
Automate with REST

ONTAP Select
NetApp
June 11, 2024

This PDF was generated from https://docs.netapp.com/us-en/ontap-select-9141/concept_api_rest.html on
June 11, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Automate with REST . 1

Concepts . 1

Access with a browser . 8

Workflow processes . 10

Access with Python . 17

Python code samples. 19

Automate with REST

Concepts

REST web services foundation

Representational State Transfer (REST) is a style for creating distributed web

applications. When applied to the design of a web services API, it establishes a set of

technologies and best practices for exposing server-based resources and managing their

states. It uses mainstream protocols and standards to provide a flexible foundation for

deploying and managing ONTAP Select clusters.

Architecture and classic constraints

REST was formally articulated by Roy Fielding in his PhD dissertation at UC Irvine in 2000. It defines an

architectural style through a set of constraints, which collectively have improves web-based applications and

the underlying protocols. The constraints establish a RESTful web services application based on a client/server

architecture using a stateless communication protocol.

Resources and state representation

Resources are the basic components of a web-based system. When creating a REST web services

application, early design tasks include:

• Identification of system or server-based resources

Every system uses and maintains resources. A resource can be a file, business transaction, process, or

administrative entity. One of the first tasks in designing an application based on REST web services is to

identify the resources.

• Definition of resource states and associated state operations

Resources are always in one of a finite number of states. The states, as well as the associated operations

used to affect the state changes, must be clearly defined.

Messages are exchanged between the client and server to access and change the state of the resources

according to the generic CRUD (Create, Read, Update, and Delete) model.

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme. The

endpoints where the resources are located and identified use a Uniform Resource Identifier (URI). The URI

provides a general framework for creating a unique name for each resource in the network. The Uniform

Resource Locator (URL) is a type of URI used with web services to identify and access resources. Resources

are typically exposed in a hierarchical structure similar to a file directory.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the protocol used by the web services client and server to exchange

request and response messages about the resources. As part of designing a web services application, HTTP

verbs (such as GET and POST) are mapped to the resources and corresponding state management actions.

HTTP is stateless. Therefore, to associate a set of related requests and responses under one transaction,

additional information must be included in the HTTP headers carried with the request/response data flows.

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

JSON formatting

While information can be structured and transferred between a client and server in several ways, the most

popular option (and the one used with the Deploy REST API) is JavaScript Object Notation (JSON). JSON is

an industry standard for representing simple data structures in plain text and is used to transfer state

information describing the resources.

How to access the Deploy API

Because of the inherent flexibility of REST web services, the ONTAP Select Deploy API

can be accessed in several different ways.

Deploy utility native user interface

The primary way you access the API is through the ONTAP Select Deploy web user interface. The browser

makes calls to the API and reformats the data according to the design of the user interface. You also access

the API through the Deploy utility command line interface.

ONTAP Select Deploy online documentation page

The ONTAP Select Deploy online documentation page provides an alternative access point when using a

browser. In addition to providing a way to execute individual API calls directly, the page also includes a detailed

description of the API, including input parameters and other options for each call. The API calls are organized

into several different functional areas or categories.

Custom program

You can access the Deploy API using any of several different programming languages and tools. Popular

choices include Python, Java, and cURL. A program, script, or tool that uses the API acts as a REST web

services client. Using a programming language allows you to better understand the API and provides an

opportunity to automate the ONTAP Select deployments.

Deploy API versioning

The REST API included with ONTAP Select Deploy is assigned a version number. The

API version number is independent of the Deploy release number. You should be aware

of the API version included with your release of Deploy and how this might affect your use

of the API.

The current release of the Deploy administration utility includes version 3 of the REST API. Past releases of

the Deploy utility include the following API versions:

Deploy 2.8 and later

ONTAP Select Deploy 2.8 and all later releases include version 3 of the REST API.

Deploy 2.7.2 and earlier

ONTAP Select Deploy 2.7.2 and all earlier releases include version 2 of the REST API.

Versions 2 and 3 of the REST API are not compatible. If you upgrade to Deploy 2.8 or later from

an earlier release that includes version 2 of the API, you must update any existing code that

directly accesses the API as well as any scripts using the command line interface.

2

Basic operational characteristics

While REST establishes a common set of technologies and best practices, the details of

each API can vary based on the design choices. You should be aware of the details and

operational characteristics of the ONTAP Select Deploy API before using the API.

Hypervisor host versus ONTAP Select node

A hypervisor host is the core hardware platform that hosts an ONTAP Select virtual machine. When an ONTAP

Select virtual machine is deployed and active on a hypervisor host, the virtual machine is considered to be an

ONTAP Select node. With version 3 of the Deploy REST API, the host and node objects are separate and

distinct. This allows a one-to-many relationship, where one or more ONTAP Select nodes can run on the same

hypervisor host.

Object identifiers

Each resource instance or object is assigned a unique identifier when it is created. These identifiers are

globally unique within a specific instance of ONTAP Select Deploy. After issuing an API call that creates a new

object instance, the associated id value is returned to the caller in the location header of the HTTP

response. You can extract the identifier and use it on subsequent calls when referring to the resource instance.

The content and internal structure of the object identifiers can change at any time. You should

only use the identifiers on the applicable API calls as needed when referring to the associated

objects.

Request identifiers

Every successful API request is assigned a unique identifier. The identifier is returned in the request-id

header of the associated HTTP response. You can use a request identifier to collectively refer to the activities

of a single specific API request-response transaction. For example, you can retrieve all the event messages for

a transaction based on the request id.

Synchronous and asynchronous calls

There are two primary ways that a server performs an HTTP request received from a client:

• Synchronous

The server performs the request immediately and responds with a status code of 200, 201, or 204.

• Asynchronous

The server accepts the request and responds with a status code of 202. This indicates the server has

accepted the client request and started a background task to complete the request. Final success or failure

is not immediately available and must be determined through additional API calls.

Confirm the completion of a long-running job

Generally, any operation that can take a long time to complete is processed asynchronously using a

background task at the server. With the Deploy REST API, every background task is anchored by a

Job object which tracks the task and provides information, such as the current state. A Job object,

including its unique identifier, is returned in the HTTP response after a background task is created.

You can query the Job object directly to determine the success or failure of the associated API call.

Refer to asynchronous processing using the Job object for additional information.

3

In addition to using the Job object, there are other ways you can determine the success or failure of a

request, including:

• Event messages

You can retrieve all the event messages associated with a specific API call using the request id returned

with the original response. The event messages typically contain an indication of success or failure, and

can also be useful when debugging an error condition.

• Resource state or status

Several of the resources maintain a state or status value which you can query to indirectly determine the

success or failure of a request.

Security

The Deploy API uses the following security technologies:

• Transport Layer Security

All traffic sent over the network between the Deploy server and client is encrypted through TLS. Using the

HTTP protocol over an unencrypted channel is not supported. TLS version 1.2 is supported.

