Python code samples
ONTAP Select

NetApp
August 01, 2025

This PDF was generated from https://docs.netapp.com/us-en/ontap-select-
9131/reference_api_script_cc.html on August 01, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Python code samples

Script to create a cluster

JSON for script to create a cluster
Single-node cluster on ESXi
Single-node cluster on ESXi using vCenter
Single-node cluster on KVM

Script to add a node license

Script to delete a cluster

Common support module

Script to resize cluster nodes

0 00O =

10
11
13
16
18
23

Python code samples

Script to create a cluster

You can use the following script to create a cluster based on parameters defined within
the script and a JSON input file.

O O J o U1 > W N =

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

#!/usr/bin/env python
et N
#

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of
merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

#
ittt
import traceback

import argparse

import json

import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):

""" Add credentials for the vcenter if present in the config """
log debug trace ()

vcenter = config.get ('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter

['"hostname']) :

35 log info("Registering vcenter {} credentials".format (vcenter
["hostname']))

36 data = {k: vcenter[k] for k in ['hostname', 'username',
'password']}

37 data['type'] = "vcenter"

38 deploy.post ('/security/credentials', data)

39

40

41 def add standalone host_ credentials(deploy, config):

42 """ Add credentials for standalone hosts if present in the config.

43 Does nothing if the host credential already exists on the
Deploy.

44 e

45 log debug trace ()

46

477 hosts = config.get ('hosts', [1])

48 for host in hosts:

49 # The presense of the 'password' will be used only for

standalone hosts.

50 # If this host is managed by a vcenter, it should not have a
host 'password' in the json.

51 if 'password' in host and not deploy.resource exists
('/security/credentials',

52
'hostname', host['name']):

53 log info("Registering host {} credentials".format (host
['name']))

54 data = {'hostname': host['name'], 'type': 'host',

55 'username': host['username'], 'password': host
['password'] }

56 deploy.post ('/security/credentials', data)

57

58

59 def register unkown hosts (deploy, config):

60 '''" Registers all hosts with the deploy server.

61 The host details are read from the cluster config json file.

62

63 This method will skip any hosts that are already registered.

64 This method will exit the script if no hosts are found in the
config.

65 e

06 log _debug trace ()

67

68 data = {"hosts": []}

69 if 'hosts' not in config or not config['hosts']:

70 log and exit ("The cluster config requires at least 1 entry in

the 'hosts' list got {}".format (config))

71

72 missing host cnt = 0

73 for host in config['hosts']:

74 if not deploy.resource exists('/hosts', 'name', host['name']):
75 missing host cnt += 1

76 host config = {"name": host['name'], "hypervisor type":
host['type']}

77 if 'mgmt server' in host:

78 host config["management server"] = host['mgmt server']
79 log info(

80 "Registering from vcenter {mgmt server}".format (
**host))

81

82 if 'password' in host and 'user' in host:

83 host config['credential'] = {

84 "password": host['password'], "username": host
["user']}

85

86 log info("Registering {type} host {name}".format (**host))
87 data["hosts"] .append (host config)

88

89 # only post /hosts if some missing hosts were found

90 if missing host cnt:

91 deploy.post ('/hosts', data, wait for job=True)

92

93

94 def add cluster attributes (deploy, config):

95 ''' POST a new cluster with all needed attribute values.

96 Returns the cluster id of the new config

97 v

98 log _debug trace ()

9%
100 cluster config = config['cluster']
101 cluster id = deploy.find resource('/clusters', 'name',

cluster config['name'])

102
103 if not cluster id:
104 log info("Creating cluster config named {name}".format (

**cluster config))

105

106 # Filter to only the valid attributes, ignores anything else
in the json

107 data = {k: cluster config[k] for k in [

108 'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns _info', 'ntp servers']}

109
110
111
112
113
114

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

137
138
139
140
141
142

143
144

145
146
147
148

num nodes = len(config['nodes'])
log info("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?node count={}"'.format
(num nodes), data)
cluster id = resp.headers.get ('Location') .split ('/") [-1]
return cluster id
def get node ids(deploy, cluster id):
''"" Get the the ids of the nodes in a cluster. Returns a list of
node ids.'"''
log debug trace ()
response = deploy.get('/clusters/{}/nodes'.format (cluster id))
node ids = [node['id'] for node in response.json().get('records')]
return node ids
def add node_attributes(deploy, cluster id, node id, node):

