



# **CN1610 switch migration**

Install and maintain

NetApp  
November 21, 2025

This PDF was generated from <https://docs.netapp.com/us-en/ontap-systems-switches/switch-cisco-3132q-v/cn1610-migrate-workflow.html> on November 21, 2025. Always check [docs.netapp.com](https://docs.netapp.com) for the latest.

# Table of Contents

|                                                                                   |    |
|-----------------------------------------------------------------------------------|----|
| CN1610 switch migration .....                                                     | 1  |
| Migrate from CN1610 switches to Nexus 3132Q-V switches workflow .....             | 1  |
| Migration requirements .....                                                      | 1  |
| CN1610 requirements .....                                                         | 1  |
| Prepare for migration from CN1610 switches to 3132Q-V switches .....              | 3  |
| Configure your ports for migration from CN1610 switches to 3132Q-V switches ..... | 13 |
| Complete your migration from CN1610 switches to Nexus 3132Q-V switches .....      | 25 |

# CN1610 switch migration

## Migrate from CN1610 switches to Nexus 3132Q-V switches workflow

Follow these workflow steps to migrate your CN1610 switches to Cisco Nexus 3132Q-V switches.

1

### Migration requirements

Review the requirements and example switch information for the migration process.

2

### Prepare for migration

Prepare your CN1610 switches for migration to Nexus 3132Q-V switches.

3

### Configure your ports

Configure your ports for migration to the new Nexus 3132Q-V switches.

4

### Complete your migration

Complete your migration to the new Nexus 3132Q-V switches.

## Migration requirements

Cisco Nexus 3132Q-V switches can be used as cluster switches in your AFF or FAS cluster. Cluster switches allow you to build ONTAP clusters with more than two nodes.



The procedure requires the use of both ONTAP commands and Cisco Nexus 3000 Series Switches commands; ONTAP commands are used unless otherwise indicated.

For more information, see:

- [NetApp CN1601 and CN1610 description page](#)
- [Cisco Ethernet Switch description page](#)
- [Hardware Universe](#)

## CN1610 requirements

The following cluster switches are supported:

- NetApp CN1610
- Cisco Nexus 3132Q-V

The cluster switches support the following node connections:

- NetApp CN1610: ports 0/1 through 0/12 (10 GbE)
- Cisco Nexus 3132Q-V: ports e1/1-30 (40/100 GbE)

The cluster switches use the following inter-switch link (ISL) ports:

- NetApp CN1610: ports 0/13 through 0/16 (10 GbE)
- Cisco Nexus 3132Q-V: ports e1/31-32 (40/100 GbE)

The [Hardware Universe](#) contains information about supported cabling to Nexus 3132Q-V switches:

- Nodes with 10 GbE cluster connections require QSFP to SFP+ optical fiber breakout cables or QSFP to SFP+ copper breakout cables
- Nodes with 40/100 GbE cluster connections require supported QSFP/QSFP28 optical modules with optical fiber cables or QSFP/QSFP28 copper direct-attach cables

The appropriate ISL cabling is as follows:

- Beginning: For CN1610 to CN1610 (SFP+ to SFP+), four SFP+ optical fiber or copper direct-attach cables
- Interim: For CN1610 to Nexus 3132Q-V (QSFP to four SFP+ breakout), one QSFP to SFP+ optical fiber or copper breakout cable
- Final: For Nexus 3132Q-V to Nexus 3132Q-V (QSFP28 to QSFP28), two QSFP28 optical fiber or copper direct-attach cables

NetApp twinax cables are not compatible with Cisco Nexus 3132Q-V switches.

If your current CN1610 configuration uses NetApp twinax cables for cluster-node-to-switch connections or ISL connections and you want to continue using twinax in your environment, you need to procure Cisco twinax cables. Alternatively, you can use optical fiber cables for both the ISL connections and the cluster-node-to-switch connections.

### About the examples used

The examples in this procedure describe replacing CN1610 switches with Cisco Nexus 3132Q-V switches. You can use these steps (with modifications) for other older Cisco switches.

The procedure also uses the following switch and node nomenclature:

- The command outputs might vary depending on different releases of ONTAP.
- The CN1610 switches to be replaced are **CL1** and **CL2**.
- The Nexus 3132Q-V switches to replace the CN1610 switches are **C1** and **C2**.
- **n1\_clus1** is the first cluster logical interface (LIF) connected to cluster switch 1 (CL1 or C1) for node **n1**.
- **n1\_clus2** is the first cluster LIF connected to cluster switch 2 (CL2 or C2) for node **n1**.
- **n1\_clus3** is the second LIF connected to cluster switch 2 (CL2 or C2) for node **n1**.
- **n1\_clus4** is the second LIF connected to cluster switch 1 (CL1 or C1) for node **n1**.
- The number of 10 GbE and 40/100 GbE ports are defined in the reference configuration files (RCFs) available on the [Cisco® Cluster Network Switch Reference Configuration File Download](#) page.
- The nodes are **n1**, **n2**, **n3**, and **n4**.

The examples in this procedure use four nodes:

- Two nodes use four 10 GbE cluster interconnect ports: **e0a**, **e0b**, **e0c**, and **e0d**.
- The other two nodes use two 40 GbE cluster interconnect ports: **e4a** and **e4e**.

The [Hardware Universe](#) lists the actual cluster ports on your platforms.

#### What's next?

After you've reviewed the migration requirements, you can [prepare to migrate your switches](#).

## Prepare for migration from CN1610 switches to 3132Q-V switches

Follow these steps to prepare your CN1610 switches for migration to Cisco Nexus 3132Q-V switches.

