Automate with REST
ONTAP Select

NetApp
October 24, 2025

This PDF was generated from https://docs.netapp.com/us-en/ontap-select-9151/concept_api_rest.html on
October 24, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Automate with REST

Concepts

REST web services foundation

How to access the Deploy API

Deploy API versioning

Basic operational characteristics

Request and response API transaction

Asynchronous processing using the job object
Access with a browser

Before you access the API with a browser

Access the Deploy documentation page

Understand and execute an API call
Workflow processes

Before you use the APl workflows

Workflow 1: Create a single-node evaluation cluster on ESXi
Access with Python

Before you access the API using Python

Understand the Python scripts
Python code samples

Script to create a cluster

JSON for script to create a cluster

Script to add a node license

Script to delete a cluster

Common support module

Script to resize cluster nodes

© 0 0O NP WDNDN -2 -~ -

Automate with REST

Concepts

REST web services foundation

Representational State Transfer (REST) is a style for creating distributed web
applications. When applied to the design of a web services API, it establishes a set of
technologies and best practices for exposing server-based resources and managing their
states. It uses mainstream protocols and standards to provide a flexible foundation for
deploying and managing ONTAP Select clusters.

Architecture and classic constraints

REST was formally articulated by Roy Fielding in his PhD dissertation at UC Irvine in 2000. It defines an
architectural style through a set of constraints, which collectively have improves web-based applications and
the underlying protocols. The constraints establish a RESTful web services application based on a client/server
architecture using a stateless communication protocol.

Resources and state representation

Resources are the basic components of a web-based system. When creating a REST web services
application, early design tasks include:

* Identification of system or server-based resources
Every system uses and maintains resources. A resource can be a file, business transaction, process, or
administrative entity. One of the first tasks in designing an application based on REST web services is to
identify the resources.

* Definition of resource states and associated state operations
Resources are always in one of a finite number of states. The states, as well as the associated operations
used to affect the state changes, must be clearly defined.

Messages are exchanged between the client and server to access and change the state of the resources
according to the generic CRUD (Create, Read, Update, and Delete) model.

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme. The
endpoints where the resources are located and identified use a Uniform Resource Identifier (URI). The URI
provides a general framework for creating a unique name for each resource in the network. The Uniform
Resource Locator (URL) is a type of URI used with web services to identify and access resources. Resources
are typically exposed in a hierarchical structure similar to a file directory.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the protocol used by the web services client and server to exchange
request and response messages about the resources. As part of designing a web services application, HTTP
verbs (such as GET and POST) are mapped to the resources and corresponding state management actions.

HTTP is stateless. Therefore, to associate a set of related requests and responses under one transaction,
additional information must be included in the HTTP headers carried with the request/response data flows.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

JSON formatting

While information can be structured and transferred between a client and server in several ways, the most
popular option (and the one used with the Deploy REST API) is JavaScript Object Notation (JSON). JSON is
an industry standard for representing simple data structures in plain text and is used to transfer state
information describing the resources.

How to access the Deploy API

Because of the inherent flexibility of REST web services, the ONTAP Select Deploy API
can be accessed in several different ways.

Deploy utility native user interface

The primary way you access the API is through the ONTAP Select Deploy web user interface. The browser
makes calls to the APl and reformats the data according to the design of the user interface. You also access
the API through the Deploy utility command line interface.

ONTAP Select Deploy online documentation page

The ONTAP Select Deploy online documentation page provides an alternative access point when using a
browser. In addition to providing a way to execute individual API calls directly, the page also includes a detailed
description of the API, including input parameters and other options for each call. The API calls are organized
into several different functional areas or categories.

Custom program

You can access the Deploy API using any of several different programming languages and tools. Popular
choices include Python, Java, and cURL. A program, script, or tool that uses the API acts as a REST web
services client. Using a programming language allows you to better understand the APl and provides an
opportunity to automate the ONTAP Select deployments.

Deploy API versioning

The REST API included with ONTAP Select Deploy is assigned a version number. The
API version number is independent of the Deploy release number. You should be aware

of the API version included with your release of Deploy and how this might affect your use
of the API.

The current release of the Deploy administration utility includes version 3 of the REST API. Past releases of
the Deploy utility include the following API versions:

Deploy 2.8 and later
ONTAP Select Deploy 2.8 and all later releases include version 3 of the REST API.

Deploy 2.7.2 and earlier
ONTAP Select Deploy 2.7.2 and all earlier releases include version 2 of the REST API.

Versions 2 and 3 of the REST API are not compatible. If you upgrade to Deploy 2.8 or later from
an earlier release that includes version 2 of the API, you must update any existing code that
directly accesses the API as well as any scripts using the command line interface.

Basic operational characteristics

While REST establishes a common set of technologies and best practices, the details of
each API can vary based on the design choices. You should be aware of the details and
operational characteristics of the ONTAP Select Deploy API before using the API.

Hypervisor host versus ONTAP Select node

A hypervisor host is the core hardware platform that hosts an ONTAP Select virtual machine. When an ONTAP
Select virtual machine is deployed and active on a hypervisor host, the virtual machine is considered to be an
ONTARP Select node. With version 3 of the Deploy REST API, the host and node objects are separate and
distinct. This allows a one-to-many relationship, where one or more ONTAP Select nodes can run on the same
hypervisor host.

Object identifiers

Each resource instance or object is assigned a unique identifier when it is created. These identifiers are
globally unique within a specific instance of ONTAP Select Deploy. After issuing an API call that creates a new
object instance, the associated id value is returned to the caller in the 1ocation header of the HTTP
response. You can extract the identifier and use it on subsequent calls when referring to the resource instance.

The content and internal structure of the object identifiers can change at any time. You should
only use the identifiers on the applicable API calls as needed when referring to the associated
objects.

