5c-db83-11e8-bd46-005056bba0e0", "name": "svm1", " links": { "self": { "href": "/api/svm/svms/cf300f5c-db83-11e8-bd46-005056bba0e0" } "uuid": "f6045b92-dec7-11e8-a733-005056bba0e0", "name": "lif1", "state": "up", "data protocol": "fcp", " links": { "self": { "href": "/api/network/fc/interfaces/f6045b92-dec7-11e8-a733- 005056bba0e0" } } } ], "num records": 1, " links": { "self": { "href": "/api/network/fc/interfaces?data protocol=fcp&state=up" } } } ``` #### Retrieving a specific FC interface ``` # The API: GET /api/network/fc/interfaces/{uuid} # The call: curl -X GET 'https://<mgmt-ip>/api/network/fc/interfaces/cdeb5591-dec9- 11e8-a733-005056bba0e0' -H 'accept: application/hal+json' # The response: { "svm": { "uuid": "a5060466-dbab-11e8-bd46-005056bba0e0", "name": "svm3", " links": { "self": { "href": "/api/svm/svms/a5060466-dbab-11e8-bd46-005056bba0e0" } } }, "uuid": "cdeb5591-dec9-11e8-a733-005056bba0e0", "name": "lif2", "location": { "home node": { "uuid": "e85aa147-db83-11e8-9a48-005056bb1ec6", "name": "node3", " links": { "self": { "href": "/api/cluster/nodes/e85aa147-db83-11e8-9a48-005056bblec6" } } }, "home port": { "uuid": "24bb636a-db83-11e8-9a49-005056bb1ec6", "name": "1b", "node": { "name": "node3" }, " links": { "self": { "href": "/api/network/fc/ports/24bb636a-db83-11e8-9a49- 005056bb1ec6" } } "node": { ``` ``` "uuid": "e85aa147-db83-11e8-9a48-005056bb1ec6", "name": "node3", " links": { "self": { "href": "/api/cluster/nodes/e85aa147-db83-11e8-9a48-005056bb1ec6" } } , "port": { "uuid": "24bb636a-db83-11e8-9a49-005056bb1ec6", "name": "1b", "node": { "name": "node3" }, " links": { "self": { "href": "/api/network/fc/ports/24bb636a-db83-11e8-9a49- 005056bb1ec6" } } } }, "enabled": true, "state": "down", "data protocol": "fc nvme", "wwpn": "20:05:00:50:56:bb:a0:e0", "wwnn": "20:02:00:50:56:bb:a0:e0", "port address": "612e202b", "metric": { "timestamp": "2019-04-09T05:50:15Z", "duration": "PT15S", "status": "ok", "latency": { "other": 0, "total": 0, "read": 0, "write": 0 } , "iops": { "read": 0, "write": 0, "other": 0, "total": 0 "throughput": { "read": 0, ``` ``` "write": 0, "total": 0 } }, "statistics": { "timestamp": "2019-04-09T05:50:42Z", "status": "ok", "latency raw": { "other": 38298, "total": 38298, "read": 0, "write": 0 } , "iops raw": { "read": 0, "write": 0, "other": 3, "total": 3 "throughput raw": { "read": 0, "write": 0, "total": 0 } }, " links": { "self": { "href": "/api/network/fc/interfaces/cdeb5591-dec9-11e8-a733- 005056bba0e0" } } } ``` # Disabling an FC interface When updating certain properties or deleting an FC interface, the interface must first be disabled using the following: ``` # The API: PATCH /api/network/fc/interfaces/{uuid} # The call: curl -X PATCH 'https://<mgmt-ip>/api/network/fc/interfaces/f6045b92-dec7- 11e8-a733-005056bba0e0' -H 'accept: application/hal+json' -d '{ "enabled": false }' ``` #### Moving an FC interface to a new node and port To move an FC interface to another node or port, the destination FC port must be specified in a PATCH request. Either the port UUID or node and port names can be used to identify the port. Note that only FC interfaces configured for the FC Protocol can be moved. FC interfaces configured for NVMe/FC cannot be moved. The interface must also be set to the disabled state before being moved. ``` # The API: PATCH /api/network/fc/interfaces/{uuid} # The call: curl -X PATCH 'https://<mgmt-ip>/api/network/fc/interfaces/f6045b92-dec7- 11e8-a733-005056bba0e0' -H 'accept: application/hal+json' -d '{ "location": { "home_port": { "uuid": "aldc7aa5-db83-11e8-9ef7- 005056bbbbcc" } } }' ``` #### **Deleting an FC interface** The FC interface must be disabled before being deleted. ``` # The API: DELETE /api/network/fc/interfaces/{uuid} # The call: curl -X DELETE 'https://<mgmt-ip>/api/network/fc/interfaces/f6045b92-dec7- 11e8-a733-005056bba0e0' -H 'accept: application/hal+json' ``` # **Retrieve FC interfaces** GET /network/fc/interfaces Introduced In: 9.6 Retrieves FC interfaces. # **Related ONTAP commands** - network interface show - vserver fcp interface show ## Learn more • DOC /network/fc/interfaces ## **Parameters** | Name | Туре | In | Required | Description | |----------------------------------|--------|-------|----------|---------------------------------------------------------------| | data_protocol | string | query | False | Filter by data_protocol | | location.node.name | string | query | False | Filter by location.node.name | | location.node.uuid | string | query | False | Filter by location.node.uuid | | location.port.node.na<br>me | string | query | False | Filter by location.port.node.n ame | | location.port.uuid | string | query | False | Filter by location.port.uuid | | location.port.name | string | query | False | Filter by location.port.name | | location.home_port.n<br>ode.name | string | query | False | Filter by location.home_port. node.name • Introduced in: 9.8 | | location.home_port.u<br>uid | string | query | False | Filter by location.home_port. uuid • Introduced in: 9.8 | | Name | Туре | In | Required | Description | |-----------------------------|---------|-------|----------|----------------------------------------------------------| | location.home_port.n<br>ame | string | query | False | Filter by location.home_port. name • Introduced in: 9.8 | | location.is_home | boolean | query | False | Filter by location.is_home • Introduced in: 9.8 | | location.home_node.<br>name | string | query | False | Filter by location.home_node .name • Introduced in: 9.8 | | location.home_node.<br>uuid | string | query | False | Filter by location.home_node .uuid • Introduced in: 9.8 | | name | string | query | False | Filter by name | | port_address | string | query | False | Filter by port_address | | metric.timestamp | string | query | False | Filter by metric.timestamp • Introduced in: 9.8 | | metric.status | string | query | False | Filter by metric.status • Introduced in: 9.8 | | Name | Туре | In | Required | Description | |-----------------------------|---------|-------|----------|----------------------------------------------------------| | metric.throughput.tot al | integer | query | False | Filter by metric.throughput.tot al • Introduced in: 9.8 | | metric.throughput.re<br>ad | integer | query | False | Filter by metric.throughput.re ad • Introduced in: 9.8 | | metric.throughput.wri<br>te | integer | query | False | Filter by metric.throughput.wr ite • Introduced in: 9.8 | | metric.duration | string | query | False | Filter by metric.duration • Introduced in: 9.8 | | metric.latency.total | integer | query | False | Filter by metric.latency.total • Introduced in: 9.8 | | metric.latency.other | integer | query | False | Filter by metric.latency.other • Introduced in: 9.8 | | metric.latency.read | integer | query | False | Filter by metric.latency.read • Introduced in: 9.8 | | Name | Туре | In | Required | Description | |----------------------------------|---------|-------|----------|---------------------------------------------------------------| | metric.latency.write | integer | query | False | Filter by metric.latency.write • Introduced in: 9.8 | | metric.iops.total | integer | query | False | Filter by metric.iops.total • Introduced in: 9.8 | | metric.iops.other | integer | query | False | Filter by metric.iops.other • Introduced in: 9.8 | | metric.iops.read | integer | query | False | Filter by metric.iops.read • Introduced in: 9.8 | | metric.iops.write | integer | query | False | Filter by metric.iops.write • Introduced in: 9.8 | | state | string | query | False | Filter by state | | statistics.latency_ra<br>w.total | integer | query | False | Filter by statistics.latency_ra w.total • Introduced in: 9.8 | | statistics.latency_ra<br>w.other | integer | query | False | Filter by statistics.latency_ra w.other • Introduced in: 9.8 | | Name | Туре | In | Required | Description | |-------------------------------------|---------|-------|----------|------------------------------------------------------------------| | statistics.latency_ra<br>w.read | integer | query | False | Filter by statistics.latency_ra w.read • Introduced in: 9.8 | | statistics.latency_ra<br>w.write | integer | query | False | Filter by statistics.latency_ra w.write • Introduced in: 9.8 | | statistics.throughput<br>_raw.total | integer | query | False | Filter by statistics.throughput _raw.total • Introduced in: 9.8 | | statistics.throughput<br>_raw.read | integer | query | False | Filter by statistics.throughput _raw.read • Introduced in: 9.8 | | statistics.throughput<br>_raw.write | integer | query | False | Filter by statistics.throughput _raw.write • Introduced in: 9.8 | | statistics.status | string | query | False | Filter by statistics.status • Introduced in: 9.8 | | statistics.iops_raw.to tal | integer | query | False | Filter by statistics.iops_raw.to tal • Introduced in: 9.8 | | Name | Туре | In | Required | Description | |-------------------------------|---------------|-------|----------|------------------------------------------------------------| | statistics.iops_raw.ot<br>her | integer | query | False | Filter by statistics.iops_raw.ot her • Introduced in: 9.8 | | statistics.iops_raw.re<br>ad | integer | query | False | Filter by statistics.iops_raw.r ead • Introduced in: 9.8 | | statistics.iops_raw.w rite | integer | query | False | Filter by statistics.iops_raw.w rite • Introduced in: 9.8 | | statistics.timestamp | string | query | False | Filter by statistics.timestamp • Introduced in: 9.8 | | wwnn | string | query | False | Filter by wwnn | | enabled | boolean | query | False | Filter by enabled | | uuid | string | query | False | Filter by uuid | | svm.uuid | string | query | False | Filter by svm.uuid | | svm.name | string | query | False | Filter by svm.name | | wwpn | string | query | False | Filter by wwpn | | comment | string | query | False | Filter by comment | | fields | array[string] | query | False | Specify the fields to return. | | max_records | integer | query | False | Limit the number of records returned. | | Name | Туре | In | Required | Description | |----------------|---------------|-------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | return_records | boolean | query | False | The default is true for GET calls. When set to false, only the number of records is returned. • Default value: 1 | | return_timeout | integer | query | False | The number of seconds to allow the call to execute before returning. When iterating over a collection, the default is 15 seconds. ONTAP returns earlier if either max records or the end of the collection is reached. • Default value: 1 • Max value: 120 • Min value: 0 | | order_by | array[string] | query | False | Order results by specified fields and optional [asc | # Response Status: 200, Ok | Name | Туре | Description | |-------------|---------------------|--------------------| | _links | _links | | | num_records | integer | Number of records. | | records | array[fc_interface] | | ``` " links": { "next": { "href": "/api/resourcelink" }, "self": { "href": "/api/resourcelink" } }, "records": { " links": { "self": { "href": "/api/resourcelink" } }, "comment": "string", "data protocol": "fcp", "location": { "home node": { " links": { "self": { "href": "/api/resourcelink" }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "home port": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "0a", "node": { "name": "node1" "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "node": { " links": { "self": { "href": "/api/resourcelink" ``` ``` }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "port": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "0a", "node": { "name": "node1" }, "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" } }, "metric": { " links": { "self": { "href": "/api/resourcelink" } }, "duration": "PT15S", "iops": { "read": "200", "total": "1000", "write": "100" }, "latency": { "read": "200", "total": "1000", "write": "100" "status": "ok", "throughput": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" "name": "fc lif1", "port address": "5060F", "state": "up", "statistics": { ``` ``` "iops raw": { "read": "200", "total": "1000", "write": "100" }, "latency raw": { "read": "200", "total": "1000", "write": "100" }, "status": "ok", "throughput raw": { "read": "200", "total": "1000", "write": "100" "timestamp": "2017-01-25T11:20:13Z" }, "svm": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "svm1", "uuid": "02c9e252-41be-11e9-81d5-00a0986138f7" "uuid": "bce9827d-4d8f-60af-c771-6e8e9af2c6f0", "wwnn": "20:00:00:50:56:b4:13:01", "wwpn": "20:00:00:50:56:b4:13:a8" } ``` #### **Error** ``` Status: Default, Error ``` | Name | Туре | Description | |-------|-------|-------------| | error | error | | #### Example error ``` { "error": { "arguments": { "code": "string", "message": "string" }, "code": "4", "message": "entry doesn't exist", "target": "uuid" } } ``` # **Definitions** #### **See Definitions** href | Name | Туре | Description | |------|--------|-------------| | href | string | | \_links | Name | Туре | Description | |------|------|-------------| | next | href | | | self | href | | \_links | Name | Туре | Description | |------|------|-------------| | self | href | | ### home\_node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | #### node The node on which the FC port is located. | Name | Туре | Description | |------|--------|-------------------------------------------------------| | name | string | The name of the node on which the FC port is located. | # fc\_port\_reference An FC port is the physical port of an FC adapter on a cluster node that can be connected to an FC network. | Name | Туре | Description | |--------|--------|-------------------------------------------| | _links | _links | | | name | string | The name of the FC port. | | node | node | The node on which the FC port is located. | | Name | Туре | Description | |------|--------|---------------------------------------| | uuid | string | The unique identifier of the FC port. | #### node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | #### location The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. The location of an FC interface can be set using "location.home\_node" and "location.home\_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home\_node" and "location.home\_port" in instances where the FC interface failed over due to an offline node. | Name | Туре | Description | |-----------|-------------------|---------------------------------------------------------------------------------------------------------------------| | home_node | home_node | | | home_port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | | is_home | boolean | Indicates whether or not the FC interface currently resides on the home node. | | node | node | | | port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | #### iops The rate of I/O operations observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | # latency The round trip latency in microseconds observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | # throughput The rate of throughput bytes per second observed at the storage object. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | Name | Туре | Description | |-------|---------|---------------------------------------------| | write | integer | Peformance metric for write I/O operations. | #### metric Performance numbers, such as IOPS latency and throughput | Name | Туре | Description | |----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | duration | string | The duration over which this sample is calculated. The time durations are represented in the ISO-8601 standard format. Samples can be calculated over the following durations: | | iops | iops | The rate of I/O operations observed at the storage object. | | latency | latency | The round trip latency in microseconds observed at the storage object. | | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | Name | Туре | Description | |------------|------------|-------------------------------------------------------------------------| | throughput | throughput | The rate of throughput bytes per second observed at the storage object. | | timestamp | string | The timestamp of the performance data. | #### iops\_raw The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ### latency\_raw The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | Name | Туре | Description | |-------|---------|---------------------------------------------| | write | integer | Peformance metric for write I/O operations. | ## throughput\_raw Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### statistics These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | Name | Туре | Description | |-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | iops_raw | iops_raw | The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | | latency_raw | latency_raw | The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | | Name | Туре | Description | |----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput_raw | throughput_raw | Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | | timestamp | string | The timestamp of the performance data. | #### svm | Name | Туре | Description | |--------|--------|-----------------------------------| | _links | _links | | | name | string | The name of the SVM. | | uuid | string | The unique identifier of the SVM. | ## fc\_interface A Fibre Channel (FC) interface is the logical endpoint for FC network connections to an SVM. An FC interface provides FC access to storage within the interface SVM using either Fibre Channel Protocol or NVMe over Fibre Channel (NVMe/FC). An FC interface is created on an FC port which is located on a cluster node. The FC port must be specified to identify the location of the interface for a POST or