#### Steps

1. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all - message MAINT=xh
```

*x* is the duration of the maintenance window in hours.



The AutoSupport message notifies technical support of this maintenance task so that automatic case creation is suppressed during the maintenance window.

2. Display information about the devices in your configuration:

```
network device-discovery show
```

## Show example

The following example displays how many cluster interconnect interfaces have been configured in each node for each cluster interconnect switch:

```
cluster::> network device-discovery show

      Local   Discovered
Node  Port   Device      Interface   Platform
-----  -----
n1    /cdp
      e0a    CL1        0/1        CN1610
      e0b    CL2        0/1        CN1610
      e0c    CL2        0/2        CN1610
      e0d    CL1        0/2        CN1610
n2    /cdp
      e0a    CL1        0/3        CN1610
      e0b    CL2        0/3        CN1610
      e0c    CL2        0/4        CN1610
      e0d    CL1        0/4        CN1610

8 entries were displayed.
```

3. Determine the administrative or operational status for each cluster interface.

a. Display the cluster network port attributes:

```
network port show
```

## Show example

The following example displays the network port attributes on a system:

b. Display information about the logical interfaces: + network interface show

## Show example

The following example displays the general information about all of the LIFs on your system:

```
cluster::>*> network interface show -role Cluster
(network interface show)

      Logical      Status      Network      Current      Current
  Is
Vserver  Interface  Admin/Oper  Address/Mask  Node       Port
Home

-----
-----
Cluster
  true      n1_clus1  up/up      10.10.0.1/24  n1        e0a
  true      n1_clus2  up/up      10.10.0.2/24  n1        e0b
  true      n1_clus3  up/up      10.10.0.3/24  n1        e0c
  true      n1_clus4  up/up      10.10.0.4/24  n1        e0d
  true      n2_clus1  up/up      10.10.0.5/24  n2        e0a
  true      n2_clus2  up/up      10.10.0.6/24  n2        e0b
  true      n2_clus3  up/up      10.10.0.7/24  n2        e0c
  true      n2_clus4  up/up      10.10.0.8/24  n2        e0d

8 entries were displayed.
```

c. Display information about the discovered cluster switches:

```
system cluster-switch show
```

### Show example

The following example displays the cluster switches that are known to the cluster, along with their management IP addresses:

```
cluster::> system cluster-switch show

Switch          Type          Address
Model

-----
-----
CL1           cluster-network 10.10.1.101
CN1610

    Serial Number: 01234567
    Is Monitored: true
    Reason:
    Software Version: 1.2.0.7
    Version Source: ISDP

CL2           cluster-network 10.10.1.102
CN1610

    Serial Number: 01234568
    Is Monitored: true
    Reason:
    Software Version: 1.2.0.7
    Version Source: ISDP

2 entries were displayed.
```

4. Set the `-auto-revert` parameter to false on cluster LIFs `clus1` and `clus4` on both nodes:

```
network interface modify
```

### Show example

```
cluster::*> network interface modify -vserver node1 -lif clus1 -auto
-revert false
cluster::*> network interface modify -vserver node1 -lif clus4 -auto
-revert false
cluster::*> network interface modify -vserver node2 -lif clus1 -auto
-revert false
cluster::*> network interface modify -vserver node2 -lif clus4 -auto
-revert false
```

5. Verify that the appropriate RCF and image are installed on the new 3132Q-V switches as necessary for your requirements, and make any essential site customizations, such as users and passwords, network addresses, and so on.

You must prepare both switches at this time. If you need to upgrade the RCF and image, follow these steps:

- a. See [Cisco Ethernet Switches](#) on NetApp Support Site.
- b. Note your switch and the required software versions in the table on that page.
- c. Download the appropriate version of the RCF.
- d. Select **CONTINUE** on the **Description** page, accept the license agreement, and then follow the instructions on the **Download** page to download the RCF.
- e. Download the appropriate version of the image software.

[Cisco® Cluster and Management Network Switch Reference Configuration File Download](#)

6. Migrate the LIFs associated with the second CN1610 switch to be replaced:

```
network interface migrate
```



You must migrate the cluster LIFs from a connection to the node, either through the service processor or node management interface, which owns the cluster LIF being migrated.

**Show example**

The following example shows n1 and n2, but LIF migration must be done on all the nodes:

```
cluster::*> network interface migrate -vserver Cluster -lif n1_clus2
-destination-node n1 -destination-port e0a
cluster::*> network interface migrate -vserver Cluster -lif n1_clus3
-destination-node n1 -destination-port e0d
cluster::*> network interface migrate -vserver Cluster -lif n2_clus2
-destination-node n2 -destination-port e0a
cluster::*> network interface migrate -vserver Cluster -lif n2_clus3
-destination-node n2 -destination-port e0d
```

7. Verify the cluster's health:

```
network interface show
```

## Show example

The following example shows the result of the previous network interface migrate command:

```
cluster::>*> network interface show -role Cluster
(network interface show)

      Logical      Status      Network      Current      Current      Is
Vserver  Interface  Admin/Oper  Address/Mask  Node        Port
Home

-----
-----
```

| Cluster | Logical  | Status | Network      | Current Node | Current Port | Is |
|---------|----------|--------|--------------|--------------|--------------|----|
| true    | n1_clus1 | up/up  | 10.10.0.1/24 | n1           | e0a          |    |
| false   | n1_clus2 | up/up  | 10.10.0.2/24 | n1           | e0a          |    |
| false   | n1_clus3 | up/up  | 10.10.0.3/24 | n1           | e0d          |    |
| true    | n1_clus4 | up/up  | 10.10.0.4/24 | n1           | e0d          |    |
| true    | n2_clus1 | up/up  | 10.10.0.5/24 | n2           | e0a          |    |
| false   | n2_clus2 | up/up  | 10.10.0.6/24 | n2           | e0a          |    |
| false   | n2_clus3 | up/up  | 10.10.0.7/24 | n2           | e0d          |    |
| true    | n2_clus4 | up/up  | 10.10.0.8/24 | n2           | e0d          |    |

8 entries were displayed.

8. Shut down the cluster interconnect ports that are physically connected to switch CL2:

```
network port modify
```

**Show example**

The following commands shut down the specified ports on n1 and n2, but the ports must be shut down on all nodes:

```
cluster::*> network port modify -node n1 -port e0b -up-admin false
cluster::*> network port modify -node n1 -port e0c -up-admin false
cluster::*> network port modify -node n2 -port e0b -up-admin false
cluster::*> network port modify -node n2 -port e0c -up-admin false
```

9. Verify the connectivity of the remote cluster interfaces:

## ONTAP 9.9.1 and later

You can use the `network interface check cluster-connectivity` command to start an accessibility check for cluster connectivity and then display the details:

```
network interface check cluster-connectivity start and network interface check cluster-connectivity show
```

```
cluster1::*> network interface check cluster-connectivity start
```

**NOTE:** Wait for a number of seconds before running the show command to display the details.

