■ NetApp ## RHEL 7 SAN hosts and cloud clients NetApp February 26, 2024 This PDF was generated from https://docs.netapp.com/us-en/ontap-sanhost/hu_rhel_79.html on February 26, 2024. Always check docs.netapp.com for the latest. ## **Table of Contents** | RHEL 7 | 1 | |---|----| | Use Red Hat Enterprise Linux 7.9 with ONTAP | 1 | | Use Red Hat Enterprise Linux 7.8 with ONTAP | 6 | | Use Red Hat Enterprise Linux 7.7 with ONTAP | 12 | | Use Red Hat Enterprise Linux 7.6 with ONTAP | 19 | | Use Red Hat Enterprise Linux 7.5 with ONTAP | 25 | | Use Red Hat Enterprise Linux 7.4 with ONTAP | 35 | | Use Red Hat Enterprise Linux 7.3 with ONTAP | 41 | | Use Red Hat Enterprise Linux 7.2 with ONTAP | 46 | | Use Red Hat Enterprise Linux 7.1 with ONTAP | | | Use Red Hat Enterprise Linux 7.0 with ONTAP | 57 | ## RHEL 7 ## Use Red Hat Enterprise Linux 7.9 with ONTAP You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.9 with ONTAP as the target. #### Install the Linux Unified Host Utilities The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. #### What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp linux unified host utilities-7-1.x86 64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. #### **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### Example In the following example, the sanlun lun show command returns LUN information. # sanlun lun show all Example output: | controller(7mode/E-Se
vserver(cDOT/FlashRay
Product | , | device
filename | host
adapter | protocol | lun
size | |---|----------------|--------------------|-----------------|----------|-------------| | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | data_vserver | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | data_vserver 120.0g cDOT | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | #### **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### Steps - Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. Reboot the host to verify that the boot is successful. #### Multipathing For Red Hat Enterprise Linux (RHEL) 7.9 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.9 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. #### **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### **Example** The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -ll 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running `-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running |- 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. ## **Recommended Settings** The RHEL 7.9 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file . ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. #### **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### **Steps** 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwild to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | #### **Example** The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path_checker readsector0 no path retry fail } devices { device { vendor "NETAPP " product "LUN.*" no path retry queue path checker tur } ``` #### **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. #### **Known issues** The RHEL 7.9 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---
--|-------------| | 1440718 | If you unmap or map a LUN without performing a SCSI rescan, it might lead to data corruption on the host. | When you set the 'disable_changed_wwids' multipath configuration parameter to YES, it disables access to the path device in the event of a WWID change. Multipath will disable access to the path device until the WWID of the path is restored to the WWID of the multipath device. To learn more, see NetApp Knowledge Base: The filesystem corruption on iSCSI LUN on the Oracle Linux 7. | N/A | ## **Use Red Hat Enterprise Linux 7.8 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.8 with ONTAP as the target. #### **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. #### What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp linux unified host utilities-7-1.x86 64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. #### **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### Example In the following example, the sanlun lun show command returns LUN information. # sanlun lun show all Example output: | controller(7mode/E-Sevserver(cDOT/FlashRay | , | device
filename | host
adapter | protocol | lun
size | |--|----------------|--------------------|-----------------|----------|-------------| | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | data_vserver 120.0g cDOT | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | data_vserver 120.0g cDOT | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | #### **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### Steps - Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. Reboot the host to verify that the boot is successful. #### Multipathing For Red Hat Enterprise Linux (RHEL) 7.8 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.8 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. #### **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### **Example** The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -ll 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running `-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running |- 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. ## **Recommended Settings** The RHEL 7.8 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file . ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. #### **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### **Steps** 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwid to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | #### **Example** The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path_checker readsector0 no path retry fail } devices { device { vendor "NETAPP " product "LUN.*" no path retry queue path checker tur } ``` #### **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. #### **Known issues** The RHEL 7.8 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---