• HTTP authentication

Basic authentication is used for every API transaction. An HTTP header, which includes the user name and

password in a base64 string, is added to every request.

Request and response API transaction

Every Deploy API call is performed as an HTTP request to the Deploy virtual machine

which generates an associated response to the client. This request/response pair is

considered an API transaction. Before using the Deploy API, you should be familiar with

the input variables available to control a request and the contents of the response output.

Input variables controlling an API request

You can control how an API call is processed through parameters set in the HTTP request.

Request headers

You must include several headers in the HTTP request, including:

• content-type

If the request body includes JSON, this header must be set to application/json.

• accept

If the response body will include JSON, this header must be set to application/json.

• authorization

Basic authentication must be set with the user name and password encoded in a base64 string.

Request body

The content of the request body varies depending on the specific call. The HTTP request body consists of one

of the following:

• JSON object with input variables (such as, the name of a new cluster)

4

• Empty

Filter objects

When issuing an API call that uses GET, you can limit or filter the returned objects based on any attribute. For

example, you can specify an exact value to match:

<field>=<query value>

In addition to an exact match, there are other operators available to return a set of objects over a range of

values. ONTAP Select supports the filtering operators shown below.

Operator Description

= Equal to

< Less than

> Greater than

⇐ Less than or equal to

>= Greater than or equal to

Or

! Not equal to

* Greedy wildcard

You can also return a set of objects based on whether a specific field is set or not set by using the null keyword

or its negation (!null) as part of the query.

Selecting object fields

By default, issuing an API call using GET returns only the attributes that uniquely identify the object or objects.

This minimum set of fields acts as a key for each object and varies based on the object type. You can select

additional object properties using the fields query parameter in the following ways:

• Inexpensive fields

Specify fields=* to retrieve the object fields that are maintained in local server memory or require little

processing to access.

• Expensive fields

Specify fields=** to retrieve all the object fields, including those requiring additional server processing

to access.

• Custom field selection

Use fields=FIELDNAME to specify the exact field you want. When requesting multiple fields, the values

must be separated using commas without spaces.

As a best practice, you should always identify the specific fields you want. You should only

retrieve the set of inexpensive or expensive fields when needed. The inexpensive and

expensive classification is determined by NetApp based on internal performance analysis. The

classification for a given field can change at any time.

5

Sort objects in the output set

The records in a resource collection are returned in the default order defined by the object. You can change the

order using the order_by query parameter with the field name and sort direction as follows:

order_by=<field name> asc|desc

For example, you can sort the type field in descending order followed by id in ascending order:

order_by=type desc, id asc

When including multiple parameters, you must separate the fields with a comma.

Pagination

When issuing an API call using GET to access a collection of objects of the same type, all matching objects are

returned by default. If needed, you can limit the number of records returned using the max_records query

parameter with the request. For example:

max_records=20

If needed, you can combine this parameter with other query parameters to narrow the result set. For example,

the following returns up to 10 system events generated after the specified time:

time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

You can issue multiple requests to page through the events (or any object type). Each subsequent API call

should use a new time value based on the latest event in the last result set.

Interpret an API response

Each API request generates a response back to the client. You can examine the response to determine

whether it was successful and retrieve additional data as needed.

HTTP status code

The HTTP status codes used by the Deploy REST API are described below.

Code Meaning Description

200 OK Indicates success for calls that do not create a new object.

201 Created An object is successfully created; the location response header

includes the unique identifier for the object.

202 Accepted A long-running background job has been started to perform the

request, but the operation has not completed yet.

400 Bad request The request input is not recognized or is inappropriate.

403 Forbidden Access is denied due to an authorization error.

404 Not found The resource referred to in the request does not exist.

405 Method not allowed The HTTP verb in the request is not supported for the resource.

409 Conflict An attempt to create an object failed because the object already exists.

500 Internal error A general internal error occurred at the server.

501 Not implemented The URI is known but is not capable of performing the request.

6

Response headers

Several headers are included in the HTTP response generated by the Deploy server, including:

• request-id

Every successful API request is assigned a unique request identifier.

• location

When an object is created, the location header includes the complete URL to the new object including the

unique object identifier.

Response body

The content of the response associated with an API request differs based on the object, processing type, and

the success or failure of the request. The response body is rendered in JSON.

• Single object

A single object can be returned with a set of fields based on the request. For example, you can use GET to

retrieve selected properties of a cluster using the unique identifier.

• Multiple objects

Multiple objects from a resource collection can be returned. In all cases, there is a consistent format used,

with num_records indicating the number of records and records containing an array of the object

instances. For example, you can retrieve all the nodes defined in a specific cluster.

• Job object

If an API call is processed asynchronously, a Job object is returned which anchors the background task.

For example, the POST request used to deploy a cluster is processed asynchronously and returns a Job

object.

• Error object

If an error occurs, an Error object is always returned. For example, you will receive an error when

attempting to create a cluster with a name that already exists.

• Empty

In certain cases, no data is returned and the response body is empty. For example, the response body is

empty after using DELETE to delete an existing host.

Asynchronous processing using the job object

Some of the Deploy API calls, particularly those that create or modify a resource, can

take longer to complete than other calls. ONTAP Select Deploy processes these long-

running requests asynchronously.

Asynchronous requests described using Job object

After making an API call that runs asynchronously, the HTTP response code 202 indicates the request has

been successfully validated and accepted, but not yet completed. The request is processed as a background

task which continues to run after the initial HTTP response to the client. The response includes the Job object

anchoring the request, including its unique identifier.

You should refer to the ONTAP Select Deploy online documentation page to determine which

API calls operate asynchronously.

7

Query the Job object associated with an API request

The Job object returned in the HTTP response contains several properties. You can query the state property to

determine if the request completed successfully. A Job object can be in one of the following states:

• Queued

• Running

• Success

• Failure

There are two techniques you can use when polling a Job object to detect a terminal state for the task, either

success or failure:

• Standard polling request

Current Job state is returned immediately

• Long polling request

Job state is returned only when one of the following occurs:

◦ State has changed more recently than the date-time value provided on the poll request

◦ Timeout value has expired (1 to 120 seconds)

Standard polling and long polling use the same API call to query a Job object. However, a long polling request

includes two query parameters: poll_timeout and last_modified.

You should always use long polling to reduce the workload on the Deploy virtual machine.

General procedure for issuing an asynchronous request

You can use the following high-level procedure to complete an asynchronous API call:

1. Issue the asynchronous API call.

2. Receive an HTTP response 202 indicating successful acceptance of the request.

3. Extract the identifier for the Job object from the response body.

4. Within a loop, perform the following in each cycle:

a. Get the current state of the Job with a long-poll request

b. If the Job is in a non-terminal state (queued, running), perform loop again.