PATCH operation that relocates an interface. You can identify the port by supplying either the node and port names or the port UUID. | Name | Туре | Description | |---------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | comment | string | A user configurable comment. Optional in POST; valid in PATCH. To clear a prior comment, set the property to an empty string in PATCH. | | data_protocol | string | The data protocol for which the FC interface is configured. Required in POST. | | enabled | boolean | The administrative state of the FC interface. The FC interface can be disabled to block all FC communication with the SVM through this interface. Optional in POST and PATCH; defaults to true (enabled) in POST. | | location | location | The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. The location of an FC interface can be set using "location.home_node" and "location.home_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home_node" and "location.home_node" and "location.home_port" in instances where the FC interface failed over due to an offline node. | | metric | metric | Performance numbers, such as IOPS latency and throughput | | Name | Туре | Description | |--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | name | string | The name of the FC interface. Required in POST; optional in PATCH. | | port_address | string | The port address of the FC interface. Each FC port in an FC switched fabric has its own unique FC port address for routing purposes. The FC port address is assigned by a switch in the fabric when that port logs in to the fabric. This property refers to the address given by a switch to the FC interface when the SVM performs a port login (PLOGI). This is useful for obtaining statistics and diagnostic information from FC switches. This is a hexadecimal encoded numeric value. | | state | string | The current operational state of the FC interface. The state is set to <i>down</i> if the interface is not enabled. If the node hosting the port is down or unavailable, no state value is returned. | | statistics | statistics | These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | | svm | svm | | | uuid | string | The unique identifier of the FC interface. Required in the URL. | | Name | Туре | Description | |------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | wwnn | string | The world wide node name (WWNN) of the FC interface SVM. The WWNN is generated by ONTAP when Fibre Channel Protocol or the NVMe service is created for the FC interface SVM. • example: 20:00:00:50:56:b4:13:01 • readOnly: 1 • Introduced in: 9.6 | | wwpn | string | The world wide port name (WWPN) of the FC interface. The WWPN is generated by ONTAP when the FC interface is created. • example: 20:00:00:50:56:b4:13:a8 • readOnly: 1 • Introduced in: 9.6 | ## error\_arguments | Name | Туре | Description | |---------|--------|------------------| | code | string | Argument code | | message | string | Message argument | ### error | Name | Туре | Description | |-----------|------------------------|---------------------------------------------| | arguments | array[error_arguments] | Message arguments | | code | string | Error code | | message | string | Error message | | target | string | The target parameter that caused the error. | # Create an FC interface POST /network/fc/interfaces Introduced In: 9.6 Creates an FC interface. ## **Required properties** - svm.uuid or svm.name Existing SVM in which to create the FC interface. - name Name of the FC interface. - location.port.uuid or both location.port.name and location.port.node.name FC port on which to create the FC interface. - data protocol Data protocol for the FC interface. # **Default property values** If not specified in POST, the following default property values are assigned. • enabled - true ### **Related ONTAP commands** • network interface create ### Learn more • DOC /network/fc/interfaces ## **Parameters** | Name | Туре | In | Required | Description | |----------------|---------|-------|----------|-----------------------------------------------------------------------------------| | return_records | boolean | query | False | The default is false. If set to true, the records are returned. • Default value: | # **Request Body** | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | Name | Туре | Description | |---------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | comment | string | A user configurable comment. Optional in POST; valid in PATCH. To clear a prior comment, set the property to an empty string in PATCH. | | data_protocol | string | The data protocol for which the FC interface is configured. Required in POST. | | enabled | boolean | The administrative state of the FC interface. The FC interface can be disabled to block all FC communication with the SVM through this interface. Optional in POST and PATCH; defaults to <i>true</i> (enabled) in POST. | | location | location | The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. | | | | The location of an FC interface can be set using "location.home_node" and "location.home_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home_node" and "location.home_port" in instances where the FC interface failed over due to an offline node. | | metric | metric | Performance numbers, such as IOPS latency and throughput | | name | string | The name of the FC interface.<br>Required in POST; optional in<br>PATCH. | | Name | Туре | Description | |--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | port_address | string | The port address of the FC interface. Each FC port in an FC switched fabric has its own unique FC port address for routing purposes. The FC port address is assigned by a switch in the fabric when that port logs in to the fabric. This property refers to the address given by a switch to the FC interface when the SVM performs a port login (PLOGI). This is useful for obtaining statistics and diagnostic information from FC switches. This is a hexadecimal encoded numeric value. | | state | string | The current operational state of the FC interface. The state is set to <i>down</i> if the interface is not enabled. If the node hosting the port is down or unavailable, no state value is returned. | | statistics | statistics | These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | | svm | svm | | | uuid | string | The unique identifier of the FC interface. Required in the URL. | | wwnn | string | The world wide node name (WWNN) of the FC interface SVM. The WWNN is generated by ONTAP when Fibre Channel Protocol or the NVMe service is created for the FC interface SVM. • example: 20:00:00:50:56:b4:13:01 • readOnly: 1 • Introduced in: 9.6 | | Name | Туре | Description | |------|--------|-----------------------------------------------------------------------------------------------------------------------| | wwpn | string | The world wide port name (WWPN) of the FC interface. The WWPN is generated by ONTAP when the FC interface is created. | | | | • example: 20:00:00:50:56:b4:13:a8 | | | | readOnly: 1 | | | | Introduced in: 9.6 | ``` " links": { "self": { "href": "/api/resourcelink" } } , "comment": "string", "data protocol": "fcp", "location": { "home node": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "home port": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "0a", "node": { "name": "node1" }, "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "node": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "port": { " links": { "self": { "href": "/api/resourcelink" ``` ``` }, "name": "0a", "node": { "name": "node1" "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "metric": { " links": { "self": { "href": "/api/resourcelink" } }, "duration": "PT15S", "iops": { "read": "200", "total": "1000", "write": "100" }, "latency": { "read": "200", "total": "1000", "write": "100" }, "status": "ok", "throughput": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" }, "name": "fc lif1", "port address": "5060F", "state": "up", "statistics": { "iops raw": { "read": "200", "total": "1000", "write": "100" }, "latency raw": { "read": "200", "total": "1000", "write": "100" ``` ``` }, "status": "ok", "throughput raw": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" } , "svm": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "svm1", "uuid": "02c9e252-41be-11e9-81d5-00a0986138f7" }, "uuid": "bce9827d-4d8f-60af-c771-6e8e9af2c6f0", "wwnn": "20:00:00:50:56:b4:13:01", "wwpn": "20:00:00:50:56:b4:13:a8" ``` # Response ``` Status: 201, Created ``` | Name | Туре | Description | |-------------|---------------------|--------------------| | _links | _links | | | num_records | integer | Number of records. | | records | array[fc_interface] | | ``` " links": { "next": { "href": "/api/resourcelink" }, "self": { "href": "/api/resourcelink" } }, "records": { " links": { "self": { "href": "/api/resourcelink" } }, "comment": "string", "data