
Python code samples
ONTAP Select
NetApp
January 10, 2026

This PDF was generated from https://docs.netapp.com/us-en/ontap-select/reference_api_script_cc.html
on January 10, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Python code samples . 1

Script to create an ONTAP Select cluster . 1

JSON for script to create an ONTAP Select cluster . 8

Single-node cluster on ESXi . 8

Single-node cluster on ESXi using vCenter . 10

Single-node cluster on KVM. 11

Script to add an ONTAP Select node license. 13

Script to delete an ONTAP Select cluster. 16

Common support Python module for ONTAP Select . 18

Script to resize ONTAP Select cluster nodes. 23

Python code samples

Script to create an ONTAP Select cluster

You can use the following script to create a cluster based on parameters defined within

the script and a JSON input file.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: cluster.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

 granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

 terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

 19

 20 import traceback

 21 import argparse

 22 import json

 23 import logging

 24

 25 from deploy_requests import DeployRequests

 26

 27

 28 def add_vcenter_credentials(deploy, config):

 29 """ Add credentials for the vcenter if present in the config """

 30 log_debug_trace()

 31

 32 vcenter = config.get('vcenter', None)

 33 if vcenter and not deploy.resource_exists('/security/credentials',

 34 'hostname', vcenter[

 'hostname']):

1

 35 log_info("Registering vcenter {} credentials".format(vcenter[

 'hostname']))

 36 data = {k: vcenter[k] for k in ['hostname', 'username',

 'password']}

 37 data['type'] = "vcenter"

 38 deploy.post('/security/credentials', data)

 39

 40

 41 def add_standalone_host_credentials(deploy, config):

 42 """ Add credentials for standalone hosts if present in the config.

 43 Does nothing if the host credential already exists on the

 Deploy.

 44 """

 45 log_debug_trace()

 46

 47 hosts = config.get('hosts', [])

 48 for host in hosts:

 49 # The presense of the 'password' will be used only for

 standalone hosts.

 50 # If this host is managed by a vcenter, it should not have a

 host 'password' in the json.

 51 if 'password' in host and not deploy.resource_exists(

 '/security/credentials',

 52 '

 hostname', host['name']):

 53 log_info("Registering host {} credentials".format(host[

 'name']))

 54 data = {'hostname': host['name'], 'type': 'host',

 55 'username': host['username'], 'password': host[

 'password']}

 56 deploy.post('/security/credentials', data)

 57

 58

 59 def register_unkown_hosts(deploy, config):

 60 ''' Registers all hosts with the deploy server.

 61 The host details are read from the cluster config json file.

 62

 63 This method will skip any hosts that are already registered.

 64 This method will exit the script if no hosts are found in the

 config.

 65 '''

 66 log_debug_trace()

 67

 68 data = {"hosts": []}

 69 if 'hosts' not in config or not config['hosts']:

 70 log_and_exit("The cluster config requires at least 1 entry in

2

 the 'hosts' list got {}".format(config))

 71

 72 missing_host_cnt = 0

 73 for host in config['hosts']:

 74 if not deploy.resource_exists('/hosts', 'name', host['name']):

 75 missing_host_cnt += 1

 76 host_config = {"name": host['name'], "hypervisor_type":

host['type']}

 77 if 'mgmt_server' in host:

 78 host_config["management_server"] = host['mgmt_server']

 79 log_info(

 80 "Registering from vcenter {mgmt_server}".format(

**host))

 81

 82 if 'password' in host and 'user' in host:

 83 host_config['credential'] = {

 84 "password": host['password'], "username": host[

'user']}

 85

 86 log_info("Registering {type} host {name}".format(**host))

 87 data["hosts"].append(host_config)

 88

 89 # only post /hosts if some missing hosts were found

 90 if missing_host_cnt:

 91 deploy.post('/hosts', data, wait_for_job=True)

 92

 93

 94 def add_cluster_attributes(deploy, config):

 95 ''' POST a new cluster with all needed attribute values.