```
cluster1::*> network interface check cluster-connectivity show
```

| Node | Date                     | Source LIF | Destination LIF | Packet Loss |
|------|--------------------------|------------|-----------------|-------------|
| n1   | 3/5/2022 19:21:18 -06:00 | n1_clus2   | n1_clus1        | none        |
|      | 3/5/2022 19:21:20 -06:00 | n1_clus2   | n2_clus2        | none        |
| n2   | 3/5/2022 19:21:18 -06:00 | n2_clus2   | n1_clus1        | none        |
|      | 3/5/2022 19:21:20 -06:00 | n2_clus2   | n1_clus2        | none        |

## All ONTAP releases

For all ONTAP releases, you can also use the `cluster ping-cluster -node <name>` command to check the connectivity:

```
cluster ping-cluster -node <name>
```

```

cluster::*> cluster ping-cluster -node n1
Host is n1
Getting addresses from network interface table...
Cluster n1_clus1 n1      e0a    10.10.0.1
Cluster n1_clus2 n1      e0b    10.10.0.2
Cluster n1_clus3 n1      e0c    10.10.0.3
Cluster n1_clus4 n1      e0d    10.10.0.4
Cluster n2_clus1 n2      e0a    10.10.0.5
Cluster n2_clus2 n2      e0b    10.10.0.6
Cluster n2_clus3 n2      e0c    10.10.0.7
Cluster n2_clus4 n2      e0d    10.10.0.8

Local = 10.10.0.1 10.10.0.2 10.10.0.3 10.10.0.4
Remote = 10.10.0.5 10.10.0.6 10.10.0.7 10.10.0.8
Cluster Vserver Id = 4294967293
Ping status:....
Basic connectivity succeeds on 16 path(s)
Basic connectivity fails on 0 path(s)
.
.
.
Detected 1500 byte MTU on 16 path(s):
  Local 10.10.0.1 to Remote 10.10.0.5
  Local 10.10.0.1 to Remote 10.10.0.6
  Local 10.10.0.1 to Remote 10.10.0.7
  Local 10.10.0.1 to Remote 10.10.0.8
  Local 10.10.0.2 to Remote 10.10.0.5
  Local 10.10.0.2 to Remote 10.10.0.6
  Local 10.10.0.2 to Remote 10.10.0.7
  Local 10.10.0.2 to Remote 10.10.0.8
  Local 10.10.0.3 to Remote 10.10.0.5
  Local 10.10.0.3 to Remote 10.10.0.6
  Local 10.10.0.3 to Remote 10.10.0.7
  Local 10.10.0.3 to Remote 10.10.0.8
  Local 10.10.0.4 to Remote 10.10.0.5
  Local 10.10.0.4 to Remote 10.10.0.6
  Local 10.10.0.4 to Remote 10.10.0.7
  Local 10.10.0.4 to Remote 10.10.0.8

Larger than PMTU communication succeeds on 16 path(s)
RPC status:
  4 paths up, 0 paths down (tcp check)
  4 paths up, 0 paths down (udp check)

```

10. Shut down the ISL ports 13 through 16 on the active CN1610 switch CL1:

```
shutdown
```

#### Show example

The following example shows how to shut down ISL ports 13 through 16 on the CN1610 switch CL1:

```
(CL1) # configure
(CL1) (Config) # interface 0/13-0/16
(CL1) (Interface 0/13-0/16) # shutdown
(CL1) (Interface 0/13-0/16) # exit
(CL1) (Config) # exit
(CL1) #
```

11. Build a temporary ISL between CL1 and C2:

#### Show example

The following example builds a temporary ISL between CL1 (ports 13-16) and C2 (ports e1/24/1-4):

```
C2# configure
C2(config)# interface port-channel 2
C2(config-if)# switchport mode trunk
C2(config-if)# spanning-tree port type network
C2(config-if)# mtu 9216
C2(config-if)# interface breakout module 1 port 24 map 10g-4x
C2(config)# interface e1/24/1-4
C2(config-if-range)# switchport mode trunk
C2(config-if-range)# mtu 9216
C2(config-if-range)# channel-group 2 mode active
C2(config-if-range)# exit
C2(config-if)# exit
```

#### What's next?

After you've prepared to migrate your switches, you can [configure your ports](#).

## Configure your ports for migration from CN1610 switches to 3132Q-V switches

Follow these steps to configure your ports for migration from the CN1610 switches to the new Nexus 3132Q-V switches.

#### Steps

1. On all nodes, remove the cables that are attached to the CN1610 switch CL2.

With supported cabling, you must reconnect the disconnected ports on all of the nodes to the Nexus 3132Q-V switch C2.

2. Remove four ISL cables from ports 13 to 16 on the CN1610 switch CL1.

You must attach appropriate Cisco QSFP to SFP+ breakout cables connecting port 1/24 on the new Cisco 3132Q-V switch C2, to ports 13 to 16 on existing CN1610 switch CL1.



When reconnecting any cables to the new Cisco 3132Q-V switch, you must use either optical fiber or Cisco twinax cables.

3. To make the ISL dynamic, configure the ISL interface 3/1 on the active CN1610 switch to disable the static mode: `no port-channel static`

This configuration matches with the ISL configuration on the 3132Q-V switch C2 when the ISLs are brought up on both switches in step 11.

**Show example**

The following example shows the configuration of the ISL interface 3/1 using the `no port-channel static` command to make the ISL dynamic:

```
(CL1) # configure
(CL1) (Config) # interface 3/1
(CL1) (Interface 3/1) # no port-channel static
(CL1) (Interface 3/1) # exit
(CL1) (Config) # exit
(CL1) #
```

4. Bring up ISLs 13 through 16 on the active CN1610 switch CL1.

**Show example**

The following example illustrates the process of bringing up ISL ports 13 through 16 on the port-channel interface 3/1:

```
(CL1) # configure
(CL1) (Config) # interface 0/13-0/16,3/1
(CL1) (Interface 0/13-0/16,3/1) # no shutdown
(CL1) (Interface 0/13-0/16,3/1) # exit
(CL1) (Config) # exit
(CL1) #
```

5. Verify that the ISLs are `up` on the CN1610 switch CL1:

```
show port-channel
```

The "Link State" should be Up, "Type" should be Dynamic, and the "Port Active" column should be True for ports 0/13 to 0/16:

**Show example**

```
(CL1) # show port-channel 3/1
Local Interface..... 3/1
Channel Name..... ISL-LAG
Link State..... Up
Admin Mode..... Enabled
Type..... Dynamic
Load Balance Option..... 7
(Enhanced hashing mode)

Mbr      Device/          Port      Port
Ports    Timeout          Speed      Active
-----  -----
0/13    actor/long       10 Gb Full  True
        partner/long
0/14    actor/long       10 Gb Full  True
        partner/long
0/15    actor/long       10 Gb Full  True
        partner/long
0/16    actor/long       10 Gb Full  True
        partner/long
```

6. Verify that the ISLs are up on the 3132Q-V switch C2:

```
show port-channel summary
```

**Show example**

Ports Eth1/24/1 through Eth1/24/4 should indicate (P), meaning that all four ISL ports are up in the port-channel. Eth1/31 and Eth1/32 should indicate (D) as they are not connected:

```
C2# show port-channel summary

Flags: D - Down          P - Up in port-channel (members)
      I - Individual    H - Hot-standby (LACP only)
      s - Suspended      r - Module-removed
      S - Switched       R - Routed
      U - Up (port-channel)
      M - Not in use. Min-links not met
-----
-----
Group Port-      Type      Protocol Member Ports
      Channel
-----
1      Po1 (SU)    Eth       LACP      Eth1/31 (D)  Eth1/32 (D)
2      Po2 (SU)    Eth       LACP      Eth1/24/1 (P) Eth1/24/2 (P)
Eth1/24/3 (P)
                           Eth1/24/4 (P)
```

7. Bring up all of the cluster interconnect ports that are connected to the 3132Q-V switch C2 on all of the nodes:

```
network port modify
```

**Show example**

The following example shows how to bring up the cluster interconnect ports connected to the 3132Q-V switch C2:

```
cluster::*> network port modify -node n1 -port e0b -up-admin true
cluster::*> network port modify -node n1 -port e0c -up-admin true
cluster::*> network port modify -node n2 -port e0b -up-admin true
cluster::*> network port modify -node n2 -port e0c -up-admin true
```

8. Revert all of the migrated cluster interconnect LIFs that are connected to C2 on all of the nodes:

```
network interface revert
```

**Show example**

```
cluster::*> network interface revert -vserver Cluster -lif n1_clus2
cluster::*> network interface revert -vserver Cluster -lif n1_clus3
cluster::*> network interface revert -vserver Cluster -lif n2_clus2
cluster::*> network interface revert -vserver Cluster -lif n2_clus3
```

9. Verify that all of the cluster interconnect ports are reverted to their home ports:

```
network interface show
```

## Show example

The following example shows that the LIFs on clus2 are reverted to their home ports, and shows that the LIFs are successfully reverted if the ports in the "Current Port" column have a status of `true` in the "Is Home" column. If the `Is Home` value is `false`, then the LIF is not reverted.

```
cluster::*> network interface show -role cluster
(network interface show)

      Logical      Status      Network      Current      Current      Is
Vserver  Interface  Admin/Oper  Address/Mask  Node        Port
Home

-----
-----
Cluster
  true      n1_clus1  up/up      10.10.0.1/24  n1        e0a
  true      n1_clus2  up/up      10.10.0.2/24  n1        e0b
  true      n1_clus3  up/up      10.10.0.3/24  n1        e0c
  true      n1_clus4  up/up      10.10.0.4/24  n1        e0d
  true      n2_clus1  up/up      10.10.0.5/24  n2        e0a
  true      n2_clus2  up/up      10.10.0.6/24  n2        e0b
  true      n2_clus3  up/up      10.10.0.7/24  n2        e0c
  true      n2_clus4  up/up      10.10.0.8/24  n2        e0d

8 entries were displayed.
```

## 10. Verify that all of the cluster ports are connected:

```
network port show
```

## Show example

The following example shows the result of the previous `network port modify` command, verifying that all of the cluster interconnects are up:

```
cluster::*> network port show -role Cluster
(network port show)

Node: n1
          Broadcast          Speed (Mbps)  Health  Ignore
Port  IPspace  Domain      Link   MTU  Admin/Open  Status  Health
Status
----- ----- ----- ----- ----- ----- ----- ----- -----
----- 
e0a  cluster  cluster    up    9000  auto/10000  -      -
e0b  cluster  cluster    up    9000  auto/10000  -      -
e0c  cluster  cluster    up    9000  auto/10000  -      -
e0d  cluster  cluster    up    9000  auto/10000  -      -

Node: n2
          Broadcast          Speed (Mbps)  Health  Ignore
Port  IPspace  Domain      Link   MTU  Admin/Open  Status  Health
Status
----- ----- ----- ----- ----- ----- ----- ----- -----
----- 
e0a  cluster  cluster    up    9000  auto/10000  -      -
e0b  cluster  cluster    up    9000  auto/10000  -      -
e0c  cluster  cluster    up    9000  auto/10000  -      -
e0d  cluster  cluster    up    9000  auto/10000  -      -

8 entries were displayed.
```

## 11. Verify the connectivity of the remote cluster interfaces:

## ONTAP 9.9.1 and later

You can use the `network interface check cluster-connectivity` command to start an accessibility check for cluster connectivity and then display the details:

```
network interface check cluster-connectivity start and network interface check cluster-connectivity show
```

```
cluster1::*> network interface check cluster-connectivity start
```

**NOTE:** Wait for a number of seconds before running the show command to display the details.