5. Stop when the Job reaches a terminal state (success, failure).

Access with a browser

Before you access the API with a browser

There are several things you should be aware of before using the Deploy online

documentation page.

Deployment plan

If you intend to issue API calls as part of performing specific deployment or administrative tasks, you should

8

consider creating a deployment plan. These plans can be formal or informal, and generally contain your goals

and the API calls to be used. Refer to Workflow processes using the Deploy REST API for more information.

JSON examples and parameter definitions

Each API call is described on the documentation page using a consistent format. The content includes

implementation notes, query parameters, and HTTP status codes. In addition, you can display details about

the JSON used with the API requests and responses as follows:

• Example Value

If you click Example Value on an API call, a typical JSON structure for the call is displayed. You can modify

the example as needed and use it as input for your request.

• Model

If you click Model, a complete list of the JSON parameters is displayed, with a description for each

parameter.

Caution when issuing API calls

All API operations you perform using the Deploy documentation page are live operations. You should be

careful not to mistakenly create, update, or delete configuration or other data.

Access the Deploy documentation page

You must access the ONTAP Select Deploy online documentation page to display the API

documentation, as well as to manually issue an API call.

Before you begin

You must have the following:

• IP address or domain name of the ONTAP Select Deploy virtual machine

• User name and password for the administrator

Steps

1. Type the URL in your browser and press Enter:

https://<ip_address>/api/ui

2. Sign in using the administrator user name and password.

Result

The Deploy documentation web page is displayed with the calls organized by category at the bottom of the

page.

Understand and execute an API call

The details of all the API calls are documented and displayed using a common format on

the ONTAP Select Deploy online documentation web page. By understanding a single

API call, you can access and interpret the details of all the API calls.

Before you begin

You must be signed in to the ONTAP Select Deploy online documentation web page. You must have the

9

unique identifier assigned to your ONTAP Select cluster when the cluster was created.

About this task

You can retrieve the configuration information describing an ONTAP Select cluster using its unique identifier. In

this example, all fields classified as inexpensive are returned. However, as a best practice you should request

only the specific fields that are needed.

Steps

1. On the main page, scroll to the bottom and click Cluster.

2. Click GET /clusters/{cluster_id} to display the details of the API call used to return information about an

ONTAP Select cluster.

Workflow processes

Before you use the API workflows

You should prepare to review and use the workflow processes.

Understand the API calls used in the workflows

The ONTAP Select online documentation page includes the details of every REST API call. Rather than repeat

those details here, each API call used in the workflow samples includes only the information you need to locate

the call on the documentation page. After locating a specific API call, you can review the complete details of

the call, including the input parameters, output formats, HTTP status codes, and request processing type.

The following information is included for each API call within a workflow to help locate the call on the

documentation page:

• Category

The API calls are organized on the documentation page into functionally related areas or categories. To

locate a specific API call, scroll to the bottom of the page and click the applicable API category.

• HTTP verb

The HTTP verb identifies the action performed on a resource. Each API call is executed through a single

HTTP verb.

• Path

The path determines the specific resource which the action applies to as part of performing a call. The path

string is appended to the core URL to form the complete URL identifying the resource.

Construct a URL to directly access the REST API

In addition to the ONTAP Select documentation page, you can also access the Deploy REST API directly

through a programming language such as Python. In this case, the core URL is slightly different than the URL

used when accessing the online documentation page. When accessing the API directly, you must append /api

to the domain and port string. For example:

http://deploy.mycompany.com/api

Workflow 1: Create a single-node evaluation cluster on ESXi

You can deploy a single-node ONTAP Select cluster on a VMware ESXi host managed by

vCenter. The cluster is created with an evaluation license.

10

The cluster creation workflow differs in the following situations:

• The ESXi host is not managed by vCenter (standalone host)

• Multiple nodes or hosts are used within the cluster

• Cluster is deployed in a production environment with a purchased license

• The KVM hypervisor is used instead of VMware ESXi

◦ Beginning with ONTAP Select 9.10.1, you can no longer deploy a new cluster on the

KVM hypervisor.

◦ Beginning with ONTAP Select 9.11.1, all manageability functionality is no longer

available for existing KVM clusters and hosts, except for the take offline and delete

functions.

1. Register vCenter server credential

When deploying to an ESXi host managed by a vCenter server, you must add a credential before registering

the host. The Deploy administration utility can then use the credential to authenticate to vCenter.

Category HTTP verb Path

Deploy POST /security/credentials

Curl

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step01 'https://10.21.191.150/api/security/credentials'

JSON input (step01)

{

 "hostname": "vcenter.company-demo.com",

 "type": "vcenter",

 "username": "misteradmin@vsphere.local",

 "password": "mypassword"

}

Processing type

Asynchronous

Output

• Credential ID in the location response header

• Job object

2. Register a hypervisor host

You must add a hypervisor host where the virtual machine containing the ONTAP Select node will run.

11

Category HTTP verb Path

Cluster POST /hosts

Curl

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step02 'https://10.21.191.150/api/hosts'

JSON input (step02)

{

 "hosts": [

 {

 "hypervisor_type": "ESX",

 "management_server": "vcenter.company-demo.com",

 "name": "esx1.company-demo.com"

 }

]

}

Processing type

Asynchronous

Output

• Host ID in the location response header

• Job object

3. Create a cluster

When you create an ONTAP Select cluster, the basic cluster configuration is registered and the node names

are automatically generated by Deploy.

Category HTTP verb Path

Cluster POST /clusters

Curl

The query parameter node_count should be set to 1 for a single-node cluster.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03 'https://10.21.191.150/api/clusters? node_count=1'

JSON input (step03)

12

{

 "name": "my_cluster"

}

Processing type

Synchronous

Output

• Cluster ID in the location response header

4. Configure the cluster

There are several attributes you must provide as part of configuring the cluster.

Category HTTP verb Path

Cluster PATCH /clusters/{cluster_id}

Curl

You must provide the cluster ID.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

JSON input (step04)

{

 "dns_info": {

 "domains": ["lab1.company-demo.com"],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.5",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "netmask": "255.255.255.192",

 "ntp_servers": {"10.206.80.183"}

}

Processing type

Synchronous

Output

None

13

5. Retrieve the node name

The Deploy administration utility automatically generates the node identifiers and names when a cluster is

created. Before you can configure a node, you must retrieve the assigned ID.

Category HTTP verb Path

Cluster GET /clusters/{cluster_id}/nodes

Curl

You must provide the cluster ID.

curl -iX GET -u admin:<password> -k

'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id,name'

Processing type

Synchronous

Output

• Array records each describing a single node with the unique ID and name

6. Configure the nodes

You must provide the basic configuration for the node, which is the first of three API calls used to configure a

node.