 96 Returns the cluster_id of the new config

 97 '''

 98 log_debug_trace()

 99

100 cluster_config = config['cluster']

101 cluster_id = deploy.find_resource('/clusters', 'name',

cluster_config['name'])

102

103 if not cluster_id:

104 log_info("Creating cluster config named {name}".format(

**cluster_config))

105

106 # Filter to only the valid attributes, ignores anything else

in the json

107 data = {k: cluster_config[k] for k in [

108 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

3

109

110 num_nodes = len(config['nodes'])

111

112 log_info("Cluster properties: {}".format(data))

113

114 resp = deploy.post('/v3/clusters?node_count={}'.format

 (num_nodes), data)

115 cluster_id = resp.headers.get('Location').split('/')[-1]

116

117 return cluster_id

118

119

120 def get_node_ids(deploy, cluster_id):

121 ''' Get the the ids of the nodes in a cluster. Returns a list of

 node_ids.'''

122 log_debug_trace()

123

124 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

125 node_ids = [node['id'] for node in response.json().get('records')]

126 return node_ids

127

128

129 def add_node_attributes(deploy, cluster_id, node_id, node):

130 ''' Set all the needed properties on a node '''

131 log_debug_trace()

132

133 log_info("Adding node '{}' properties".format(node_id))

134

135 data = {k: node[k] for k in ['ip', 'serial_number', '

 instance_type',

136 'is_storage_efficiency_enabled'] if k

 in node}

137 # Optional: Set a serial_number

138 if 'license' in node:

139 data['license'] = {'id': node['license']}

140

141 # Assign the host

142 host_id = deploy.find_resource('/hosts', 'name', node['host_name

 '])

143 if not host_id:

144 log_and_exit("Host names must match in the 'hosts' array, and

 the nodes.host_name property")

145

146 data['host'] = {'id': host_id}

147

148 # Set the correct raid_type

4

149 is_hw_raid = not node['storage'].get('disks') # The presence of a

 list of disks indicates sw_raid

150 data['passthrough_disks'] = not is_hw_raid

151

152 # Optionally set a custom node name

153 if 'name' in node:

154 data['name'] = node['name']

155

156 log_info("Node properties: {}".format(data))

157 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

 data)

158

159

160 def add_node_networks(deploy, cluster_id, node_id, node):

161 ''' Set the network information for a node '''

162 log_debug_trace()

163

164 log_info("Adding node '{}' network properties".format(node_id))

165

166 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

 (cluster_id))

167

168 for network in node['networks']:

169

170 # single node clusters do not use the 'internal' network

171 if num_nodes == 1 and network['purpose'] == 'internal':

172 continue

173

174 # Deduce the network id given the purpose for each entry

175 network_id = deploy.find_resource(

 '/clusters/{}/nodes/{}/networks'.format(cluster_id, node_id),

176 'purpose', network['purpose

 '])

177 data = {"name": network['name']}

178 if 'vlan' in network and network['vlan']:

179 data['vlan_id'] = network['vlan']

180

181 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format

 (cluster_id, node_id, network_id), data)

182

183

184 def add_node_storage(deploy, cluster_id, node_id, node):

185 ''' Set all the storage information on a node '''

186 log_debug_trace()

187

188 log_info("Adding node '{}' storage properties".format(node_id))

5

189 log_info("Node storage: {}".format(node['storage']['pools']))

190

191 data = {'pool_array': node['storage']['pools']} # use all the

 json properties

192 deploy.post(

193 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id,

 node_id), data)

194

195 if 'disks' in node['storage'] and node['storage']['disks']:

196 data = {'disks': node['storage']['disks']}

197 deploy.post(

198 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

 node_id), data)

199

200

201 def create_cluster_config(deploy, config):

202 ''' Construct a cluster config in the deploy server using the

 input json data '''

203 log_debug_trace()

204

205 cluster_id = add_cluster_attributes(deploy, config)

206

207 node_ids = get_node_ids(deploy, cluster_id)

208 node_configs = config['nodes']

209

210 for node_id, node_config in zip(node_ids, node_configs):

211 add_node_attributes(deploy, cluster_id, node_id, node_config)

212 add_node_networks(deploy, cluster_id, node_id, node_config)

213 add_node_storage(deploy, cluster_id, node_id, node_config)

214

215 return cluster_id

216

217

218 def deploy_cluster(deploy, cluster_id, config):

219 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

220 log_debug_trace()

221 log_info("Deploying cluster: {}".format(cluster_id))

222

223 data = {'ontap_credential': {'password': config['cluster'][

 'ontap_admin_password']}}

224 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

 (cluster_id),

225 data, wait_for_job=True)

226

227

228 def log_debug_trace():