Request identifiers

Every successful API request is assigned a unique identifier. The identifier is returned in the request-id
header of the associated HTTP response. You can use a request identifier to collectively refer to the activities
of a single specific API request-response transaction. For example, you can retrieve all the event messages for
a transaction based on the request id.

Synchronous and asynchronous calls

There are two primary ways that a server performs an HTTP request received from a client:

* Synchronous
The server performs the request immediately and responds with a status code of 200, 201, or 204.

° Asynchronous
The server accepts the request and responds with a status code of 202. This indicates the server has
accepted the client request and started a background task to complete the request. Final success or failure
is not immediately available and must be determined through additional API calls.

Confirm the completion of a long-running job

Generally, any operation that can take a long time to complete is processed asynchronously using a
background task at the server. With the Deploy REST API, every background task is anchored by a
Job object which tracks the task and provides information, such as the current state. A Job object,
including its unique identifier, is returned in the HTTP response after a background task is created.

You can query the Job object directly to determine the success or failure of the associated API call.
Refer to asynchronous processing using the Job object for additional information.

In addition to using the Job object, there are other ways you can determine the success or failure of a
request, including:

* Event messages
You can retrieve all the event messages associated with a specific API call using the request id returned
with the original response. The event messages typically contain an indication of success or failure, and
can also be useful when debugging an error condition.

* Resource state or status
Several of the resources maintain a state or status value which you can query to indirectly determine the

success or failure of a request.
Security

The Deploy API uses the following security technologies:

* Transport Layer Security
All traffic sent over the network between the Deploy server and client is encrypted through TLS. Using the
HTTP protocol over an unencrypted channel is not supported. TLS version 1.2 is supported.

* HTTP authentication
Basic authentication is used for every API transaction. An HTTP header, which includes the user name and

password in a base64 string, is added to every request.

Request and response API transaction

Every Deploy API call is performed as an HTTP request to the Deploy virtual machine
which generates an associated response to the client. This request/response pair is
considered an API transaction. Before using the Deploy API, you should be familiar with
the input variables available to control a request and the contents of the response output.

Input variables controlling an API request

You can control how an API call is processed through parameters set in the HTTP request.

Request headers

You must include several headers in the HTTP request, including:

° content-type
If the request body includes JSON, this header must be set to application/json.

* accept
If the response body will include JSON, this header must be set to application/json.

* authorization
Basic authentication must be set with the user name and password encoded in a base64 string.

Request body

The content of the request body varies depending on the specific call. The HTTP request body consists of one
of the following:

+ JSON object with input variables (such as, the name of a new cluster)

* Empty

Filter objects

When issuing an API call that uses GET, you can limit or filter the returned objects based on any attribute. For
example, you can specify an exact value to match:

<field>=<query value>

In addition to an exact match, there are other operators available to return a set of objects over a range of
values. ONTAP Select supports the filtering operators shown below.

Operator Description

= Equal to

< Less than

> Greater than

& Less than or equal to

>= Greater than or equal to
Or

! Not equal to

Greedy wildcard

You can also return a set of objects based on whether a specific field is set or not set by using the null keyword
or its negation (!null) as part of the query.

Selecting object fields

By default, issuing an API call using GET returns only the attributes that uniquely identify the object or objects.
This minimum set of fields acts as a key for each object and varies based on the object type. You can select
additional object properties using the fields query parameter in the following ways:

* Inexpensive fields
Specify fields=* to retrieve the object fields that are maintained in local server memory or require little
processing to access.

* Expensive fields
Specify fields=** to retrieve all the object fields, including those requiring additional server processing
to access.

* Custom field selection
Use fields=FIELDNAME to specify the exact field you want. When requesting multiple fields, the values
must be separated using commas without spaces.

As a best practice, you should always identify the specific fields you want. You should only

retrieve the set of inexpensive or expensive fields when needed. The inexpensive and
expensive classification is determined by NetApp based on internal performance analysis. The
classification for a given field can change at any time.

Sort objects in the output set

The records in a resource collection are returned in the default order defined by the object. You can change the
order using the order_by query parameter with the field name and sort direction as follows:
order by=<field name> asc|desc

For example, you can sort the type field in descending order followed by id in ascending order:
order by=type desc, id asc

When including multiple parameters, you must separate the fields with a comma.

Pagination

When issuing an API call using GET to access a collection of objects of the same type, all matching objects are
returned by default. If needed, you can limit the number of records returned using the max_records query
parameter with the request. For example:

max records=20

If needed, you can combine this parameter with other query parameters to narrow the result set. For example,
the following returns up to 10 system events generated after the specified time:
time= 2019-04-04T15:41:29.140265Z&max _records=10

You can issue multiple requests to page through the events (or any object type). Each subsequent API call
should use a new time value based on the latest event in the last result set.

Interpret an API response

Each API request generates a response back to the client. You can examine the response to determine
whether it was successful and retrieve additional data as needed.

HTTP status code

The HTTP status codes used by the Deploy REST API are described below.

Code Meaning Description

200 OK Indicates success for calls that do not create a new object.

201 Created An object is successfully created; the location response header
includes the unique identifier for the object.

202 Accepted A long-running background job has been started to perform the
request, but the operation has not completed yet.

400 Bad request The request input is not recognized or is inappropriate.

403 Forbidden Access is denied due to an authorization error.

404 Not found The resource referred to in the request does not exist.

405 Method not allowed The HTTP verb in the request is not supported for the resource.

409 Conflict An attempt to create an object failed because the object already exists.

500 Internal error A general internal error occurred at the server.

501 Not implemented The URI is known but is not capable of performing the request.

Response headers

Several headers are included in the HTTP response generated by the Deploy server, including:

* request-id
Every successful APl request is assigned a unique request identifier.

* location
When an object is created, the location header includes the complete URL to the new object including the
unigue object identifier.

Response body

The content of the response associated with an API request differs based on the object, processing type, and
the success or failure of the request. The response body is rendered in JSON.