--|-------------| | 1440718 | If you unmap or map a LUN without performing a SCSI rescan, it might lead to data corruption on the host. | When you set the 'disable_changed_wwids' multipath configuration parameter to YES, it disables access to the path device in the event of a WWID change. Multipath will disable access to the path device until the WWID of the path is restored to the WWID of the multipath device. To learn more, see NetApp Knowledge Base: The filesystem corruption on iSCSI LUN on the Oracle Linux 7. | N/A | ## **Use Red Hat Enterprise Linux 7.7 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.7 with ONTAP as the target. #### **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. #### What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp linux unified host utilities-7-1.x86 64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. #### **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### Example In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` Example output: | controller(7mode/E-Sevserver(cDOT/FlashRay | , | device
filename | host
adapter | protocol | lun
size | |--|----------------|--------------------|-----------------|----------|-------------| | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | data_vserver 120.0g cDOT | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | data_vserver 120.0g cDOT | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | #### **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### Steps - 1. Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. 4. Reboot the host to verify that the boot is successful. #### Multipathing For Red Hat Enterprise Linux (RHEL) 7.7 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.7 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. #### **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### **Example** The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -ll 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running `-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running |- 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. ## **Recommended Settings** The RHEL 7.7 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file . ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. #### **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### **Steps** 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwild to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | #### **Example** The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path_checker readsector0 no path retry fail } devices { device { vendor "NETAPP " product "LUN.*" no path retry queue path checker tur } ``` ## **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. ## **Known issues** The RHEL 7.7 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---
--|-------------| | 1440718 | If you unmap or map a LUN without performing a SCSI rescan, it might lead to data corruption on the host. | When you set the 'disable_changed_wwids' multipath configuration parameter to YES, it disables access to the path device in the event of a WWID change. Multipath will disable access to the path device until the WWID of the path is restored to the WWID of the multipath device. To learn more, see NetApp Knowledge Base: The filesystem corruption on iSCSI LUN on the Oracle Linux 7. | N/A | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|--|---|-------------| | 1258856 | Remote ports transit to a blocked state on RHEL7U7 with Emulex LPe16002 16GB FC during storage failover operations | Remote ports might transit to a blocked state on a RHEL 7.7 host with a LPe16002 16GB FC adapter during storage failover operations. When the storage node returns to an optimal state, the LIFs also come up and the remote port state should read "online". Occasionally, the remote port state might continue to read as "blocked" or "not present". This state can lead to a "failed faulty" path to LUNs at the multipath layer. | 1743667 | | 1261474 | Remote ports transit to blocked state on RHEL7U7 with Emulex LPe32002 32GB FC | Remote ports might transit to a blocked state on a RHEL 7.7 host with LPe32002 32GB FC adapter during storage failover operations. When the storage node returns to an optimal state, the LIFs also come up and the remote port state should read "online". Occasionally, the remote port state might continue to read as "blocked" or "not present". This state can lead to a "failed faulty" path to LUNs at the multipath layer. | 1745995 | ## **Use Red Hat Enterprise Linux 7.6 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.6 with ONTAP as the target. #### **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. #### What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp linux unified host utilities-7-1.x86 64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. #### **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### **Example** In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` #### Example output: | vserver(cDOT/FlashRay)
Product | lun-pathname | filename | adapter | protocol | size | |-----------------------------------|----------------|----------|---------|----------|------| | | | | | | | | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | | 120.0g cDOT | | | | | | ## **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. #### **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### Example The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### Example The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -ll 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running '-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running |- 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### Recommended Settings The RHEL 7.6 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: ``` touch /etc/multipath.conf ``` The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file . ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. #### **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### Steps 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwild to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | |
user_friendly_names | no | | vendor | NETAPP | #### **Example** The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path_checker readsector0 fail no path retry } devices { device { vendor "NETAPP" product "LUN.*" no_path_retry queue path_checker tur } ``` #### **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. #### **Known issues** The RHEL 7.6 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|--|-------------| | 1440718 | If you unmap or map a LUN without performing a SCSI rescan, it might lead to data corruption on the host. | When you set the 'disable_changed_wwids' multipath configuration parameter to YES, it disables access to the path device in the event of a WWID change. Multipath will disable access to the path device until the WWID of the path is restored to the WWID of the multipath device. To learn more, see NetApp Knowledge Base: The filesystem corruption on iSCSI LUN on the Oracle Linux 7. | N/A | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|--|-------------| | 1186754 | Remote ports status on
RHEL7U6 with QLogic
QLE2742 host might be in
blocked during host
discovery | During host discovery, FC remote port status on RHEL7U6 host with a QLogic QLE2742 adapter might enter a blocked state. These blocked remote ports might result in the paths to LUNs becoming unavailable. During storage failover, the path redundancy might be reduced and result in I/O outage. You can check the remote port status by entering the following command:# cat /sys/class/fc_remote_port s/rport-*/port_status on RHELTON RESULT OF TABLE O | 1628039 | | 1190698 | Remote port status on
RHEL7U6 with QLogic
QLE2672 host might be in
blocked during storage
failover operations | FC remote ports might be blocked on Red Hat Enterprise Linux (RHEL) 7U6 with the QLogic QLE2672 host during storage failover operations. Because the logical interfaces go down when a storage node is down, the remote ports set the storage node status to blocked. When the storage node returns to its optimal state, the logical interfaces also come up and the remote ports should be online. However, the remote portsmight still be blocked. This blocked state registers as failed faulty to LUNS at the multipath layer. You can verify the remote ports state with the following command:# cat /sys/class/fc_remote_port s/rport-*/port_state | 1643459 | ## **Use Red Hat Enterprise Linux 7.5 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.5 with ONTAP as the target. #### **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. #### What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp linux unified host utilities-7-1.x86 64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. #### **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### **Example** In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` Example output: | controller(7mode/E-Sevserver(cDOT/FlashRay | , | device
filename | host
adapter | protocol | lun
size | |--|----------------|--------------------|-----------------|----------|-------------| | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | data_vserver | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | data_vserver
120.0g cDOT | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | #### **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### Steps - Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. Reboot the host to verify that the boot is successful. #### Multipathing For Red Hat Enterprise Linux (RHEL) 7.5 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.5 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. #### **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### **Example** The
following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -11 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running '-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running | - 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. ## **Recommended Settings** The RHEL 7.5 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: ``` touch /etc/multipath.conf ``` The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file . ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. #### **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### **Steps** 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwild to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | #### **Example** The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path_checker readsector0 no_path_retry fail } devices { device { vendor "NETAPP" product "LUN.*" no path retry queue path checker tur } ``` ## **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. ## **Known issues** The RHEL 7.5 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|--|-------------| | 1440718 | If you unmap or map a LUN without performing a SCSI rescan, it might lead to data corruption on the host. | When you set the 'disable_changed_wwids' multipath configuration parameter to YES, it disables access to the path device in the event of a WWID change. Multipath will disable access to the path device until the WWID of the path is restored to the WWID of the multipath device. To learn more, see NetApp Knowledge Base: The filesystem corruption on iSCSI LUN on the Oracle Linux 7. | N/A | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|--|-------------|-------------| | 1139053 | Kernel disruption occurs on RHEL7.5 with QLogic QLE2672 16GB FC during storage failover operations | | 1542564 | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|--|-------------|-------------| | 1138536 | Kernel disruption occurs on RHEL7U5 with QLogic QLE2742 32GB FC during storage failover operations | , , | 1541972 | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|---|-------------| | 1148090 | Kernel disruption occurs on RHEL 7.5 with QLogic QLE2742 32GB FC HBA during storage failover operations | During storage failover operations on the Red Hat Enterprise Linux (RHEL) 7.5 kernel with a QLogic QLE2742 Fibre Channel (FC) host bus adapter (HBA), a kernel disruption occurs due to a panic in the kernel. The kernel panic causes RHEL 7.5 to reboot, which leads to an application disruption. If the kdump mechanism is enabled, the kernel panic generates a vmcore file located in the /var/crash/directory. You can analyze the vmcore file to determine the cause of the panic. In this