''' Set all the needed properties on a node '''
log debug trace ()

log info("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number',
'instance type',
'is storage efficiency enabled'] if k
in node}
Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', nodel
'host name'])
if not host id:
log and exit ("Host names must match in the 'hosts' array, and
the nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type

149

150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
175

176

177
178
179
180
181

182
183
184
185
186
187
188

is hw raid = not node['storage'].get('disks"') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log info("Node properties: {}".format (data))
deploy.patch('/clusters/{}/nodes/{}"'.format (cluster id, node id),
data)

def add node networks (deploy, cluster id, node_ id, node):
''" Set the network information for a node '''
log _debug trace ()

log info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records ('/clusters/{}/nodes'.format
(cluster id))
for network in node['networks']:
single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource
('/clusters/{}/nodes/{}/networks'.format (cluster id, node id),
'purpose', network]|
'purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:

data['vlan id'] = network['vlan']
deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format

(cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
''' Set all the storage information on a node '''
log debug trace ()

log info("Adding node '{}' storage properties".format (node id))

189
190
191

192
193

194
195
196
197
198

19¢
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224

225
226
2277
228

log info("Node storage: {}".format (node['storage']['pools']))

data = {'pool array': node['storage']['pools']} # use all the
Jjson properties
deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id,
node id), data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage'](['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,
node id), data)

def create cluster config(deploy, config):

''' Construct a cluster config in the deploy server using the
input Jjson data '''

log debug trace ()

cluster id = add cluster attributes (deploy, config)

node ids = get node ids(deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node attributes(deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node storage (deploy, cluster id, node id, node config)

return cluster id

def deploy cluster (deploy, cluster id, config):
''"'" Deploy the cluster config to create the ONTAP Select VMs. '''
log debug trace ()
log info("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster'
]['ontap admin password']}}
deploy.post ('/clusters/{}/deploy?inhibit rollback=true'.format
(cluster id),
data, wait for job=True)

def log debug trace():

229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2677
268
269
270
271
272

stack = traceback.extract stack()
parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' %

parent function)

def

def

def

log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

1og_and_¢xit(msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

configure logging (verbose) :
FORMAT = '$ (asctime)-15s:% (levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool’

) .setLevel (

def

def

logging.WARNING)

main (args) :
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add standalone host credentials(deploy, config)

register unkown hosts(deploy, config)

cluster id = create cluster config(deploy, config)

deploy cluster(deploy, cluster id, config)

parseArgs () :
parser = argparse.ArgumentParser (description='Uses the ONTAP

Select Deploy API to construct and deploy a cluster.')
273 parser.add argument ('-d', '--deploy', help='Hostname or IP address
of Deploy server')
274 parser.add argument ('-p', '--password', help='Admin password of

Deploy server')

275 parser.add argument ('-c', '--config file', help='Filename of the
cluster config')

276 parser.add argument ('-v', '--verbose', help='Display extra
debugging messages for seeing exact API calls and responses',

2777 action='store true', default=False)

278 return parser.parse_ args ()

279

280 if name == ' main ':

281 args = parseArgs ()

282 main (args)

JSON for script to create a cluster

When creating or deleting an ONTAP Select cluster using the Python code samples, you
must provide a JSON file as input to the script. You can copy and modify the appropriate
JSON sample based on your deployment plans.

Single-node cluster on ESXi

1 {

2 "hosts": [

3 {

4 "password": "mypasswordl",

5 "name": "host-1234",

6 "type": "ESX",

7 "username": "admin"

8 }

9 1y

10

11 "cluster": {
12 "dns info": {
13 "domains": ["labl.company-demo.com", "lab2.company-demo.com",
14 "lab3.company-demo.com", "lab4.company-demo.com"
15 I
16
17 "dns ips": ["10.206.80.135", "10.206.80.136"]
18 }y
19 "ontap image version": "9.7",
20 "gateway": "10.206.80.1",
21 "ip": "10.206.80.115",

