



# **Storage switches**

Install and maintain

NetApp

February 20, 2026

# Table of Contents

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| Storage switches .....                                               | 1   |
| Cisco Nexus 9336C-FX2 or 9336C-FX2-T .....                           | 1   |
| Get started .....                                                    | 1   |
| Install the hardware .....                                           | 5   |
| Configure the software .....                                         | 17  |
| Replace Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches ..... | 61  |
| Cisco Nexus 3232C .....                                              | 67  |
| Get started .....                                                    | 67  |
| Install hardware .....                                               | 70  |
| Configure software .....                                             | 76  |
| Replace a Cisco Nexus 3232C storage switch .....                     | 109 |
| Upgrade a Cisco Nexus 3232C storage switch .....                     | 116 |
| NVIDIA SN2100 .....                                                  | 131 |
| Get started .....                                                    | 131 |
| Install hardware .....                                               | 133 |
| Configure software .....                                             | 143 |
| Migrate switches .....                                               | 175 |
| Replace a NVIDIA SN2100 storage switch .....                         | 185 |

# Storage switches

## Cisco Nexus 9336C-FX2 or 9336C-FX2-T

### Get started

#### Installation and setup workflow for Cisco Nexus 9336C-FX2 9336C-FX2-T storage switches

The Cisco Nexus 9336C-FX2 and 9336C-FX2-T switches are part of the Cisco Nexus 9000 platform and can be installed in a NetApp system cabinet.

Cisco Nexus 9336C-FX2 (36 ports) is high-port density cluster/storage/data switch. Cisco Nexus 9336C-FX2-T (12 ports) is a low-port-density, high performance switch that supports 10/25/40/100GbE configurations.

Follow these workflow steps to install and setup your Cisco 9336C-FX2 and 9336C-FX2-T switches.

1

#### Review the configuration requirements

Review the configuration requirements for the 9336C-FX2 and 9336C-FX2-T storage switches.

2

#### Review the components and part numbers

Review the components and part numbers for the 9336C-FX2 and 9336C-FX2-T storage switches.

3

#### Review the required documentation

Review specific switch and controller documentation to set up your 9336C-FX2 and 9336C-FX2-T switches and the ONTAP cluster.

4

#### Review the Smart Call Home requirements

Review the requirements for the Cisco Smart Call Home feature, used to monitor the hardware and software components on your network.

5

#### Install the hardware

Install the switch hardware.

6

#### Configure the software

Configure the switch software.

#### Configuration requirements for Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches

For Cisco Nexus 9336C-FX2 and 9336C-FX2-T switches installation and maintenance, make sure to review configuration and network requirements.

## Configuration requirements

For configuration, you need the appropriate number and type of cables and cable connectors for your switches.

Depending on the type of switch you are initially configuring, you need to connect to the switch console port with the included console cable; you also need to provide specific network information.

## Network requirements

You need the following network information for all switch configurations.

- IP subnet for management network traffic
- Host names and IP addresses for each of the storage system controllers and all applicable switches
- Most storage system controllers are managed through the e0M interface by connecting to the Ethernet service port (wrench icon). On AFF A800 and AFF A700s systems, the e0M interface uses a dedicated Ethernet port.
- Refer to the [Hardware Universe](#) for the latest information.

For more information about the initial configuration of your switch, see the following guide: [Cisco Nexus 9336C-FX2 Installation and Upgrade Guide](#).

## What's next

After you've reviewed the configuration requirements, you can confirm your [components and part numbers](#).

## Components and part numbers for Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches

For Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switch installation and maintenance, be sure to review the list of components and part numbers.

The following table lists the part number and description for the 9336C-FX2 and 9336C-FX2-T storage switches, fans, and power supplies:

| Part number        | Description                                                  |
|--------------------|--------------------------------------------------------------|
| X190200-CS-PE      | Cluster Switch, N9336C 36Pt PTSX 10/25/40/100G               |
| X190200-CS-PI      | Cluster Switch, N9336C 36Pt PSIN 10/25/40/100G               |
| X190212-CS-PE      | Cluster Switch, N9336C 12Pt (9336C-FX2-T) PTSX 10/25/40/100G |
| X190212-CS-PI      | Cluster Switch, N9336C 12Pt (9336C-FX2-T) PSIN 10/25/40/100G |
| SW-N9K-FX2-24P-UPG | SW, Cisco 9336CFX2 24-Port POD License                       |
| X190210-FE-PE      | N9K-9336C, FTE, PTSX, 36PT 10/25/40/100GQSFP28               |
| X190210-FE-PI      | N9K-9336C, FTE, PSIN, 36PT 10/25/40/100GQSFP28               |
| X190002            | Accessory Kit X190001/X190003                                |

| Part number         | Description                                        |
|---------------------|----------------------------------------------------|
| X-NXA-PAC-1100W-PE2 | N9K-9336C AC 1100W PSU - Port side exhaust airflow |
| X-NXA-PAC-1100W-PI2 | N9K-9336C AC 1100W PSU - Port side Intake airflow  |
| X-NXA-FAN-65CFM-PE  | N9K-9336C 65CFM, Port side exhaust airflow         |
| X-NXA-FAN-65CFM-PI  | N9K-9336C 65CFM, Port side intake airflow          |

#### Cisco Smart licenses for 9336C-FX2-T ports only

In order to activate more than 12 ports on your Cisco Nexus 9336C-FX-T storage switch, you must purchase a Cisco Smart license. Cisco Smart licenses are managed through Cisco Smart accounts.

1. Create a new Smart account, if required. See [Create a new Smart account](#) for details.
2. Request access to an existing Smart account. See [Request access to an existing Smart account](#) for details.



Once you have purchased your Smart license, install the appropriate RCF to enable and configure all 36 available ports for use.

#### What's next

After you've confirmed your components and part numbers, you can review the [required documentation](#).

#### Documentation requirements for Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches

For Cisco Nexus 9336C-FX2 and 9336C-FX2-T switch installation and maintenance, make sure to review specific switch and controller documentation to set up your Cisco 9336-FX2 switches and ONTAP cluster.

#### Switch documentation

To set up the Cisco Nexus 9336C-FX2 switches, you need the following documentation from the [Cisco Nexus 9000 Series Switches Support](#) page:

| Document title                                                                                                                             | Description                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| <i>Nexus 9000 Series Hardware Installation Guide</i>                                                                                       | Provides detailed information about site requirements, switch hardware details, and installation options.                |
| <i>Cisco Nexus 9000 Series Switch Software Configuration Guides</i><br>(choose the guide for the NX-OS release installed on your switches) | Provides initial switch configuration information that you need before you can configure the switch for ONTAP operation. |

| Document title                                                                                                                                | Description                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Cisco Nexus 9000 Series NX-OS Software Upgrade and Downgrade Guide</i> (choose the guide for the NX-OS release installed on your switches) | Provides information on how to downgrade the switch to ONTAP supported switch software, if necessary.                                                                                                 |
| <i>Cisco Nexus 9000 Series NX-OS Command Reference Master Index</i>                                                                           | Provides links to the various command references provided by Cisco.                                                                                                                                   |
| <i>Cisco Nexus 9000 MIBs Reference</i>                                                                                                        | Describes the Management Information Base (MIB) files for the Nexus 9000 switches.                                                                                                                    |
| <i>Nexus 9000 Series NX-OS System Message Reference</i>                                                                                       | Describes the system messages for Cisco Nexus 9000 series switches, those that are informational, and others that might help diagnose problems with links, internal hardware, or the system software. |
| <i>Cisco Nexus 9000 Series NX-OS Release Notes</i> (choose the notes for the NX-OS release installed on your switches)                        | Describes the features, bugs, and limitations for the Cisco Nexus 9000 Series.                                                                                                                        |
| Regulatory Compliance and Safety Information for Cisco Nexus 9000 Series                                                                      | Provides international agency compliance, safety, and statutory information for the Nexus 9000 series switches.                                                                                       |

#### ONTAP systems documentation

To set up an ONTAP system, you need the following documents for your version of the operating system from [ONTAP 9](#).

| Name                                                           | Description                                                            |
|----------------------------------------------------------------|------------------------------------------------------------------------|
| <i>Controller-specific Installation and Setup Instructions</i> | Describes how to install NetApp hardware.                              |
| ONTAP documentation                                            | Provides detailed information about all aspects of the ONTAP releases. |
| <a href="#">Hardware Universe</a>                              | Provides NetApp hardware configuration and compatibility information.  |

#### Rail kit and cabinet documentation

To install a Cisco 9336-FX2 switch in a NetApp cabinet, see the following hardware documentation.

| Name                                           | Description                                                                                                           |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <a href="#">42U System Cabinet, Deep Guide</a> | Describes the FRUs associated with the 42U system cabinet, and provides maintenance and FRU replacement instructions. |

| Name                                                | Description                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------|
| Install a Cisco 9336-FX2 switch in a NetApp Cabinet | Describes how to install a Cisco Nexus 9336C-FX2 switch in a four-post NetApp cabinet. |

## Smart Call Home requirements

To use Smart Call Home, you must configure a cluster network switch to communicate using email with the Smart Call Home system. In addition, you can optionally set up your cluster network switch to take advantage of Cisco's embedded Smart Call Home support feature.

Smart Call Home monitors the hardware and software components on your network. When a critical system configuration occurs, it generates an email-based notification and raises an alert to all the recipients that are configured in your destination profile.

Smart Call Home monitors the hardware and software components on your network. When a critical system configuration occurs, it generates an email-based notification and raises an alert to all the recipients that are configured in your destination profile.

Before you can use Smart Call Home, be aware of the following requirements:

- An email server must be in place.
- The switch must have IP connectivity to the email server.
- The contact name (SNMP server contact), phone number, and street address information must be configured. This is required to determine the origin of messages received.
- A CCO ID must be associated with an appropriate Cisco SMARTnet Service contract for your company.
- Cisco SMARTnet Service must be in place for the device to be registered.

The [Cisco support site](#) contains information about the commands to configure Smart Call Home.

## Install the hardware

### Hardware install workflow for Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches

To install and configure the hardware for 9336C-FX2 and 9336C-FX2-T storage switches, follow these steps:

1

#### Complete the cabling worksheet

The sample cabling worksheet provides examples of recommended port assignments from the switches to the controllers. The blank worksheet provides a template that you can use in setting up your cluster.

2

#### Install the switch

Install the 9336C-FX2 and 9336C-FX2-T storage switches.

**3**

### Install the switch in a NetApp cabinet

Install the 9336C-FX2 and 9336C-FX2-T switches and pass-through panel in a NetApp cabinet as required.

**4**

### Review cabling and configuration considerations

Before configuring your 9336C-FX2 and 9336C-FX2-T switches, review the cabling and configuration considerations.

#### Complete the Cisco Nexus 9336C-FX2 or 9336C-FX2-T cabling worksheet

If you want to document the supported platforms, download a PDF of this page and complete the cabling worksheet.

The sample cabling worksheet provides examples of recommended port assignments from the switches to the controllers. The blank worksheet provides a template that you can use in setting up your cluster.

