
Concepts
ONTAP Select
NetApp
November 21, 2024

This PDF was generated from https://docs.netapp.com/us-en/ontap-select-9151/concept_api_rest.html on
November 21, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Concepts . 1

REST web services foundation . 1

How to access the Deploy API . 2

Deploy API versioning . 2

Basic operational characteristics . 3

Request and response API transaction . 4

Asynchronous processing using the job object . 7

Concepts

REST web services foundation

Representational State Transfer (REST) is a style for creating distributed web

applications. When applied to the design of a web services API, it establishes a set of

technologies and best practices for exposing server-based resources and managing their

states. It uses mainstream protocols and standards to provide a flexible foundation for

deploying and managing ONTAP Select clusters.

Architecture and classic constraints

REST was formally articulated by Roy Fielding in his PhD dissertation at UC Irvine in 2000. It defines an

architectural style through a set of constraints, which collectively have improves web-based applications and

the underlying protocols. The constraints establish a RESTful web services application based on a client/server

architecture using a stateless communication protocol.

Resources and state representation

Resources are the basic components of a web-based system. When creating a REST web services

application, early design tasks include:

• Identification of system or server-based resources

Every system uses and maintains resources. A resource can be a file, business transaction, process, or

administrative entity. One of the first tasks in designing an application based on REST web services is to

identify the resources.

• Definition of resource states and associated state operations

Resources are always in one of a finite number of states. The states, as well as the associated operations

used to affect the state changes, must be clearly defined.

Messages are exchanged between the client and server to access and change the state of the resources

according to the generic CRUD (Create, Read, Update, and Delete) model.

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme. The

endpoints where the resources are located and identified use a Uniform Resource Identifier (URI). The URI

provides a general framework for creating a unique name for each resource in the network. The Uniform

Resource Locator (URL) is a type of URI used with web services to identify and access resources. Resources

are typically exposed in a hierarchical structure similar to a file directory.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the protocol used by the web services client and server to exchange

request and response messages about the resources. As part of designing a web services application, HTTP

verbs (such as GET and POST) are mapped to the resources and corresponding state management actions.

HTTP is stateless. Therefore, to associate a set of related requests and responses under one transaction,

additional information must be included in the HTTP headers carried with the request/response data flows.

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

JSON formatting

While information can be structured and transferred between a client and server in several ways, the most

popular option (and the one used with the Deploy REST API) is JavaScript Object Notation (JSON). JSON is

an industry standard for representing simple data structures in plain text and is used to transfer state

information describing the resources.

How to access the Deploy API

Because of the inherent flexibility of REST web services, the ONTAP Select Deploy API

can be accessed in several different ways.

Deploy utility native user interface

The primary way you access the API is through the ONTAP Select Deploy web user interface. The browser

makes calls to the API and reformats the data according to the design of the user interface. You also access

the API through the Deploy utility command line interface.

ONTAP Select Deploy online documentation page

The ONTAP Select Deploy online documentation page provides an alternative access point when using a

browser. In addition to providing a way to execute individual API calls directly, the page also includes a detailed

description of the API, including input parameters and other options for each call. The API calls are organized

into several different functional areas or categories.

Custom program

You can access the Deploy API using any of several different programming languages and tools. Popular

choices include Python, Java, and cURL. A program, script, or tool that uses the API acts as a REST web

services client. Using a programming language allows you to better understand the API and provides an

opportunity to automate the ONTAP Select deployments.

Deploy API versioning

The REST API included with ONTAP Select Deploy is assigned a version number. The

API version number is independent of the Deploy release number. You should be aware

of the API version included with your release of Deploy and how this might affect your use

of the API.

The current release of the Deploy administration utility includes version 3 of the REST API. Past releases of

the Deploy utility include the following API versions:

Deploy 2.8 and later

ONTAP Select Deploy 2.8 and all later releases include version 3 of the REST API.

Deploy 2.7.2 and earlier

ONTAP Select Deploy 2.7.2 and all earlier releases include version 2 of the REST API.

2

Versions 2 and 3 of the REST API are not compatible. If you upgrade to Deploy 2.8 or later from

an earlier release that includes version 2 of the API, you must update any existing code that

directly accesses the API as well as any scripts using the command line interface.

Basic operational characteristics

While REST establishes a common set of technologies and best practices, the details of

each API can vary based on the design choices. You should be aware of the details and

operational characteristics of the ONTAP Select Deploy API before using the API.

Hypervisor host versus ONTAP Select node

A hypervisor host is the core hardware platform that hosts an ONTAP Select virtual machine. When an ONTAP

Select virtual machine is deployed and active on a hypervisor host, the virtual machine is considered to be an

ONTAP Select node. With version 3 of the Deploy REST API, the host and node objects are separate and

distinct. This allows a one-to-many relationship, where one or more ONTAP Select nodes can run on the same

hypervisor host.