Category HTTP verb Path

Cluster PATH /clusters/{cluster_id}/nodes/{node_id}

Curl

You must provide the cluster ID and node ID.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

JSON input (step06)

You must provide the host ID where the ONTAP Select node will run.

{

 "host": {

 "id": "HOSTID"

 },

 "instance_type": "small",

 "ip": "10.206.80.101",

 "passthrough_disks": false

}

14

Processing type

Synchronous

Output

None

7. Retrieve the node networks

You must identify the data and management networks used by the node in the single-node cluster. The internal

network is not used with a single-node cluster.

Category HTTP verb Path

Cluster GET /clusters/{cluster_id}/nodes/{node_id}/networks

Curl

You must provide the cluster ID and node ID.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/

clusters/CLUSTERID/nodes/NODEID/networks?fields=id,purpose'

Processing type

Synchronous

Output

• Array of two records each describing a single network for the node, including the unique ID and purpose

8. Configure the node networking

You must configure the data and management networks. The internal network is not used with a single-node

cluster.

Issue the following API call two times, once for each network.

Category HTTP verb Path

Cluster PATCH /clusters/{cluster_id}/nodes/{node_id}/networks/{network_id}

Curl

You must provide the cluster ID, node ID, and network ID.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step08 'https://10.21.191.150/api/clusters/

CLUSTERID/nodes/NODEID/networks/NETWORKID'

JSON input (step08)

You need to provide the name of the network.

15

{

 "name": "sDOT_Network"

}

Processing type

Synchronous

Output

None

9. Configure the node storage pool

The final step in configuring a node is to attach a storage pool. You can determine the available storage pools

through the vSphere web client, or optionally through the Deploy REST API.

Category HTTP verb Path

Cluster PATCH /clusters/{cluster_id}/nodes/{node_id}/networks/{network_id}

Curl

You must provide the cluster ID, node ID, and network ID.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

JSON input (step09)

The pool capacity is 2 TB.

{

 "pool_array": [

 {

 "name": "sDOT-01",

 "capacity": 2147483648000

 }

]

}

Processing type

Synchronous

Output

None

16

10. Deploy the cluster

After the cluster and node have been configured, you can deploy the cluster.

Category HTTP verb Path

Cluster POST /clusters/{cluster_id}/deploy

Curl

You must provide the cluster ID.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step10 'https://10.21.191.150/api/clusters/CLUSTERID/deploy'

JSON input (step10)

You must provide the password for the ONTAP administrator account.

{

 "ontap_credentials": {

 "password": "mypassword"

 }

}

Processing type

Asynchronous

Output

• Job object

Access with Python

Before you access the API using Python

You must prepare the environment before running the sample Python scripts.

Before you run the Python scripts, you must make sure the environment is configured properly:

• The latest applicable version of Python2 must be installed.

The sample codes have been tested using Python2. They should also be portable to Python3, but have not

been tested for compatibility.

• The Requests and urllib3 libraries must be installed.

You can use pip or another Python management tool as appropriate for your environment.

• The client workstation where the scripts run must have network access to the ONTAP Select Deploy virtual

machine.

In addition, you must have the following information:

17

• IP address of the Deploy virtual machine

• User name and password of a Deploy administrator account

Understand the Python scripts

The sample Python scripts allow you to perform several different tasks. You should

understand the scripts before using them at a live Deploy instance.

Common design characteristics

The scripts have been designed with the following common characteristics:

• Execute from command line interface at a client machine

You can run the Python scripts from any properly configured client machine. See Before you begin for more

information.

• Accept CLI input parameters

Each script is controlled at the CLI through input parameters.

• Read input file

Each script reads an input file based on its purpose. When creating or deleting a cluster, you must provide

a JSON configuration file. When adding a node license, you must provide a valid license file.

• Use a common support module

The common support module deploy_requests.py contains a single class. It is imported and used by each

of the scripts.

Create a cluster

You can create an ONTAP Select cluster using the script cluster.py. Based on the CLI parameters and contents

of the JSON input file, you can modify the script to your deployment environment as follows:

• Beginning with ONTAP Select 9.10.1, you can no longer deploy a new cluster on the KVM

hypervisor.

• Beginning with ONTAP Select 9.11.1, all manageability functionality is no longer available for

existing KVM clusters and hosts, except for the take offline and delete functions.

• Hypervisor

You can deploy to ESXI or KVM (depending on the Deploy release). When deploying to ESXi, the

hypervisor can be managed by vCenter or can be a standalone host.

• Cluster size

You can deploy a single-node or multiple-node cluster.

• Evaluation or production license

You can deploy a cluster with an evaluation or purchased license for production.

The CLI input parameters for the script include:

• Host name or IP address of the Deploy server

• Password for the admin user account

• Name of the JSON configuration file

• Verbose flag for message output

18

Add a node license

If you choose to deploy a production cluster, you must add a license for each node using the script

add_license.py. You can add the license before or after you deploy the cluster.

The CLI input parameters for the script include:

• Host name or IP address of the Deploy server

• Password for the admin user account

• Name of the license file

• ONTAP user name with privileges to add the license

• Password for the ONTAP user

Delete a cluster

You can delete an existing ONTAP Select cluster using the script delete_cluster.py.

The CLI input parameters for the script include:

• Host name or IP address of the Deploy server

• Password for the admin user account

• Name of the JSON configuration file

Python code samples

Script to create a cluster

You can use the following script to create a cluster based on parameters defined within

the script and a JSON input file.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: cluster.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

 granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

19

 terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

 19

 20 import traceback

 21 import argparse

 22 import json

 23 import logging

 24

 25 from deploy_requests import DeployRequests

 26

 27

 28 def add_vcenter_credentials(deploy, config):

 29 """ Add credentials for the vcenter if present in the config """

 30 log_debug_trace()

 31

 32 vcenter = config.get('vcenter', None)

 33 if vcenter and not deploy.resource_exists('/security/credentials',

 34 'hostname', vcenter

['hostname']):

 35 log_info("Registering vcenter {} credentials".format(vcenter

['hostname']))

 36 data = {k: vcenter[k] for k in ['hostname', 'username',

'password']}

 37 data['type'] = "vcenter"

 38 deploy.post('/security/credentials', data)

 39

 40

 41 def add_standalone_host_credentials(deploy, config):

 42 """ Add credentials for standalone hosts if present in the config.

 43 Does nothing if the host credential already exists on the

Deploy.

 44 """

 45 log_debug_trace()

 46

 47 hosts = config.get('hosts', [])

 48 for host in hosts:

 49 # The presense of the 'password' will be used only for

standalone hosts.

 50 # If this host is managed by a vcenter, it should not have a

host 'password' in the json.