- [9336C-FX2 sample cabling worksheet](#)
- [9336C-FX2 blank cabling worksheet](#)
- [9336C-FX2-T sample cabling worksheet \(12-port\)](#)
- [9336C-FX2-T blank cabling worksheet \(12-port\)](#)

#### 9336C-FX2 sample cabling worksheet

The sample port definition on each pair of switches is as follows:

| Cluster switch A |                     | Cluster switch B |                     |
|------------------|---------------------|------------------|---------------------|
| Switch port      | Node and port usage | Switch port      | Node and port usage |
| 1                | 4x100GbE node 1     | 1                | 4x100GbE node 1     |
| 2                | 4x100GbE node 2     | 2                | 4x100GbE node 2     |
| 3                | 4x100GbE node 3     | 3                | 4x100GbE node 3     |
| 4                | 4x100GbE node 4     | 4                | 4x100GbE node 4     |
| 5                | 4x100GbE node 5     | 5                | 4x100GbE node 5     |
| 6                | 4x100GbE node 6     | 6                | 4x100GbE node 6     |
| 7                | 4x100GbE node 7     | 7                | 4x100GbE node 7     |
| 8                | 4x100GbE node 8     | 8                | 4x100GbE node 8     |
| 9                | 4x100GbE node 9     | 9                | 4x100GbE node 9     |

| Cluster switch A |                  | Cluster switch B |                  |
|------------------|------------------|------------------|------------------|
| 10               | 4x100GbE node 10 | 10               | 4x100GbE node 10 |
| 11               | 4x100GbE node 11 | 11               | 4x100GbE node 11 |
| 12               | 4x100GbE node 12 | 12               | 4x100GbE node 12 |
| 13               | 4x100GbE node 13 | 13               | 4x100GbE node 13 |
| 14               | 4x100GbE node 14 | 14               | 4x100GbE node 14 |
| 15               | 4x100GbE node 15 | 15               | 4x100GbE node 15 |
| 16               | 4x100GbE node 16 | 16               | 4x100GbE node 16 |
| 17               | 4x100GbE node 17 | 17               | 4x100GbE node 17 |
| 18               | 4x100GbE node 18 | 18               | 4x100GbE node 18 |
| 19               | 4x100GbE node 19 | 19               | 4x100GbE node 19 |
| 20               | 4x100GbE node 20 | 20               | 4x100GbE node 20 |
| 21               | 4x100GbE node 21 | 21               | 4x100GbE node 21 |
| 22               | 4x100GbE node 22 | 22               | 4x100GbE node 22 |
| 23               | 4x100GbE node 23 | 23               | 4x100GbE node 23 |
| 24               | 4x100GbE node 24 | 24               | 4x100GbE node 24 |
| 25               | 4x100GbE node 25 | 25               | 4x100GbE node 25 |
| 26               | 4x100GbE node 26 | 26               | 4x100GbE node 26 |
| 27               | 4x100GbE node 27 | 27               | 4x100GbE node 27 |
| 28               | 4x100GbE node 28 | 28               | 4x100GbE node 28 |
| 29               | 4x100GbE node 29 | 29               | 4x100GbE node 29 |
| 30               | 4x100GbE node 30 | 30               | 4x100GbE node 30 |
| 31               | 4x100GbE node 31 | 31               | 4x100GbE node 31 |

| Cluster switch A |                  | Cluster switch B |                  |
|------------------|------------------|------------------|------------------|
| 32               | 4x100GbE node 32 | 32               | 4x100GbE node 32 |
| 33               | 4x100GbE node 33 | 33               | 4x100GbE node 33 |
| 30               | 4x100GbE node 30 | 30               | 4x100GbE node 33 |
| 34               | 4x100GbE node 34 | 34               | 4x100GbE node 34 |
| 35               | 4x100GbE node 35 | 35               | 4x100GbE node 35 |
| 36               | 4x100GbE node 36 | 36               | 4x100GbE node 36 |

#### 9336C-FX2 blank cabling worksheet

You can use the blank cabling worksheet to document the platforms that are supported as nodes in a cluster. The *Supported Cluster Connections* section of the [Hardware Universe](#) defines the cluster ports used by the platform.

| Cluster switch A |  | Cluster switch B |  |
|------------------|--|------------------|--|
| 1                |  | 1                |  |
| 2                |  | 2                |  |
| 3                |  | 3                |  |
| 4                |  | 4                |  |
| 5                |  | 5                |  |
| 6                |  | 6                |  |
| 7                |  | 7                |  |
| 8                |  | 8                |  |
| 9                |  | 9                |  |
| 10               |  | 10               |  |
| 11               |  | 11               |  |
| 12               |  | 12               |  |

| <b>Cluster switch A</b> |  | <b>Cluster switch B</b> |  |
|-------------------------|--|-------------------------|--|
| 13                      |  | 13                      |  |
| 14                      |  | 14                      |  |
| 15                      |  | 15                      |  |
| 16                      |  | 16                      |  |
| 17                      |  | 17                      |  |
| 18                      |  | 18                      |  |
| 19                      |  | 19                      |  |
| 20                      |  | 20                      |  |
| 21                      |  | 21                      |  |
| 22                      |  | 22                      |  |
| 23                      |  | 23                      |  |
| 24                      |  | 24                      |  |
| 25                      |  | 25                      |  |
| 26                      |  | 26                      |  |
| 27                      |  | 27                      |  |
| 28                      |  | 28                      |  |
| 29                      |  | 29                      |  |
| 30                      |  | 30                      |  |
| 31                      |  | 31                      |  |
| 32                      |  | 32                      |  |
| 33                      |  | 33                      |  |
| 34                      |  | 34                      |  |

| Cluster switch A |  | Cluster switch B |  |
|------------------|--|------------------|--|
| 35               |  | 35               |  |
| 36               |  | 36               |  |

#### 9336C-FX2-T sample cabling worksheet (12-port)

The sample port definition on each pair of switches is as follows:

| Cluster switch A |                     | Cluster switch B |                     |
|------------------|---------------------|------------------|---------------------|
| Switch port      | Node and port usage | Switch port      | Node and port usage |
| 1                | 4x100GbE node 1     | 1                | 4x100GbE node 1     |
| 2                | 4x100GbE node 2     | 2                | 4x100GbE node 2     |
| 3                | 4x100GbE node 3     | 3                | 4x100GbE node 3     |
| 4                | 4x100GbE node 4     | 4                | 4x100GbE node 4     |
| 5                | 4x100GbE node 5     | 5                | 4x100GbE node 5     |
| 6                | 4x100GbE node 6     | 6                | 4x100GbE node 6     |
| 7                | 4x100GbE node 7     | 7                | 4x100GbE node 7     |
| 8                | 4x100GbE node 8     | 8                | 4x100GbE node 8     |
| 9                | 4x100GbE node 9     | 9                | 4x100GbE node 9     |
| 10               | 4x100GbE node 10    | 10               | 4x100GbE node 10    |
| 11 through 36    | Requires license    | 11 through 36    | Requires license    |

#### 9336C-FX2-T blank cabling worksheet (12-port)

You can use the blank cabling worksheet to document the platforms that are supported as nodes in a cluster.

| Cluster switch A |  | Cluster switch B |  |
|------------------|--|------------------|--|
| 1                |  | 1                |  |
| 2                |  | 2                |  |

| Cluster switch A | Cluster switch B |
|------------------|------------------|
| 3                | 3                |
| 4                | 4                |
| 5                | 5                |
| 6                | 6                |
| 7                | 7                |
| 8                | 8                |
| 9                | 9                |
| 10               | 10               |
| 11 through 36    | Requires license |
| 11 through 36    | Requires license |

See the [Hardware Universe](#) for more information on switch ports.

### What's next

After you've completed your cabling worksheets, you can [install the switch](#).

### Install the 9336C-FX2 and 9336C-FX2-T storage switches

Follow this procedure to install Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches.

#### Before you begin

Make sure you have the following:

- Access to an HTTP, FTP or TFTP server at the installation site to download the applicable NX-OS and reference configuration file (RCF) releases.
- Applicable NX-OS version, downloaded from the [Cisco Software Download](#) page.
- Applicable licenses, network and configuration information, and cables.
- Completed [cabling worksheets](#).
- Applicable NetApp storage network and management network RCFs downloaded from the NetApp Support Site at [mysupport.netapp.com](http://mysupport.netapp.com).

All Cisco storage network and management network switches arrive with the standard Cisco factory-default configuration. These switches also have the current version of the NX-OS software but do not have the RCFs loaded.

- Required switch documentation. See [Required documentation](#) for more information.

### Steps

1. Rack the network and management network switches and controllers.

| If you are installing your...                    | Then...                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Cisco Nexus 9336C-FX2 in a NetApp system cabinet | See <a href="#">Install switch in NetApp cabinet</a> for instructions to install the switch in a NetApp cabinet.           |
| Equipment in a Telco rack                        | See the procedures provided in the switch hardware installation guides and the NetApp installation and setup instructions. |

2. Cable the network and management network switches to the controllers using the completed cabling worksheets.
3. Power on the network and management network switches and controllers.

#### What's next?

Optionally, you can [install a Cisco Nexus 9336C-FX2 switch in a NetApp cabinet](#). Otherwise, go to [configure the switch](#).

#### Install Cisco Nexus 9336C-FX2 and 9336C-FX2-T switches in a NetApp cabinet

Depending on your configuration, you might need to install the Cisco Nexus 9336C-FX2 9336C-FX2-T switches and pass-through panel in a NetApp cabinet. Standard brackets are included with the switch.

#### Before you begin

Make sure you have the following:

- For each switch, you must supply the eight 10-32 or 12-24 screws and clip nuts to mount the brackets and slider rails to the front and rear cabinet posts.
- You must use the Cisco standard rail kit to install the switch in a NetApp cabinet.



The jumper cords are not included with the pass-through kit and should be included with your switches. If they were not shipped with the switches, you can order them from NetApp (part number X1558A-R6).

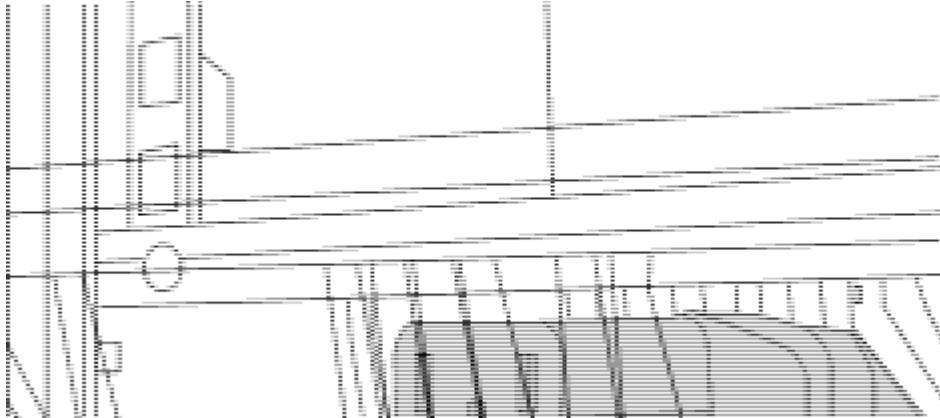
#### Required documentation

Review the initial preparation requirements, kit contents, and safety precautions in the [Cisco Nexus 9000 Series Hardware Installation Guide](#).

#### Steps

1. Install the pass-through blanking panel in the NetApp cabinet.

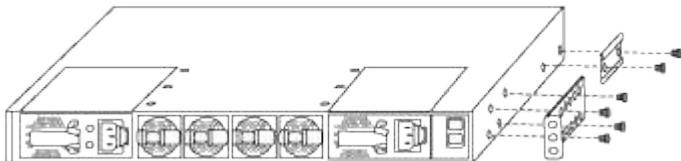
The pass-through panel kit is available from NetApp (part number X8784-R6).