* Single object
A single object can be returned with a set of fields based on the request. For example, you can use GET to
retrieve selected properties of a cluster using the unique identifier.

° Multiple objects
Multiple objects from a resource collection can be returned. In all cases, there is a consistent format used,
with num records indicating the number of records and records containing an array of the object
instances. For example, you can retrieve all the nodes defined in a specific cluster.

* Job object
If an API call is processed asynchronously, a Job object is returned which anchors the background task.
For example, the POST request used to deploy a cluster is processed asynchronously and returns a Job
object.

* Error object
If an error occurs, an Error object is always returned. For example, you will receive an error when
attempting to create a cluster with a name that already exists.

* Empty

In certain cases, no data is returned and the response body is empty. For example, the response body is
empty after using DELETE to delete an existing host.

Asynchronous processing using the job object

Some of the Deploy API calls, particularly those that create or modify a resource, can
take longer to complete than other calls. ONTAP Select Deploy processes these long-
running requests asynchronously.

Asynchronous requests described using Job object

After making an API call that runs asynchronously, the HTTP response code 202 indicates the request has
been successfully validated and accepted, but not yet completed. The request is processed as a background
task which continues to run after the initial HTTP response to the client. The response includes the Job object
anchoring the request, including its unique identifier.

@ You should refer to the ONTAP Select Deploy online documentation page to determine which
API calls operate asynchronously.

Query the Job object associated with an API request

The Job object returned in the HTTP response contains several properties. You can query the state property to
determine if the request completed successfully. A Job object can be in one of the following states:

* Queued

* Running

» Success

* Failure

There are two techniques you can use when polling a Job object to detect a terminal state for the task, either
success or failure:

* Standard polling request
Current Job state is returned immediately

* Long polling request
Job state is returned only when one of the following occurs:

o State has changed more recently than the date-time value provided on the poll request

o Timeout value has expired (1 to 120 seconds)

Standard polling and long polling use the same API call to query a Job object. However, a long polling request
includes two query parameters: poll timeout and last modified.

You should always use long polling to reduce the workload on the Deploy virtual machine.

General procedure for issuing an asynchronous request

You can use the following high-level procedure to complete an asynchronous API call:

1. Issue the asynchronous API call.
2. Receive an HTTP response 202 indicating successful acceptance of the request.
3. Extract the identifier for the Job object from the response body.
4. Within a loop, perform the following in each cycle:
a. Get the current state of the Job with a long-poll request
b. If the Job is in a non-terminal state (queued, running), perform loop again.

5. Stop when the Job reaches a terminal state (success, failure).

Access with a browser

Before you access the APl with a browser

There are several things you should be aware of before using the Deploy online
documentation page.

Deployment plan

If you intend to issue API calls as part of performing specific deployment or administrative tasks, you should

consider creating a deployment plan. These plans can be formal or informal, and generally contain your goals
and the API calls to be used. Refer to Workflow processes using the Deploy REST API for more information.

JSON examples and parameter definitions

Each API call is described on the documentation page using a consistent format. The content includes
implementation notes, query parameters, and HTTP status codes. In addition, you can display details about
the JSON used with the API requests and responses as follows:

° Example Value
If you click Example Value on an API call, a typical JSON structure for the call is displayed. You can modify
the example as needed and use it as input for your request.

* Model
If you click Model, a complete list of the JSON parameters is displayed, with a description for each
parameter.

Caution when issuing API calls

All API operations you perform using the Deploy documentation page are live operations. You should be
careful not to mistakenly create, update, or delete configuration or other data.

Access the Deploy documentation page

You must access the ONTAP Select Deploy online documentation page to display the API
documentation, as well as to manually issue an API call.

Before you begin
You must have the following:

* I[P address or domain name of the ONTAP Select Deploy virtual machine

* User name and password for the administrator

Steps
1. Type the URL in your browser and press Enter:

https://<ip address>/api/ui
2. Sign in using the administrator user name and password.

Result

The Deploy documentation web page is displayed with the calls organized by category at the bottom of the
page.

Understand and execute an API call

The details of all the API calls are documented and displayed using a common format on
the ONTAP Select Deploy online documentation web page. By understanding a single
API call, you can access and interpret the details of all the API calls.

Before you begin
You must be signed in to the ONTAP Select Deploy online documentation web page. You must have the

unigque identifier assigned to your ONTAP Select cluster when the cluster was created.

About this task

You can retrieve the configuration information describing an ONTAP Select cluster using its unique identifier. In
this example, all fields classified as inexpensive are returned. However, as a best practice you should request
only the specific fields that are needed.

Steps
1. On the main page, scroll to the bottom and click Cluster.

2. Click GET /clusters/{cluster_id} to display the details of the API call used to return information about an
ONTAP Select cluster.

Workflow processes

Before you use the APl workflows

You should prepare to review and use the workflow processes.

Understand the API calls used in the workflows

The ONTAP Select online documentation page includes the details of every REST API call. Rather than repeat
those details here, each API call used in the workflow samples includes only the information you need to locate
the call on the documentation page. After locating a specific API call, you can review the complete details of
the call, including the input parameters, output formats, HTTP status codes, and request processing type.

The following information is included for each API call within a workflow to help locate the call on the
documentation page:

* Category
The API calls are organized on the documentation page into functionally related areas or categories. To
locate a specific API call, scroll to the bottom of the page and click the applicable API category.

* HTTP verb
The HTTP verb identifies the action performed on a resource. Each API call is executed through a single
HTTP verb.

* Path
The path determines the specific resource which the action applies to as part of performing a call. The path
string is appended to the core URL to form the complete URL identifying the resource.