 51 if 'password' in host and not deploy.resource_exists

('/security/credentials',

 52

'hostname', host['name']):

20

 53 log_info("Registering host {} credentials".format(host

 ['name']))

 54 data = {'hostname': host['name'], 'type': 'host',

 55 'username': host['username'], 'password': host

 ['password']}

 56 deploy.post('/security/credentials', data)

 57

 58

 59 def register_unkown_hosts(deploy, config):

 60 ''' Registers all hosts with the deploy server.

 61 The host details are read from the cluster config json file.

 62

 63 This method will skip any hosts that are already registered.

 64 This method will exit the script if no hosts are found in the

 config.

 65 '''

 66 log_debug_trace()

 67

 68 data = {"hosts": []}

 69 if 'hosts' not in config or not config['hosts']:

 70 log_and_exit("The cluster config requires at least 1 entry in

 the 'hosts' list got {}".format(config))

 71

 72 missing_host_cnt = 0

 73 for host in config['hosts']:

 74 if not deploy.resource_exists('/hosts', 'name', host['name']):

 75 missing_host_cnt += 1

 76 host_config = {"name": host['name'], "hypervisor_type":

 host['type']}

 77 if 'mgmt_server' in host:

 78 host_config["management_server"] = host['mgmt_server']

 79 log_info(

 80 "Registering from vcenter {mgmt_server}".format(

 **host))

 81

 82 if 'password' in host and 'user' in host:

 83 host_config['credential'] = {

 84 "password": host['password'], "username": host

 ['user']}

 85

 86 log_info("Registering {type} host {name}".format(**host))

 87 data["hosts"].append(host_config)

 88

 89 # only post /hosts if some missing hosts were found

 90 if missing_host_cnt:

 91 deploy.post('/hosts', data, wait_for_job=True)

21

 92

 93

 94 def add_cluster_attributes(deploy, config):

 95 ''' POST a new cluster with all needed attribute values.

 96 Returns the cluster_id of the new config

 97 '''

 98 log_debug_trace()

 99

100 cluster_config = config['cluster']

101 cluster_id = deploy.find_resource('/clusters', 'name',

 cluster_config['name'])

102

103 if not cluster_id:

104 log_info("Creating cluster config named {name}".format(

 **cluster_config))

105

106 # Filter to only the valid attributes, ignores anything else

 in the json

107 data = {k: cluster_config[k] for k in [

108 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

 'dns_info', 'ntp_servers']}

109

110 num_nodes = len(config['nodes'])

111

112 log_info("Cluster properties: {}".format(data))

113

114 resp = deploy.post('/v3/clusters?node_count={}'.format

 (num_nodes), data)

115 cluster_id = resp.headers.get('Location').split('/')[-1]

116

117 return cluster_id

118

119

120 def get_node_ids(deploy, cluster_id):

121 ''' Get the the ids of the nodes in a cluster. Returns a list of

 node_ids.'''

122 log_debug_trace()

123

124 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

125 node_ids = [node['id'] for node in response.json().get('records')]

126 return node_ids

127

128

129 def add_node_attributes(deploy, cluster_id, node_id, node):

130 ''' Set all the needed properties on a node '''

131 log_debug_trace()

22

132

133 log_info("Adding node '{}' properties".format(node_id))

134

135 data = {k: node[k] for k in ['ip', 'serial_number',

 'instance_type',

136 'is_storage_efficiency_enabled'] if k

 in node}

137 # Optional: Set a serial_number

138 if 'license' in node:

139 data['license'] = {'id': node['license']}

140

141 # Assign the host

142 host_id = deploy.find_resource('/hosts', 'name', node[

 'host_name'])

143 if not host_id:

144 log_and_exit("Host names must match in the 'hosts' array, and

 the nodes.host_name property")

145

146 data['host'] = {'id': host_id}

147

148 # Set the correct raid_type

149 is_hw_raid = not node['storage'].get('disks') # The presence of a

 list of disks indicates sw_raid

150 data['passthrough_disks'] = not is_hw_raid

151

152 # Optionally set a custom node name

153 if 'name' in node:

154 data['name'] = node['name']

155

156 log_info("Node properties: {}".format(data))

157 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

 data)

158

159

160 def add_node_networks(deploy, cluster_id, node_id, node):

161 ''' Set the network information for a node '''

162 log_debug_trace()

163

164 log_info("Adding node '{}' network properties".format(node_id))

165

166 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

 (cluster_id))

167

168 for network in node['networks']:

169

170 # single node clusters do not use the 'internal' network

23

171 if num_nodes == 1 and network['purpose'] == 'internal':

172 continue

173

174 # Deduce the network id given the purpose for each entry

175 network_id = deploy.find_resource

 ('/clusters/{}/nodes/{}/networks'.format(cluster_id, node_id),

176 'purpose', network[

 'purpose'])

177 data = {"name": network['name']}

178 if 'vlan' in network and network['vlan']:

179 data['vlan_id'] = network['vlan']

180

181 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format

 (cluster_id, node_id, network_id), data)

182

183

184 def add_node_storage(deploy, cluster_id, node_id, node):

185 ''' Set all the storage information on a node '''

186 log_debug_trace()

187

188 log_info("Adding node '{}' storage properties".format(node_id))

189 log_info("Node storage: {}".format(node['storage']['pools']))

190

191 data = {'pool_array': node['storage']['pools']} # use all the

 json properties

192 deploy.post(

193 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id,

 node_id), data)

194

195 if 'disks' in node['storage'] and node['storage']['disks']:

196 data = {'disks': node['storage']['disks']}

197 deploy.post(

198 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

 node_id), data)

199

200

201 def create_cluster_config(deploy, config):

202 ''' Construct a cluster config in the deploy server using the

 input json data '''

203 log_debug_trace()

204

205 cluster_id = add_cluster_attributes(deploy, config)

206

207 node_ids = get_node_ids(deploy, cluster_id)

208 node_configs = config['nodes']

209

24

210 for node_id, node_config in zip(node_ids, node_configs):

211 add_node_attributes(deploy, cluster_id, node_id, node_config)

212 add_node_networks(deploy, cluster_id, node_id, node_config)

213 add_node_storage(deploy, cluster_id, node_id, node_config)

214

215 return cluster_id

216

217

218 def deploy_cluster(deploy, cluster_id, config):

219 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

220 log_debug_trace()

221 log_info("Deploying cluster: {}".format(cluster_id))

222

223 data = {'ontap_credential': {'password': config['cluster'

]['ontap_admin_password']}}

224 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

 (cluster_id),

225 data, wait_for_job=True)

226

227

228 def log_debug_trace():

229 stack = traceback.extract_stack()

230 parent_function = stack[-2][2]

231 logging.getLogger('deploy').debug('Calling %s()' %

 parent_function)

232

233

234 def log_info(msg):

235 logging.getLogger('deploy').info(msg)

236

237

238 def log_and_exit(msg):

239 logging.getLogger('deploy').error(msg)

240 exit(1)

241

242

243 def configure_logging(verbose):

244 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

245 if verbose:

246 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

247 else:

248 logging.basicConfig(level=logging.INFO, format=FORMAT)

249 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

250 logging.WARNING)

251

25

252

253 def main(args):

254 configure_logging(args.verbose)

255 deploy = DeployRequests(args.deploy, args.password)

256

257 with open(args.config_file) as json_data:

258 config = json.load(json_data)

259

260 add_vcenter_credentials(deploy, config)

261

262 add_standalone_host_credentials(deploy, config)

263

264 register_unkown_hosts(deploy, config)

265

266 cluster_id = create_cluster_config(deploy, config)

267

268 deploy_cluster(deploy, cluster_id, config)

269

270

271 def parseArgs():

272 parser = argparse.ArgumentParser(description='Uses the ONTAP

 Select Deploy API to construct and deploy a cluster.')