The NetApp pass-through panel kit contains the following hardware:

- One pass-through blanking panel
- Four 10-32 x .75 screws
- Four 10-32 clip nuts

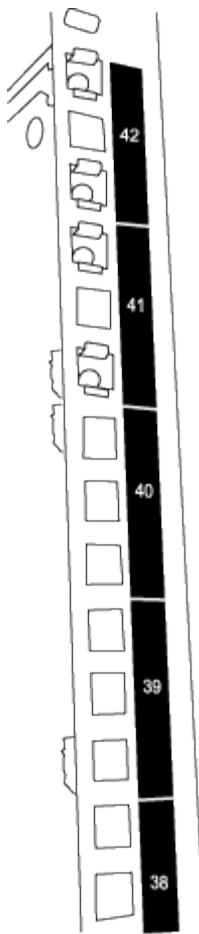
- a. Determine the vertical location of the switches and blanking panel in the cabinet.

In this procedure, the blanking panel will be installed in U40.


- b. Install two clip nuts on each side in the appropriate square holes for front cabinet rails.
- c. Center the panel vertically to prevent intrusion into adjacent rack space, and then tighten the screws.
- d. Insert the female connectors of both 48-inch jumper cords from the rear of the panel and through the brush assembly.



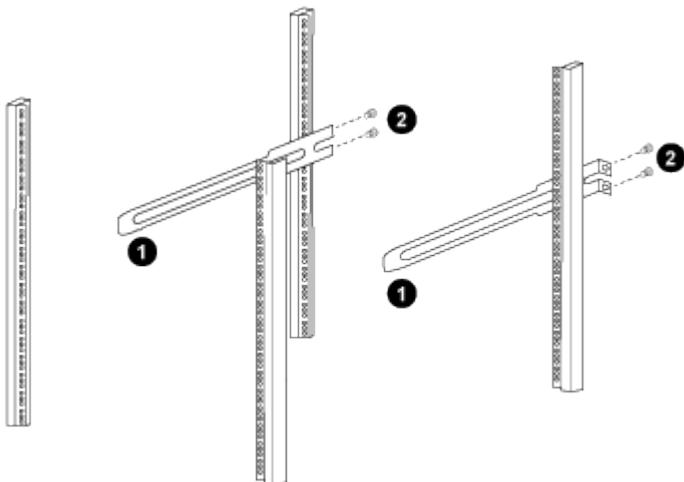
*(1) Female connector of the jumper cord.*


2. Install the rack-mount brackets on the Nexus 9336C-FX2 switch chassis.

- a. Position a front rack-mount bracket on one side of the switch chassis so that the mounting ear is aligned with the chassis faceplate (on the PSU or fan side), and then use four M4 screws to attach the bracket to the chassis.



- b. Repeat step 2a with the other front rack-mount bracket on the other side of the switch.
- c. Install the rear rack-mount bracket on the switch chassis.
- d. Repeat step 2c with the other rear rack-mount bracket on the other side of the switch.


3. Install the clip nuts in the square hole locations for all four IEA posts.



The two 9336C-FX2 switches will always be mounted in the top 2U of the cabinet RU41 and 42.

4. Install the slider rails in the cabinet.

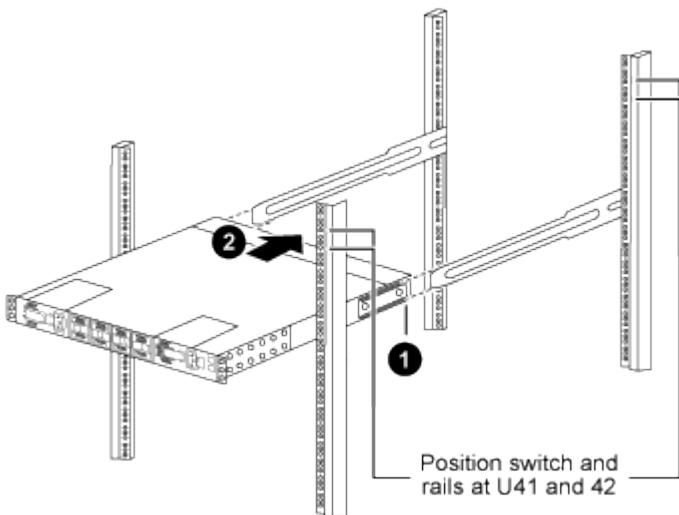
- Position the first slider rail at the RU42 mark on the back side of the rear left post, insert screws with the matching thread type, and then tighten the screws with your fingers.



(1) As you gently slide the slider rail, align it to the screw holes in the rack.

(2) Tighten the screws of the slider rails to the cabinet posts.

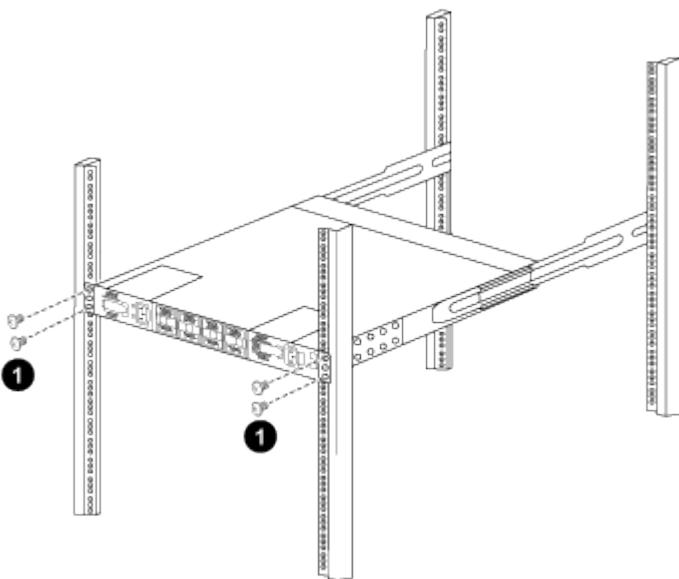
- Repeat step 4a for the right side rear post.


c. Repeat steps 4a and 4b at the RU41 locations on the cabinet.

5. Install the switch in the cabinet.



This step requires two people: one person to support the switch from the front and another to guide the switch into the rear slider rails.


a. Position the back of the switch at RU41.



(1) As the chassis is pushed toward the rear posts, align the two rear rack-mount guides with the slider rails.

(2) Gently slide the switch until the front rack-mount brackets are flush with the front posts.

b. Attach the switch to the cabinet.



(1) With one person holding the front of the chassis level, the other person should fully tighten the four rear screws to the cabinet posts.

c. With the chassis now supported without assistance, fully tighten the front screws to the posts.

d. Repeat steps 5a through 5c for the second switch at the RU42 location.



By using the fully installed switch as a support, it is not necessary to hold the front of the second switch during the installation process.

6. When the switches are installed, connect the jumper cords to the switch power inlets.

7. Connect the male plugs of both jumper cords to the closest available PDU outlets.



To maintain redundancy, the two cords must be connected to different PDUs.

8. Connect the management port on each 9336C-FX2 switch to either of the management switches (if ordered) or connect them directly to your management network.

The management port is the upper-right port located on the PSU side of the switch. The CAT6 cable for each switch needs to be routed through the pass-through panel after the switches are installed to connect to the management switches or management network.

## What's next

After you've installed the switches in the NetApp cabinet, you can [configure the Cisco Nexus 9336C-FX2 and 9336C-FX2-T switches](#).

## Review cabling and configuration considerations

Before configuring your 9336C-FX2 and 9336C-FX2-T switches, review the cabling and configuration requirements.

### Support for NVIDIA CX6, CX6-DX, and CX7 Ethernet ports

If you are connecting a switch port to an ONTAP controller using NVIDIA ConnectX-6 (CX6), ConnectX-6 Dx (CX6-DX), or ConnectX-7 (CX7) NIC ports, you must hard-code the switch port speed.

```
(s1)(config)# interface Ethernet1/19
For 100GbE speed:
(s1)(config-if)# speed 100000
For 40GbE speed:
(s1)(config-if)# speed 40000
(s1)(config-if)# no negotiate auto
(s1)(config-if)# exit
(s1)(config)# exit
Save the changes:
(s1)# copy running-config startup-config
```

## Related information

- Refer to [Hardware Universe](#) for more information on switch ports.
- See [What additional information do I need to install my equipment that is not in HWU?](#) for more information about switch installation requirements.

## Configure the software

### Software install workflow for Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches

To install and configure software for Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches, follow these steps:

**1**

#### Configure the switch

Configure the 9336C-FX2 and 9336C-FX2-T storage switches.

**2**

#### Prepare to install the NX-OS software and RCF

The Cisco NX-OS software and reference configuration files (RCFs) must be installed on Cisco 9336C-FX2 and 9336C-FX2-T storage switches.

**3**

#### Install or upgrade the NX-OS software

Download and install or upgrade the NX-OS software on the Cisco 9336C-FX2 and 9336C-FX2-T storage switches.

**4**

#### Install or upgrade the RCF

Install or upgrade the RCF after setting up the Cisco 9336C-FX2 and 9336C-FX2-T switches for the first time. You can also use this procedure to upgrade your RCF version.

**5**

#### Verify SSH configuration

Verify that SSH is enabled on the switches to use the Ethernet Switch Health Monitor (CSHM) and log collection features.

**6**

#### Reset the switch to factory defaults

Erase the 9336C-FX2 and 9336C-FX2-T storage switches settings.

### Configure the 9336C-FX2 and 9336C-FX2-T storage switches

Follow this procedure to configure the Cisco Nexus 9336C-FX2 and 9336C-FX2-T switches.

#### Before you begin

Make sure you have the following:

- Access to an HTTP, FTP or TFTP server at the installation site to download the applicable NX-OS and reference configuration file (RCF) releases.
- Applicable NX-OS version, downloaded from the [Cisco software download](#) page.
- Applicable licenses, network and configuration information, and cables.

- Completed [cabling worksheets](#).
- Applicable NetApp network and management network RCFs downloaded from the NetApp Support Site at [mysupport.netapp.com](https://mysupport.netapp.com). All Cisco network and management network switches arrive with the standard Cisco factory-default configuration. These switches also have the current version of the NX-OS software but do not have the RCFs loaded.
- Required switch documentation. See [Required documentation](#) for more information.

## Steps

1. Perform an initial configuration of the network switches.

Provide applicable responses to the following initial setup questions when you first boot the switch. Your site's security policy defines the responses and services to enable.

| Prompt                                                               | Response                                                                                                                    |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Abort Auto Provisioning and continue with normal setup? (yes/no)     | Respond with <b>yes</b> . The default is no.                                                                                |
| Do you want to enforce secure password standard? (yes/no)            | Respond with <b>yes</b> . The default is yes.                                                                               |
| Enter the password for admin.                                        | The default password is “admin”; you must create a new, strong password. A weak password can be rejected.                   |
| Would you like to enter the basic configuration dialog? (yes/no)     | Respond with <b>yes</b> at the initial configuration of the switch.                                                         |
| Create another login account? (yes/no)                               | Your answer depends on your site's policies on alternate administrators. The default is <b>no</b> .                         |
| Configure read-only SNMP community string? (yes/no)                  | Respond with <b>no</b> . The default is no.                                                                                 |
| Configure read-write SNMP community string? (yes/no)                 | Respond with <b>no</b> . The default is no.                                                                                 |
| Enter the switch name.                                               | The switch name is limited to 63 alphanumeric characters.                                                                   |
| Continue with Out-of-band (mgmt0) management configuration? (yes/no) | Respond with <b>yes</b> (the default) at that prompt. At the mgmt0 IPv4 address: prompt, enter your IP address: ip_address. |
| Configure the default-gateway? (yes/no)                              | Respond with <b>yes</b> . At the IPv4 address of the default-gateway: prompt, enter your default_gateway.                   |
| Configure advanced IP options? (yes/no)                              | Respond with <b>no</b> . The default is no.                                                                                 |

| Prompt                                                         | Response                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enable the telnet service?<br>(yes/no)                         | Respond with <b>no</b> . The default is no.                                                                                                                                                                                                                                                                                                     |
| Enabled SSH service? (yes/no)                                  | <p>Respond with <b>yes</b>. The default is yes.</p> <p> SSH is recommended when using Ethernet Switch Health Monitor (CSHM) for its log collection features. SSHv2 is also recommended for enhanced security.</p>                                              |
| Enter the type of SSH key you want to generate (dsa/rsa/rsa1). | The default is <b>rsa</b> .                                                                                                                                                                                                                                                                                                                     |
| Enter the number of key bits (1024-2048).                      | Enter the number of key bits from 1024 to 2048.                                                                                                                                                                                                                                                                                                 |
| Configure the NTP server?<br>(yes/no)                          | Respond with <b>no</b> . The default is no.                                                                                                                                                                                                                                                                                                     |
| Configure default interface layer (L3/L2)                      | Respond with <b>L2</b> . The default is L2.                                                                                                                                                                                                                                                                                                     |
| Configure default switch port interface state (shut/noshut)    | Respond with <b>noshut</b> . The default is noshut.                                                                                                                                                                                                                                                                                             |
| Configure CoPP system profile (strict/moderate/lenient/dense)  | Respond with <b>strict</b> . The default is strict.                                                                                                                                                                                                                                                                                             |
| Would you like to edit the configuration? (yes/no)             | <p>You should see the new configuration at this point. Review and make any necessary changes to the configuration you just entered.</p> <p>Respond with <b>no</b> at the prompt if you are satisfied with the configuration. Respond with <b>yes</b> if you want to edit your configuration settings.</p>                                       |
| Use this configuration and save it? (yes/no)                   | <p>Respond with <b>yes</b> to save the configuration. This automatically updates the kickstart and system images.</p> <p> If you do not save the configuration at this stage, none of the changes will be in effect the next time you reboot the switch.</p> |