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 1}

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"

br
"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlian": 1234
br
{
"name": "ontap-external",
"purpose": "data",
"vlan": null
by
{
"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
1y
"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": T[],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125
}
]
}
}

Single-node cluster on ESXi using vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
I
"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {

"password" : "mypassword2",

"hostname":"vcenter-1234",
"username" :"selectadmin"
bo
"nodes": [

{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" :"node-1",
"networks": [
{
"name" : "ONTAP-Management",
"purpose":"mgmt",
"vlan" :null
by
{

10

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk":[1],

"pools": [

{
"name": "storage-pool-1",

"capacity":5685190380748

Single-node cluster on KVM

 Beginning with ONTAP Select 9.10.1, you can no longer deploy a new cluster on the KVM

@ hypervisor.
* Beginning with ONTAP Select 9.11.1, all manageability functionality is no longer available for
existing KVM clusters and hosts, except for the take offline and delete functions.

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",
"username" :"root"
}
1,

"cluster": {

12

"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" : "CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",

"vlian":1234

by

{
"name": "ontap-external",
"purpose": "data",

"vlan": null

"name": "ontap-internal",
"purpose": "internal",

"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [

{

"name": "storage-pool-1",
"capacity": 4802666790125

Script to add a node license

You can use the following script to add a license for an ONTAP Select node.

©O© O J o U1 b» W DN -

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

#!/usr/bin/env python

e o S e e e o e e e s e e e e e e e e e e e e e o e e e e s e S S S S S S eI——
#

File: add license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of
merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

#

e s e s e s e s s s S s S S S S S e S S S S S e S S S S S ST O eSO S S S ES S oS
import argparse

import logging

import json

from deploy requests import DeployRequests

def post new_ license (deploy, license filename) :

log info('Posting a new license: {}'.format(license filename))

13

30 # Stream the file as multipart/form-data

31 deploy.post('/licensing/licenses', data={},

32 files={'"license file': open(license filename, 'rb')})

33

34 # Alternative if the NLF license data is converted to a string.

35 # with open(license filename, 'rb') as f:

36 # nlf data = f.read()

37 # r = deploy.post('/licensing/licenses', data={},

38 # files={'"'license file': (license filename,
nlf data)})

39

40

41 def put license(deploy, serial number, data, files):
42 log info('Adding license for serial number: {}'.format
(serial number))

43

44 deploy.put ('/licensing/licenses/{}'.format (serial number), data
=data, files=files)

45

46

477 def put used license(deploy, serial number, license filename,
ontap username, ontap password) :

48 '''" If the license is used by an 'online' cluster, a
username/password must be given. '''

49

50 data = {'ontap username': ontap username, 'ontap password':
ontap password}

51 files = {'license file': open(license filename, 'rb')}

52

53 put license(deploy, serial number, data, files)

54

55

56 def put free license(deploy, serial number, license filename) :
57 data = {}

58 files = {'license file': open(license filename, 'rb')}
59

60 put license (deploy, serial number, data, files)

61

62

63 def get_serial number from license(license filename) :

64 ''' Read the NLF file to extract the serial number '''
65 with open(license filename) as f:

66 data = json.load(f)

67

68 statusResp = data.get ('statusResp', {})

69 serialNumber = statusResp.get ('serialNumber')

70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97

98

9%
100

101

102
103

104
105
106

107

if not serialNumber:
log and exit ("The license file seems to be missing the
serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setlevel (logging.WARNING)

def main(args):
configure logging ()

serial number = get serial number from license(args.license)
deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this
serial-number

if deploy.find resource('/licensing/licenses', 'id',
serial number) :

If the license already exists in the Deploy server,
determine if its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license
to the node
if args.ontap username and args.ontap password:
put used license (deploy, serial number, args.license,
args.ontap username, args
.ontap password)
else:

15

108

109
110
111
112
113

114
115
116
117
118

119

120

121

122
123

124
125

126
127
128
129
130

print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available
license for later use

post new license(deploy, args.license)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP
Select Deploy API to add or update a new or used NLF license file.')

parser.add argument ('-d', '--deploy', required=True, type=str,
help='Hostname or IP address of ONTAP Select Deploy')
parser.add argument ('-p', '--password', required=True, type=str,

help='Admin password of Deploy server')
parser.add argument ('-1', '--license', required=True, type=str,
help='Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to
add the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password',6 type=str,
help="'ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_ args ()

if name == ' main ':
args = parseArgs ()
main (args)

Script to delete a cluster

You can use the following CLI script to delete an existing cluster.