instance, when storage failover with the QLogic QLE2742 HBA event occurs, the "native_queued_spin_lock_slowpath+464" module is affected. You can locate the event in the vmcore file by finding the following string: "[exception RIP: native_queued_spin_lock_slowpath+464]" After the kernel disruption, you can reboot the Host OS and recover the operating system, and then you can restart the applications as required. | 1559050 | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|--|--|-------------| | 1146898 | Kernel disruption occurs on RHEL 7.5 with Emulex HBAs during storage failover operations | During storage failover operations on a Red Hat Enterprise Linux (RHEL) 7.5 system with Emulex LPe32002-M2 32-GB FC host bus adapters (HBAs), a disruption in the kernel occurs. The kernel disruption causes a reboot of the operating system, which in turn causes an application disruption. If you configure kdump, the kernel disruption generates the vmcore file under the /var/crash/ directory. You can use the vmcore file to determine the cause of the failure. In the following example, you can see the disruption in the "Ipfc_hba_clean_txcmplq+368" module. This disruption is logged in the vmcore file with the following
string: "[exception RIP: Ipfc_hba_clean_txcmplq+368]" After the kernel disruption, reboot the host OS to recover the operating system. Restart the application as required. | 1554777 | # **Use Red Hat Enterprise Linux 7.4 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.4 with ONTAP as the target. # **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. #### What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp linux unified host utilities-7-1.x86 64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. ## **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### Example In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` # Example output: | vserver(cDOT/FlashRay)
Product | lun-pathname | filename | adapter | protocol | size | |-----------------------------------|----------------|----------|---------|----------|------| | | | | | | | | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | | 120.0g cDOT | | | | | | # **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### **Steps** - 1. Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. 3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. 4. Reboot the host to verify that the boot is successful. # Multipathing For Red Hat Enterprise Linux (RHEL) 7.4 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.4 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. ## **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### Example The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Non-ASA configurations** For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -11 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running '-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running | - 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Recommended Settings** The RHEL 7.4 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: ``` touch /etc/multipath.conf ``` The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file. ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### **Steps** 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwid to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | Parameter | Setting | |----------------------------|-----------| | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path checker readsector0 no path retry fail } devices { device { vendor "NETAPP product "LUN.*" no path retry queue path checker tur } } ``` # **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. ## **Known issues** The RHEL 7.4 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|--|-------------| | 1440718 | If you unmap or map a LUN without performing a SCSI rescan, it might lead to data corruption on the host. | When you set the 'disable_changed_wwids' multipath configuration parameter to YES, it disables access to the path device in the event of a WWID change. Multipath will disable access to the path device until the
WWID of the path is restored to the WWID of the multipath device. To learn more, see NetApp Knowledge Base: The filesystem corruption on iSCSI LUN on the Oracle Linux 7. | | # Use Red Hat Enterprise Linux 7.3 with ONTAP You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.3 with ONTAP as the target. # **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. # What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. ## **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### Example In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` #### Example output: | controller(7mode/E-Ser
/server(cDOT/FlashRay)
Product | | device
filename | host
adapter | protocol | lun
size | |---|----------------|--------------------|-----------------|----------|-------------| | | | | | | | | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | 120.0g cDOT | | | | | | | data_vserver | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | | 120.0g cDOT | | | | | | # **SAN Booting** ## What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### **Steps** - 1. Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. 3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. 4. Reboot the host to verify that the boot is successful. # Multipathing For Red Hat Enterprise Linux (RHEL) 7.3 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.3 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. # **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. ## **Example** The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -11 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running `-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running |- 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Recommended Settings** The RHEL 7.3 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: ``` touch /etc/multipath.conf ``` The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file . ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. #### **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### Steps 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwild to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | # **Example** The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path checker readsector0 no path retry fail } devices { device { "NETAPP vendor product "LUN.*" no path retry queue path checker tur } } ``` #### **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. ## **Known issues** There are no known issues for the RHEL 7.3 with ONTAP release. # **Use Red Hat Enterprise Linux 7.2 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.2 with ONTAP as the target. # **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. #### What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and