protocol": "fcp", "location": { "home node": { " links": { "self": { "href": "/api/resourcelink" }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "home port": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "0a", "node": { "name": "node1" "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "node": { " links": { "self": { "href": "/api/resourcelink" ``` ``` }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "port": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "0a", "node": { "name": "node1" }, "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" } }, "metric": { " links": { "self": { "href": "/api/resourcelink" } }, "duration": "PT15S", "iops": { "read": "200", "total": "1000", "write": "100" }, "latency": { "read": "200", "total": "1000", "write": "100" "status": "ok", "throughput": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" "name": "fc lif1", "port address": "5060F", "state": "up", "statistics": { ``` ``` "iops raw": { "read": "200", "total": "1000", "write": "100" } , "latency raw": { "read": "200", "total": "1000", "write": "100" }, "status": "ok", "throughput raw": { "read": "200", "total": "1000", "write": "100" "timestamp": "2017-01-25T11:20:13Z" }, "svm": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "svm1", "uuid": "02c9e252-41be-11e9-81d5-00a0986138f7" "uuid": "bce9827d-4d8f-60af-c771-6e8e9af2c6f0", "wwnn": "20:00:00:50:56:b4:13:01", "wwpn": "20:00:00:50:56:b4:13:a8" } ``` ### **Error** ``` Status: Default ``` ### **ONTAP Error Response Codes** | Error Code | Description | |------------|-------------------------------------------------------| | 1966140 | An interface with the same name already exists. | | 1966217 | The specified port is not valid on the node provided. | | 2621462 | The supplied SVM does not exist. | | Error Code | Description | |------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | 2621706 | The specified svm.uuid and svm.name do not refer to the same SVM. | | 2621707 | No SVM was specified. Either svm.name or svm.uuid must be supplied. | | 5373966 | A Fibre Channel interface with the <i>fcp</i> protocol cannot be created in an SVM that is configured for NVMe. | | 5374102 | The specified Fibre Channel interface cannot be created because the Fibre Channel adapter is down. Bring the adapter up and try again. | | 5374871 | The Fibre Channel port identified by the specified UUID does not refer to the same port as that identified by the specified node name and/or port name. | | 5374872 | If either location.port.node.name or location.port.name is supplied, both properties must be supplied. | | 5374873 | The Fibre Channel port must be specified using either location.port.uuid or location.port.node.name and location.port.name. | | 72089652 | An NVMe service must be created before creating a Fibre Channel interface using the NVMe over FC data protocol. | | 72089672 | The specified Fibre Channel port does not support the NVMe over FC data protocol. | | 72089900 | A Fibre Channel interface with the <i>fc_nvme</i> protocol cannot be created in an SVM that is configured for a SAN protocol. | | Name | Туре | Description | |-------|-------|-------------| | error | error | | ## Example error ``` { "error": { "arguments": { "code": "string", "message": "string" }, "code": "4", "message": "entry doesn't exist", "target": "uuid" } } ``` # **Definitions** ### **See Definitions** href | Name | Туре | Description | |------|--------|-------------| | href | string | | \_links | Name | Туре | Description | |------|------|-------------| | self | href | | home\_node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | ## node The node on which the FC port is located. | Name | Туре | Description | |------|--------|-------------------------------------------------------| | name | string | The name of the node on which the FC port is located. | # fc\_port\_reference An FC port is the physical port of an FC adapter on a cluster node that can be connected to an FC network. | Name | Туре | Description | |--------|--------|-------------------------------------------| | _links | _links | | | name | string | The name of the FC port. | | node | node | The node on which the FC port is located. | | uuid | string | The unique identifier of the FC port. | node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | ### location The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. The location of an FC interface can be set using "location.home\_node" and "location.home\_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home\_node" and "location.home\_port" in instances where the FC interface failed over due to an offline node. | Name | Туре | Description | |-----------|-------------------|---------------------------------------------------------------------------------------------------------------------| | home_node | home_node | | | home_port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | | is_home | boolean | Indicates whether or not the FC interface currently resides on the home node. | | node | node | | | port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | ### iops The rate of I/O operations observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | # latency The round trip latency in microseconds observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | # throughput The rate of throughput bytes per second observed at the storage object. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## metric Performance numbers, such as IOPS latency and throughput | Name | Туре | Description | |------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | duration | string | The duration over which this sample is calculated. The time durations are represented in the ISO-8601 standard format. Samples can be calculated over the following durations: | | iops | iops | The rate of I/O operations observed at the storage object. | | latency | latency | The round trip latency in microseconds observed at the storage object. | | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput | throughput | The rate of throughput bytes per second observed at the storage object. | | timestamp | string | The timestamp of the performance data. | ### iops raw The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ### latency\_raw The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## throughput\_raw Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## statistics These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | Name | Туре | Description | |-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | iops_raw | iops_raw | The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | | latency_raw | latency_raw | The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | | Name | Туре | Description | |----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput_raw | throughput_raw | Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | | timestamp | string | The timestamp of the performance data. | ### svm | Name | Туре | Description | |--------|--------|-----------------------------------| | _links | _links | | | name | string | The name of the SVM. | | uuid | string | The unique identifier of the SVM. | # fc\_interface A Fibre Channel (FC) interface is the logical endpoint for FC network connections to an SVM. An FC interface provides FC access to storage within the interface SVM using either Fibre Channel Protocol or NVMe over Fibre Channel (NVMe/FC). An FC interface is created on an FC port which is located on a cluster node. The FC port must be specified to identify the location of the interface for a POST or PATCH operation that relocates an interface. You can identify the port by supplying either the node and port names or the port UUID. | Name | Туре | Description | |---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | comment | string | A user configurable comment. Optional in POST; valid in PATCH. To clear a prior comment, set the property to an empty string in PATCH. | | data_protocol | string | The data protocol for which the FC interface is configured. Required in POST. | | enabled | boolean | The administrative state of the FC interface. The FC interface can be disabled to block all FC communication with the SVM through this interface. Optional in POST and PATCH; defaults to true (enabled) in POST. | | location | location | The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. The location of an FC interface can be set using "location.home_node" and "location.home_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home_node" and "location.home_port" in instances where the FC interface failed over due to an offline node. | | metric | metric | Performance numbers, such as IOPS latency and throughput | | Name | Туре | Description | |--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | name | string | The name of the FC interface.