2. Verify the configuration choices you made in the display that appears at the end of the setup, and make sure that you save the configuration.
3. Check the version on the network switches, and if necessary, download the NetApp-supported version of the software to the switches from the [Cisco software download](#) page.

## What's next?

After you've configured your switches, you can [prepare to install the NX-OS software and RCF](#).

## Prepare to install or upgrade NX-OS software and RCF

Before you install the NX-OS software and the Reference Configuration File (RCF), follow this procedure.

### About the examples

The examples in this procedure use the following switch and node nomenclature:

- The names of the two Cisco switches are s1 and s2.
- The node names are cluster1-01 and cluster1-02.

### About this task

The procedure requires the use of both ONTAP commands and Cisco Nexus 9000 Series Switches commands; ONTAP commands are used unless otherwise indicated.

### Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=xh
```

where x is the duration of the maintenance window in hours.



The AutoSupport message notifies technical support of this maintenance task so that automatic case creation is suppressed during the maintenance window.

2. Change the privilege level to advanced, entering **y** when prompted to continue:

```
set -privilege advanced
```

The advanced prompt (**\*>**) appears.

3. Display how many interfaces are configured in each node for each switch:

```
network device-discovery show -protocol lldp
```

## Show example

```
cluster1::*> network device-discovery show -protocol lldp

Node/      Local  Discovered
Protocol   Port   Device (LLDP: ChassisID)  Interface
Platform

-----
-----
cluster1-02/lldp
      e5a    s1          Eth1/2      N9K-
C9336C
      e3b    s2          Eth1/2      N9K-
C9336C
cluster1-01/lldp
      e5a    s1          Eth1/1      N9K-
C9336C
      e3b    s2          Eth1/1      N9K-
C9336C
.
.
```

4. Check the administrative or operational status of each node storage port and storage shelf port.

- a. Display the node storage port attributes:

```
storage port show
```

**Show example**

```
cluster1::*> storage port show
Speed                      VLAN
Node          Port  Type   Mode    (Gb/s)  State   Status   ID
-----
cluster1-01
              e5a  ENET  storage    100  enabled  online   -
              e3b  ENET  storage    100  enabled  online   -
cluster1-02
              e5a  ENET  storage    100  enabled  online   -
              e3b  ENET  storage    100  enabled  online   -
.
.
```

b. Display the storage shelf port attributes:

```
storage shelf port show
```

**Show example**

```
cluster1::*> storage shelf port show

Shelf  ID Module State      Internal?
-----
1.4
      0  A    connected  false
      1  A    connected  false
      2  B    connected  false
      3  B    connected  false
.
```

c. Verify that switch health monitoring (CSHM) is enabled for the switch so that the switches are monitored:

```
system switch ethernet show
```

## Show example

```
cluster1::> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network  1.2.3.4        N9K-
  C9336C-FX2
    Serial Number: FFFXXXXXXX1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network  2.3.4.5        N9K-
  C9336C-FX2
    Serial Number: FEEXXXXXXX2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

## What's next?

After you've prepared to install the NX-OS software and RCF, you can [install or upgrade the NX-OS software](#).

### Install or upgrade the NX-OS software

Follow this procedure to install or upgrade the NX-OS software on the Nexus 9336C-FX2 and 9336C-FX2-T switches.

Before you begin, complete the procedure in [Prepare to install NX-OS and RCF](#).

### Review requirements

#### Before you begin

Make sure you have the following:

- A current backup of the switch configuration.
- A fully functioning cluster (no errors in the logs or similar issues).

### Suggested documentation

- [Cisco Ethernet switch page](#)

Consult the switch compatibility table for the supported ONTAP and NX-OS versions.

- [Software Upgrade and downgrade guides](#)

Refer to the appropriate software and upgrade guides available on the Cisco website for complete documentation on the Cisco switch upgrade and downgrade procedures.

- [Cisco Nexus 9000 and 3000 Upgrade and ISSU Matrix](#)

Provides information on Disruptive Upgrade/Downgrade for Cisco NX-OS software on Nexus 9000 Series Switches based on your current and target releases.

On the page, select **Disruptive Upgrade** and select your current release and target release from the dropdown list.

### About the examples

The examples in this procedure use the following switch and node nomenclature:

- The names of the two Cisco switches are s1 and s2.
- The node names are cluster1-01 and cluster1-02.

### Install or upgrade the software

The procedure requires the use of both ONTAP commands and Cisco Nexus 9000 Series Switches commands; ONTAP commands are used unless otherwise indicated.

### Steps

1. Connect the switch to the management network.
2. Use the `ping` command to verify connectivity to the server hosting the NX-OS software and the RCF.

#### Show example

This example verifies that the switch can reach the server at IP address 172.19.2.1:

```
s2# ping 172.19.2.1 VRF management
Pinging 172.19.2.1 with 0 bytes of data:
Reply From 172.19.2.1: icmp_seq = 0. time= 5910 usec.
```

3. If you are setting up your switch for the first time, skip to step 5. If you are upgrading your switch, proceed to the next step.
4. Check the administrative or operational status of each node storage port and storage shelf port.
  - a. Display the node storage port attributes:

```
storage port show
```

**Show example**

```
cluster1::*> storage port show
Speed                      VLAN
Node          Port  Type   Mode    (Gb/s)  State   Status   ID
-----
cluster1-01
          e5a  ENET  storage    100  enabled  online   -
          e3b  ENET  storage    100  enabled  online   -
cluster1-02
          e5a  ENET  storage    100  enabled  online   -
          e3b  ENET  storage    100  enabled  online   -
.
.
```

b. Display the storage shelf port attributes:

```
storage shelf port show
```

**Show example**

```
cluster1::*> storage shelf port show

Shelf  ID Module State      Internal?
-----
1.4
      0 A    connected  false
      1 A    connected  false
      2 B    connected  false
      3 B    connected  false
.
.
```

c. Verify that switch health monitoring (CSHM) is enabled for the switch so that the switches are monitored:

```
system switch ethernet show
```

**Show example**

```
cluster1::> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network  1.2.3.4        N9K-
  C9336C-FX2
    Serial Number: FFFXXXXXXX1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network  2.3.4.5        N9K-
  C9336C-FX2
    Serial Number: FFFXXXXXXX2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

5. Log in to the switch using SSH or by using a serial console.
6. Copy the NX-OS software and EPLD images to the Nexus 9336C-FX2 switch.

## Show example

```
s2# copy sftp: bootflash: vrf management
Enter source filename: /code/nxos.9.3.5.bin
Enter hostname for the sftp server: 172.19.2.1
Enter username: user1

Outbound-ReKey for 172.19.2.1:22
Inbound-ReKey for 172.19.2.1:22
user1@172.19.2.1's password:
sftp> progress
Progress meter enabled
sftp> get /code/nxos.9.3.5.bin /bootflash/nxos.9.3.5.bin
/code/nxos.9.3.5.bin 100% 1261MB 9.3MB/s 02:15
sftp> exit
Copy complete, now saving to disk (please wait)...
Copy complete.
```

```
s2# copy sftp: bootflash: vrf management
Enter source filename: /code/n9000-ep1d.9.3.5.img
Enter hostname for the sftp server: 172.19.2.1
Enter username: user1

Outbound-ReKey for 172.19.2.1:22
Inbound-ReKey for 172.19.2.1:22
user1@172.19.2.1's password:
sftp> progress
Progress meter enabled
sftp> get /code/n9000-ep1d.9.3.5.img /bootflash/n9000-
ep1d.9.3.5.img
/code/n9000-ep1d.9.3.5.img 100% 161MB 9.5MB/s 00:16
sftp> exit
Copy complete, now saving to disk (please wait)...
Copy complete.
```

## 7. Verify the running version of the NX-OS software:

```
show version
```

## Show example

```
s2# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2020, Cisco and/or its affiliates.
All rights reserved.

The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their
own

licenses, such as open source. This software is provided "as is,"
and unless

otherwise stated, there is no warranty, express or implied,
including but not

limited to warranties of merchantability and fitness for a
particular purpose.

Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.

A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/library.txt.
```

### Software

```
BIOS: version 08.38
NXOS: version 9.3(4)
BIOS compile time: 05/29/2020
NXOS image file is: bootflash:///nxos.9.3.4.bin
NXOS compile time: 4/28/2020 21:00:00 [04/29/2020 02:28:31]
```

### Hardware

```
cisco Nexus9000 C9336C-FX2 Chassis
Intel(R) Xeon(R) CPU E5-2403 v2 @ 1.80GHz with 8154432 kB of
memory.

Processor Board ID FOC20291J6K
```

```
Device name: s2
bootflash: 53298520 kB
Kernel uptime is 0 day(s), 0 hour(s), 3 minute(s), 42 second(s)
```

```
Last reset at 157524 usecs after Mon Nov  2 18:32:06 2020
  Reason: Reset Requested by CLI command reload
  System version: 9.3(4)
  Service:

  plugin
    Core Plugin, Ethernet Plugin

  Active Package(s) :
```

#### 8. Install the NX-OS image.

Installing the image file causes it to be loaded every time the switch is rebooted.

## Show example

```
s2# install all nxos bootflash:nxos.9.3.5.bin

Installer will perform compatibility check first. Please wait.
Installer is forced disruptive

Verifying image bootflash:/nxos.9.3.5.bin for boot variable "nxos".
[] 100% -- SUCCESS

Verifying image type.
[] 100% -- SUCCESS

Preparing "nxos" version info using image bootflash:/nxos.9.3.5.bin.
[] 100% -- SUCCESS

Preparing "bios" version info using image bootflash:/nxos.9.3.5.bin.
[] 100% -- SUCCESS

Performing module support checks.
[] 100% -- SUCCESS

Notifying services about system upgrade.
[] 100% -- SUCCESS

Compatibility check is done:
Module  Bootable  Impact          Install-type  Reason
-----  -----  -----  -----  -----
1       yes      Disruptive      Reset         Default upgrade is
not hitless

Images will be upgraded according to following table:

Module  Image      Running-Version(pri:alt)          New-
Version          Upg-Required
-----  -----  -----
-----  -----
1       nxos      9.3(4)                           9.3(5)
yes
1       bios      v08.37(01/28/2020):v08.23(09/23/2015)
v08.38(05/29/2020)      yes
```

```
Switch will be reloaded for disruptive upgrade.