use the following steps to install the latest version. - Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - Use the following command to install the software package: You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. ## **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### Example In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` # Example output: | controller(7mode/E-Ser
vserver(cDOT/FlashRay)
Product | | device
filename | host
adapter | protocol | lun
size | |---|----------------|--------------------|-----------------|----------|-------------| | | | | | | | | data_vserver
120.0g cDOT | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | data_vserver
120.0g cDOT | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | 120.0g cDOT
data_vserver | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | | 120.0g cDOT | | | | | | # **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### **Steps** - 1. Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. 3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. 4. Reboot the host to verify that the boot is successful. # Multipathing For Red Hat Enterprise Linux (RHEL) 7.2 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.2 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. ## **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. #### **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### Example The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -11 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running '-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running | - 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Recommended Settings** The RHEL 7.2 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: ``` touch /etc/multipath.conf ``` The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file. ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <Devid> with the WWID string of the device you want to exclude. #### Example In this example, we are going to determine the WWID of a device and add to the multipath.conf file. #### Steps 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwid to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |----------------------|---| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | Parameter | Setting | |----------------------------|-----------| | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path checker readsector0 no path retry fail devices { device { vendor "NETAPP" product "LUN.*" no path retry queue path_checker tur } ``` # **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. #### Known issues There are no known issues for the RHEL 7.2 with ONTAP release. # **Use Red Hat Enterprise Linux 7.1 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.1 with ONTAP as the target. # Install the Linux Unified Host Utilities The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. # What you'll need If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp linux unified host utilities-7-1.x86 64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. ## **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. #### Example In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` ## Example output: | controller(7mode/E-Se
vserver(cDOT/FlashRay
Product | | device
filename | host
adapter | protocol | lun
size |
---|----------------|--------------------|-----------------|----------|-------------| | data_vserver | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | data_vserver | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | data_vserver | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | data_vserver
120.0g cDOT | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | # **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. ## **Steps** - 1. Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. 4. Reboot the host to verify that the boot is successful. # Multipathing For Red Hat Enterprise Linux (RHEL) 7.1 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.1 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. # **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: ``` # multipath -11 3600a09803831347657244e527766394e dm-5 NETAPP, LUN C-Mode size=80G features='4 queue if no path pg init retries 50 retain attached hw handle' hwhandler='1 alua' wp=rw `-+- policy='service-time 0' prio=50 status=active |- 11:0:7:1 sdfi 130:64 active ready running |- 11:0:9:1 sdiy 8:288 active ready running |- 11:0:10:1 sdml 69:464 active ready running |- 11:0:11:1 sdpt 131:304 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### **Example** The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -ll 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running `-+- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running |- 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Recommended Settings** The RHEL 7.1 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: ``` touch /etc/multipath.conf ``` The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file. ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. # **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. ## **Steps** 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the WWID to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |------------------|------------| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | Parameter | Setting | |----------------------------|---| | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path checker readsector0 no path retry fail } devices { device { vendor "NETAPP" product "LUN.*" no path retry queue path_checker tur } ``` # **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. # **Known issues** The RHEL 7.1 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|--|-------------| | 799323 | Emulex FCoE