<br>Required in POST; optional in<br>PATCH. | | port_address | string | The port address of the FC interface. Each FC port in an FC switched fabric has its own unique FC port address for routing purposes. The FC port address is assigned by a switch in the fabric when that port logs in to the fabric. This property refers to the address given by a switch to the FC interface when the SVM performs a port login (PLOGI). This is useful for obtaining statistics and diagnostic information from FC switches. This is a hexadecimal encoded numeric value. | | state | string | The current operational state of the FC interface. The state is set to <i>down</i> if the interface is not enabled. If the node hosting the port is down or unavailable, no state value is returned. | | statistics | statistics | These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | | svm | svm | | | uuid | string | The unique identifier of the FC interface. Required in the URL. | | Name | Туре | Description | |------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | wwnn | string | The world wide node name (WWNN) of the FC interface SVM. The WWNN is generated by ONTAP when Fibre Channel Protocol or the NVMe service is created for the FC interface SVM. • example: 20:00:00:50:56:b4:13:01 • readOnly: 1 • Introduced in: 9.6 | | wwpn | string | The world wide port name (WWPN) of the FC interface. The WWPN is generated by ONTAP when the FC interface is created. • example: 20:00:00:50:56:b4:13:a8 • readOnly: 1 • Introduced in: 9.6 | ## \_links | Name | Туре | Description | |------|------|-------------| | next | href | | | self | href | | # error\_arguments | Name | Туре | Description | |---------|--------|------------------| | code | string | Argument code | | message | string | Message argument | ## error | Name | Туре | Description | |-----------|------------------------|-------------------| | arguments | array[error_arguments] | Message arguments | | code | string | Error code | | message | string | Error message | | Name | Туре | Description | |--------|--------|---------------------------------------------| | target | string | The target parameter that caused the error. | # Delete an FC interface DELETE /network/fc/interfaces/{uuid} Introduced In: 9.6 Deletes an FC interface. ## **Related ONTAP commands** • network interface delete ### Learn more • DOC /network/fc/interfaces ## **Parameters** | Name | Туре | In | Required | Description | |------|--------|------|----------|---------------------------------------------| | uuid | string | path | True | The unique identifier for the FC interface. | # Response Status: 200, Ok ## **Error** Status: Default # **ONTAP Error Response Codes** | Error Code | Description | |------------|--------------------------------------------------------------| | 53280992 | The FC interface could not be deleted because it is enabled. | | Name | Туре | Description | |-------|-------|-------------| | error | error | | ### **Example error** ``` { "error": { "arguments": { "code": "string", "message": "string" }, "code": "4", "message": "entry doesn't exist", "target": "uuid" } } ``` ## **Definitions** ### **See Definitions** error arguments | Name | Туре | Description | |---------|--------|------------------| | code | string | Argument code | | message | string | Message argument | error | Name | Туре | Description | |-----------|------------------------|---------------------------------------------| | arguments | array[error_arguments] | Message arguments | | code | string | Error code | | message | string | Error message | | target | string | The target parameter that caused the error. | # Retrieve an FC interface GET /network/fc/interfaces/{uuid} Introduced In: 9.6 Retrieves an FC interface. # **Expensive properties** There is an added cost to retrieving values for these properties. They are not included by default in GET results and must be explicitly requested using the fields query parameter. See Requesting specific fields to learn more. - statistics.\* - metric.\* ## **Related ONTAP commands** - network interface show - vserver fcp interface show ### Learn more • DOC /network/fc/interfaces ## **Parameters** | Name | Туре | In | Required | Description | |--------|---------------|-------|----------|---------------------------------------------| | uuid | string | path | True | The unique identifier for the FC interface. | | fields | array[string] | query | False | Specify the fields to return. | # Response Status: 200, Ok | Name | Туре | Description | |---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | comment | string | A user configurable comment. Optional in POST; valid in PATCH. To clear a prior comment, set the property to an empty string in PATCH. | | data_protocol | string | The data protocol for which the FC interface is configured. Required in POST. | | Name | Туре | Description | |----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | enabled | boolean | The administrative state of the FC interface. The FC interface can be disabled to block all FC communication with the SVM through this interface. Optional in POST and PATCH; defaults to <i>true</i> (enabled) in POST. | | location | location | The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. | | | | The location of an FC interface can be set using "location.home_node" and "location.home_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home_node" and "location.home_port" in instances where the FC interface failed over due to an offline node. | | metric | metric | Performance numbers, such as IOPS latency and throughput | | name | string | The name of the FC interface. Required in POST; optional in PATCH. | | Name | Туре | Description | |--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | port_address | string | The port address of the FC interface. Each FC port in an FC switched fabric has its own unique FC port address for routing purposes. The FC port address is assigned by a switch in the fabric when that port logs in to the fabric. This property refers to the address given by a switch to the FC interface when the SVM performs a port login (PLOGI). This is useful for obtaining statistics and diagnostic information from FC switches. This is a hexadecimal encoded numeric value. | | state | string | The current operational state of the FC interface. The state is set to <i>down</i> if the interface is not enabled. If the node hosting the port is down or unavailable, no state value is returned. | | statistics | statistics | These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | | svm | svm | | | uuid | string | The unique identifier of the FC interface. Required in the URL. | | wwnn | string | The world wide node name (WWNN) of the FC interface SVM. The WWNN is generated by ONTAP when Fibre Channel Protocol or the NVMe service is created for the FC interface SVM. • example: 20:00:00:50:56:b4:13:01 • readOnly: 1 • Introduced in: 9.6 | | Name | Туре | Description | |------|--------|-----------------------------------------------------------------------------------------------------------------------| | wwpn | string | The world wide port name (WWPN) of the FC interface. The WWPN is generated by ONTAP when the FC interface is created. | | | | • example: 20:00:00:50:56:b4:13:a8 | | | | • readOnly: 1 | | | | Introduced in: 9.6 | ``` " links": { "self": { "href": "/api/resourcelink" } } , "comment": "string", "data protocol": "fcp", "location": { "home node": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "home port": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "0a", "node": { "name": "node1" }, "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "node": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "port": { " links": { "self": { "href": "/api/resourcelink" ``` ``` }, "name": "0a", "node": { "name": "node1" "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "metric": { " links": { "self": { "href": "/api/resourcelink" } }, "duration": "PT15S", "iops": { "read": "200", "total": "1000", "write": "100" }, "latency": { "read": "200", "total": "1000", "write": "100" }, "status": "ok", "throughput": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" }, "name": "fc lif1", "port address": "5060F", "state": "up", "statistics": { "iops raw": { "read": "200", "total": "1000", "write": "100" }, "latency raw": { "read": "200", "total": "1000", "write": "100" ``` ``` }, "status": "ok", "throughput raw": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" }, "svm": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "svm1", "uuid": "02c9e252-41be-11e9-81d5-00a0986138f7" }, "uuid": "bce9827d-4d8f-60af-c771-6e8e9af2c6f0", "wwnn": "20:00:00:50:56:b4:13:01", "wwpn": "20:00:00:50:56:b4:13:a8" } ``` ### **Error** ``` Status: Default, Error ``` | Name | Туре | Description | |-------|-------|-------------| | error | error | | ## Example error ``` "error": { "arguments": { "code": "string", "message": "string" }, "code": "4", "message": "entry doesn't