6

229 stack = traceback.extract_stack()

230 parent_function = stack[-2][2]

231 logging.getLogger('deploy').debug('Calling %s()' %

 parent_function)

232

233

234 def log_info(msg):

235 logging.getLogger('deploy').info(msg)

236

237

238 def log_and_exit(msg):

239 logging.getLogger('deploy').error(msg)

240 exit(1)

241

242

243 def configure_logging(verbose):

244 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

245 if verbose:

246 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

247 else:

248 logging.basicConfig(level=logging.INFO, format=FORMAT)

249 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

250 logging.WARNING)

251

252

253 def main(args):

254 configure_logging(args.verbose)

255 deploy = DeployRequests(args.deploy, args.password)

256

257 with open(args.config_file) as json_data:

258 config = json.load(json_data)

259

260 add_vcenter_credentials(deploy, config)

261

262 add_standalone_host_credentials(deploy, config)

263

264 register_unkown_hosts(deploy, config)

265

266 cluster_id = create_cluster_config(deploy, config)

267

268 deploy_cluster(deploy, cluster_id, config)

269

270

271 def parseArgs():

272 parser = argparse.ArgumentParser(description='Uses the ONTAP

7

 Select Deploy API to construct and deploy a cluster.')

273 parser.add_argument('-d', '--deploy', help='Hostname or IP address

of Deploy server')

274 parser.add_argument('-p', '--password', help='Admin password of

Deploy server')

275 parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

276 parser.add_argument('-v', '--verbose', help='Display extra

debugging messages for seeing exact API calls and responses',

277 action='store_true', default=False)

278 return parser.parse_args()

279

280 if __name__ == '__main__':

281 args = parseArgs()

282 main(args)

JSON for script to create an ONTAP Select cluster

When creating or deleting an ONTAP Select cluster using the Python code samples, you

must provide a JSON file as input to the script. You can copy and modify the appropriate

JSON sample based on your deployment plans.

Single-node cluster on ESXi

 1 {

 2 "hosts": [

 3 {

 4 "password": "mypassword1",

 5 "name": "host-1234",

 6 "type": "ESX",

 7 "username": "admin"

 8 }

 9],

10

11 "cluster": {

12 "dns_info": {

13 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

14 "lab3.company-demo.com", "lab4.company-demo.com"

15],

16

17 "dns_ips": ["10.206.80.135", "10.206.80.136"]

18 },

19 "ontap_image_version": "9.7",

20 "gateway": "10.206.80.1",

21 "ip": "10.206.80.115",

8

22 "name": "mycluster",

23 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

24 "ontap_admin_password": "mypassword2",

25 "netmask": "255.255.254.0"

26 },

27

28 "nodes": [

29 {

30 "serial_number": "3200000nn",

31 "ip": "10.206.80.114",

32 "name": "node-1",

33 "networks": [

34 {

35 "name": "ontap-external",

36 "purpose": "mgmt",

37 "vlan": 1234

38 },

39 {

40 "name": "ontap-external",

41 "purpose": "data",

42 "vlan": null

43 },

44 {

45 "name": "ontap-internal",

46 "purpose": "internal",

47 "vlan": null

48 }

49],

50 "host_name": "host-1234",

51 "is_storage_efficiency_enabled": false,

52 "instance_type": "small",

53 "storage": {

54 "disk": [],

55 "pools": [

56 {

57 "name": "storage-pool-1",

58 "capacity": 4802666790125

59 }

60]

61 }

62 }

63]

64 }

9

Single-node cluster on ESXi using vCenter

{

 "hosts": [

 {

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

 },

 "vcenter": {

 "password":"mypassword2",

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

 "networks": [

 {

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

10

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

]

}

Single-node cluster on KVM

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

 "type":"KVM",

 "username":"root"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

11

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

12

 }

]

}

Script to add an ONTAP Select node license

You can use the following script to add a license for an ONTAP Select node.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: add_license.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

 granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

 terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

 19

 20 import argparse

 21 import logging

 22 import json

 23

 24 from deploy_requests import DeployRequests

 25

 26

 27 def post_new_license(deploy, license_filename):

 28 log_info('Posting a new license: {}'.format(license_filename))

 29

 30 # Stream the file as multipart/form-data

 31 deploy.post('/licensing/licenses', data={},

 32 files={'license_file': open(license_filename, 'rb')})

 33

 34 # Alternative if the NLF license data is converted to a string.