```
cluster1::*> network interface check cluster-connectivity show
```

| Node | Date                     | Source LIF | Destination LIF | Packet Loss |
|------|--------------------------|------------|-----------------|-------------|
| n1   | 3/5/2022 19:21:18 -06:00 | n1_clus2   | n1_clus1        | none        |
|      | 3/5/2022 19:21:20 -06:00 | n1_clus2   | n2_clus2        | none        |
| n2   | 3/5/2022 19:21:18 -06:00 | n2_clus2   | n1_clus1        | none        |
|      | 3/5/2022 19:21:20 -06:00 | n2_clus2   | n1_clus2        | none        |

## All ONTAP releases

For all ONTAP releases, you can also use the `cluster ping-cluster -node <name>` command to check the connectivity:

```
cluster ping-cluster -node <name>
```

```

cluster::*> cluster ping-cluster -node n1
Host is n1
Getting addresses from network interface table...
Cluster n1_clus1 n1      e0a    10.10.0.1
Cluster n1_clus2 n1      e0b    10.10.0.2
Cluster n1_clus3 n1      e0c    10.10.0.3
Cluster n1_clus4 n1      e0d    10.10.0.4
Cluster n2_clus1 n2      e0a    10.10.0.5
Cluster n2_clus2 n2      e0b    10.10.0.6
Cluster n2_clus3 n2      e0c    10.10.0.7
Cluster n2_clus4 n2      e0d    10.10.0.8

Local = 10.10.0.1 10.10.0.2 10.10.0.3 10.10.0.4
Remote = 10.10.0.5 10.10.0.6 10.10.0.7 10.10.0.8
Cluster Vserver Id = 4294967293
Ping status:....
Basic connectivity succeeds on 16 path(s)
Basic connectivity fails on 0 path(s)
.
.
.
Detected 1500 byte MTU on 16 path(s):
  Local 10.10.0.1 to Remote 10.10.0.5
  Local 10.10.0.1 to Remote 10.10.0.6
  Local 10.10.0.1 to Remote 10.10.0.7
  Local 10.10.0.1 to Remote 10.10.0.8
  Local 10.10.0.2 to Remote 10.10.0.5
  Local 10.10.0.2 to Remote 10.10.0.6
  Local 10.10.0.2 to Remote 10.10.0.7
  Local 10.10.0.2 to Remote 10.10.0.8
  Local 10.10.0.3 to Remote 10.10.0.5
  Local 10.10.0.3 to Remote 10.10.0.6
  Local 10.10.0.3 to Remote 10.10.0.7
  Local 10.10.0.3 to Remote 10.10.0.8
  Local 10.10.0.4 to Remote 10.10.0.5
  Local 10.10.0.4 to Remote 10.10.0.6
  Local 10.10.0.4 to Remote 10.10.0.7
  Local 10.10.0.4 to Remote 10.10.0.8

Larger than PMTU communication succeeds on 16 path(s)
RPC status:
  4 paths up, 0 paths down (tcp check)
  4 paths up, 0 paths down (udp check)

```

12. On each node in the cluster, migrate the interfaces that are associated with the first CN1610 switch CL1, to be replaced:

```
network interface migrate
```

#### Show example

The following example shows the ports or LIFs being migrated on nodes n1 and n2:

```
cluster::*> network interface migrate -vserver Cluster -lif n1_clus1  
-destination-node n1 -destination-port e0b  
cluster::*> network interface migrate -vserver Cluster -lif n1_clus4  
-destination-node n1 -destination-port e0c  
cluster::*> network interface migrate -vserver Cluster -lif n2_clus1  
-destination-node n2 -destination-port e0b  
cluster::*> network interface migrate -vserver Cluster -lif n2_clus4  
-destination-node n2 -destination-port e0c
```

#### 13. Verify the cluster status:

```
network interface show
```

## Show example

The following example shows that the required cluster LIFs have been migrated to the appropriate cluster ports hosted on cluster switch C2:

```
cluster::*# network interface show -role Cluster
(network interface show)

      Logical      Status      Network      Current      Current      Is
Vserver  Interface  Admin/Oper  Address/Mask  Node        Port
Home

-----
-----
```

|         | Logical Interface | Status | Network Address/Mask | Current Node | Current Port | Is |
|---------|-------------------|--------|----------------------|--------------|--------------|----|
| Cluster |                   |        |                      |              |              |    |
| false   | n1_clus1          | up/up  | 10.10.0.1/24         | n1           | e0b          |    |
| true    | n1_clus2          | up/up  | 10.10.0.2/24         | n1           | e0b          |    |
| true    | n1_clus3          | up/up  | 10.10.0.3/24         | n1           | e0c          |    |
| false   | n1_clus4          | up/up  | 10.10.0.4/24         | n1           | e0c          |    |
| false   | n2_clus1          | up/up  | 10.10.0.5/24         | n2           | e0b          |    |
| true    | n2_clus2          | up/up  | 10.10.0.6/24         | n2           | e0b          |    |
| true    | n2_clus3          | up/up  | 10.10.0.7/24         | n2           | e0c          |    |
| false   | n2_clus4          | up/up  | 10.10.0.8/24         | n2           | e0c          |    |

```
8 entries were displayed.
```

14. Shut down the node ports that are connected to CL1 on all of the nodes:

```
network port modify
```

**Show example**

The following example shows how to shut down the specified ports on nodes n1 and n2:

```
cluster::*> network port modify -node n1 -port e0a -up-admin false
cluster::*> network port modify -node n1 -port e0d -up-admin false
cluster::*> network port modify -node n2 -port e0a -up-admin false
cluster::*> network port modify -node n2 -port e0d -up-admin false
```

15. Shut down the ISL ports 24, 31, and 32 on the active 3132Q-V switch C2:

shutdown

**Show example**

The following example shows how to shut down ISLs 24, 31, and 32 on the active 3132Q-V switch C2:

```
C2# configure
C2(config)# interface ethernet 1/24/1-4
C2(config-if-range)# shutdown
C2(config-if-range)# exit
C2(config)# interface ethernet 1/31-32
C2(config-if-range)# shutdown
C2(config-if-range)# exit
C2(config)# exit
C2#
```

16. Remove the cables that are attached to the CN1610 switch CL1 on all of the nodes.

With supported cabling, you must reconnect the disconnected ports on all of the nodes to the Nexus 3132Q-V switch C1.

17. Remove the QSFP cables from Nexus 3132Q-V C2 port e1/24.

You must connect ports e1/31 and e1/32 on C1 to ports e1/31 and e1/32 on C2 using supported Cisco QSFP optical fiber or direct-attach cables.

18. Restore the configuration on port 24 and remove the temporary port-channel 2 on C2, by copying the running-configuration file to the startup-configuration file.

### Show example

The following example copies the running-configuration file to the startup-configuration file:

```
C2# configure
C2(config)# no interface breakout module 1 port 24 map 10g-4x
C2(config)# no interface port-channel 2
C2(config-if)# interface e1/24
C2(config-if)# description 40GbE Node Port
C2(config-if)# spanning-tree port type edge
C2(config-if)# spanning-tree bpduguard enable
C2(config-if)# mtu 9216
C2(config-if-range)# exit
C2(config)# exit
C2# copy running-config startup-config
[#####] 100%
Copy Complete.
```

19. Bring up ISL ports 31 and 32 on C2, the active 3132Q-V switch:

no shutdown

### Show example

The following example shows how to bring up ISLs 31 and 32 on the 3132Q-V switch C2:

```
C2# configure
C2(config)# interface ethernet 1/31-32
C2(config-if-range)# no shutdown
C2(config-if-range)# exit
C2(config)# exit
C2# copy running-config startup-config
[#####] 100%
Copy Complete.
```

### What's next?

After you've configured your switch ports, you can [complete your migration](#).

## Complete your migration from CN1610 switches to Nexus 3132Q-V switches

Complete the following steps to finalize the CN1610 switches migration to Nexus 3132Q-

V switches.

### Steps

1. Verify that the ISL connections are up on the 3132Q-V switch C2:

```
show port-channel summary
```

Ports Eth1/31 and Eth1/32 should indicate (P), meaning that both the ISL ports are up in the port-channel.

### Show example

```
C1# show port-channel summary
Flags:  D - Down          P - Up in port-channel (members)
        I - Individual    H - Hot-standby (LACP only)
        S - Suspended      r - Module-removed
        S - Switched       R - Routed
        U - Up (port-channel)
        M - Not in use. Min-links not met
-----
-----
Group Port-      Type      Protocol Member Ports
      Channel
-----
1      Po1 (SU)    Eth       LACP      Eth1/31 (P)  Eth1/32 (P)
```

2. Bring up all of the cluster interconnect ports connected to the new 3132Q-V switch C1 on all of the nodes:

```
network port modify
```

### Show example

The following example shows how to bring up all of the cluster interconnect ports connected to the new 3132Q-V switch C1:

```
cluster::*> network port modify -node n1 -port e0a -up-admin true
cluster::*> network port modify -node n1 -port e0d -up-admin true
cluster::*> network port modify -node n2 -port e0a -up-admin true
cluster::*> network port modify -node n2 -port e0d -up-admin true
```

3. Verify the status of the cluster node port:

```
network port show
```

## Show example

The following example verifies that all of the cluster interconnect ports on n1 and n2 on the new 3132Q-V switch C1 are up:

```
cluster::*> network port show -role Cluster
(network port show)

Node: n1
          Broadcast          Speed (Mbps)  Health  Ignore
Port  IPspace  Domain    Link  MTU  Admin/Open  Status  Health
Status
----- ----- ----- ----- ----- ----- ----- -----
----- 
e0a  cluster  cluster  up    9000  auto/10000  -      -
e0b  cluster  cluster  up    9000  auto/10000  -      -
e0c  cluster  cluster  up    9000  auto/10000  -      -
e0d  cluster  cluster  up    9000  auto/10000  -      -

Node: n2
          Broadcast          Speed (Mbps)  Health  Ignore
Port  IPspace  Domain    Link  MTU  Admin/Open  Status  Health
Status
----- ----- ----- ----- ----- ----- ----- -----
----- 
e0a  cluster  cluster  up    9000  auto/10000  -      -
e0b  cluster  cluster  up    9000  auto/10000  -      -
e0c  cluster  cluster  up    9000  auto/10000  -      -
e0d  cluster  cluster  up    9000  auto/10000  -      -

8 entries were displayed.
```

4. Revert all of the migrated cluster interconnect LIFs that were originally connected to C1 on all of the nodes:

```
network interface revert
```

## Show example

The following example shows how to revert the migrated cluster LIFs to their home ports:

```
cluster::*> network interface revert -vserver Cluster -lif n1_clus1
cluster::*> network interface revert -vserver Cluster -lif n1_clus4
cluster::*> network interface revert -vserver Cluster -lif n2_clus1
cluster::*> network interface revert -vserver Cluster -lif n2_clus4
```

5. Verify that the interface is now home:

```
network interface show
```

## Show example

The following example shows the status of cluster interconnect interfaces is up and Is home for n1 and n2:

```
cluster::*> network interface show -role Cluster
(network interface show)

      Logical      Status      Network      Current      Current      Is
Vserver  Interface  Admin/Oper  Address/Mask  Node       Port
Home

-----
-----
Cluster
true      n1_clus1  up/up      10.10.0.1/24  n1        e0a
true      n1_clus2  up/up      10.10.0.2/24  n1        e0b
true      n1_clus3  up/up      10.10.0.3/24  n1        e0c
true      n1_clus4  up/up      10.10.0.4/24  n1        e0d
true      n2_clus1  up/up      10.10.0.5/24  n2        e0a
true      n2_clus2  up/up      10.10.0.6/24  n2        e0b
true      n2_clus3  up/up      10.10.0.7/24  n2        e0c
true      n2_clus4  up/up      10.10.0.8/24  n2        e0d

8 entries were displayed.
```

## 6. Verify the connectivity of the remote cluster interfaces:

## ONTAP 9.9.1 and later

You can use the `network interface check cluster-connectivity` command to start an accessibility check for cluster connectivity and then display the details:

```
network interface check cluster-connectivity start and network interface check cluster-connectivity show
```

```
cluster1::*> network interface check cluster-connectivity start
```

**NOTE:** Wait for a number of seconds before running the show command to display the details.