273 parser.add_argument('-d', '--deploy', help='Hostname or IP address

 of Deploy server')

274 parser.add_argument('-p', '--password', help='Admin password of

 Deploy server')

275 parser.add_argument('-c', '--config_file', help='Filename of the

 cluster config')

276 parser.add_argument('-v', '--verbose', help='Display extra

 debugging messages for seeing exact API calls and responses',

277 action='store_true', default=False)

278 return parser.parse_args()

279

280 if __name__ == '__main__':

281 args = parseArgs()

282 main(args)

JSON for script to create a cluster

When creating or deleting an ONTAP Select cluster using the Python code samples, you

must provide a JSON file as input to the script. You can copy and modify the appropriate

JSON sample based on your deployment plans.

Single-node cluster on ESXi

26

 1 {

 2 "hosts": [

 3 {

 4 "password": "mypassword1",

 5 "name": "host-1234",

 6 "type": "ESX",

 7 "username": "admin"

 8 }

 9],

10

11 "cluster": {

12 "dns_info": {

13 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

14 "lab3.company-demo.com", "lab4.company-demo.com"

15],

16

17 "dns_ips": ["10.206.80.135", "10.206.80.136"]

18 },

19 "ontap_image_version": "9.7",

20 "gateway": "10.206.80.1",

21 "ip": "10.206.80.115",

22 "name": "mycluster",

23 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

24 "ontap_admin_password": "mypassword2",

25 "netmask": "255.255.254.0"

26 },

27

28 "nodes": [

29 {

30 "serial_number": "3200000nn",

31 "ip": "10.206.80.114",

32 "name": "node-1",

33 "networks": [

34 {

35 "name": "ontap-external",

36 "purpose": "mgmt",

37 "vlan": 1234

38 },

39 {

40 "name": "ontap-external",

41 "purpose": "data",

42 "vlan": null

43 },

44 {

45 "name": "ontap-internal",

46 "purpose": "internal",

27

47 "vlan": null

48 }

49],

50 "host_name": "host-1234",

51 "is_storage_efficiency_enabled": false,

52 "instance_type": "small",

53 "storage": {

54 "disk": [],

55 "pools": [

56 {

57 "name": "storage-pool-1",

58 "capacity": 4802666790125

59 }

60]

61 }

62 }

63]

64 }

Single-node cluster on ESXi using vCenter

{

 "hosts": [

 {

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

28

 },

 "vcenter": {

 "password":"mypassword2",

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

 "networks": [

 {

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

]

}

29

Single-node cluster on KVM

• Beginning with ONTAP Select 9.10.1, you can no longer deploy a new cluster on the KVM

hypervisor.

• Beginning with ONTAP Select 9.11.1, all manageability functionality is no longer available for

existing KVM clusters and hosts, except for the take offline and delete functions.

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

 "type":"KVM",

 "username":"root"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

30

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Script to add a node license

You can use the following script to add a license for an ONTAP Select node.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: add_license.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

 granted

 12 # solely for the purpose of researching, designing, developing and

31

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

 terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

 19

 20 import argparse

 21 import logging

 22 import json

 23

 24 from deploy_requests import DeployRequests

 25

 26

 27 def post_new_license(deploy, license_filename):

 28 log_info('Posting a new license: {}'.format(license_filename))

 29

 30 # Stream the file as multipart/form-data

 31 deploy.post('/licensing/licenses', data={},

 32 files={'license_file': open(license_filename, 'rb')})

 33

 34 # Alternative if the NLF license data is converted to a string.

 35 # with open(license_filename, 'rb') as f:

 36 # nlf_data = f.read()

 37 # r = deploy.post('/licensing/licenses', data={},

 38 # files={'license_file': (license_filename,

 nlf_data)})

 39

 40

 41 def put_license(deploy, serial_number, data, files):

 42 log_info('Adding license for serial number: {}'.format

 (serial_number))

 43

 44 deploy.put('/licensing/licenses/{}'.format(serial_number), data

 =data, files=files)

 45

 46

 47 def put_used_license(deploy, serial_number, license_filename,

 ontap_username, ontap_password):

 48 ''' If the license is used by an 'online' cluster, a

 username/password must be given. '''

 49

 50 data = {'ontap_username': ontap_username, 'ontap_password':

 ontap_password}

 51 files = {'license_file': open(license_filename, 'rb')}

32

 52

 53 put_license(deploy, serial_number, data, files)

 54

 55

 56 def put_free_license(deploy, serial_number, license_filename):

 57 data = {}

 58 files = {'license_file': open(license_filename, 'rb')}

 59

 60 put_license(deploy, serial_number, data, files)

 61

 62

 63 def get_serial_number_from_license(license_filename):

 64 ''' Read the NLF file to extract the serial number '''

 65 with open(license_filename) as f:

 66 data = json.load(f)

 67

 68 statusResp = data.get('statusResp', {})

 69 serialNumber = statusResp.get('serialNumber')

 70 if not serialNumber:

 71 log_and_exit("The license file seems to be missing the

 serialNumber")

 72

 73 return serialNumber

 74

 75

 76 def log_info(msg):

 77 logging.getLogger('deploy').info(msg)

 78

 79

 80 def log_and_exit(msg):

 81 logging.getLogger('deploy').error(msg)

 82 exit(1)

 83

 84

 85 def configure_logging():

 86 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 87 logging.basicConfig(level=logging.INFO, format=FORMAT)

 88 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(logging.WARNING)

 89

 90

 91 def main(args):

 92 configure_logging()

 93 serial_number = get_serial_number_from_license(args.license)

 94

 95 deploy = DeployRequests(args.deploy, args.password)

33

 96

 97 # First check if there is already a license resource for this

 serial-number

 98 if deploy.find_resource('/licensing/licenses', 'id',

 serial_number):

 99

100 # If the license already exists in the Deploy server,

 determine if its used

101 if deploy.find_resource('/clusters', 'nodes.serial_number',

 serial_number):

102

103 # In this case, requires ONTAP creds to push the license

 to the node

104 if args.ontap_username and args.ontap_password:

105 put_used_license(deploy, serial_number, args.license,

106 args.ontap_username, args

 .ontap_password)

107 else:

108 print("ERROR: The serial number for this license is in

 use. Please provide ONTAP credentials.")