13

 35 # with open(license_filename, 'rb') as f:

 36 # nlf_data = f.read()

 37 # r = deploy.post('/licensing/licenses', data={},

 38 # files={'license_file': (license_filename,

 nlf_data)})

 39

 40

 41 def put_license(deploy, serial_number, data, files):

 42 log_info('Adding license for serial number: {}'.format

 (serial_number))

 43

 44 deploy.put('/licensing/licenses/{}'.format(serial_number), data

 =data, files=files)

 45

 46

 47 def put_used_license(deploy, serial_number, license_filename,

 ontap_username, ontap_password):

 48 ''' If the license is used by an 'online' cluster, a

 username/password must be given. '''

 49

 50 data = {'ontap_username': ontap_username, 'ontap_password':

 ontap_password}

 51 files = {'license_file': open(license_filename, 'rb')}

 52

 53 put_license(deploy, serial_number, data, files)

 54

 55

 56 def put_free_license(deploy, serial_number, license_filename):

 57 data = {}

 58 files = {'license_file': open(license_filename, 'rb')}

 59

 60 put_license(deploy, serial_number, data, files)

 61

 62

 63 def get_serial_number_from_license(license_filename):

 64 ''' Read the NLF file to extract the serial number '''

 65 with open(license_filename) as f:

 66 data = json.load(f)

 67

 68 statusResp = data.get('statusResp', {})

 69 serialNumber = statusResp.get('serialNumber')

 70 if not serialNumber:

 71 log_and_exit("The license file seems to be missing the

 serialNumber")

 72

 73 return serialNumber

14

 74

 75

 76 def log_info(msg):

 77 logging.getLogger('deploy').info(msg)

 78

 79

 80 def log_and_exit(msg):

 81 logging.getLogger('deploy').error(msg)

 82 exit(1)

 83

 84

 85 def configure_logging():

 86 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 87 logging.basicConfig(level=logging.INFO, format=FORMAT)

 88 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(logging.WARNING)

 89

 90

 91 def main(args):

 92 configure_logging()

 93 serial_number = get_serial_number_from_license(args.license)

 94

 95 deploy = DeployRequests(args.deploy, args.password)

 96

 97 # First check if there is already a license resource for this

 serial-number

 98 if deploy.find_resource('/licensing/licenses', 'id',

 serial_number):

 99

100 # If the license already exists in the Deploy server,

 determine if its used

101 if deploy.find_resource('/clusters', 'nodes.serial_number',

 serial_number):

102

103 # In this case, requires ONTAP creds to push the license

 to the node

104 if args.ontap_username and args.ontap_password:

105 put_used_license(deploy, serial_number, args.license,

106 args.ontap_username, args

 .ontap_password)

107 else:

108 print("ERROR: The serial number for this license is in

 use. Please provide ONTAP credentials.")

109 else:

110 # License exists, but its not used

111 put_free_license(deploy, serial_number, args.license)

15

112 else:

113 # No license exists, so register a new one as an available

 license for later use

114 post_new_license(deploy, args.license)

115

116

117 def parseArgs():

118 parser = argparse.ArgumentParser(description='Uses the ONTAP

 Select Deploy API to add or update a new or used NLF license file.')

119 parser.add_argument('-d', '--deploy', required=True, type=str,

 help='Hostname or IP address of ONTAP Select Deploy')

120 parser.add_argument('-p', '--password', required=True, type=str,

 help='Admin password of Deploy server')

121 parser.add_argument('-l', '--license', required=True, type=str,

 help='Filename of the NLF license data')

122 parser.add_argument('-u', '--ontap_username', type=str,

123 help='ONTAP Select username with privelege to

 add the license. Only provide if the license is used by a Node.')

124 parser.add_argument('-o', '--ontap_password', type=str,

125 help='ONTAP Select password for the

 ontap_username. Required only if ontap_username is given.')

126 return parser.parse_args()

127

128 if __name__ == '__main__':

129 args = parseArgs()

130 main(args)

Script to delete an ONTAP Select cluster

You can use the following CLI script to delete an existing cluster.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: delete_cluster.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of merchantability

10 # or fitness of any kind, expressed or implied. Permission to use,

11 # reproduce, modify and create derivatives of the sample code is

 granted

12 # solely for the purpose of researching, designing, developing and

13 # testing a software application product for use with NetApp products,

16

14 # provided that the above copyright notice appears in all copies and

15 # that the software application product is distributed pursuant to

 terms

16 # no less restrictive than those set forth herein.