```
cluster1::*> network interface check cluster-connectivity show
```

| Node | Date                     | Source LIF | Destination LIF | Packet Loss |
|------|--------------------------|------------|-----------------|-------------|
| n1   | 3/5/2022 19:21:18 -06:00 | n1_clus2   | n1_clus1        | none        |
|      | 3/5/2022 19:21:20 -06:00 | n1_clus2   | n2_clus2        | none        |
| n2   | 3/5/2022 19:21:18 -06:00 | n2_clus2   | n1_clus1        | none        |
|      | 3/5/2022 19:21:20 -06:00 | n2_clus2   | n1_clus2        | none        |

## All ONTAP releases

For all ONTAP releases, you can also use the `cluster ping-cluster -node <name>` command to check the connectivity:

```
cluster ping-cluster -node <name>
```

```

cluster::*> cluster ping-cluster -node n1
Host is n1
Getting addresses from network interface table...
Cluster n1_clus1 n1      e0a    10.10.0.1
Cluster n1_clus2 n1      e0b    10.10.0.2
Cluster n1_clus3 n1      e0c    10.10.0.3
Cluster n1_clus4 n1      e0d    10.10.0.4
Cluster n2_clus1 n2      e0a    10.10.0.5
Cluster n2_clus2 n2      e0b    10.10.0.6
Cluster n2_clus3 n2      e0c    10.10.0.7
Cluster n2_clus4 n2      e0d    10.10.0.8

Local = 10.10.0.1 10.10.0.2 10.10.0.3 10.10.0.4
Remote = 10.10.0.5 10.10.0.6 10.10.0.7 10.10.0.8
Cluster Vserver Id = 4294967293
Ping status:....
Basic connectivity succeeds on 16 path(s)
Basic connectivity fails on 0 path(s)
.
.
.
Detected 1500 byte MTU on 16 path(s):
  Local 10.10.0.1 to Remote 10.10.0.5
  Local 10.10.0.1 to Remote 10.10.0.6
  Local 10.10.0.1 to Remote 10.10.0.7
  Local 10.10.0.1 to Remote 10.10.0.8
  Local 10.10.0.2 to Remote 10.10.0.5
  Local 10.10.0.2 to Remote 10.10.0.6
  Local 10.10.0.2 to Remote 10.10.0.7
  Local 10.10.0.2 to Remote 10.10.0.8
  Local 10.10.0.3 to Remote 10.10.0.5
  Local 10.10.0.3 to Remote 10.10.0.6
  Local 10.10.0.3 to Remote 10.10.0.7
  Local 10.10.0.3 to Remote 10.10.0.8
  Local 10.10.0.4 to Remote 10.10.0.5
  Local 10.10.0.4 to Remote 10.10.0.6
  Local 10.10.0.4 to Remote 10.10.0.7
  Local 10.10.0.4 to Remote 10.10.0.8

Larger than PMTU communication succeeds on 16 path(s)
RPC status:
  4 paths up, 0 paths down (tcp check)
  4 paths up, 0 paths down (udp check)

```

7. Expand the cluster by adding nodes to the Nexus 3132Q-V cluster switches.
8. Display the information about the devices in your configuration:

- network device-discovery show
- network port show -role cluster
- network interface show -role cluster
- system cluster-switch show

## Show example

The following examples show nodes n3 and n4 with 40 GbE cluster ports connected to ports e1/7 and e1/8, respectively on both the Nexus 3132Q-V cluster switches, and both nodes have joined the cluster. The 40 GbE cluster interconnect ports used are e4a and e4e.

```
cluster::*> network device-discovery show
```

| Node | Local Port | Discovered Device | Interface     | Platform     |
|------|------------|-------------------|---------------|--------------|
| n1   | /cdp       |                   |               |              |
|      | e0a        | C1                | Ethernet1/1/1 | N3K-C3132Q-V |
|      | e0b        | C2                | Ethernet1/1/1 | N3K-C3132Q-V |
|      | e0c        | C2                | Ethernet1/1/2 | N3K-C3132Q-V |
|      | e0d        | C1                | Ethernet1/1/2 | N3K-C3132Q-V |
| n2   | /cdp       |                   |               |              |
|      | e0a        | C1                | Ethernet1/1/3 | N3K-C3132Q-V |
|      | e0b        | C2                | Ethernet1/1/3 | N3K-C3132Q-V |
|      | e0c        | C2                | Ethernet1/1/4 | N3K-C3132Q-V |
|      | e0d        | C1                | Ethernet1/1/4 | N3K-C3132Q-V |
| n3   | /cdp       |                   |               |              |
|      | e4a        | C1                | Ethernet1/7   | N3K-C3132Q-V |
|      | e4e        | C2                | Ethernet1/7   | N3K-C3132Q-V |
| n4   | /cdp       |                   |               |              |
|      | e4a        | C1                | Ethernet1/8   | N3K-C3132Q-V |
|      | e4e        | C2                | Ethernet1/8   | N3K-C3132Q-V |

12 entries were displayed.