Object identifiers

Each resource instance or object is assigned a unique identifier when it is created. These identifiers are

globally unique within a specific instance of ONTAP Select Deploy. After issuing an API call that creates a new

object instance, the associated id value is returned to the caller in the location header of the HTTP

response. You can extract the identifier and use it on subsequent calls when referring to the resource instance.

The content and internal structure of the object identifiers can change at any time. You should

only use the identifiers on the applicable API calls as needed when referring to the associated

objects.

Request identifiers

Every successful API request is assigned a unique identifier. The identifier is returned in the request-id

header of the associated HTTP response. You can use a request identifier to collectively refer to the activities

of a single specific API request-response transaction. For example, you can retrieve all the event messages for

a transaction based on the request id.

Synchronous and asynchronous calls

There are two primary ways that a server performs an HTTP request received from a client:

• Synchronous

The server performs the request immediately and responds with a status code of 200, 201, or 204.

• Asynchronous

The server accepts the request and responds with a status code of 202. This indicates the server has

accepted the client request and started a background task to complete the request. Final success or failure

is not immediately available and must be determined through additional API calls.

3

Confirm the completion of a long-running job

Generally, any operation that can take a long time to complete is processed asynchronously using a

background task at the server. With the Deploy REST API, every background task is anchored by a

Job object which tracks the task and provides information, such as the current state. A Job object,

including its unique identifier, is returned in the HTTP response after a background task is created.

You can query the Job object directly to determine the success or failure of the associated API call.

Refer to asynchronous processing using the Job object for additional information.

In addition to using the Job object, there are other ways you can determine the success or failure of a

request, including:

• Event messages

You can retrieve all the event messages associated with a specific API call using the request id returned

with the original response. The event messages typically contain an indication of success or failure, and

can also be useful when debugging an error condition.

• Resource state or status

Several of the resources maintain a state or status value which you can query to indirectly determine the

success or failure of a request.

Security

The Deploy API uses the following security technologies:

• Transport Layer Security

All traffic sent over the network between the Deploy server and client is encrypted through TLS. Using the

HTTP protocol over an unencrypted channel is not supported. TLS version 1.2 is supported.

• HTTP authentication

Basic authentication is used for every API transaction. An HTTP header, which includes the user name and

password in a base64 string, is added to every request.

Request and response API transaction

Every Deploy API call is performed as an HTTP request to the Deploy virtual machine

which generates an associated response to the client. This request/response pair is

considered an API transaction. Before using the Deploy API, you should be familiar with

the input variables available to control a request and the contents of the response output.

Input variables controlling an API request

You can control how an API call is processed through parameters set in the HTTP request.

Request headers

You must include several headers in the HTTP request, including:

• content-type

If the request body includes JSON, this header must be set to application/json.

• accept

4

If the response body will include JSON, this header must be set to application/json.

• authorization

Basic authentication must be set with the user name and password encoded in a base64 string.

Request body

The content of the request body varies depending on the specific call. The HTTP request body consists of one

of the following:

• JSON object with input variables (such as, the name of a new cluster)

• Empty

Filter objects

When issuing an API call that uses GET, you can limit or filter the returned objects based on any attribute. For

example, you can specify an exact value to match:

<field>=<query value>

In addition to an exact match, there are other operators available to return a set of objects over a range of

values. ONTAP Select supports the filtering operators shown below.

Operator Description

= Equal to

< Less than

> Greater than

⇐ Less than or equal to

>= Greater than or equal to

Or

! Not equal to

* Greedy wildcard

You can also return a set of objects based on whether a specific field is set or not set by using the null keyword

or its negation (!null) as part of the query.

Selecting object fields

By default, issuing an API call using GET returns only the attributes that uniquely identify the object or objects.

This minimum set of fields acts as a key for each object and varies based on the object type. You can select

additional object properties using the fields query parameter in the following ways:

• Inexpensive fields

Specify fields=* to retrieve the object fields that are maintained in local server memory or require little

processing to access.

• Expensive fields

Specify fields=** to retrieve all the object fields, including those requiring additional server processing

to access.

5

• Custom field selection

Use fields=FIELDNAME to specify the exact field you want. When requesting multiple fields, the values

must be separated using commas without spaces.

As a best practice, you should always identify the specific fields you want. You should only

retrieve the set of inexpensive or expensive fields when needed. The inexpensive and

expensive classification is determined by NetApp based on internal performance analysis. The

classification for a given field can change at any time.