17 #

18 ##--

19

20 import argparse

21 import json

22 import logging

23

24 from deploy_requests import DeployRequests

25

26 def find_cluster(deploy, cluster_name):

27 return deploy.find_resource('/clusters', 'name', cluster_name)

28

29

30 def offline_cluster(deploy, cluster_id):

31 # Test that the cluster is online, otherwise do nothing

32 response = deploy.get('/clusters/{}?fields=state'.format(

 cluster_id))

33 cluster_data = response.json()['record']

34 if cluster_data['state'] == 'powered_on':

35 log_info("Found the cluster to be online, modifying it to be

 powered_off.")

36 deploy.patch('/clusters/{}'.format(cluster_id), {'availability

 ': 'powered_off'}, True)

37

38

39 def delete_cluster(deploy, cluster_id):

40 log_info("Deleting the cluster({}).".format(cluster_id))

41 deploy.delete('/clusters/{}'.format(cluster_id), True)

42 pass

43

44

45 def log_info(msg):

46 logging.getLogger('deploy').info(msg)

47

48

49 def configure_logging():

50 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

51 logging.basicConfig(level=logging.INFO, format=FORMAT)

52 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(logging.WARNING)

53

54

17

55 def main(args):

56 configure_logging()

57 deploy = DeployRequests(args.deploy, args.password)

58

59 with open(args.config_file) as json_data:

60 config = json.load(json_data)

61

62 cluster_id = find_cluster(deploy, config['cluster']['name'])

63

64 log_info("Found the cluster {} with id: {}.".format(config[

 'cluster']['name'], cluster_id))

65

66 offline_cluster(deploy, cluster_id)

67

68 delete_cluster(deploy, cluster_id)

69

70

71 def parseArgs():

72 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

 Deploy API to delete a cluster')

73 parser.add_argument('-d', '--deploy', required=True, type=str,

 help='Hostname or IP address of Deploy server')

74 parser.add_argument('-p', '--password', required=True, type=str,

 help='Admin password of Deploy server')

75 parser.add_argument('-c', '--config_file', required=True, type=str,

 help='Filename of the cluster json config')

76 return parser.parse_args()

77

78 if __name__ == '__main__':

79 args = parseArgs()

80 main(args)

Common support Python module for ONTAP Select

All of the Python scripts use a common Python class in a single module.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: deploy_requests.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

18

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

 19

 20 import json

 21 import logging

 22 import requests

 23

 24 requests.packages.urllib3.disable_warnings()

 25

 26 class DeployRequests(object):

 27 '''

 28 Wrapper class for requests that simplifies the ONTAP Select Deploy

 29 path creation and header manipulations for simpler code.

 30 '''

 31

 32 def __init__(self, ip, admin_password):

 33 self.base_url = 'https://{}/api'.format(ip)

 34 self.auth = ('admin', admin_password)

 35 self.headers = {'Accept': 'application/json'}

 36 self.logger = logging.getLogger('deploy')

 37

 38 def post(self, path, data, files=None, wait_for_job=False):

 39 if files:

 40 self.logger.debug('POST FILES:')

 41 response = requests.post(self.base_url + path,

 42 auth=self.auth, verify=False,

 43 files=files)

 44 else:

 45 self.logger.debug('POST DATA: %s', data)

 46 response = requests.post(self.base_url + path,

 47 auth=self.auth, verify=False,

 48 json=data,

 49 headers=self.headers)

 50

 51 self.logger.debug('HEADERS: %s\nBODY: %s', self.

filter_headers(response), response.text)

19

 52 self.exit_on_errors(response)

 53

 54 if wait_for_job and response.status_code == 202:

 55 self.wait_for_job(response.json())

 56 return response

 57

 58 def patch(self, path, data, wait_for_job=False):

 59 self.logger.debug('PATCH DATA: %s', data)

 60 response = requests.patch(self.base_url + path,

 61 auth=self.auth, verify=False,

 62 json=data,

 63 headers=self.headers)

 64 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

 65 self.exit_on_errors(response)

 66

 67 if wait_for_job and response.status_code == 202:

 68 self.wait_for_job(response.json())

 69 return response

 70

 71 def put(self, path, data, files=None, wait_for_job=False):

 72 if files:

 73 print('PUT FILES: {}'.format(data))

 74 response = requests.put(self.base_url + path,

 75 auth=self.auth, verify=False,

 76 data=data,

 77 files=files)

 78 else:

 79 self.logger.debug('PUT DATA:')

 80 response = requests.put(self.base_url + path,

 81 auth=self.auth, verify=False,

 82 json=data,

 83 headers=self.headers)

 84

 85 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

 86 self.exit_on_errors(response)

 87

 88 if wait_for_job and response.status_code == 202:

 89 self.wait_for_job(response.json())

 90 return response

 91

 92 def get(self, path):

 93 """ Get a resource object from the specified path """

 94 response = requests.get(self.base_url + path, auth=self.auth,

 verify=False)

20

 95 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

 96 self.exit_on_errors(response)

 97 return response

 98

 99 def delete(self, path, wait_for_job=False):

100 """ Delete's a resource from the specified path """

101 response = requests.delete(self.base_url + path, auth=self

 .auth, verify=False)

102 self.logger.debug('HEADERS: %s\nBODY: %s', self.

 filter_headers(response), response.text)

103 self.exit_on_errors(response)

104

105 if wait_for_job and response.status_code == 202:

106 self.wait_for_job(response.json())

107 return response

108

109 def find_resource(self, path, name, value):

110 ''' Returns the 'id' of the resource if it exists, otherwise

 None '''

111 resource = None

112 response = self.get('{path}?{field}={value}'.format(

113 path=path, field=name, value=value))

114 if response.status_code == 200 and response.json().get(

 'num_records') >= 1:

115 resource = response.json().get('records')[0].get('id')

116 return resource

117

118 def get_num_records(self, path, query=None):

119 ''' Returns the number of records found in a container, or

 None on error '''

120 resource = None

121 query_opt = '?{}'.format(query) if query else ''

122 response = self.get('{path}{query}'.format(path=path, query

 =query_opt))

123 if response.status_code == 200 :

124 return response.json().get('num_records')

125 return None

126

127 def resource_exists(self, path, name, value):

128 return self.find_resource(path, name, value) is not None

129

130 def wait_for_job(self, response, poll_timeout=120):

131 last_modified = response['job']['last_modified']

132 job_id = response['job']['id']

133

21

134 self.logger.info('Event: ' + response['job']['message'])

135

136 while True:

137 response = self.get('/jobs/{}?fields=state,message&'

138 'poll_timeout={}&last_modified=>={}'

 .format(

139 job_id, poll_timeout,

 last_modified))

140

141 job_body = response.json().get('record', {})

142

143 # Show interesting message updates

144 message = job_body.get('message', '')

145 self.logger.info('Event: ' + message)

146

147 # Refresh the last modified time for the poll loop

148 last_modified = job_body.get('last_modified')

149

150 # Look for the final states

151 state = job_body.get('state', 'unknown')

152 if state in ['success', 'failure']:

153 if state == 'failure':

154 self.logger.error('FAILED background job.\nJOB:

 %s', job_body)

155 exit(1) # End the script if a failure occurs

156 break

157

158 def exit_on_errors(self, response):

159 if response.status_code >= 400:

160 self.logger.error('FAILED request to URL: %s\nHEADERS:

 %s\nRESPONSE BODY: %s',

161 response.request.url,

162 self.filter_headers(response),

163 response.text)

164 response.raise_for_status() # Displays the response error,

 and exits the script

165

166 @staticmethod

167 def filter_headers(response):

168 ''' Returns a filtered set of the response headers '''

169 return {key: response.headers[key] for key in ['Location',

 'request-id'] if key in response.headers}

22

Script to resize ONTAP Select cluster nodes

You can use the following script to resize the nodes in an ONTAP Select cluster.

 1 #!/usr/bin/env python

 2 ##--

 3 #

 4 # File: resize_nodes.py

 5 #

 6 # (C) Copyright 2019 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

 merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

 granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

 terms

 16 # no less restrictive than those set forth herein.