```
cluster::*> network port show -role cluster  
(network port show)
```

| Node: n1 |         | Broadcast |      | Speed (Mbps) |            | Health |   |
|----------|---------|-----------|------|--------------|------------|--------|---|
| Port     | IPspace | Domain    | Link | MTU          | Admin/Open | Status |   |
| Health   | Status  |           |      |              |            |        |   |
| e0a      | cluster | cluster   | up   | 9000         | auto/10000 | -      | - |
| e0b      | cluster | cluster   | up   | 9000         | auto/10000 | -      | - |
| e0c      | cluster | cluster   | up   | 9000         | auto/10000 | -      | - |
| e0d      | cluster | cluster   | up   | 9000         | auto/10000 | -      | - |

Node: n2

| Broadcast |        |         |         | Speed (Mbps) | Health |            |        |
|-----------|--------|---------|---------|--------------|--------|------------|--------|
| Ignore    | Port   | IPspace | Domain  | Link         | MTU    | Admin/Open | Status |
| Health    | Status |         |         |              |        |            |        |
|           | e0a    | cluster | cluster | up           | 9000   | auto/10000 | -      |
|           | e0b    | cluster | cluster | up           | 9000   | auto/10000 | -      |
|           | e0c    | cluster | cluster | up           | 9000   | auto/10000 | -      |
|           | e0d    | cluster | cluster | up           | 9000   | auto/10000 | -      |

Node: n3

| Broadcast |        |         |         | Speed (Mbps) | Health |            |        |
|-----------|--------|---------|---------|--------------|--------|------------|--------|
| Ignore    | Port   | IPspace | Domain  | Link         | MTU    | Admin/Open | Status |
| Health    | Status |         |         |              |        |            |        |
|           | e4a    | cluster | cluster | up           | 9000   | auto/40000 | -      |
|           | e4e    | cluster | cluster | up           | 9000   | auto/40000 | -      |

Node: n4

| Broadcast |        |         |         | Speed (Mbps) | Health |            |        |
|-----------|--------|---------|---------|--------------|--------|------------|--------|
| Ignore    | Port   | IPspace | Domain  | Link         | MTU    | Admin/Open | Status |
| Health    | Status |         |         |              |        |            |        |
|           | e4a    | cluster | cluster | up           | 9000   | auto/40000 | -      |
|           | e4e    | cluster | cluster | up           | 9000   | auto/40000 | -      |

12 entries were displayed.

```

cluster::*> network interface show -role Cluster
(network interface show)

      Logical      Status      Network      Current      Current
  Is
Vserver  Interface  Admin/Oper  Address/Mask  Node       Port
Home

-----
-----


Cluster
      n1_clus1    up/up      10.10.0.1/24  n1        e0a
true
      n1_clus2    up/up      10.10.0.2/24  n1        e0b
true
      n1_clus3    up/up      10.10.0.3/24  n1        e0c
true
      n1_clus4    up/up      10.10.0.4/24  n1        e0d
true
      n2_clus1    up/up      10.10.0.5/24  n2        e0a
true
      n2_clus2    up/up      10.10.0.6/24  n2        e0b
true
      n2_clus3    up/up      10.10.0.7/24  n2        e0c
true
      n2_clus4    up/up      10.10.0.8/24  n2        e0d
true
      n3_clus1    up/up      10.10.0.9/24  n3        e4a
true
      n3_clus2    up/up      10.10.0.10/24 n3        e4e
true
      n4_clus1    up/up      10.10.0.11/24 n4        e4a
true
      n4_clus2    up/up      10.10.0.12/24 n4        e4e

12 entries were displayed.

```

```

cluster::> system cluster-switch show

Switch          Type          Address      Model
-----
-----
C1             cluster-network 10.10.1.103
NX3132V
    Serial Number: FOX000001
    Is Monitored: true
    Reason:
    Software Version: Cisco Nexus Operating System (NX-OS)
Software, Version
    7.0(3)I4(1)
    Version Source: CDP

C2             cluster-network 10.10.1.104
NX3132V
    Serial Number: FOX000002
    Is Monitored: true
    Reason:
    Software Version: Cisco Nexus Operating System (NX-OS)
Software, Version
    7.0(3)I4(1)
    Version Source: CDP

CL1            cluster-network 10.10.1.101      CN1610
    Serial Number: 01234567
    Is Monitored: true
    Reason:
    Software Version: 1.2.0.7
    Version Source: ISDP

CL2            cluster-network 10.10.1.102
CN1610
    Serial Number: 01234568
    Is Monitored: true
    Reason:
    Software Version: 1.2.0.7
    Version Source: ISDP

4 entries were displayed.

```

9. Remove the replaced CN1610 switches if they are not automatically removed:

```
system cluster-switch delete
```

**Show example**

The following example shows how to remove the CN1610 switches:

```
cluster::> system cluster-switch delete -device CL1
cluster::> system cluster-switch delete -device CL2
```

10. Configure clusters clus1 and clus4 to -auto-revert on each node and confirm:

**Show example**

```
cluster::*> network interface modify -vserver node1 -lif clus1 -auto
-revert true
cluster::*> network interface modify -vserver node1 -lif clus4 -auto
-revert true
cluster::*> network interface modify -vserver node2 -lif clus1 -auto
-revert true
cluster::*> network interface modify -vserver node2 -lif clus4 -auto
-revert true
```

11. Verify that the proper cluster switches are monitored:

```
system cluster-switch show
```

**Show example**

```
cluster::> system cluster-switch show

Switch          Type          Address
Model

-----
-----
C1             cluster-network  10.10.1.103
NX3132V

  Serial Number: FOX000001
  Is Monitored: true
  Reason:
  Software Version: Cisco Nexus Operating System (NX-OS) Software,
Version
  7.0(3)I4(1)
  Version Source: CDP

C2             cluster-network  10.10.1.104
NX3132V

  Serial Number: FOX000002
  Is Monitored: true
  Reason:
  Software Version: Cisco Nexus Operating System (NX-OS) Software,
Version
  7.0(3)I4(1)
  Version Source: CDP

2 entries were displayed.
```

12. If you suppressed automatic case creation, reenable it by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

**What's next?**

After you've completed your switch migration, you can [configure switch health monitoring](#).

## Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

**LIMITED RIGHTS LEGEND:** Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

## Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.