Do you want to continue with the installation (y/n) ? [n] y

Install is in progress, please wait.

Performing runtime checks.
[] 100% -- SUCCESS

Setting boot variables.
[] 100% -- SUCCESS

Performing configuration copy.
[] 100% -- SUCCESS

Module 1: Refreshing compact flash and upgrading
bios/loader/bootrom.
Warning: please do not remove or power off the module at this time.
[] 100% -- SUCCESS

Finishing the upgrade, switch will reboot in 10 seconds.
```

#### 9. Verify the new version of NX-OS software after the switch has rebooted:

```
show version
```

## Show example

```
s2# show version

Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2020, Cisco and/or its affiliates.
All rights reserved.

The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their
own
licenses, such as open source. This software is provided "as is,"
and unless
otherwise stated, there is no warranty, express or implied,
including but not
limited to warranties of merchantability and fitness for a
particular purpose.

Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.

A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/old-licenses/library.txt.

Software
BIOS: version 05.33
NXOS: version 9.3(5)
BIOS compile time: 09/08/2018
NXOS image file is: bootflash:///nxos.9.3.5.bin
NXOS compile time: 11/4/2018 21:00:00 [11/05/2018 06:11:06]

Hardware
cisco Nexus9000 C9336C-FX2 Chassis
Intel (R) Xeon (R) CPU E5-2403 v2 @ 1.80GHz with 8154432 kB of
memory.
Processor Board ID FOC20291J6K

Device name: s2
bootflash: 53298520 kB
Kernel uptime is 0 day(s), 0 hour(s), 3 minute(s), 42 second(s)
```

```
Last reset at 277524 usecs after Mon Nov 2 22:45:12 2020
```

```
Reason: Reset due to upgrade
```

```
System version: 9.3(4)
```

```
Service:
```

```
plugin
```

```
Core Plugin, Ethernet Plugin
```

```
Active Package(s) :
```

10. Upgrade the EPLD image and reboot the switch.

**Show example**

```
s2# show version module 1 epld
```

| EPLD Device | Version |
|-------------|---------|
| MI FPGA     | 0x7     |
| IO FPGA     | 0x17    |
| MI FPGA2    | 0x2     |
| GEM FPGA    | 0x2     |

```
s2# install epld bootflash:n9000-epld.9.3.5.img module all
```

Compatibility check:

| Module | Type | Upgradable | Impact     | Reason            |
|--------|------|------------|------------|-------------------|
| 1      | SUP  | Yes        | disruptive | Module Upgradable |

Retrieving EPLD versions.... Please wait.

Images will be upgraded according to following table:

| Module Required | Type | EPLD     | Running-Version | New-Version | Upg- |
|-----------------|------|----------|-----------------|-------------|------|
| 1               | SUP  | MI FPGA  | 0x07            | 0x07        | No   |
| 1               | SUP  | IO FPGA  | 0x17            | 0x19        | Yes  |
| 1               | SUP  | MI FPGA2 | 0x02            | 0x02        | No   |

The above modules require upgrade.

The switch will be reloaded at the end of the upgrade

Do you want to continue (y/n) ? [n] **y**

Proceeding to upgrade Modules.

Starting Module 1 EPLD Upgrade

Module 1 : IO FPGA [Programming] : 100.00% ( 64 of 64 sectors)

Module 1 EPLD upgrade is successful.

| Module | Type | Upgrade-Result |
|--------|------|----------------|
| 1      | SUP  | Success        |

EPLDs upgraded.

Module 1 EPLD upgrade is successful.

11. After the switch reboots, log in again and verify that the new version of EPLD loaded successfully.

**Show example**

```
s2# show version module 1 epld

EPLD Device          Version
-----
MI    FPGA           0x7
IO    FPGA           0x19
MI    FPGA2          0x2
GEM   FPGA           0x2
GEM   FPGA           0x2
GEM   FPGA           0x2
GEM   FPGA           0x2
```

12. If you are setting up your switch for the first time, skip to step 14. If you are upgrading your switch, proceed to the next step.

13. Verify the health status of each node storage port and storage shelf port.

a. Display the node storage port attributes:

```
storage port show
```

**Show example**

```
cluster1::*> storage port show
Speed          VLAN
Node          Port Type Mode   (Gb/s) State  Status  ID
-----
cluster1-01
              e5a  ENET  storage   100  enabled  online   -
              e3b  ENET  storage   100  enabled  online   -
cluster1-02
              e5a  ENET  storage   100  enabled  online   -
              e3b  ENET  storage   100  enabled  online   -
.
.
```

b. Display the storage shelf port attributes:

```
storage shelf port show
```

#### Show example

```
cluster1::*> storage shelf port show

Shelf ID Module State      Internal?
----- -- -----
1.4
    0 A      connected    false
    1 A      connected    false
    2 B      connected    false
    3 B      connected    false
.
.
```

c. Verify that switch health monitoring (CSHM) is enabled for the switches so that they are monitored:

```
system switch ethernet show
```

## Show example

```
cluster1::> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network  1.2.3.4        N9K-
  C9336C-FX2
    Serial Number: FFFXXXXXXX1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network  2.3.4.5        N9K-
  C9336C-FX2
    Serial Number: FFFXXXXXXX2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

14. Repeat steps 5 to 13 to install the NX-OS software on switch s1.

### What's next?

After you've installed or upgraded the NX-OS software, you can [install or upgrade the RCF](#).

### Install or upgrade the RCF

#### Install or upgrade the Reference Configuration File (RCF) overview

You install the Reference Configuration File (RCF) after setting up the Nexus 9336C-FX2 storage switch for the first time. You upgrade your RCF version when you have an existing version of the RCF file installed on your switch.

See the Knowledge Base article [How to clear configuration on a Cisco interconnect switch while retaining remote connectivity](#) for further information when installing or upgrading your RCF.

#### Available RCF configuration

Storage - (Storage RCF 1.xx) is the available RCF configuration where all ports are configured for 100GbE NVMe storage connections.

#### Suggested documentation

- [Cisco Ethernet Switches](#)

Consult the switch compatibility table for the supported ONTAP and RCF versions on the NetApp Support Site. Note that there can be command dependencies between the command syntax in the RCF and the syntax found in specific versions of NX-OS.

- [Cisco Nexus 9000 Series Switches](#)

Refer to the appropriate software and upgrade guides available on the Cisco website for complete documentation on the Cisco switch upgrade and downgrade procedures.

## About the examples

The examples in this procedure use the following switch and node nomenclature:

- The names of the two Cisco switches are s1 and s2.
- The node names are cluster1-01 and cluster1-02.

See the [Hardware Universe](#) to verify the correct ports on your platform.



The command outputs might vary depending on different releases of ONTAP.

## Commands used

The procedure requires the use of both ONTAP commands and Cisco Nexus 9000 Series Switches commands; ONTAP commands are used unless otherwise indicated.

## What's next?

After you've reviewed the install RCF or upgrade RCF procedure, you can [install the RCF](#) or [upgrade your RCF](#) as needed.

### Install the Reference Configuration File

You install the Reference Configuration File (RCF) after setting up the Nexus 9336C-FX2 and 9336C-FX2-T storage switches for the first time.

See the Knowledge Base article [How to clear configuration on a Cisco interconnect switch while retaining remote connectivity](#) for further information when installing your RCF.

### Before you begin

Verify the following installations and connections:

- A console connection to the switch. The console connection is optional if you have remote access to the switch.
- Switch s1 and switch s2 are powered up and the initial switch setup is complete (the Management IP address and SSH is set up).
- The desired NX-OS version has been installed.
- ONTAP node storage ports and storage shelf ports are not connected.

### Step 1: Install the RCF on the switches

1. Log in to switch s2 using SSH or by using a serial console.

2. Copy the RCF to the bootflash of switch s2 using one of the following transfer protocols: FTP, TFTP, SFTP, or SCP.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 9000 Series NX-OS Command Reference](#).

**Show example**

This example shows TFTP being used to copy an RCF to the bootflash on switch s2:

```
s2# copy tftp: bootflash: vrf management
Enter source filename: NX9336C-FX2-RCF-v1.13-1-Storage.txt
Enter hostname for the tftp server: 172.22.201.50
Trying to connect to tftp server.....Connection to Server
Established.
TFTP get operation was successful
Copy complete, now saving to disk (please wait)...
```

3. Apply the RCF previously downloaded to the bootflash.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 9000 Series NX-OS Command Reference](#).

**Show example**

This example shows the RCF NX9336C-FX2-RCF-v1.13-1-Storage.txt being installed on switch s2:

```
s2# copy NX9336C-FX2-RCF-v1.13-1-Storage.txt running-config echo-
commands
```

4. Examine the banner output from the `show banner motd` command. You must read and follow these instructions to ensure the correct configuration and operation of the switch.

## Show example

```
s2# show banner motd

*****
* NetApp Reference Configuration File (RCF)
*
* Switch      : NX9336C-FX2
* Filename    : NX9336C-FX2-RCF-v1.13-1-Storage.txt
* Date        : 05-22-2025
* Version     : v1.13
*
* Port Usage : Storage configuration
* Ports 1-36: 100GbE Controller and Shelf Storage Ports
*
* IMPORTANT NOTES
*
* Interface port-channel999 is reserved to identify the version of
this file.
*****
```

### 5. Verify that the RCF is the correct newer version:

```
show running-config
```

When you check the output to verify you have the correct RCF, make sure that the following information is correct:

- The RCF banner
- The node and port settings
- Customizations

The output varies according to your site configuration. Check the port settings and refer to the release notes for any changes specific to the RCF that you have installed.

6. Record any custom additions between the current `running-config` file and the RCF file in use.
7. After you verify that the RCF versions and switch settings are correct, copy the `running-config` file to the `startup-config` file.

```
s2# copy running-config startup-config
[#####] 100% Copy complete
```

### 8. Reboot switch s2.

```
s2# reload
```

This command will reboot the system. (y/n) ? [n] **y**

9. Repeat steps 1 through 8 on switch s1.
10. Connect the node storage ports and storage shelf ports of all the nodes in the ONTAP cluster to switches s1 and s2.