Construct a URL to directly access the REST API

In addition to the ONTAP Select documentation page, you can also access the Deploy REST API directly
through a programming language such as Python. In this case, the core URL is slightly different than the URL
used when accessing the online documentation page. When accessing the API directly, you must append /api
to the domain and port string. For example:

http://deploy.mycompany.com/api

Workflow 1: Create a single-node evaluation cluster on ESXi

You can deploy a single-node ONTAP Select cluster on a VMware ESXi host managed by
vCenter. The cluster is created with an evaluation license.

10

The cluster creation workflow differs in the following situations:

* The ESXi host is not managed by vCenter (standalone host)
* Multiple nodes or hosts are used within the cluster
+ Cluster is deployed in a production environment with a purchased license

* The KVM hypervisor is used instead of VMware ESXi

1. Register vCenter server credential

When deploying to an ESXi host managed by a vCenter server, you must add a credential before registering
the host. The Deploy administration utility can then use the credential to authenticate to vCenter.

Category HTTP verb Path
Deploy POST [/security/credentials
Curl

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

JSON input (step01)

{

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Processing type
Asynchronous

Output
 Credential ID in the location response header

» Job object

2. Register a hypervisor host

You must add a hypervisor host where the virtual machine containing the ONTAP Select node will run.

Category HTTP verb Path
Cluster POST /hosts

Curl

11

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts"

JSON input (step02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Processing type
Asynchronous

Output
* Host ID in the location response header

+ Job object

3. Create a cluster

When you create an ONTAP Select cluster, the basic cluster configuration is registered and the node names
are automatically generated by Deploy.

Category HTTP verb Path
Cluster POST [clusters
Curl

The query parameter node_count should be set to 1 for a single-node cluster.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1'

JSON input (step03)

"name": "my cluster”

12

Processing type
Synchronous

Output
* Cluster ID in the location response header

4. Configure the cluster

There are several attributes you must provide as part of configuring the cluster.

Category HTTP verb Path
Cluster PATCH [clusters/{cluster_id}
Curl

You must provide the cluster ID.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

JSON input (step04)

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]

I

"ontap image version": "9.5",
"gateway": "10.206.80.1",

"ip": "10.206.80.115",
"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Processing type
Synchronous

Output
None
5. Retrieve the node name

The Deploy administration utility automatically generates the node identifiers and names when a cluster is
created. Before you can configure a node, you must retrieve the assigned ID.

Category HTTP verb Path

Cluster GET [clusters/{cluster_id}/nodes

13

Curl
You must provide the cluster ID.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Processing type
Synchronous

Output
 Array records each describing a single node with the unique ID and name
6. Configure the nodes

You must provide the basic configuration for the node, which is the first of three API calls used to configure a
node.

Category HTTP verb Path
Cluster PATH [clusters/{cluster_id}/nodes/{node_id}
Curl

You must provide the cluster ID and node ID.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

JSON input (step06)
You must provide the host ID where the ONTAP Select node will run.

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

Processing type
Synchronous

Output
None

14

7. Retrieve the node networks

You must identify the data and management networks used by the node in the single-node cluster. The internal
network is not used with a single-node cluster.

Category HTTP verb Path
Cluster GET [clusters/{cluster_id}/nodes/{node_id}/networks
Curl

You must provide the cluster ID and node ID.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose'

Processing type
Synchronous

Output
* Array of two records each describing a single network for the node, including the unique ID and purpose
8. Configure the node networking

You must configure the data and management networks. The internal network is not used with a single-node
cluster.

@ Issue the following API call two times, once for each network.
Category HTTP verb Path
Cluster PATCH [clusters/{cluster_id}/nodes/{node_id}/networks/{network_id}
Curl

You must provide the cluster ID, node ID, and network ID.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d Q@step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

JSON input (step08)

You need to provide the name of the network.

"name": "sDOT Network"

15

Processing type
Synchronous

Output
None
9. Configure the node storage pool

The final step in configuring a node is to attach a storage pool. You can determine the available storage pools
through the vSphere web client, or optionally through the Deploy REST API.

Category HTTP verb Path
Cluster PATCH [clusters/{cluster_id}/nodes/{node_id}/networks/{network_id}
Curl

You must provide the cluster ID, node ID, and network ID.

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

JSON input (step09)
The pool capacity is 2 TB.

"pool array": [
{

"name": "sDOT-01",
"capacity": 2147483648000

Processing type
Synchronous

Output
None

10. Deploy the cluster

After the cluster and node have been configured, you can deploy the cluster.

Category HTTP verb Path
Cluster POST [clusters/{cluster_id}/deploy

16

Curl
You must provide the cluster ID.

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

JSON input (step10)
You must provide the password for the ONTAP administrator account.

"ontap credentials": {
"password": "mypassword"

Processing type
Asynchronous

Output
» Job object

Access with Python

Before you access the APl using Python

You must prepare the environment before running the sample Python scripts.

Before you run the Python scripts, you must make sure the environment is configured properly:
* The latest applicable version of Python2 must be installed.

The sample codes have been tested using Python2. They should also be portable to Python3, but have not
been tested for compatibility.

* The Requests and urllib3 libraries must be installed.
You can use pip or another Python management tool as appropriate for your environment.

» The client workstation where the scripts run must have network access to the ONTAP Select Deploy virtual
machine.

In addition, you must have the following information:

* I[P address of the Deploy virtual machine

» User name and password of a Deploy administrator account
Understand the Python scripts

The sample Python scripts allow you to perform several different tasks. You should
understand the scripts before using them at a live Deploy instance.

17

Common design characteristics

The scripts have been designed with the following common characteristics:

* Execute from command line interface at a client machine
You can run the Python scripts from any properly configured client machine. See Before you begin for more
information.

* Accept CLI input parameters
Each script is controlled at the CLI through input parameters.

* Read input file
Each script reads an input file based on its purpose. When creating or deleting a cluster, you must provide
a JSON configuration file. When adding a node license, you must provide a valid license file.

* Use a common support module
The common support module deploy requests.py contains a single class. It is imported and used by each
of the scripts.