exist", "target": "uuid" } } ``` # **Definitions** ### **See Definitions** href | Name | Туре | Description | |------|--------|-------------| | href | string | | \_links | Name | Туре | Description | |------|------|-------------| | self | href | | home\_node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | ## node The node on which the FC port is located. | Name | Туре | Description | |------|--------|-------------------------------------------------------| | name | string | The name of the node on which the FC port is located. | # fc\_port\_reference An FC port is the physical port of an FC adapter on a cluster node that can be connected to an FC network. | Name | Туре | Description | |--------|--------|-------------------------------------------| | _links | _links | | | name | string | The name of the FC port. | | node | node | The node on which the FC port is located. | | uuid | string | The unique identifier of the FC port. | node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | ### location The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. The location of an FC interface can be set using "location.home\_node" and "location.home\_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home\_node" and "location.home\_port" in instances where the FC interface failed over due to an offline node. | Name | Туре | Description | |-----------|-------------------|---------------------------------------------------------------------------------------------------------------------| | home_node | home_node | | | home_port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | | is_home | boolean | Indicates whether or not the FC interface currently resides on the home node. | | node | node | | | port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | ### iops The rate of I/O operations observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | # latency The round trip latency in microseconds observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | # throughput The rate of throughput bytes per second observed at the storage object. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## metric Performance numbers, such as IOPS latency and throughput | Name | Туре | Description | |------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | duration | string | The duration over which this sample is calculated. The time durations are represented in the ISO-8601 standard format. Samples can be calculated over the following durations: | | iops | iops | The rate of I/O operations observed at the storage object. | | latency | latency | The round trip latency in microseconds observed at the storage object. | | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput | throughput | The rate of throughput bytes per second observed at the storage object. | | timestamp | string | The timestamp of the performance data. | #### iops raw The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### latency\_raw The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### throughput\_raw Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### statistics These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | Name | Туре | Description | |-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | iops_raw | iops_raw | The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | | latency_raw | latency_raw | The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | | Name | Туре | Description | |----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput_raw | throughput_raw | Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | | timestamp | string | The timestamp of the performance data. | #### svm | Name | Туре | Description | |--------|--------|-----------------------------------| | _links | _links | | | name | string | The name of the SVM. | | uuid | string | The unique identifier of the SVM. | error\_arguments | Name | Туре | Description | |---------|--------|------------------| | code | string | Argument code | | message | string | Message argument | #### error | Name | Туре | Description | |-----------|------------------------|---------------------------------------------| | arguments | array[error_arguments] | Message arguments | | code | string | Error code | | message | string | Error message | | target | string | The target parameter that caused the error. | # **Update an FC interface** PATCH /network/fc/interfaces/{uuid} Introduced In: 9.6 Updates an FC interface. # **Related ONTAP commands** • network interface modify #### Learn more • DOC /network/fc/interfaces ## **Parameters** | Name | Туре | In | Required | Description | |------|--------|------|----------|---------------------------------------------| | uuid | string | path | True | The unique identifier for the FC interface. | # **Request Body** | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | Name | Туре | Description | |---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | comment | string | A user configurable comment. Optional in POST; valid in PATCH. To clear a prior comment, set the property to an empty string in PATCH. | | data_protocol | string | The data protocol for which the FC interface is configured. Required in POST. | | enabled | boolean | The administrative state of the FC interface. The FC interface can be disabled to block all FC communication with the SVM through this interface. Optional in POST and PATCH; defaults to <i>true</i> (enabled) in POST. | | location | location | The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. The location of an FC interface can be set using "location.home_node" and "location.home_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home_node" and "location.home_port" in instances where the FC interface failed over due to an offline node. | | metric | metric | Performance numbers, such as IOPS latency and throughput | | name | string | The name of the FC interface. Required in POST; optional in PATCH. | | Name | Туре | Description | |--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | port_address | string | The port address of the FC interface. Each FC port in an FC switched fabric has its own unique FC port address for routing purposes. The FC port address is assigned by a switch in the fabric when that port logs in to the fabric. This property refers to the address given by a switch to the FC interface when the SVM performs a port login (PLOGI). This is useful for obtaining statistics and diagnostic information from FC switches. This is a hexadecimal encoded numeric value. | | state | string | The current operational state of the FC interface. The state is set to <i>down</i> if the interface is not enabled. If the node hosting the port is down or unavailable, no state value is returned. | | statistics | statistics | These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | | svm | svm | | | uuid | string | The unique identifier of the FC interface. Required in the URL. | | wwnn | string | The world wide node name (WWNN) of the FC interface SVM. The WWNN is generated by ONTAP when Fibre Channel Protocol or the NVMe service is created for the FC interface SVM. • example: 20:00:00:50:56:b4:13:01 • readOnly: 1 • Introduced in: 9.6 | | Name | Туре | Description | |------|--------|-----------------------------------------------------------------------------------------------------------------------| | wwpn | string | The world wide port name (WWPN) of the FC interface. The WWPN is generated by ONTAP when the FC interface is created. | | | | • example: 20:00:00:50:56:b4:13:a8 | | | | • readOnly: 1 | | | | Introduced in: 9.6 | ``` " links": { "self": { "href": "/api/resourcelink" } } , "comment": "string", "data protocol": "fcp", "location": { "home node": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "home port": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "0a", "node": { "name": "node1" }, "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "node": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "node1", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "port": { " links": { "self": { "href": "/api/resourcelink" ``` ``` }, "name": "0a", "node": { "name": "node1" "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" }, "metric": { " links": { "self": { "href": "/api/resourcelink" } }, "duration": "PT15S", "iops": { "read": "200", "total": "1000", "write": "100" }, "latency": { "read": "200", "total": "1000", "write": "100" }, "status": "ok", "throughput": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" }, "name": "fc lif1", "port address": "5060F", "state": "up", "statistics": { "iops raw": { "read": "200", "total": "1000", "write": "100" }, "latency raw": { "read": "200", "total": "1000", "write": "100" ``` ``` } , "status": "ok", "throughput raw": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z" } , "svm": { " links": { "self": { "href": "/api/resourcelink" } }, "name": "svm1", "uuid": "02c9e252-41be-11e9-81d5-00a0986138f7" }, "uuid": "bce9827d-4d8f-60af-c771-6e8e9af2c6f0", "wwnn": "20:00:00:50:56:b4:13:01", "wwpn": "20:00:00:50:56:b4:13:a8" ``` ## Response ``` Status: 200, Ok ``` #### **Error** ``` Status: Default ``` #### **ONTAP Error Response Codes** | Error Code | Description | |------------|---------------------------------------------------------------------| | 1966140 | An interface with the same name already exists. | | 1966217 | The specified port is not valid on the node provided. | | 1966238 | The node or port of an active SAN data interface cannot be changed. | | 1966702 | The destination node is not healthy. | | 5374579 | The SAN Kernel Agent on the node is unavailable. | | Error Code | Description | |------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | 5374870 | A partial failure occurred; renaming the interface failed. Correct the error and resubmit the request. | | 5374871 | The Fibre Channel port identified by the specified UUID does not refer to the same port as that identified by the specified node name and/or port name. | | 5374872 | If either location.port.node.name or location.port.name is supplied, both properties must be supplied. | | 72089674 | You cannot move a Fibre Channel interface configured for the NVMe over FC data protocol. | | Name | Туре | Description | |-------|-------|-------------| | error | error | | ## **Example error** ``` "error": { "arguments": { "code": "string", "message": "string" }, "code": "4", "message": "entry doesn't exist", "target": "uuid" } } ``` ## **Definitions** #### **See Definitions** href | Name | Туре | Description | |------|--------|-------------| | href | string | | \_links | Name | Туре | Description | |------|------|-------------| | self | href | | home\_node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | #### node The node on which the FC port is located. | Name | Туре | Description | |------|--------|-------------------------------------------------------| | name | string | The name of the node on which the FC port is located. | ## fc\_port\_reference An FC port is the physical port of an FC adapter on a cluster node that can be connected to an FC network. | Name | Туре | Description | |--------|--------|-------------------------------------------| | _links | _links | | | name | string | The name of the FC port. | | node | node | The node on which the FC port is located. | | uuid | string | The unique identifier of the FC port. | node | Name | Туре | Description | |--------|--------|-------------| | _links | _links | | | name | string | | | uuid | string | | #### location The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. The location of an FC interface can be set using "location.home\_node" and "location.home\_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home\_node" and "location.home\_port" in instances where the FC interface failed over due to an offline node. | Name | Туре | Description | |-----------|-------------------|---------------------------------------------------------------------------------------------------------------------| | home_node | home_node | | | home_port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | | is_home | boolean | Indicates whether or not the FC interface currently resides on the home node. | | node | node | | | port | fc_port_reference | An FC port is the physical port of<br>an FC adapter on a cluster node<br>that can be connected to an FC<br>network. | #### iops The rate of I/O operations observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## latency The round trip latency in microseconds observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## throughput The rate of throughput bytes per second observed at the storage object. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### metric Performance numbers, such as IOPS latency and throughput | Name | Туре | Description | |------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | duration | string | The duration over which this sample is calculated. The time durations are represented in the ISO-8601 standard format. Samples can be calculated over the following durations: | | iops | iops | The rate of I/O operations observed at the storage object. | | latency | latency | The round trip latency in microseconds observed at the storage object. | | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput | throughput | The rate of throughput bytes per second observed at the storage object. | | timestamp | string | The timestamp of the performance data. | #### iops raw The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### latency\_raw The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### throughput\_raw Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### statistics These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | Name | Туре | Description | |-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | iops_raw | iops_raw | The number of I/O operations observed at the storage object. This should be used along with delta time to calculate the rate of I/O operations per unit of time. | | latency_raw | latency_raw | The raw latency in microseconds observed at the storage object. This should be divided by the raw IOPS value to calculate the average latency per I/O operation. | | Name | Туре | Description | |----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput_raw | throughput_raw | Throughput bytes observed at the storage object. This should be used along with delta time to calculate the rate of throughput bytes per unit of time. | | timestamp | string | The timestamp of the performance data. | #### svm | Name | Туре | Description | |--------|--------|-----------------------------------| | _links | _links | | | name | string | The name of the SVM. | | uuid | string | The unique identifier of the SVM. | ## fc\_interface A Fibre Channel (FC) interface is the logical endpoint for FC network connections to an SVM. An FC interface provides FC access to storage within the interface SVM using either Fibre Channel Protocol or NVMe over Fibre Channel (NVMe/FC). An FC interface is created on an FC port which is located on a cluster node. The FC port must be specified to identify the location of the interface for a POST or PATCH operation that relocates an interface. You can identify the port by supplying either the node and port names or the port UUID. | Name | Туре | Description | |---------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | comment | string | A user configurable comment. Optional in POST; valid in PATCH. To clear a prior comment, set the property to an empty string in PATCH. | | data_protocol | string | The data protocol for which the FC interface is configured. Required in POST. | | enabled | boolean | The administrative state of the FC interface. The FC interface can be disabled to block all FC communication with the SVM through this interface. Optional in POST and PATCH; defaults to true (enabled) in POST. | | location | location | The location of the FC interface is defined by the location of its port. An FC port is identified by its UUID, or a combination of its node name and port name. Either the UUID or the node name and port name are required for POST. To move an interface, supply either the UUID or the node name and port name in a PATCH. | | | | The location of an FC interface can be set using "location.home_node" and "location.home_port" during a POST or PATCH. "location.node" and "location.port" refer to the current location of the FC interface. This can be different from "location.home_node" and "location.home_port" in instances where the FC interface failed over due to an offline node. | | metric | metric | Performance numbers, such as IOPS latency and throughput | | Name | Туре | Description | |--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | name | string | The name of the FC interface.