## **Step 2: Verify the switch connections**

1. Verify that the switch ports are **up**.

```
show interface brief
```

## Show example

```
s1# show interface brief | grep up
mgmt0 --          up      <mgmt ip address>
1000  1500
Eth1/11      1      eth  trunk  up      none
100G(D) --
Eth1/12      1      eth  trunk  up      none
100G(D) --
Eth1/13      1      eth  trunk  up      none
100G(D) --
Eth1/14      1      eth  trunk  up      none
100G(D) --
Eth1/15      1      eth  trunk  up      none
100G(D) --
Eth1/16      1      eth  trunk  up      none
100G(D) --
Eth1/17      1      eth  trunk  up      none
100G(D) --
Eth1/18      1      eth  trunk  up      none
100G(D) --
Eth1/23      1      eth  trunk  up      none
100G(D) --
Eth1/24      1      eth  trunk  up      none
100G(D) --
Eth1/25      1      eth  trunk  up      none
100G(D) --
Eth1/26      1      eth  trunk  up      none
100G(D) --
Eth1/27      1      eth  trunk  up      none
100G(D) --
Eth1/28      1      eth  trunk  up      none
100G(D) --
Eth1/29      1      eth  trunk  up      none
100G(D) --
Eth1/30      1      eth  trunk  up      none
100G(D) --
```

2. Verify that the node storage ports and storage shelf ports are in their correct VLANs using the following commands:

```
show vlan brief
```

```
show interface trunk
```

**Show example**

```
s1# show vlan brief
```

| VLAN | Name           | Status | Ports             |
|------|----------------|--------|-------------------|
| 1    | default        | active | Po999             |
| 30   | VLAN0030       | active | Eth1/1, Eth1/2,   |
|      | Eth1/3, Eth1/4 |        | Eth1/5, Eth1/6,   |
|      | Eth1/7, Eth1/8 |        | Eth1/9, Eth1/10,  |
|      | Eth1/11        |        | Eth1/12, Eth1/13, |
|      | Eth1/14        |        | Eth1/15, Eth1/16, |
|      | Eth1/17        |        | Eth1/18, Eth1/19, |
|      | Eth1/20        |        | Eth1/21, Eth1/22, |
|      | Eth1/23        |        | Eth1/24, Eth1/25, |
|      | Eth1/26        |        | Eth1/27, Eth1/28, |
|      | Eth1/29        |        | Eth1/30, Eth1/31, |
|      | Eth1/32        |        | Eth1/33, Eth1/34, |
|      | Eth1/35        |        | Eth1/36           |

```
s1# show interface trunk
```

| Port   | Native Vlan | Status   | Port Channel |
|--------|-------------|----------|--------------|
| Eth1/1 | 1           | trunking | --           |
| Eth1/2 | 1           | trunking | --           |
| Eth1/3 | 1           | trunking | --           |
| Eth1/4 | 1           | trunking | --           |
| Eth1/5 | 1           | trunking | --           |
| Eth1/6 | 1           | trunking | --           |
| Eth1/7 | 1           | trunking | --           |
| Eth1/8 | 1           | trunking | --           |

|         |   |          |    |
|---------|---|----------|----|
| Eth1/9  | 1 | trunking | -- |
| Eth1/10 | 1 | trunking | -- |
| Eth1/11 | 1 | trunking | -- |
| Eth1/12 | 1 | trunking | -- |
| Eth1/13 | 1 | trunking | -- |
| Eth1/14 | 1 | trunking | -- |
| Eth1/15 | 1 | trunking | -- |
| Eth1/16 | 1 | trunking | -- |
| Eth1/17 | 1 | trunking | -- |
| Eth1/18 | 1 | trunking | -- |
| Eth1/19 | 1 | trunking | -- |
| Eth1/20 | 1 | trunking | -- |
| Eth1/21 | 1 | trunking | -- |
| Eth1/22 | 1 | trunking | -- |
| Eth1/23 | 1 | trunking | -- |
| Eth1/24 | 1 | trunking | -- |
| Eth1/25 | 1 | trunking | -- |
| Eth1/26 | 1 | trunking | -- |
| Eth1/27 | 1 | trunking | -- |
| Eth1/28 | 1 | trunking | -- |
| Eth1/29 | 1 | trunking | -- |
| Eth1/30 | 1 | trunking | -- |
| Eth1/31 | 1 | trunking | -- |
| Eth1/32 | 1 | trunking | -- |
| Eth1/33 | 1 | trunking | -- |
| Eth1/34 | 1 | trunking | -- |
| Eth1/35 | 1 | trunking | -- |
| Eth1/36 | 1 | trunking | -- |

-----  
-----  
Port              Vlans Allowed on Trunk

|         |    |
|---------|----|
| Eth1/1  | 30 |
| Eth1/2  | 30 |
| Eth1/3  | 30 |
| Eth1/4  | 30 |
| Eth1/5  | 30 |
| Eth1/6  | 30 |
| Eth1/7  | 30 |
| Eth1/8  | 30 |
| Eth1/9  | 30 |
| Eth1/10 | 30 |
| Eth1/11 | 30 |
| Eth1/12 | 30 |

|         |    |
|---------|----|
| Eth1/13 | 30 |
| Eth1/14 | 30 |
| Eth1/15 | 30 |
| Eth1/16 | 30 |
| Eth1/17 | 30 |
| Eth1/18 | 30 |
| Eth1/19 | 30 |
| Eth1/20 | 30 |
| Eth1/21 | 30 |
| Eth1/22 | 30 |
| Eth1/23 | 30 |
| Eth1/24 | 30 |
| Eth1/25 | 30 |
| Eth1/26 | 30 |
| Eth1/27 | 30 |
| Eth1/28 | 30 |
| Eth1/29 | 30 |
| Eth1/30 | 30 |
| Eth1/31 | 30 |
| Eth1/32 | 30 |
| Eth1/33 | 30 |
| Eth1/34 | 30 |
| Eth1/35 | 30 |
| Eth1/36 | 30 |

---

-----  
Port            Vlans Err-disabled on Trunk

---

-----

|         |      |
|---------|------|
| Eth1/1  | none |
| Eth1/2  | none |
| Eth1/3  | none |
| Eth1/4  | none |
| Eth1/5  | none |
| Eth1/6  | none |
| Eth1/7  | none |
| Eth1/8  | none |
| Eth1/9  | none |
| Eth1/10 | none |
| Eth1/11 | none |
| Eth1/12 | none |
| Eth1/13 | none |
| Eth1/14 | none |
| Eth1/15 | none |
| Eth1/16 | none |

|         |      |
|---------|------|
| Eth1/17 | none |
| Eth1/18 | none |
| Eth1/19 | none |
| Eth1/20 | none |
| Eth1/21 | none |
| Eth1/22 | none |
| Eth1/23 | none |
| Eth1/24 | none |
| Eth1/25 | none |
| Eth1/26 | none |
| Eth1/27 | none |
| Eth1/28 | none |
| Eth1/29 | none |
| Eth1/30 | none |
| Eth1/31 | none |
| Eth1/32 | none |
| Eth1/33 | none |
| Eth1/34 | none |
| Eth1/35 | none |
| Eth1/36 | none |

---



---



---

Port                    STP Forwarding

---



---

|         |      |
|---------|------|
| Eth1/1  | none |
| Eth1/2  | none |
| Eth1/3  | none |
| Eth1/4  | none |
| Eth1/5  | none |
| Eth1/6  | none |
| Eth1/7  | none |
| Eth1/8  | none |
| Eth1/9  | none |
| Eth1/10 | none |
| Eth1/11 | 30   |
| Eth1/12 | 30   |
| Eth1/13 | 30   |
| Eth1/14 | 30   |
| Eth1/15 | 30   |
| Eth1/16 | 30   |
| Eth1/17 | 30   |
| Eth1/18 | 30   |
| Eth1/19 | none |
| Eth1/20 | none |

|         |      |
|---------|------|
| Eth1/21 | none |
| Eth1/22 | none |
| Eth1/23 | 30   |
| Eth1/24 | 30   |
| Eth1/25 | 30   |
| Eth1/26 | 30   |
| Eth1/27 | 30   |
| Eth1/28 | 30   |
| Eth1/29 | 30   |
| Eth1/30 | 30   |
| Eth1/31 | none |
| Eth1/32 | none |
| Eth1/33 | none |
| Eth1/34 | none |
| Eth1/35 | none |
| Eth1/36 | none |

---

---

Port                    Vlans in spanning tree forwarding state and not pruned

---

---

|         |                            |
|---------|----------------------------|
| Eth1/1  | Feature VTP is not enabled |
| none    |                            |
| Eth1/2  | Feature VTP is not enabled |
| none    |                            |
| Eth1/3  | Feature VTP is not enabled |
| none    |                            |
| Eth1/4  | Feature VTP is not enabled |
| none    |                            |
| Eth1/5  | Feature VTP is not enabled |
| none    |                            |
| Eth1/6  | Feature VTP is not enabled |
| none    |                            |
| Eth1/7  | Feature VTP is not enabled |
| none    |                            |
| Eth1/8  | Feature VTP is not enabled |
| none    |                            |
| Eth1/9  | Feature VTP is not enabled |
| none    |                            |
| Eth1/10 | Feature VTP is not enabled |
| none    |                            |
| Eth1/11 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/12 | Feature VTP is not enabled |
| 30      |                            |

|         |                            |
|---------|----------------------------|
| Eth1/13 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/14 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/15 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/16 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/17 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/18 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/19 | Feature VTP is not enabled |
| none    |                            |
| Eth1/20 | Feature VTP is not enabled |
| none    |                            |
| Eth1/21 | Feature VTP is not enabled |
| none    |                            |
| Eth1/22 | Feature VTP is not enabled |
| none    |                            |
| Eth1/23 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/24 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/25 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/26 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/27 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/28 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/29 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/30 | Feature VTP is not enabled |
| 30      |                            |
| Eth1/31 | Feature VTP is not enabled |
| none    |                            |
| Eth1/32 | Feature VTP is not enabled |
| none    |                            |
| Eth1/33 | Feature VTP is not enabled |
| none    |                            |
| Eth1/34 | Feature VTP is not enabled |
| none    |                            |
| Eth1/35 | Feature VTP is not enabled |
| none    |                            |

|         |                            |
|---------|----------------------------|
| Eth1/36 | Feature VTP is not enabled |
| none    |                            |



For specific port and VLAN usage details, refer to the banner and important notes section in your RCF.

### Step 3: Set up your ONTAP cluster

NetApp recommends that you use System Manager to set up new clusters.

System Manager provides a simple and easy workflow for cluster setup and configuration including assigning a node management IP address, initializing the cluster, creating a local tier, configuring protocols and provisioning initial storage.

Go to [Configure ONTAP on a new cluster with System Manager](#) for setup instructions.

#### What's next?

After you've installed your RCF, you can [verify the SSH configuration](#)

#### Upgrade your Reference Configuration File (RCF)

You upgrade your RCF version when you have an existing version of the RCF file installed on your operational switches.

##### Before you begin

Make sure you have the following:

- A current backup of the switch configuration.
- A fully functioning cluster (no errors in the logs or similar issues).
- The current RCF.
- If you are updating your RCF version, you need a boot configuration in the RCF that reflects the desired boot images.

If you need to change the boot configuration to reflect the current boot images, you must do so before reapplying the RCF so that the correct version is instantiated on future reboots.



Before installing a new switch software version and RCFs, you must erase the switch settings and perform basic configuration. You must be connected to the switch using the serial console or have preserved basic configuration information before erasing the switch settings.

### Step 1: Prepare for the upgrade

1. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=xh
```

Where x is the duration of the maintenance window in hours.

2. Change the privilege level to advanced, entering **y** when prompted to continue:

```
set -privilege advanced
```

The advanced prompt (\*>) appears.

3. Display the ports on each node that are connected to the switches:

```
network device-discovery show
```

#### Show example

```
cluster1::*> network device-discovery show
Node/      Local   Discovered
Protocol   Port    Device (LLDP: ChassisID) Interface      Platform
-----  -----  -----
-----  -----
cluster1-01/cdp
      e5a      s1
      e3b      s2
cluster1-02/cdp
      e5a      s1
      e3b      s2
.
.
.
```

4. Check the administrative or operational status of each node storage port and storage shelf port.

a. Verify that all the node storage ports are up with a healthy status:

```
storage port show -port-type ENET
```

**Show example**

```
cluster1::*> storage port show -port-type ENET
```

| Node        | Port | Type | Mode | Speed  |         |        |
|-------------|------|------|------|--------|---------|--------|
|             |      |      |      | (Gb/s) | State   | Status |
| cluster1-01 | e5a  | ENET | -    | 100    | enabled | online |
|             | e3b  | ENET | -    | 100    | enabled | online |
| cluster1-02 | e5a  | ENET | -    | 100    | enabled | online |
|             | e3b  | ENET | -    | 100    | enabled | online |
| .           |      |      |      |        |         |        |
| .           |      |      |      |        |         |        |

b. Verify that all the storage shelf ports are up with a healthy status:

```
storage shelf port show
```

**Show example**

```
cluster1::> storage shelf port show
```

| Shelf | ID | Module | State     | Internal? |
|-------|----|--------|-----------|-----------|
| 1     | 4  |        |           |           |
|       | 0  | A      | connected | false     |
|       | 1  | A      | connected | false     |
|       | 2  | B      | connected | false     |
|       | 3  | B      | connected | false     |
| .     |    |        |           |           |
| .     |    |        |           |           |

c. Verify that the switches are being monitored.