Create a cluster

You can create an ONTAP Select cluster using the script cluster.py. Based on the CLI parameters and contents
of the JSON input file, you can modify the script to your deployment environment as follows:

* Hypervisor
You can deploy to ESXI or KVM (depending on the Deploy release). When deploying to ESXIi, the
hypervisor can be managed by vCenter or can be a standalone host.

* Cluster size
You can deploy a single-node or multiple-node cluster.

* Evaluation or production license
You can deploy a cluster with an evaluation or purchased license for production.

The CLI input parameters for the script include:

* Host name or IP address of the Deploy server
» Password for the admin user account
* Name of the JSON configuration file

» Verbose flag for message output

Add a node license

If you choose to deploy a production cluster, you must add a license for each node using the script
add_license.py. You can add the license before or after you deploy the cluster.

The CLI input parameters for the script include:

* Host name or IP address of the Deploy server

» Password for the admin user account

* Name of the license file

* ONTAP user name with privileges to add the license
» Password for the ONTAP user

18

Delete a cluster

You can delete an existing ONTAP Select cluster using the script delete_cluster.py.

The CLI input parameters for the script include:

* Host name or IP address of the Deploy server

» Password for the admin user account

* Name of the JSON configuration file

Python code samples

Script to create a cluster

You can use the following script to create a cluster based on parameters defined within
the script and a JSON input file.

©O© O J o U1 b» W DN -

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

#!/usr/bin/env python

e o e e o e o e e e e e S S e S S S S S ==
#

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of
merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

#

B e e e e S e e e e e e e e S e S e S S S S S S S S eSS oSS o=
import traceback

import argparse

import json

import logging

from deploy requests import DeployRequests

19

20

27
28
29
30
31
32
33
34

35

36

37
38
39
40
41
42
43

44
45
46
47
48
49

50

51

52

53

54
55

56
57
58
59
60
61
62

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log debug trace ()

vcenter = config.get ('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter
['"hostname']) :
log info("Registering vcenter {} credentials".format (vcenter
["hostname']))
data = {k: vcenter[k] for k in ['hostname', 'username',
'password'] }
data['type'] = "vcenter"
deploy.post ('/security/credentials', data)

def add standalone host credentials (deploy, config):

""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the
Deploy.
log _debug trace ()
hosts = config.get ('hosts', [1])
for host in hosts:
The presense of the 'password' will be used only for

standalone hosts.

If this host is managed by a vcenter, it should not have a
host 'password' in the json.

if 'password' in host and not deploy.resource exists
('/security/credentials',

'hostname', host['name']) :
log info("Registering host {} credentials".format (host
["name']))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host
['password']}
deploy.post ('/security/credentials', data)

def register unkown hosts(deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

63
64

65
66
67
68
69
70

71
72
73
74
75
76

77
78
79
80

81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102

This method will exit the script if no hosts are found in the
config.
LI |
log debug trace ()
data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log and exit ("The cluster config requires at least 1 entry in
the 'hosts' list got {}".format (config))
missing host cnt = 0
for host in config['hosts']:
if not deploy.resource exists('/hosts', 'name', host['name']):
missing host cnt += 1
host config = {"name": host['name'], "hypervisor type":

This method will skip any hosts that are already registered.

host['type']}

if 'mgmt server' in host:

host config["management server"] = host['mgmt server']
log info(
"Registering from vcenter {mgmt server}".format (
**host))
if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host
["user']}

log info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post ('/hosts', data, wait for job=True)

def add cluster_ attributes(deploy, config):

""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

L |

log _debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name',

cluster config['name'])

21

22

103
104

105
106

107
108

109
110
111
112
113
114

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

137
138
139
140
141

if not cluster id:

log info("Creating cluster config named {name}".format (

**cluster configq))

Filter to only the valid attributes,

in the json

data = {k: cluster config[k] for k in [

'name', 'ip',

ignores anything else

'gateway', 'netmask', 'ontap image version',

'dns_info', 'ntp servers']}

num nodes = len(config['nodes'])

log info("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?node count={}"'.format

(num nodes), data)

cluster id = resp.headers.get ('Location') .split ('/") [-1]

return cluster id

def get node ids(deploy,

''"'" Get the the ids of the nodes in a cluster.

node ids.'"''
log debug trace ()

response

node ids
return node ids

cluster id):

deploy.get ('/clusters/{}/nodes'.format (cluster id))
[node['id"']

def add node_attributes(deploy, cluster id, node id, node):

''' Set all the needed properties on a node '''

log debug trace ()

log info("Adding node '{}' properties".format (node id))

data = {k: nodelk]
'instance type',

in node}

fo

r k in

['ip', 'serial number',

'is storage efficiency enabled']

Optional: Set a serial number

if 'license' in node:

data['license']

Assign the host

{rid’':

node['license']}

Returns a list of

if

for node in response.json().get ('records')]

k

142

143
144

145
146
147
148
149

150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
175

176

177
178
179
180

host id = deploy.find_resource('/hosts', 'name', nodel
'host name'])
if not host id:
log and exit ("Host names must match in the 'hosts' array, and
the nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks"') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log info("Node properties: {}".format (data))
deploy.patch('/clusters/{}/nodes/{}"'.format (cluster id, node id),
data)

def add_node networks (deploy, cluster id, node id, node):
''"" Set the network information for a node '''
log debug trace ()

log info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records ('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource
('/clusters/{}/nodes/{}/networks'.format (cluster id, node id),
'purpose', network]|
'purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:

data['vlan id'] = network['vlan']

23

24

181

182
183
184
185
186
187
188
189
190
191

192
193

194
195
196
197
198

19%
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

deploy.patch ('/clusters/{}/nodes/{}/networks/{}"'.format
(cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
'''" Set all the storage information on a node '''
log debug trace ()

log info("Adding node '{}' storage properties".format (node id))
log info("Node storage: {}".format (node['storage']['pools']))

data = {'pool array': node['storage']l['pools']} # use all the
Jjson properties
deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id,
node id), data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,
node id), data)

def create cluster config(deploy, config):