Sort objects in the output set

The records in a resource collection are returned in the default order defined by the object. You can change the

order using the order_by query parameter with the field name and sort direction as follows:

order_by=<field name> asc|desc

For example, you can sort the type field in descending order followed by id in ascending order:

order_by=type desc, id asc

When including multiple parameters, you must separate the fields with a comma.

Pagination

When issuing an API call using GET to access a collection of objects of the same type, all matching objects are

returned by default. If needed, you can limit the number of records returned using the max_records query

parameter with the request. For example:

max_records=20

If needed, you can combine this parameter with other query parameters to narrow the result set. For example,

the following returns up to 10 system events generated after the specified time:

time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

You can issue multiple requests to page through the events (or any object type). Each subsequent API call

should use a new time value based on the latest event in the last result set.

Interpret an API response

Each API request generates a response back to the client. You can examine the response to determine

whether it was successful and retrieve additional data as needed.

HTTP status code

The HTTP status codes used by the Deploy REST API are described below.

Code Meaning Description

200 OK Indicates success for calls that do not create a new object.

201 Created An object is successfully created; the location response header

includes the unique identifier for the object.

202 Accepted A long-running background job has been started to perform the

request, but the operation has not completed yet.

400 Bad request The request input is not recognized or is inappropriate.

6

Code Meaning Description

403 Forbidden Access is denied due to an authorization error.

404 Not found The resource referred to in the request does not exist.

405 Method not allowed The HTTP verb in the request is not supported for the resource.

409 Conflict An attempt to create an object failed because the object already exists.

500 Internal error A general internal error occurred at the server.

501 Not implemented The URI is known but is not capable of performing the request.

Response headers

Several headers are included in the HTTP response generated by the Deploy server, including:

• request-id

Every successful API request is assigned a unique request identifier.

• location

When an object is created, the location header includes the complete URL to the new object including the

unique object identifier.

Response body

The content of the response associated with an API request differs based on the object, processing type, and

the success or failure of the request. The response body is rendered in JSON.

• Single object

A single object can be returned with a set of fields based on the request. For example, you can use GET to

retrieve selected properties of a cluster using the unique identifier.

• Multiple objects

Multiple objects from a resource collection can be returned. In all cases, there is a consistent format used,

with num_records indicating the number of records and records containing an array of the object

instances. For example, you can retrieve all the nodes defined in a specific cluster.

• Job object

If an API call is processed asynchronously, a Job object is returned which anchors the background task.

For example, the POST request used to deploy a cluster is processed asynchronously and returns a Job

object.

• Error object

If an error occurs, an Error object is always returned. For example, you will receive an error when

attempting to create a cluster with a name that already exists.

• Empty

In certain cases, no data is returned and the response body is empty. For example, the response body is

empty after using DELETE to delete an existing host.

Asynchronous processing using the job object

Some of the Deploy API calls, particularly those that create or modify a resource, can

take longer to complete than other calls. ONTAP Select Deploy processes these long-

running requests asynchronously.

7

Asynchronous requests described using Job object

After making an API call that runs asynchronously, the HTTP response code 202 indicates the request has

been successfully validated and accepted, but not yet completed. The request is processed as a background

task which continues to run after the initial HTTP response to the client. The response includes the Job object

anchoring the request, including its unique identifier.

You should refer to the ONTAP Select Deploy online documentation page to determine which

API calls operate asynchronously.

Query the Job object associated with an API request

The Job object returned in the HTTP response contains several properties. You can query the state property to

determine if the request completed successfully. A Job object can be in one of the following states:

• Queued

• Running

• Success

• Failure

There are two techniques you can use when polling a Job object to detect a terminal state for the task, either

success or failure:

• Standard polling request

Current Job state is returned immediately

• Long polling request

Job state is returned only when one of the following occurs:

◦ State has changed more recently than the date-time value provided on the poll request

◦ Timeout value has expired (1 to 120 seconds)

Standard polling and long polling use the same API call to query a Job object. However, a long polling request

includes two query parameters: poll_timeout and last_modified.

You should always use long polling to reduce the workload on the Deploy virtual machine.

General procedure for issuing an asynchronous request

You can use the following high-level procedure to complete an asynchronous API call:

1. Issue the asynchronous API call.

2. Receive an HTTP response 202 indicating successful acceptance of the request.

3. Extract the identifier for the Job object from the response body.

4. Within a loop, perform the following in each cycle:

a. Get the current state of the Job with a long-poll request

b. If the Job is in a non-terminal state (queued, running), perform loop again.

5. Stop when the Job reaches a terminal state (success, failure).

8

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

9

http://www.netapp.com/TM

	Concepts : ONTAP Select
	Table of Contents
	Concepts
	REST web services foundation
	How to access the Deploy API
	Deploy API versioning
	Basic operational characteristics
	Request and response API transaction
	Asynchronous processing using the job object