```
system switch ethernet show
```

## Show example

```
cluster1::*> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network  1.2.3.4        N9K-
  C9336C-FX2
    Serial Number: FFFXXXXXXX1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network  2.3.4.5        N9K-
  C9336C-FX2
    Serial Number: FEEXXXXXXX2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

## Step 2: Upgrade the RCF

1. Log in to the switch s2 using SSH or by using a serial console.
2. Shut down the ports connected to all the ports of the nodes.

```
s2> enable
s2# configure
s2(config)# interface e1/1-36
s2(config-if-range)# shutdown
s2(config-if-range)# exit
s2(config)# exit
```



Make sure to shutdown **all** connected ports to avoid any network connection issues.  
See the Knowledge Base article [Node out of quorum when migrating cluster LIF during switch OS upgrade](#) for further details.

3. If you have not already done so, save a copy of the current switch configuration by copying the output of the following command to a text file:

```
show running-config
```

- a. Record any custom additions between the current `running-config` and the RCF file in use (such as an SNMP configuration for your organization).
- b. For NX-OS 10.2 and later, use the `show diff running-config` command to compare with the saved RCF file in the bootflash. Otherwise, use a third-party diff or compare tool.

4. Save basic configuration details to the `write_erase.cfg` file on the bootflash.

Make sure to configure the following:



- Username and password
- Management IP address
- Default gateway
- Switch name

```
s2# show run | i "username admin password" > bootflash:write_erase.cfg
```

```
s2# show run | section "vrf context management" >> bootflash:write_erase.cfg
```

```
s2# show run | section "interface mgmt0" >> bootflash:write_erase.cfg
```

```
s2# show run | section "switchname" >> bootflash:write_erase.cfg
```

See the Knowledge Base article [How to clear configuration on a Cisco interconnect switch while retaining remote connectivity](#) for further details.

5. Verify that the `write_erase.cfg` file is populated as expected:

```
show file bootflash:write_erase.cfg
```

6. Issue the `write erase` command to erase the current saved configuration:

```
s2# write erase
```

Warning: This command will erase the startup-configuration.

Do you wish to proceed anyway? (y/n) [n] **y**

7. Copy the previously saved basic configuration into the startup configuration.

```
s2# copy bootflash:write_erase.cfg startup-config
```

8. Reboot the switch:

```
s2# reload
```

This command will reboot the system. (y/n)? [n] **y**

9. After the management IP address is reachable again, log in to the switch through SSH.

You might need to update host file entries related to the SSH keys.

10. Copy the RCF to the bootflash of switch s2 using one of the following transfer protocols: FTP, TFTP, SFTP, or SCP.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 9000 Series NX-OS Command Reference](#) guides.

#### Show example

This example shows TFTP being used to copy an RCF to the bootflash on switch s2:

```
s2# copy tftp: bootflash: vrf management
Enter source filename: NX9336C-FX2-RCF-v1.13-1-Storage.txt
Enter hostname for the tftp server: 172.22.201.50
Trying to connect to tftp server.....Connection to Server
Established.
TFTP get operation was successful
Copy complete, now saving to disk (please wait)...
```

11. Apply the RCF previously downloaded to the bootflash.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 9000 Series NX-OS Command Reference](#) guides.

This example shows the RCF file NX9336C-FX2-RCF-v1.13-1-Storage.txt being installed on switch s2:

```
s2# copy NX9336C-FX2-RCF-v1.13-1-Storage.txt running-config echo-
commands
```



Make sure to thoroughly read the **Installation notes**, **Important Notes**, and **banner** sections of your RCF. You must read and follow these instructions to ensure the proper configuration and operation of the switch.

12. Verify that the RCF file is the correct newer version:

```
show running-config
```

When you check the output to verify you have the correct RCF, make sure that the following information is correct:

- The RCF banner
- The node and port settings
- Customizations

The output varies according to your site configuration. Check the port settings and refer to the release notes for any changes specific to the RCF that you have installed.

13. Reapply any previous customizations to the switch configuration.
14. After you verify the RCF versions, custom additions, and switch settings are correct, copy the `running-config` file to the `startup-config` file.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 9000 Series NX-OS Command Reference](#) guides.

```
s2# copy running-config startup-config
```

```
[ ] 100% Copy complete
```

15. Reboot switch s2. You can ignore the “cluster switch health monitor” alerts and “cluster ports down” events reported on the nodes while the switch reboots.

```
s2# reload
```

```
This command will reboot the system. (y/n) ? [n] y
```

16. Check the administrative or operational status of each node storage port and storage shelf port.

- a. Verify that all the storage ports are up with a healthy status:

```
storage port show -port-type ENET
```

#### Show example

```
cluster1::*> storage port show -port-type ENET
```

| Node        | Port | Type | Mode | Speed (Gb/s) | State   | Status |
|-------------|------|------|------|--------------|---------|--------|
| cluster1-01 | e5a  | ENET | -    | 100          | enabled | online |
|             | e3b  | ENET | -    | 100          | enabled | online |
| cluster1-02 | e5a  | ENET | -    | 100          | enabled | online |
|             | e3b  | ENET | -    | 100          | enabled | online |
| .           |      |      |      |              |         |        |
| .           |      |      |      |              |         |        |

- b. Verify that all the storage shelf ports are up with a healthy status:

```
storage shelf port show
```

**Show example**

```
cluster1::> storage shelf port show

Shelf ID Module State           Internal?
----- -- ----- -----
1.4
      0 A      connected    false
      1 A      connected    false
      2 B      connected    false
      3 B      connected    false
.
.
```

c. Verify that the switches are being monitored:

```
system switch ethernet show
```

## Show example

```
cluster1::> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network  1.2.3.4        N9K-
  C9336C-FX2
    Serial Number: FFXXXXXXX1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network  2.3.4.5        N9K-
  C9336C-FX2
    Serial Number: FEEXXXXXXX2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

17. Repeat steps 1 to 16 on switch s1.

### Step 3: Verify the storage network

Complete the following steps on each storage switch to verify that the storage network is functioning properly after the RCF upgrade.

1. Verify that the switch ports connected to the node storage ports and storage shelf ports are **up**.

```
show interface brief
```

2. Verify that the expected node storage ports are still connected:

```
show cdp neighbors
```

3. Verify that the expected storage shelf ports are still connected:

```
show lldp neighbors
```

4. Verify that the node storage ports and storage shelf ports are in their correct VLANs using the following commands:

```
show vlan brief
```

```
show interface trunk
```

### What's next?

After you've upgraded your RCF, you can [verify the SSH configuration](#).

### Verify your SSH configuration

If you are using the Ethernet Switch Health Monitor (CSHM) and log collection features, verify that SSH and SSH keys are enabled on the switches.

#### Steps

1. Verify that SSH is enabled:

```
(switch) show ssh server
ssh version 2 is enabled
```

2. Verify that the SSH keys are enabled:

```
show ssh key
```

## Show example

```
(switch) # show ssh key

rsa Keys generated:Fri Jun 28 02:16:00 2024

ssh-rsa
AAAAB3NzaC1yc2EAAAQABAAAAgQDiNrD52Q586wTGJjFAbjB1FaA23EpDrZ2sDCew
17nwlioC6HBejxluIObAH8hrW8kR+gj0ZAfPpNeLGTg3APj/yiPTBoIZZxbWRShywAM5
PqyxWwRb7kp9Zt1YHzVuHYpSO82KUDowKrL6lox/YtpKoZUDZjrZjAp8hTv3JZsPgQ==

bitcount:1024
fingerprint:
SHA256:aHwhpz07+YCDsrp3isJv2uVGz+mjMMokqdMeXVVXfdo

could not retrieve dsa key information

ecdsa Keys generated:Fri Jun 28 02:30:56 2024

ecdsa-sha2-nistp521
AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAIBmlzdHA1MjEAAACFBABJ+ZX5SFKhS57e
vkE273e0VoqZi4/32dt+f14fBuKv80MjMsmLfjKtCWylwgVt1Zi+C5TIBbugpzez529z
kFSF0ADb8JaGCoaAYe2HvWR/f6QLbKbqVlewCdqWgxzrIY5BPP5GBdxQJMBiOwEdnHg1
u/9Pzh/Vz9cHDcCW9qGE780QHA==

bitcount:521
fingerprint:
SHA256:TFGe2hXn6QIpcs/vyHzftHJ7Dceg0vQaULYRALZeHwQ

(switch) # show feature | include scpServer
scpServer          1          enabled
(switch) # show feature | include ssh
sshServer          1          enabled
(switch) #
```



When enabling FIPS, you must change the bitcount to 256 on the switch using the command `ssh key ecdsa 256 force`. See [Configure network security using FIPS](#) for more details.

## What's next?

After you've verified your SSH configuration, you [configure switch health monitoring](#).

## Reset the 9336C-FX2 and 9336C-FX2-T storage switches to factory defaults

To reset the 9336C-FX2 and 9336C-FX2-T storage switches to factory defaults, you must erase the 9336C-FX2 and 9336C-FX2-T switch settings.

### About this task

- You must be connected to the switch using the serial console.
- This task resets the configuration of the management network.

### Steps

1. Erase the existing configuration:

```
write erase
```

```
(s2) # write erase
```

```
Warning: This command will erase the startup-configuration.  
Do you wish to proceed anyway? (y/n) [n] y
```

2. Reload the switch software:

```
reload
```

```
(s2) # reload
```

```
This command will reboot the system. (y/n) ? [n] y
```

The system reboots and enters the configuration wizard. During the boot, if you receive the prompt “Abort Auto Provisioning and continue with normal setup? (yes/no)[n]”, you should respond **yes** to proceed.

### What's next

After you've reset your switches, you can [reconfigure](#) them as needed.

## Replace Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches

You can replace defective Nexus 9336C-FX2 and 9336C-FX2-T switches in a cluster network. This is a nondisruptive procedure.

### Before you begin

Before installing the NX-OS software and RCFs on Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches, ensure that:

- Your system can support Cisco Nexus 9336C-FX2 and 9336C-FX2-T storage switches.
- You have consulted the switch compatibility table on the Cisco Ethernet Switch page for the supported ONTAP, NX-OS, and RCF versions.
- You have referred to the appropriate software and upgrade guides available on the Cisco web site.

- You have downloaded the applicable RCFs.
- The existing network configuration has the following characteristics:
  - The Cisco Ethernet Switches page has the latest RCF and NX-OS versions on your switches.
  - Management connectivity must exist on both switches.
- The replacement Cisco Nexus 9336C-FX2 switch has the following characteristics:
  - Management network connectivity is functional.
  - Console access to the replacement switch is in place.
  - The appropriate RCF and NX-OS operating system image is loaded onto the switch.
  - Initial configuration of the switch is complete.

### About this task

This procedure replaces the second Nexus 9336C-FX2 storage switch s2 with the new 9336C-FX switch ns2. The two nodes are cluster1-01 and cluster1-02.

Steps to complete:

- Confirm the switch to be replaced is s2.
- Disconnect the cables from switch s2.
- Reconnect the cables to switch ns2.
- Verify all device configurations on switch ns2.



There can be dependencies between command syntax in the RCF and NX-OS versions.

### Steps

1. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=xh
```

x is the duration of the maintenance window in hours.