<br>Required in POST; optional in<br>PATCH. | | port_address | string | The port address of the FC interface. Each FC port in an FC switched fabric has its own unique FC port address for routing purposes. The FC port address is assigned by a switch in the fabric when that port logs in to the fabric. This property refers to the address given by a switch to the FC interface when the SVM performs a port login (PLOGI). This is useful for obtaining statistics and diagnostic information from FC switches. This is a hexadecimal encoded numeric value. | | state | string | The current operational state of the FC interface. The state is set to <i>down</i> if the interface is not enabled. If the node hosting the port is down or unavailable, no state value is returned. | | statistics | statistics | These are raw performance numbers, such as IOPS latency and throughput. These numbers are aggregated across all nodes in the cluster and increase with the uptime of the cluster. | | svm | svm | | | uuid | string | The unique identifier of the FC interface. Required in the URL. | | Name | Туре | Description | |------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | wwnn | string | The world wide node name (WWNN) of the FC interface SVM. The WWNN is generated by ONTAP when Fibre Channel Protocol or the NVMe service is created for the FC interface SVM. • example: 20:00:00:50:56:b4:13:01 • readOnly: 1 • Introduced in: 9.6 | | wwpn | string | The world wide port name (WWPN) of the FC interface. The WWPN is generated by ONTAP when the FC interface is created. • example: 20:00:00:50:56:b4:13:a8 • readOnly: 1 • Introduced in: 9.6 | ## error\_arguments | Name | Туре | Description | |---------|--------|------------------| | code | string | Argument code | | message | string | Message argument | #### error | Name | Туре | Description | |-----------|------------------------|---------------------------------------------| | arguments | array[error_arguments] | Message arguments | | code | string | Error code | | message | string | Error message | | target | string | The target parameter that caused the error. | # **Retrieve FC interface historical performance metrics** GET /network/fc/interfaces/{uuid}/metrics Introduced In: 9.8 Retrieves historical performance metrics for an FC interface. ### **Parameters** | Name | Туре | In | Required | Description | |------------------|---------|-------|----------|----------------------------------------| | iops.total | integer | query | False | Filter by iops.total | | iops.other | integer | query | False | Filter by iops.other | | iops.read | integer | query | False | Filter by iops.read | | iops.write | integer | query | False | Filter by iops.write | | latency.total | integer | query | False | Filter by latency.total | | latency.other | integer | query | False | Filter by latency.other | | latency.read | integer | query | False | Filter by latency.read | | latency.write | integer | query | False | Filter by latency.write | | timestamp | string | query | False | Filter by timestamp | | duration | string | query | False | Filter by duration | | throughput.total | integer | query | False | Filter by throughput.total | | throughput.read | integer | query | False | Filter by throughput.read | | throughput.write | integer | query | False | Filter by throughput.write | | status | string | query | False | Filter by status | | uuid | string | path | True | Unique identifier of the FC interface. | | Name | Туре | In | Required | Description | |----------|--------|-------|----------|-------------------------------------------------------------------------------------------------------------------------------| | interval | string | query | False | The time range for<br>the data. Examples<br>can be 1h, 1d, 1m,<br>1w, 1y. The period<br>for each time range<br>is as follows: | | | | | | <ul> <li>1h: Metrics over<br/>the most recent<br/>hour sampled<br/>over 15<br/>seconds.</li> </ul> | | | | | | <ul> <li>1d: Metrics over<br/>the most recent<br/>day sampled<br/>over 5 minutes.</li> </ul> | | | | | | <ul> <li>1w: Metrics over<br/>the most recent<br/>week sampled<br/>over 30 minutes.</li> </ul> | | | | | | <ul> <li>1m: Metrics over<br/>the most recent<br/>month sampled<br/>over 2 hours.</li> </ul> | | | | | | <ul> <li>1y: Metrics over<br/>the most recent<br/>year sampled<br/>over a day.</li> </ul> | | | | | | <ul><li>Default value: 1</li><li>enum: ["1h",<br/>"1d", "1w", "1m",<br/>"1y"]</li></ul> | | Name | Туре | In | Required | Description | |------------------------------------------------------------|----------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | return_timeout | integer | query | False | The number of seconds to allow the call to execute before returning. When iterating over a collection, the default is 15 seconds. ONTAP returns earlier if either max records or the end of the collection is reached. • Default value: 1 • Max value: 120 • Min value: 0 | | fields | array[string] | query | False | Specify the fields to return. | | max_records | integer | query | False | Limit the number of records returned. | | order_by | array[string] | query | False | Order results by specified fields and optional [asc | | desc] direction. Default direction is 'asc' for ascending. | return_records | boolean | query | False | # Response Status: 200, Ok | Name | Туре | Description | |-------------|----------------|-------------------| | _links | _links | | | num_records | integer | Number of records | | records | array[records] | | ``` " links": { "next": { "href": "/api/resourcelink" }, "self": { "href": "/api/resourcelink" } }, "records": { " links": { "self": { "href": "/api/resourcelink" } }, "duration": "PT15S", "iops": { "read": "200", "total": "1000", "write": "100" }, "latency": { "read": "200", "total": "1000", "write": "100" }, "status": "ok", "throughput": { "read": "200", "total": "1000", "write": "100" }, "timestamp": "2017-01-25T11:20:13Z", "uuid": "1cd8a442-86d1-11e0-ae1c-123478563412" } } ``` #### **Error** ``` Status: Default, Error ``` | Name | Туре | Description | |-------|-------|-------------| | error | error | | ## Example error ``` { "error": { "arguments": { "code": "string", "message": "string" }, "code": "4", "message": "entry doesn't exist", "target": "uuid" } } ``` ## **Definitions** #### **See Definitions** href | Name | Туре | Description | |------|--------|-------------| | href | string | | \_links | Name | Туре | Description | |------|------|-------------| | next | href | | | self | href | | \_links | Name | Туре | Description | |------|------|-------------| | self | href | | iops The rate of I/O operations observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## latency The round trip latency in microseconds observed at the storage object. | Name | Туре | Description | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------| | other | integer | Performance metric for other I/O operations. Other I/O operations can be metadata operations, such as directory lookups and so on. | | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | ## throughput The rate of throughput bytes per second observed at the storage object. | Name | Туре | Description | |-------|---------|-----------------------------------------------------------------| | read | integer | Performance metric for read I/O operations. | | total | integer | Performance metric aggregated over all types of I/O operations. | | write | integer | Peformance metric for write I/O operations. | #### records Performance numbers, such as IOPS latency and throughput | Name | Туре | Description | |----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _links | _links | | | duration | string | The duration over which this sample is calculated. The time durations are represented in the ISO-8601 standard format. Samples can be calculated over the following durations: | | iops | iops | The rate of I/O operations observed at the storage object. | | Name | Туре | Description | |------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | latency | latency | The round trip latency in microseconds observed at the storage object. | | status | string | Any errors associated with the sample. For example, if the aggregation of data over multiple nodes fails then any of the partial errors might be returned, "ok" on success, or "error" on any internal uncategorized failure. Whenever a sample collection is missed but done at a later time, it is back filled to the previous 15 second timestamp and tagged with "backfilled_data". "Inconsistent_delta_time" is encountered when the time between two collections is not the same for all nodes. Therefore, the aggregated value might be over or under inflated. "Negative_delta" is returned when an expected monotonically increasing value has decreased in value. "Inconsistent_old_data" is returned when one or more nodes do not have the latest data. | | throughput | throughput | The rate of throughput bytes per second observed at the storage object. | | timestamp | string | The timestamp of the performance data. | | uuid | string | The unique identifier of the FC interface. | ## error\_arguments | Name | Туре | Description | |---------|--------|------------------| | code | string | Argument code | | message | string | Message argument | error | Name | Туре | Description | |-----------|------------------------|---------------------------------------------| | arguments | array[error_arguments] | Message arguments | | code | string | Error code | | message | string | Error message | | target | string | The target parameter that caused the error. | #### Copyright information Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007). Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014). #### **Trademark information** NETAPP, the NETAPP logo, and the marks listed at <a href="http://www.netapp.com/TM">http://www.netapp.com/TM</a> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.