(OCe10102-FX-D) host
hang or path failures
observed during I/O with
storage failover operations | You might observe a host hang or path failures on Emulex 10G FCoE host (OCe10102-FX-D) during I/O with storage failover operations. In such scenarios, you might see the following message: "driver's buffer pool is empty, IO busied and SCSI Layer I/O Abort Request Status" | 1061755 | | 836875 | IP addresses are not always assigned during the boot of a RHEL 7.0 OS installed on an iSCSI multipath'd LUN | When you install the root(/) on a iSCSI multipath'd LUN, the IP address for the Ethernet interfaces are specified in the kernel command line so that the IP addresses are assigned before the iSCSI service starts. However, dracut cannot assign IP addresses to all the Ethernet ports during the boot, before the iSCSI service starts. This causes the iSCSI login to fail on interfaces without IP addresses. You will see the iSCSI service attempt to login numerous times, which will cause a delay in the OS boot time. | 1114966 | # **Use Red Hat Enterprise Linux 7.0 with ONTAP** You can use the ONTAP SAN host configuration settings to configure Red Hat Enterprise Linux 7.0 with ONTAP as the target. ## **Install the Linux Unified Host Utilities** The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need. NetApp strongly recommends installing the Linux Unified Host Utilities, but it is not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration. # What you'll need If you have a version of Linux Unified Host Utilities currently
installed you should upgrade it or, you should remove it and use the following steps to install the latest version. - 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host. - 2. Use the following command to install the software package: ``` rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64 ``` You can use the configuration settings provided in this document to configure cloud clients connected to Cloud Volumes ONTAP and Amazon FSx for ONTAP. ## **SAN Toolkit** The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups. ## **Example** In the following example, the sanlun lun show command returns LUN information. ``` # sanlun lun show all ``` # Example output: | <pre>controller(7mode/E-Ser vserver(cDOT/FlashRay) Product</pre> | | device
filename | host
adapter | protocol | lun
size | |--|----------------|--------------------|-----------------|----------|-------------| | data_vserver
120.0g cDOT | /vol/vol1/lun1 | /dev/sdb | host16 | FCP | | | data_vserver
120.0g cDOT | /vol/vol1/lun1 | /dev/sdc | host15 | FCP | | | data_vserver
120.0g cDOT | /vol/vol2/lun2 | /dev/sdd | host16 | FCP | | | data_vserver
120.0g cDOT | /vol/vol2/lun2 | /dev/sde | host15 | FCP | | # **SAN Booting** #### What you'll need If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported. #### **Steps** - 1. Map the SAN boot LUN to the host. - 2. Verify that multiple paths are available. Multiple paths become available after the host OS is up and running on the paths. 3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped. For information on how to enable the HBA BIOS, see your vendor-specific documentation. 4. Reboot the host to verify that the boot is successful. # Multipathing For Red Hat Enterprise Linux (RHEL) 7.0 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.0 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas. # **All SAN Array configurations** In All SAN Array (ASA) configurations, all paths to a given LUN are active and optimized. This improves performance by serving I/O operations through all paths at the same time. #### **Example** The following example displays the correct output for an ONTAP LUN: ``` # multipath -11 3600a09803831347657244e527766394e dm-5 NETAPP, LUN C-Mode size=80G features='4 queue if no path pg init retries 50 retain attached hw handle' hwhandler='1 alua' wp=rw `-+- policy='service-time 0' prio=50 status=active |- 11:0:7:1 sdfi 130:64 active ready running |- 11:0:9:1 active ready running sdiy 8:288 |- 11:0:10:1 sdml 69:464 active ready running |- 11:0:11:1 sdpt 131:304 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Non-ASA** configurations For non-ASA configurations, there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available. #### Example The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/Non-Optimized paths: ``` # multipath -ll 3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle' hwhandler='1 alua' wp=rw |-+- policy='service-time 0' prio=50 status=active | |- 11:0:1:0 sdj 8:144 active ready running | |- 11:0:2:0 sdr 65:16 active ready running --- policy='service-time 0' prio=10 status=enabled |- 11:0:0:0 sdb 8:i6 active ready running | - 12:0:0:0 sdz 65:144 active ready running ``` Do not use an excessive number of paths to a single LUN. No more than four paths should be required. More than eight paths might cause path issues during storage failures. # **Recommended Settings** The RHEL 7.0 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration. The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file by using the following command: ``` touch /etc/multipath.conf ``` The first time you create this file, you might need to enable and start the multipath services: ``` # systemctl enable multipathd # systemctl start multipathd ``` - There is no requirement to add anything directly to the multipath.conf file, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. - To exclude unwanted devices, add the following syntax to the multipath.conf file . ``` blacklist { wwid <DevId> devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` Replace the <DevId> with the WWID string of the device you want to exclude. #### **Example** In this example, we are going to determine the WWID of a device and add to the multipath.conf file. ## **Steps** 1. Run the following command to determine the WWID: ``` # /lib/udev/scsi_id -gud /dev/sda 360030057024d0730239134810c0cb833 ``` sda is the local SCSI disk that we need to add it to the blacklist. 