 17 #

 18 ##--

 19

 20 import argparse

 21 import logging

 22 import sys

 23

 24 from deploy_requests import DeployRequests

 25

 26

 27 def _parse_args():

 28 """ Parses the arguments provided on the command line when

 executing this

 29 script and returns the resulting namespace. If all required

 arguments

 30 are not provided, an error message indicating the mismatch is

 printed and

 31 the script will exit.

 32 """

 33

 34 parser = argparse.ArgumentParser(description=(

 35 'Uses the ONTAP Select Deploy API to resize the nodes in the

 cluster.'

23

 36 ' For example, you might have a small (4 CPU, 16GB RAM per

 node) 2 node'

 37 ' cluster and wish to resize the cluster to medium (8 CPU,

 64GB RAM per'

 38 ' node). This script will take in the cluster details and then

 perform'

 39 ' the operation and wait for it to complete.'

 40))

 41 parser.add_argument('--deploy', required=True, help=(

 42 'Hostname or IP of the ONTAP Select Deploy VM.'

 43))

 44 parser.add_argument('--deploy-password', required=True, help=(

 45 'The password for the ONTAP Select Deploy admin user.'

 46))

 47 parser.add_argument('--cluster', required=True, help=(

 48 'Hostname or IP of the cluster management interface.'

 49))

 50 parser.add_argument('--instance-type', required=True, help=(

 51 'The desired instance size of the nodes after the operation is

 complete.'

 52))

 53 parser.add_argument('--ontap-password', required=True, help=(

 54 'The password for the ONTAP administrative user account.'

 55))

 56 parser.add_argument('--ontap-username', default='admin', help=(

 57 'The username for the ONTAP administrative user account.

 Default: admin.'

 58))

 59 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME',

 help=(

 60 'A space separated list of node names for which the resize

 operation'

 61 ' should be performed. The default is to apply the resize to

 all nodes in'

 62 ' the cluster. If a list of nodes is provided, it must be

 provided in HA'

 63 ' pairs. That is, in a 4 node cluster, nodes 1 and 2

 (partners) must be'

 64 ' resized in the same operation.'

 65))

 66 return parser.parse_args()

 67

 68

 69 def _get_cluster(deploy, parsed_args):

 70 """ Locate the cluster using the arguments provided """

 71

24

 72 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

 .cluster)

 73 if not cluster_id:

 74 return None

 75 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).

 json()['record']

 76

 77

 78 def _get_request_body(parsed_args, cluster):

 79 """ Build the request body """

 80

 81 changes = {'admin_password': parsed_args.ontap_password}

 82

 83 # if provided, use the list of nodes given, else use all the nodes

 in the cluster

 84 nodes = [node for node in cluster['nodes']]

 85 if parsed_args.nodes:

 86 nodes = [node for node in nodes if node['name'] in

 parsed_args.nodes]

 87

 88 changes['nodes'] = [

 89 {'instance_type': parsed_args.instance_type, 'id': node['id']}

 for node in nodes]

 90

 91 return changes

 92

 93

 94 def main():

 95 """ Set up the resize operation by gathering the necessary data

 and then send

 96 the request to the ONTAP Select Deploy server.

 97 """

 98

 99 logging.basicConfig(

100 format='[%(asctime)s] [%(levelname)5s] %(message)s', level

 =logging.INFO,)

101

102 logging.getLogger('requests.packages.urllib3').setLevel(logging

 .WARNING)

103

104 parsed_args = _parse_args()

105 deploy = DeployRequests(parsed_args.deploy, parsed_args

 .deploy_password)

106

107 cluster = _get_cluster(deploy, parsed_args)

108 if not cluster:

25

109 deploy.logger.error(

110 'Unable to find a cluster with a management IP of %s' %

 parsed_args.cluster)

111 return 1

112

113 changes = _get_request_body(parsed_args, cluster)

114 deploy.patch('/clusters/%s' % cluster['id'], changes,

 wait_for_job=True)

115

116 if __name__ == '__main__':

117 sys.exit(main())

26

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

27

http://www.netapp.com/TM

	Python code samples : ONTAP Select
	Table of Contents
	Python code samples
	Script to create an ONTAP Select cluster
	JSON for script to create an ONTAP Select cluster
	Single-node cluster on ESXi
	Single-node cluster on ESXi using vCenter
	Single-node cluster on KVM

	Script to add an ONTAP Select node license
	Script to delete an ONTAP Select cluster
	Common support Python module for ONTAP Select
	Script to resize ONTAP Select cluster nodes