109 else:

110 # License exists, but its not used

111 put_free_license(deploy, serial_number, args.license)

112 else:

113 # No license exists, so register a new one as an available

 license for later use

114 post_new_license(deploy, args.license)

115

116

117 def parseArgs():

118 parser = argparse.ArgumentParser(description='Uses the ONTAP

 Select Deploy API to add or update a new or used NLF license file.')

119 parser.add_argument('-d', '--deploy', required=True, type=str,

 help='Hostname or IP address of ONTAP Select Deploy')

120 parser.add_argument('-p', '--password', required=True, type=str,

 help='Admin password of Deploy server')

121 parser.add_argument('-l', '--license', required=True, type=str,

 help='Filename of the NLF license data')

122 parser.add_argument('-u', '--ontap_username', type=str,

123 help='ONTAP Select username with privelege to

 add the license. Only provide if the license is used by a Node.')

124 parser.add_argument('-o', '--ontap_password', type=str,

125 help='ONTAP Select password for the

 ontap_username. Required only if ontap_username is given.')

126 return parser.parse_args()

127

34

128 if __name__ == '__main__':

129 args = parseArgs()

130 main(args)

Script to delete a cluster

You can use the following CLI script to delete an existing cluster.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: delete_cluster.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of merchantability

10 # or fitness of any kind, expressed or implied. Permission to use,

11 # reproduce, modify and create derivatives of the sample code is

 granted

12 # solely for the purpose of researching, designing, developing and

13 # testing a software application product for use with NetApp products,

14 # provided that the above copyright notice appears in all copies and

15 # that the software application product is distributed pursuant to

 terms

16 # no less restrictive than those set forth herein.

17 #

18 ##--

19

20 import argparse

21 import json

22 import logging

23

24 from deploy_requests import DeployRequests

25

26 def find_cluster(deploy, cluster_name):

27 return deploy.find_resource('/clusters', 'name', cluster_name)

28

29

30 def offline_cluster(deploy, cluster_id):

31 # Test that the cluster is online, otherwise do nothing

32 response = deploy.get('/clusters/{}?fields=state'.format(

 cluster_id))

33 cluster_data = response.json()['record']

34 if cluster_data['state'] == 'powered_on':

35

35 log_info("Found the cluster to be online, modifying it to be

 powered_off.")

36 deploy.patch('/clusters/{}'.format(cluster_id), {

 'availability': 'powered_off'}, True)

37

38

39 def delete_cluster(deploy, cluster_id):

40 log_info("Deleting the cluster({}).".format(cluster_id))

41 deploy.delete('/clusters/{}'.format(cluster_id), True)

42 pass

43

44

45 def log_info(msg):

46 logging.getLogger('deploy').info(msg)

47

48

49 def configure_logging():

50 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

51 logging.basicConfig(level=logging.INFO, format=FORMAT)

52 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(logging.WARNING)

53

54

55 def main(args):

56 configure_logging()

57 deploy = DeployRequests(args.deploy, args.password)

58

59 with open(args.config_file) as json_data:

60 config = json.load(json_data)

61

62 cluster_id = find_cluster(deploy, config['cluster']['name'])

63

64 log_info("Found the cluster {} with id: {}.".format(config

 ['cluster']['name'], cluster_id))

65

66 offline_cluster(deploy, cluster_id)

67

68 delete_cluster(deploy, cluster_id)

69

70

71 def parseArgs():

72 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

 Deploy API to delete a cluster')

73 parser.add_argument('-d', '--deploy', required=True, type=str,

 help='Hostname or IP address of Deploy server')

74 parser.add_argument('-p', '--password', required=True, type=str,

36

 help='Admin password of Deploy server')

75 parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

76 return parser.parse_args()

77

78 if __name__ == '__main__':

79 args = parseArgs()

80 main(args)

Common support module

All of the Python scripts use a common Python class in a single module.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: deploy_requests.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

 granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

 terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

 19

 20 import json

 21 import logging

 22 import requests

 23

 24 requests.packages.urllib3.disable_warnings()

 25

 26 class DeployRequests(object):

 27 '''

 28 Wrapper class for requests that simplifies the ONTAP Select Deploy

 29 path creation and header manipulations for simpler code.

37

 30 '''

 31

 32 def __init__(self, ip, admin_password):

 33 self.base_url = 'https://{}/api'.format(ip)

 34 self.auth = ('admin', admin_password)

 35 self.headers = {'Accept': 'application/json'}

 36 self.logger = logging.getLogger('deploy')

 37

 38 def post(self, path, data, files=None, wait_for_job=False):

 39 if files:

 40 self.logger.debug('POST FILES:')

 41 response = requests.post(self.base_url + path,

 42 auth=self.auth, verify=False,

 43 files=files)

 44 else:

 45 self.logger.debug('POST DATA: %s', data)

 46 response = requests.post(self.base_url + path,

 47 auth=self.auth, verify=False,

 48 json=data,

 49 headers=self.headers)

 50

 51 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

 52 self.exit_on_errors(response)

 53

 54 if wait_for_job and response.status_code == 202:

 55 self.wait_for_job(response.json())

 56 return response

 57

 58 def patch(self, path, data, wait_for_job=False):

 59 self.logger.debug('PATCH DATA: %s', data)

 60 response = requests.patch(self.base_url + path,

 61 auth=self.auth, verify=False,

 62 json=data,

 63 headers=self.headers)

 64 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

 65 self.exit_on_errors(response)

 66

 67 if wait_for_job and response.status_code == 202:

 68 self.wait_for_job(response.json())

 69 return response

 70

 71 def put(self, path, data, files=None, wait_for_job=False):

 72 if files:

 73 print('PUT FILES: {}'.format(data))

38

 74 response = requests.put(self.base_url + path,

 75 auth=self.auth, verify=False,

 76 data=data,

 77 files=files)

 78 else:

 79 self.logger.debug('PUT DATA:')

 80 response = requests.put(self.base_url + path,

 81 auth=self.auth, verify=False,

 82 json=data,

 83 headers=self.headers)

 84

 85 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

 86 self.exit_on_errors(response)

 87

 88 if wait_for_job and response.status_code == 202:

 89 self.wait_for_job(response.json())

 90 return response

 91

 92 def get(self, path):

 93 """ Get a resource object from the specified path """

 94 response = requests.get(self.base_url + path, auth=self.auth,

 verify=False)

 95 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

 96 self.exit_on_errors(response)

 97 return response

 98

 99 def delete(self, path, wait_for_job=False):

100 """ Delete's a resource from the specified path """