16

© O J o U b w NN -

#

H H H H H H

! /usr/bin/env python
__
File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

import argparse
import json
import logging

from deploy requests import DeployRequests

def find cluster (deploy, cluster name):
return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state’'.format (
cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log info("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch('/clusters/{}'.format (cluster id), {
'availability': 'powered off'}, True)

def delete_cluster (deploy, cluster id):
log info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = '$ (asctime)-15s:% (levelname)s:% (name)s: % (message)s'

17

51
52

53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

73

74

75

76

17

78

79
80

logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setlLevel (logging.WARNING)

def main (args) :
configure logging/()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log info ("Found the cluster {} with id: {}.".format (config

['cluster']['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs|():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument ('-d', '--deploy', required=True, type=str,
help='Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str,
help='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Common support module

All of the Python scripts use a common Python class in a single module.

18

Sw N

#!/usr/bin/env python

File: deploy requests.py

©O© 0 J o U

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

#
(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of
merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy

path creation and header manipulations for simpler code.

def _ init_ (self, ip, admin_ password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:'")
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,

19

20

48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90

json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.
filter headers (response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.

filter headers (response), response.text)

self.exit on errors (response)
if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put (self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug ('PUT DATA:"')
response = requests.put (self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.
filter headers(response), response.text)

self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

91
92
93
94

95

96
97
98
9%
100
101

102

103
104
105
106
107
108
109
110

111
112
113
114

115
116
117
118
119

120
121
122

123
124
125
126
127
128

def

get(self, path):
""" Get a resource object from the specified path """
response = requests.get (self.base url + path, auth=self.auth,

verify=False)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.

filter headers(response), response.text)

def

.auth,

self.exit on errors (response)

return response

delete (self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self

verify=False)

self.logger.debug ('HEADERS: $s\nBODY: %s', self.

filter headers (response), response.text)

self.exit on errors (response)
if wait for job and response.status code == 202:
self.wait for job (response.json())
return response
def find resource(self, path, name, value):
'''" Returns the 'id' of the resource if it exists, otherwise
None '''
resource = None
response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))
if response.status_code == 200 and response.json() .get
("num records') >= 1:
resource = response.json().get('records') [0].get ('id")
return resource
def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or
None on error '''
resource = None
query opt = '?{}'.format (query) if query else ''
response = self.get('{path}{query}'.format (path=path, query
=query opt))
if response.status code == 200
return response.json().get ('num records')
return None
def resource exists(self, path, name, value):
return self.find resource(path, name, value) is not None

21

129

130 def wait_for job(self, response, poll timeout=120):

131 last modified = response['job']['last modified']

132 job id = response['job']['id"]

133

134 self.logger.info ('Event: ' + response['job']['message'])

135

136 while True:

137 response = self.get('/jobs/{}?fields=state,messages’

138 'poll timeout={}&last modified=>={}"
.format (

139 job id, poll timeout,
last modified))

140

141 job body = response.json().get ('record', {})

142

143 # Show interesting message updates

144 message = job body.get ('message', '")

145 self.logger.info('Event: ' + message)

146

147 # Refresh the last modified time for the poll loop

148 last modified = job_body.get ('last modified')

149

150 # Look for the final states

151 state = job body.get ('state', 'unknown')

152 if state in ['success', 'failure']:

153 if state == 'failure':

154 self.logger.error ('FAILED background job.\nJOB:
%s', Jjob body)

155 exit (1) # End the script if a failure occurs

156 break

157

158 def exit on errors(self, response):

159 if response.status_code >= 400:

160 self.logger.error ('FAILED request to URL: %$s\nHEADERS:
%$s\nRESPONSE BODY: %s',

161 response.request.url,

162 self.filter headers(response),

163 response.text)

164 response.raise for status() # Displays the response error,

and exits the script

165

166 @staticmethod

167 def filter headers (response):

168 ''' Returns a filtered set of the response headers '''

169 return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

Script to resize cluster nodes

You can use the following script to resize the nodes in an ONTAP Select cluster.