'''" Construct a cluster config in the deploy server using the
input json data '''

log debug trace ()

cluster id = add cluster attributes (deploy, config)

node ids = get node ids(deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node attributes(deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node configq)
add node storage (deploy, cluster id, node id, node config)

return cluster id

def deploy cluster (deploy, cluster id, config):
'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log _debug trace ()
log info("Deploying cluster: {}".format (cluster id))

222

223 data = {'ontap credential': {'password': config['cluster'
] ['ontap admin password']}}

224 deploy.post ('/clusters/{}/deploy?inhibit rollback=true'.format
(cluster id),

225 data, wait for job=True)

226

227

228 def log_debug trace():

229 stack = traceback.extract stack()

230 parent function = stack[-2] [2]

231 logging.getLogger ('deploy') .debug('Calling %$s()' %
parent function)

232

233

234 def log_info(msqg) :

235 logging.getLogger ('deploy') .info (msqg)

236

237

238 def log_and exit (msg):

239 logging.getLogger ('deploy') .error (msqg)

240 exit (1)

241

242

243 def configure logging (verbose) :

244 FORMAT = '% (asctime)-15s:%(levelname)s:%(name)s: % (message)s'

245 if verbose:

246 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

247 else:

248 logging.basicConfig(level=logging.INFO, format=FORMAT)

249 logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

250 logging.WARNING)

251

252

253 def main(args):

254 configure logging(args.verbose)

255 deploy = DeployRequests (args.deploy, args.password)

256

257 with open(args.config file) as json data:

258 config = json.load(json data)

259

260 add vcenter credentials (deploy, config)

261

262 add standalone host credentials(deploy, config)

263

264
265
266
267
268
269
270
271
272

273

274

275

276

277

278

279

280

281
282

register unkown hosts(deploy, config)
cluster id = create cluster config(deploy, config)

deploy cluster (deploy, cluster id, config)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP
Select Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address
of Deploy server')

parser.add argument('-p', '--password', help='Admin password of
Deploy server')

parser.add argument ('-c', '--config file', help='Filename of the
cluster config')

parser.add argument ('-v', '--verbose', help='Display extra
debugging messages for seeing exact API calls and responses',

action='store true', default=False)
return parser.parse_args ()

if name == "' main ':
args = parseArgs ()

main (args)

JSON for script to create a cluster

When creating or deleting an ONTAP Select cluster using the Python code samples, you
must provide a JSON file as input to the script. You can copy and modify the appropriate
JSON sample based on your deployment plans.

Single-node cluster on ESXi

O J o U b w N

e e
N B O

26

—_~

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
1y

"cluster": {

"dns info": {

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

I

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

LU

ip": "10.206.80.115",

"name": "mycluster",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

"netmask": "255.255.254.0"
by

"nodes": [

{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
1y
"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": T[],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

27

59 }
60]
61 }

62 }

63 1

64 1}

Single-node cluster on ESXi using vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
I
"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password" :"mypassword2",
"hostname":"vcenter-1234",
"username":"selectadmin"

s

"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",

28

"name" : "node-1",
"networks": |
{
"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",

"vlan" :null

1,

"host name": "host-1234",

"is storage efficiency enabled":

"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

Single-node cluster on KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username" :"root"

29

1,

"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
I

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" : "CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234

"name": "ontap-external",
"purpose": "data",
"vlian": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null
}
I

"host name": "host-1234",

"is storage efficiency enabled": false,
"instance type": "small",

"storage": {

"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Script to add a node license

You can use the following script to add a license for an ONTAP Select node.

O 0 J o U1 b W DN -

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

#!/usr/bin/env python

e e e e e e e e e e e e e S e e S S S S O S S S S O S oSS es=
#

File: add license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of
merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

#

e s s s e s s e E S e S s ST S e S S S E S e S s T e E S S eSS a e eSS es s
import argparse

import logging

import Jjson

from deploy requests import DeployRequests

31

2’7 def post new license(deploy, license filename) :

28 log info('Posting a new license: {}'.format(license filename))

29

30 # Stream the file as multipart/form-data

31 deploy.post ('/licensing/licenses', data={},

32 files={'"'license file': open(license filename, 'rb')})

33

34 # Alternative if the NLF license data is converted to a string.

35 # with open(license filename, 'rb') as f:

36 # nlf data = f.read()

37 # r = deploy.post('/licensing/licenses', data={},

38 # files={'"'license file': (license filename,
nlf data)})

39

40

41 def put license(deploy, serial number, data, files):
42 log info('Adding license for serial number: {}'.format

(serial number))

43

44 deploy.put ('/licensing/licenses/{}'.format (serial number), data
=data, files=files)

45

46

477 def put used license(deploy, serial number, license filename,
ontap username, ontap password) :

48 '''" If the license is used by an 'online' cluster, a
username/password must be given. '''

49

50 data = {'ontap username': ontap username, 'ontap password':
ontap password}

51 files = {'license file': open(license filename, 'rb')}

52

53 put license(deploy, serial number, data, files)

54

55

56 def put free license(deploy, serial number, license filename) :
57 data = {}

58 files = {'license file': open(license filename, 'rb')}
59

60 put license (deploy, serial number, data, files)

61

62

63 def get _serial number from license(license filename) :

64 ''"'" Read the NLF file to extract the serial number '''
65 with open(license filename) as f:

06 data = json.load(f)

67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97

98

9%
100

101

102
103

104
105

statusResp = data.get ('statusResp', {1})
serialNumber = statusResp.get ('serialNumber')
if not serialNumber:
log and exit ("The license file seems to be missing the
serialNumber")
return serialNumber
def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)
def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)
def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlogger ('requests.packages.urllib3.connectionpool’
) .setlevel (logging.WARNING)
def main(args):

configure logging ()
serial number = get serial number from license(args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this

serial-number

if deploy.find resource('/licensing/licenses', 'id',

serial number) :