101 response = requests.delete(self.base_url + path, auth=self

 .auth, verify=False)

102 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

103 self.exit_on_errors(response)

104

105 if wait_for_job and response.status_code == 202:

106 self.wait_for_job(response.json())

107 return response

108

109 def find_resource(self, path, name, value):

110 ''' Returns the 'id' of the resource if it exists, otherwise

 None '''

111 resource = None

112 response = self.get('{path}?{field}={value}'.format(

113 path=path, field=name, value=value))

39

114 if response.status_code == 200 and response.json().get

 ('num_records') >= 1:

115 resource = response.json().get('records')[0].get('id')

116 return resource

117

118 def get_num_records(self, path, query=None):

119 ''' Returns the number of records found in a container, or

 None on error '''

120 resource = None

121 query_opt = '?{}'.format(query) if query else ''

122 response = self.get('{path}{query}'.format(path=path, query

 =query_opt))

123 if response.status_code == 200 :

124 return response.json().get('num_records')

125 return None

126

127 def resource_exists(self, path, name, value):

128 return self.find_resource(path, name, value) is not None

129

130 def wait_for_job(self, response, poll_timeout=120):

131 last_modified = response['job']['last_modified']

132 job_id = response['job']['id']

133

134 self.logger.info('Event: ' + response['job']['message'])

135

136 while True:

137 response = self.get('/jobs/{}?fields=state,message&'

138 'poll_timeout={}&last_modified=>={}'

 .format(

139 job_id, poll_timeout,

 last_modified))

140

141 job_body = response.json().get('record', {})

142

143 # Show interesting message updates

144 message = job_body.get('message', '')

145 self.logger.info('Event: ' + message)

146

147 # Refresh the last modified time for the poll loop

148 last_modified = job_body.get('last_modified')

149

150 # Look for the final states

151 state = job_body.get('state', 'unknown')

152 if state in ['success', 'failure']:

153 if state == 'failure':

154 self.logger.error('FAILED background job.\nJOB:

40

 %s', job_body)

155 exit(1) # End the script if a failure occurs

156 break

157

158 def exit_on_errors(self, response):

159 if response.status_code >= 400:

160 self.logger.error('FAILED request to URL: %s\nHEADERS:

%s\nRESPONSE BODY: %s',

161 response.request.url,

162 self.filter_headers(response),

163 response.text)

164 response.raise_for_status() # Displays the response error,

and exits the script

165

166 @staticmethod

167 def filter_headers(response):

168 ''' Returns a filtered set of the response headers '''

169 return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

Script to resize cluster nodes

You can use the following script to resize the nodes in an ONTAP Select cluster.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: resize_nodes.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

 granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

 terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

41

 19

 20 import argparse

 21 import logging

 22 import sys

 23

 24 from deploy_requests import DeployRequests

 25

 26

 27 def _parse_args():

 28 """ Parses the arguments provided on the command line when

 executing this

 29 script and returns the resulting namespace. If all required

 arguments

 30 are not provided, an error message indicating the mismatch is

 printed and

 31 the script will exit.

 32 """

 33

 34 parser = argparse.ArgumentParser(description=(

 35 'Uses the ONTAP Select Deploy API to resize the nodes in the

 cluster.'

 36 ' For example, you might have a small (4 CPU, 16GB RAM per

 node) 2 node'

 37 ' cluster and wish to resize the cluster to medium (8 CPU,

 64GB RAM per'

 38 ' node). This script will take in the cluster details and then

 perform'

 39 ' the operation and wait for it to complete.'

 40))

 41 parser.add_argument('--deploy', required=True, help=(

 42 'Hostname or IP of the ONTAP Select Deploy VM.'

 43))

 44 parser.add_argument('--deploy-password', required=True, help=(

 45 'The password for the ONTAP Select Deploy admin user.'

 46))

 47 parser.add_argument('--cluster', required=True, help=(

 48 'Hostname or IP of the cluster management interface.'

 49))

 50 parser.add_argument('--instance-type', required=True, help=(

 51 'The desired instance size of the nodes after the operation is

 complete.'

 52))

 53 parser.add_argument('--ontap-password', required=True, help=(

 54 'The password for the ONTAP administrative user account.'

 55))

 56 parser.add_argument('--ontap-username', default='admin', help=(

42

 57 'The username for the ONTAP administrative user account.

 Default: admin.'

 58))

 59 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME',

 help=(

 60 'A space separated list of node names for which the resize

 operation'

 61 ' should be performed. The default is to apply the resize to

 all nodes in'

 62 ' the cluster. If a list of nodes is provided, it must be

 provided in HA'

 63 ' pairs. That is, in a 4 node cluster, nodes 1 and 2

 (partners) must be'

 64 ' resized in the same operation.'

 65))

 66 return parser.parse_args()

 67

 68

 69 def _get_cluster(deploy, parsed_args):

 70 """ Locate the cluster using the arguments provided """

 71

 72 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

 .cluster)

 73 if not cluster_id:

 74 return None

 75 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).

 json()['record']

 76

 77

 78 def _get_request_body(parsed_args, cluster):

 79 """ Build the request body """

 80

 81 changes = {'admin_password': parsed_args.ontap_password}

 82

 83 # if provided, use the list of nodes given, else use all the nodes

 in the cluster

 84 nodes = [node for node in cluster['nodes']]

 85 if parsed_args.nodes:

 86 nodes = [node for node in nodes if node['name'] in

 parsed_args.nodes]

 87

 88 changes['nodes'] = [

 89 {'instance_type': parsed_args.instance_type, 'id': node['id']}

 for node in nodes]

 90

 91 return changes

43

 92

 93

 94 def main():

 95 """ Set up the resize operation by gathering the necessary data

 and then send

 96 the request to the ONTAP Select Deploy server.

 97 """

 98

 99 logging.basicConfig(

100 format='[%(asctime)s] [%(levelname)5s] %(message)s', level

 =logging.INFO,)

101

102 logging.getLogger('requests.packages.urllib3').setLevel(logging

 .WARNING)

103

104 parsed_args = _parse_args()

105 deploy = DeployRequests(parsed_args.deploy, parsed_args

 .deploy_password)

106

107 cluster = _get_cluster(deploy, parsed_args)

108 if not cluster:

109 deploy.logger.error(

110 'Unable to find a cluster with a management IP of %s' %

 parsed_args.cluster)

111 return 1

112

113 changes = _get_request_body(parsed_args, cluster)

114 deploy.patch('/clusters/%s' % cluster['id'], changes,

 wait_for_job=True)

115

116 if __name__ == '__main__':

117 sys.exit(main())

44

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

45

http://www.netapp.com/TM

	Automate with REST : ONTAP Select
	Table of Contents
	Automate with REST
	Concepts
	Access with a browser
	Workflow processes
	Access with Python
	Python code samples