O 0 J o U1 b w DN

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31

32
33

#!/usr/bin/env python

o e e e e e e e e e e e e e e e e e I
#

File: resize nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of
merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

#

3 o e e e o e e e e e e e e e e e e e e e e o e e e e S S S S S = s S s
import argparse

import logging

import sys

from deploy requests import DeployRequests

def parse args():

""" Parses the arguments provided on the command line when
executing this
script and returns the resulting namespace. If all required
arguments
are not provided, an error message indicating the mismatch is
printed and
the script will exit.

mman

23

34 parser = argparse.ArgumentParser (description=(

35 'Uses the ONTAP Select Deploy API to resize the nodes in the
cluster.'

36 ' For example, you might have a small (4 CPU, 16GB RAM per
node) 2 node'

37 ' cluster and wish to resize the cluster to medium (8 CPU,
64GB RAM per'

38 ' node). This script will take in the cluster details and then
perform'

39 ' the operation and wait for it to complete.'’

40))

41 parser.add argument ('--deploy', required=True, help=(

42 'Hostname or IP of the ONTAP Select Deploy VM.'

43))

44 parser.add argument ('--deploy-password', required=True, help=(

45 'The password for the ONTAP Select Deploy admin user.'

46))

47 parser.add argument ('--cluster', required=True, help=(

48 '"Hostname or IP of the cluster management interface.'’

49))

50 parser.add argument ('--instance-type', required=True, help=(

51 'The desired instance size of the nodes after the operation is
complete.'

52))

53 parser.add argument ('--ontap-password', required=True, help=(

54 'The password for the ONTAP administrative user account.'

55))

56 parser.add argument ('--ontap-username', default='admin', help=(

57 'The username for the ONTAP administrative user account.

Default: admin.'

58))

59 parser.add argument ('--nodes', nargs='+', metavar='NODE NAME',
help=(

60 'A space separated list of node names for which the resize
operation'’

61 ' should be performed. The default is to apply the resize to
all nodes in'

62 ' the cluster. If a list of nodes is provided, it must be
provided in HA'

63 ' pairs. That is, in a 4 node cluster, nodes 1 and 2
(partners) must be'

64 ' resized in the same operation.'

65))

66 return parser.parse_ args ()

67

68

69
70
71
72

73
74
75

76
77
78
79
80
81
82
83

84
85
86

87
88
89

90
91
92
93
94
95

96
97
98
9%
100

101
102

103
104
105

def get cluster(deploy, parsed args):

mwwmn

Locate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get ('/clusters/%s?fields=nodes' % cluster id).
json () ['record']

def get request body(parsed args, cluster):

""" Build the request body """
changes = {'admin password': parsed args.ontap password}
if provided, use the list of nodes given, else use all the nodes
in the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in
parsed args.nodes]
changes|['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']}
for node in nodes]
return changes
def main() :
""" Set up the resize operation by gathering the necessary data
and then send
the request to the ONTAP Select Deploy server.
logging.basicConfig(
format='[%(asctime)s] [%$(levelname)5s] % (message)s', level
=logging.INFO,)
logging.getLogger ('requests.packages.urllib3"') .setLevel (logging
.WARNING)
parsed args = parse args()
deploy = DeployRequests (parsed args.deploy, parsed args

.deploy password)

25

106

107 cluster = get cluster(deploy, parsed args)

108 if not cluster:

109 deploy.logger.error (

110 '"Unable to find a cluster with a management IP of %s'

parsed args.cluster)

111 return 1

112

113 changes = get request body(parsed args, cluster)

114 deploy.patch('/clusters/%s' % cluster(['id'], changes,
wait for job=True)

115

116 if name == ' main ':

117 sys.exit (main())

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

27

http://www.netapp.com/TM

	Python code samples : ONTAP Select
	Table of Contents
	Python code samples
	Script to create a cluster
	JSON for script to create a cluster
	Single-node cluster on ESXi
	Single-node cluster on ESXi using vCenter
	Single-node cluster on KVM

	Script to add a node license
	Script to delete a cluster
	Common support module
	Script to resize cluster nodes