If the license already exists in the Deploy server,

determine if its used

if deploy.find resource('/clusters', 'nodes.serial number',

serial number) :

In this case, requires ONTAP creds to push the license

to the node

if args.ontap username and args.ontap password:
put used license (deploy, serial number, args.license,

33

106 args.ontap username, args
.ontap password)

107 else:

108 print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")

109 else:

110 # License exists, but its not used

111 put free license(deploy, serial number, args.license)

112 else:

113 # No license exists, so register a new one as an available

license for later use

114 post new license(deploy, args.license)

115

116

117 def parseArgs():

118 parser = argparse.ArgumentParser (description='Uses the ONTAP
Select Deploy API to add or update a new or used NLF license file.')

119 parser.add argument ('-d', '--deploy', required=True, type=str,
help='Hostname or IP address of ONTAP Select Deploy')
120 parser.add argument ('-p', '--password', required=True, type=str,

help='Admin password of Deploy server')
121 parser.add argument ('-1', '--license', required=True, type=str,
help='Filename of the NLF license data')

122 parser.add argument('-u', '--ontap username', type=str,

123 help='ONTAP Select username with privelege to
add the license. Only provide if the license is used by a Node.')

124 parser.add argument('-o', '--ontap password',6 type=str,

125 help="'ONTAP Select password for the
ontap username. Required only if ontap username is given.')

126 return parser.parse_args ()

127

128 if name == ' main_ ':

129 args = parseArgs ()

130 main (args)

Script to delete a cluster

You can use the following CLI script to delete an existing cluster.

1 #!/usr/bin/env python

D A
3 #

4 # File: delete cluster.py

5 #

6 # (C) Copyright 2019 NetApp, Inc.

34

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

36

37
38
39
40
41
42
43
44
45
46
47

This sample code is provided AS IS, with no support or warranties of

#
#
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

import argparse
import json
import logging

from deploy requests import DeployRequests

def find cluster (deploy, cluster name) :
return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state’'.format (
cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log info ("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch('/clusters/{}'.format (cluster id), {
'availability': 'powered off'}, True)

def delete_cluster (deploy, cluster id):
log info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

35

48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

73

74

75

76

17

78

79
80

def configure logging () :

FORMAT = '% (asctime)-15s:% (levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’

) .setlLevel (logging.WARNING)

def main (args) :

configure logging/()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log info ("Found the cluster {} with id: {}.".format (config

['cluster']['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs|():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select

Deploy API to delete a cluster')

parser.add argument ('-d', '--deploy', required=True, type=str,

help='Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str,

help='Admin password of Deploy server')

parser.add argument ('-c', '--config file', required=True, type=str,

help='Filename of the cluster json config')

return parser.parse_args ()

if name == ' main ':

args = parseArgs ()
main (args)

Common support module

All of the Python scripts use a common Python class in a single module.

36

1 #!/usr/bin/env python

©O© O J o U1 b W N

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

File: deploy requests.py

#

#

#

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of
merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is
granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to
terms

no less restrictive than those set forth herein.

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy

path creation and header manipulations for simpler code.

def _ init_ (self, ip, admin_ password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/json'}

self.logger = logging.getLogger ('deploy")

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:'")
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:

37

38

45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86
87

self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,

json=data,

headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.
filter headers (response), response.text)

self.exit on errors(response)

if wait for job and response.status code == 202:

self.wait for job (response.json())

return response

def patch(self, path, data, wait for job=False):
self.logger.debug ('PATCH DATA: %s', data)
response = requests.patch(self.base url + path,
auth=self.auth,

json=data,

verify=False,

headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY:
filter headers (response), response.text)

self.exit on errors (response)

Q]
%s',

if wait for job and response.status code

self.wait for job (response.json())
return response

self.

202:

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data)

)

response = requests.put (self.base url +
auth=self.auth,

data=data,

files=files)

else:
self.logger.debug ('PUT DATA:"')

response = requests.put (self.base url +
auth=self.auth,

json=data,

path,
verify=False,

path,
verify=False,

headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY:
filter headers(response), response.text)
self.exit on errors(response)

°
5SS

14

self.

88
89
90
91
92
93
94

95

96
97
98
9%
100
101

102

103
104
105
106
107
108
109
110

111
112
113
114

115
116
117
118
119

120
121
122

123
124
125

def

verify=

filter

def

.auth,

filter

def

None ''

('num r

def

None on

=query

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

get(self, path):

""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
False)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.
headers (response), response.text)
self.exit on errors (response)

return response

delete (self, path, wait for job=False):

""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self
verify=False)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.
headers (response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

find resource (self, path, name, value):
'''" Returns the 'id' of the resource if it exists, otherwise

Al

resource = None
response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))
if response.status_code == 200 and response.json() .get
ecords') >= 1:
resource = response.json().get('records') [0].get('id")
return resource
get num records(self, path, query=None) :
'''" Returns the number of records found in a container, or
error '''
resource = None
query opt = '?{}'.format (query) if query else ''
response = self.get('{path}{query}'.format (path=path, query
opt))
if response.status code == 200
return response.json().get ('num records')

return None

39

40

126
127
128
129
130
131
132
133
134
135
136
137
138

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160

161
162
163
164

165
166

def

def

.format (

def

resource_exists(self, path, name, value):
return self.find resource(path, name, value) is not None

wait for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

response self.get ('/jobs/{}?fields=state,messages’

'poll timeout={}&last modified=>={}"

job id, poll timeout,

last modified))

job body response.json() .get ('record', {})
Show interesting message updates

message = job body.get ('message', '")
self.logger.info('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job_body.get ('last modified')

Look for the final states
state = job body.get ('state', 'unknown')
if state in ['success', 'failure']:

if state == 'failure':

self.logger.error ('FAILED background job.\nJOB:
%s', Jjob body)
exit (1) # End the script if a failure occurs

break

exit on_errors(self, response):
if response.status_code >= 400:

self.logger.error ('FAILED request to URL: %$s\nHEADERS:
%$s\nRESPONSE BODY: %s',

response.request.url,
self.filter headers(response),
response.text)

response.raise for status() # Displays the response error,

and exits the script

@staticmethod

167 def filter headers (response):

168 ''" Returns a filtered set of the response headers '''

169 return {key: response.headers|[key] for key in ['Location',
'request-id'] if key in response.headers}

Script to resize cluster nodes

You can use the following script to resize the nodes in an ONTAP Select cluster.