2. Add the wwid to the blacklist stanza in /etc/multipath.conf: ``` blacklist { wwid 360030057024d0730239134810c0cb833 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*" devnode "^hd[a-z]" devnode "^cciss.*" } ``` You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that might be overriding the default settings. The following table demonstrates the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in the multipath.conf file that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs might not work as expected. These defaults should only be overridden in consultation with NetApp and/or an OS vendor and only when the impact is fully understood. | Parameter | Setting | |------------------|------------| | detect_prio | yes | | dev_loss_tmo | "infinity" | | failback | immediate | | fast_io_fail_tmo | 5 | | Parameter | Setting | |----------------------------|---| | features | "3 queue_if_no_path pg_init_retries 50" | | flush_on_last_del | "yes" | | hardware_handler | "0" | | no_path_retry | queue | | path_checker | "tur" | | path_grouping_policy | "group_by_prio" | | path_selector | "service-time 0" | | polling_interval | 5 | | prio | "ontap" | | product | LUN.* | | retain_attached_hw_handler | yes | | rr_weight | "uniform" | | user_friendly_names | no | | vendor | NETAPP | The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza. ``` defaults { path checker readsector0 no path retry fail } devices { device { vendor "NETAPP" product "LUN.*" no path retry queue path_checker tur } ``` # **KVM** settings You can use the recommended settings to configure Kernel-based Virtual Machine (KVM) as well. There are no changes required to configure KVM as the LUN is mapped to the hypervisor. # Known issues The RHEL 7.0 with ONTAP release has the following known issues: | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|---|-------------| | 844417 | Emulex 16G FC (LPe16002B-M6) host crashes during I/O with storage failover operations | You might observe a 16G FC Emulex (LPe16002B-M6) host crash during I/O with storage failover operations. | 1131393 | | 811587 | Emulex 16G FC (LPe16002B-M6) host crashes during I/O with storage failover operations | You might observe a 16G FC Emulex (LPe16002B-M6) host crash during I/O with storage failover operations. | 1079735 | | 803071 | Emulex 16G FC (LPe16002B-M6) host crashes during I/O with storage failover operations | You might observe a 16G FC Emulex (LPe16002B-M6) host crash during I/O with storage failover operations. | 1067895 | | 820163 | QLogic host hang or path failures observed during I/O with storage failover operations | You might observe a host hang or path failures on QLogic host during I/O with storage failover operations. In such scenarios, you might see the following message: "Mailbox cmd timeout
occurred, cmd=0x54, mb[0]=0x54 and Firmware dump saved to temp buffer" messages which leads to host hung/path failure. | 1090378 | | 799323 | Emulex FCoE (OCe10102-FX-D) host hang or path failures observed during I/O with storage failover operations | You might observe a host hang or path failures on Emulex 10G FCoE host (OCe10102-FX-D) during I/O with storage failover operations. In such scenarios, you might see the following message: "driver's buffer pool is empty, IO busied and SCSI Layer I/O Abort Request Status" messages which leads to host hung/path failures. | 1061755 | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|--|--|-------------| | 849212 | Emulex 16G FC (LPe16002B-M6) host hang or path failures are observed during I/O with storage failover operations | You might observe a host hang or path failures on Emulex 16G FC (LPe16002B-M6) host during I/O with storage failover operations. In such scenarios, you might see the following message: "RSCN timeout Data and iotag x1301 is out of range: max iotag" messages which leads to host hung/path failures. | 1109274 | | 836800 | Anaconda displays an iSCSI login failure message although logins are successful during RHEL 7.0 OS installation | When you install the root(/) on a iSCSI multipath'd LUN, the IP address for the Ethernet interfaces are specified in the kernel command line so that the IP addresses are assigned before the iSCSI service starts. However, dracut cannot assign IP addresses to all the Ethernet ports during the boot, before the iSCSI service starts. This causes the iSCSI login to fail on interfaces without IP addresses. You will see the iSCSI service attempt to login numerous times, which will cause a delay in the OS boot time. | 1114966 | | NetApp Bug ID | Title | Description | Bugzilla ID | |---------------|---|---|-------------| | 836875 | IP addresses are not always assigned during the boot of a RHEL 7.0 OS installed on an iSCSI multipath'd LUN | When you are installing RHEL 7.0, the anaconda installation screen displays that iSCSI login to multiple target IPs have failed though the iSCSI logins are successful. Anaconda displays following error message: "Node Login Failed" You will observe this error only when you select multiple target IPs for iSCSI login. You can continue the OS installation by clicking the "ok" button. This bug does not hamper either the iSCSI or the RHEL 7.0 OS installation. | 1114820 | | 836657 | Anaconda does not add
bootdev argument in
kernel cmd line to set IP
address for RHEL 7.0 OS
installed on iSCSI
multipath'd LUN | Anaconda does not add a bootdev argument in the kernel command line where you set the IPv4 address during the RHEL 7.0 OS installation on an iSCSI multipath'd LUN. This prevents assigning of IP addresses to any of the Ethernet interfaces that were configured to establish iSCSI sessions with the storage subsystem during the RHEL 7.0 boot. Since iSCSI sessions are not established, the root LUN is not discovered when the OS boots and hence the OS boot fails. | 1114464 | ## Copyright information Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007). Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014). #### **Trademark information** NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.