1 #!/usr/bin/env python

R e R

3 #

4 # File: resize nodes.py

5 #

6 # (C) Copyright 2019 NetApp, Inc.

7 #

8 # This sample code is provided AS IS, with no support or warranties of

9 # any kind, including but not limited for warranties of
merchantability

10 # or fitness of any kind, expressed or implied. Permission to use,

11 # reproduce, modify and create derivatives of the sample code is
granted

12 # solely for the purpose of researching, designing, developing and

13 # testing a software application product for use with NetApp products,

14 # provided that the above copyright notice appears in all copies and

15 # that the software application product is distributed pursuant to
terms

16 # no less restrictive than those set forth herein.

17 #

1§ drfer s s e e e e S e e e e o 5 5 5 0 0 0 0 5 5 5 5 0 0 0 0 5 5 5 0 0 0 0 o 5 5 e e e e e

19

20 import argparse

21 import logging

22 import sys

23

24 from deploy requests import DeployRequests

25

26

2’7 def parse args():

28 """ Parses the arguments provided on the command line when
executing this

29 script and returns the resulting namespace. If all required
arguments
30 are not provided, an error message indicating the mismatch is

printed and

31 the script will exit.

32 e

33

34 parser = argparse.ArgumentParser (description=(

35 'Uses the ONTAP Select Deploy API to resize the nodes in the
cluster.'

36 ' For example, you might have a small (4 CPU, 16GB RAM per
node) 2 node'

37 ' cluster and wish to resize the cluster to medium (8 CPU,
64GB RAM per'

38 ' node). This script will take in the cluster details and then
perform'

39 ' the operation and wait for it to complete.'

40))

41 parser.add argument ('--deploy', required=True, help=(

42 'Hostname or IP of the ONTAP Select Deploy VM.'

43))

44 parser.add argument ('--deploy-password', required=True, help=(

45 'The password for the ONTAP Select Deploy admin user.'

46))

47 parser.add argument ('--cluster', required=True, help=(

48 'Hostname or IP of the cluster management interface.'

49))

50 parser.add argument ('--instance-type', required=True, help=(

51 'The desired instance size of the nodes after the operation is
complete.'

52))

53 parser.add argument ('--ontap-password', required=True, help=(

54 'The password for the ONTAP administrative user account.'

55))

56 parser.add argument ('--ontap-username', default='admin', help=(

57 'The username for the ONTAP administrative user account.

Default: admin.'

58))

59 parser.add argument ('--nodes', nargs='+', metavar='NODE NAME',
help=(

60 'A space separated list of node names for which the resize
operation'’

61 ' should be performed. The default is to apply the resize to
all nodes in'

62 ' the cluster. If a list of nodes is provided, it must be
provided in HA'

63 ' pairs. That is, in a 4 node cluster, nodes 1 and 2
(partners) must be'

64 ' resized in the same operation.'

65))

66
67
68
69
70
71
72

73
74
75

76
77
78
79
80
81
82
83

84
85
86

87
88
89

90
91
92
93
94
95

96
97
98
9%
100

101
102

103

return parser.parse args ()

def get cluster(deploy, parsed args):

""" Tocate the cluster using the arguments provided """
cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None
return deploy.get ('/clusters/%s?fields=nodes' % cluster id).
json () ['record']
def get request body(parsed args, cluster):
""" Build the request body """
changes = {'admin password': parsed args.ontap password}
if provided, use the list of nodes given, else use all the nodes
in the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in
parsed args.nodes]
changes|['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']}
for node in nodes]
return changes
def main() :
""" Set up the resize operation by gathering the necessary data
and then send
the request to the ONTAP Select Deploy server.
logging.basicConfig(
format='[% (asctime)s] [%$(levelname)5s] % (message)s', level
=logging.INFO,)
logging.getLogger ('requests.packages.urllib3"') .setLevel (logging
.WARNING)

43

104 parsed args = parse args|()

105 deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

106

107 cluster = get cluster(deploy, parsed args)

108 if not cluster:

109 deploy.logger.error (

110 '"Unable to find a cluster with a management IP of %s'

parsed args.cluster)

111 return 1

112

113 changes = get request body(parsed args, cluster)

114 deploy.patch('/clusters/%s' % cluster(['id'], changes,
wait for job=True)

115

116 if name == "' main ':

117 sys.exit (main())

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

45

http://www.netapp.com/TM

	Automate with REST : ONTAP Select
	Table of Contents
	Automate with REST
	Concepts
	REST web services foundation
	How to access the Deploy API
	Deploy API versioning
	Basic operational characteristics
	Request and response API transaction
	Asynchronous processing using the job object

	Access with a browser
	Before you access the API with a browser
	Access the Deploy documentation page
	Understand and execute an API call

	Workflow processes
	Before you use the API workflows
	Workflow 1: Create a single-node evaluation cluster on ESXi

	Access with Python
	Before you access the API using Python
	Understand the Python scripts

	Python code samples
	Script to create a cluster
	JSON for script to create a cluster
	Script to add a node license
	Script to delete a cluster
	Common support module
	Script to resize cluster nodes