2. Check on the health status of the storage node ports to make sure that there is connection to storage switch s1:

```
storage port show -port-type ENET
```

**Show example**

```
storage::*> storage port show -port-type ENET
                                         Speed
                                         (Gb/s)
                                         VLAN
Node      Port Type  Mode      State    Status     ID
-----  -----  -----  -----  -----  -----  -----
cluster1-01
          e5a  ENET  storage  100  enabled  online   30
          e3b  ENET  storage   0  enabled  offline   30
cluster1-02
          e5a  ENET  storage  100  enabled  online   30
          e3b  ENET  storage   0  enabled  offline   30
.
.
```

**3. Verify that storage switch s1 is available:**

```
network device-discovery show
```

**Show example**

```
storage::*> network device-discovery show
Node/      Local Discovered
Protocol   Port  Device (LLDP: ChassisID)  Interface  Platform
-----  -----  -----  -----  -----  -----
cluster1-01/cdp
          e5a    s1                      Ethernet1/1  NX9336C
          e4a  cluster1-02                  e4a          AFF-A700
          e4e  cluster1-02                  e4e          AFF-A700
cluster1-01/lldp
          e5a    s1                      Ethernet1/1  -
          e4a  cluster1-02                  e4a          -
          e4e  cluster1-02                  e4e          -
cluster1-02/cdp
          e3b    s1                      Ethernet1/2  NX9336C
          e4a  cluster1-01                  e4a          AFF-A700
          e4e  cluster1-01                  e4e          AFF-A700
cluster1-02/lldp
          e3b    s1                      Ethernet1/2  -
          e4a  cluster1-01                  e4a          -
          e4e  cluster1-01                  e4e          -
.
.
```

4. Run the `show lldp neighbors` command on the working switch to confirm that you can see both nodes and all shelves:

```
show lldp neighbors
```

**Show example**

```
S1# show lldp neighbors
Capability codes:
  (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
  (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID          Local Intf   Hold-time   Capability   Port ID
cluster1-01        Eth1/1      121          S            e5a
cluster1-02        Eth1/2      121          S            e5a
SHFGD2008000011   Eth1/5      121          S            e0a
SHFGD2008000011   Eth1/6      120          S            e0a
SHFGD2008000022   Eth1/7      120          S            e0a
SHFGD2008000022   Eth1/8      120          S            e0a
```

5. Verify the storage shelf ports in the storage system:

```
storage shelf port show -fields remote-device,remote-port
```

**Show example**

```
storage::*> storage shelf port show -fields remote-device,remote-
port
shelf  id  remote-port  remote-device
----  --  -----
3.20  0   Ethernet1/5  s1
3.20  1   -           -
3.20  2   Ethernet1/6  s1
3.20  3   -           -
3.30  0   Ethernet1/7  s1
3.20  1   -           -
3.30  2   Ethernet1/8  s1
3.20  3   -           -
.
.
```

6. Remove all cables attached to storage switch s2.  
7. Reconnect all cables to the replacement switch ns2.  
8. Recheck the health status of the storage node ports:

```
storage port show -port-type ENET
```

#### Show example

```
storage::*> storage port show -port-type ENET
          Speed          VLAN
Node      Port Type  Mode   (Gb/s) State  Status   ID
-----  -----  -----  -----  -----  -----  -----
cluster1-01
          e5a  ENET  storage 100  enabled  online   30
          e3b  ENET  storage  0   enabled  offline   30
          e7a  ENET  storage  0   enabled  offline   30
          e7b  ENET  storage  0   enabled  offline   30
cluster1-02
          e5a  ENET  storage 100  enabled  online   30
          e3b  ENET  storage  0   enabled  offline   30
          e7a  ENET  storage  0   enabled  offline   30
          e7b  ENET  storage  0   enabled  offline   30
.
.
```

9. Verify that both switches are available:

```
network device-discovery show
```

**Show example**

```
storage::*> network device-discovery show
Node/      Local Discovered
Protocol  Port   Device (LLDP: ChassisID)  Interface  Platform
-----  -----  -----  -----
cluster1-01/cdp
    e3a  s1                      Ethernet1/1 NX9336C
    e4a  cluster1-02              e4a          AFF-A700
    e4e  cluster1-02              e4e          AFF-A700
    e7b  ns2                      Ethernet1/1 NX9336C
cluster1-01/lldp
    e3a  s1                      Ethernet1/1 -
    e4a  cluster1-02              e4a          -
    e4e  cluster1-02              e4e          -
    e7b  ns2                      Ethernet1/1 -
cluster1-02/cdp
    e3a  s1                      Ethernet1/2 NX9336C
    e4a  cluster1-01              e4a          AFF-A700
    e4e  cluster1-01              e4e          AFF-A700
    e7b  ns2                      Ethernet1/2 NX9336C
cluster1-02/lldp
    e3a  s1                      Ethernet1/2 -
    e4a  cluster1-01              e4a          -
    e4e  cluster1-01              e4e          -
    e7b  ns2                      Ethernet1/2 -
.
.
```

**10. Verify the shelf ports in the storage system:**

```
storage shelf port show -fields remote-device,remote-port
```

## Show example

```
storage::*> storage shelf port show -fields remote-device,remote-
port
shelf    id    remote-port    remote-device
-----  --  -----
3.20     0    Ethernet1/5    s1
3.20     1    Ethernet1/5    ns2
3.20     2    Ethernet1/6    s1
3.20     3    Ethernet1/6    ns2
3.30     0    Ethernet1/7    s1
3.20     1    Ethernet1/7    ns2
3.30     2    Ethernet1/8    s1
3.20     3    Ethernet1/8    ns2
storage::*>
```

11. If you suppressed automatic case creation, re-enable it by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

### What's next?

After you've replaced your switches, you can [configure switch health monitoring](#).

## Cisco Nexus 3232C

### Get started

#### Installation and setup workflow for Cisco Nexus 3232C storage switches

The Cisco Nexus 3232C switches are part of the Cisco Nexus 3000 platform and can be installed in a NetApp system cabinet.

Follow these workflow steps to install and setup your Cisco 3232C switches.

1

#### [Review the configuration requirements](#)

Review the configuration requirements for the 3232C storage switches.

2

#### [Review the required documentation](#)

Review specific switch and controller documentation to set up your 3232C switches and the ONTAP cluster.

3

#### [Review the Smart Call Home requirements](#)

Review the requirements for the Cisco Smart Call Home feature, used to monitor the hardware and software components on your network.

4

#### **Install the hardware**

Install the switch hardware.

5

#### **Configure the software**

Configure the switch software.

### **Configuration requirements for Cisco Nexus 3232C storage switches**

For Cisco Nexus 3232C switch installation and maintenance, be sure to review configuration and network requirements.

#### **Configuration requirements**

You need the appropriate number and type of cables and cable connectors for your switches. Depending on the type of switch you are initially configuring, you need to connect to the switch console port with the included console cable; you also need to provide specific network information.

#### **Network requirements**

You need the following network information for all switch configurations:

- IP subnet for management network traffic
- Host names and IP addresses for each of the storage system controllers and all applicable switches
- Most storage system controllers are managed through the e0M interface by connecting to the Ethernet service port (wrench icon). On AFF A800 and AFF A700 systems, the e0M interface uses a dedicated Ethernet port.

Refer to the [Hardware Universe](#) for the latest information. See [What additional information do I need to install my equipment that is not in HWU?](#) for more information about switch installation requirements.

#### **What's next**

After you've confirmed your configuration requirements, you can review the [required documentation](#).

### **Documentation requirements for Cisco Nexus 3232C storage switches**

For Cisco Nexus 3232C switch installation and maintenance, be sure to review all recommended documentation.

#### **Switch documentation**

To set up the Cisco Nexus 3232C switches, you need the following documentation from the [Cisco Nexus 3000 Series Switches Support](#) page.

| Document title                                                                                                                                         | Description                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Nexus 3000 Series Hardware Installation Guide</i>                                                                                                   | Provides detailed information about site requirements, switch hardware details, and installation options.                                                                                             |
| <i>Cisco Nexus 3000 Series Switch Software Configuration Guides</i><br>(choose the guide for the NX-OS release installed on your switches)             | Provides initial switch configuration information that you need before you can configure the switch for ONTAP operation.                                                                              |
| <i>Cisco Nexus 3000 Series NX-OS Software Upgrade and Downgrade Guide</i> (choose the guide for the NX-OS release installed on your switches)          | Provides information on how to downgrade the switch to ONTAP supported switch software, if necessary.                                                                                                 |
| <i>Cisco Nexus 3000 Series NX-OS Command Reference Master Index</i>                                                                                    | Provides links to the various command references provided by Cisco.                                                                                                                                   |
| <i>Cisco Nexus 3000 MIBs Reference</i>                                                                                                                 | Describes the Management Information Base (MIB) files for the Nexus 3000 switches.                                                                                                                    |
| <i>Nexus 3000 Series NX-OS System Message Reference</i>                                                                                                | Describes the system messages for Cisco Nexus 3000 series switches, those that are informational, and others that might help diagnose problems with links, internal hardware, or the system software. |
| <i>Cisco Nexus 3000 Series NX-OS Release Notes</i> (choose the notes for the NX-OS release installed on your switches)                                 | Describes the features, bugs, and limitations for the Cisco Nexus 3000 Series.                                                                                                                        |
| Regulatory, Compliance, and Safety Information for the Cisco Nexus 6000, Cisco Nexus 5000 Series, Cisco Nexus 3000 Series, and Cisco Nexus 2000 Series | Provides international agency compliance, safety, and statutory information for the Nexus 3000 series switches.                                                                                       |

#### ONTAP systems documentation

To set up an ONTAP system, you need the following documents for your version of the operating system from [ONTAP 9](#).

| Name                                                           | Description                                                            |
|----------------------------------------------------------------|------------------------------------------------------------------------|
| <i>Controller-specific Installation and Setup Instructions</i> | Describes how to install NetApp hardware.                              |
| ONTAP documentation                                            | Provides detailed information about all aspects of the ONTAP releases. |

| Name              | Description                                                           |
|-------------------|-----------------------------------------------------------------------|
| Hardware Universe | Provides NetApp hardware configuration and compatibility information. |

#### Rail kit and cabinet documentation

To install a 3232C Cisco switch in a NetApp cabinet, see the following hardware documentation.

| Name                                                   | Description                                                                                                           |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 42U System Cabinet, Deep Guide                         | Describes the FRUs associated with the 42U system cabinet, and provides maintenance and FRU replacement instructions. |
| Install a Cisco Nexus 3232C switch in a NetApp Cabinet | Describes how to install a Cisco Nexus 3232C switch in a four-post NetApp cabinet.                                    |

#### Smart Call Home requirements

To use Smart Call Home, you must configure a cluster network switch to communicate using email with the Smart Call Home system. In addition, you can optionally set up your cluster network switch to take advantage of Cisco's embedded Smart Call Home support feature.

Smart Call Home monitors the hardware and software components on your network. When a critical system configuration occurs, it generates an email-based notification and raises an alert to all the recipients that are configured in your destination profile.

Smart Call Home monitors the hardware and software components on your network. When a critical system configuration occurs, it generates an email-based notification and raises an alert to all the recipients that are configured in your destination profile.

Before you can use Smart Call Home, be aware of the following requirements:

- An email server must be in place.
- The switch must have IP connectivity to the email server.
- The contact name (SNMP server contact), phone number, and street address information must be configured. This is required to determine the origin of messages received.
- A CCO ID must be associated with an appropriate Cisco SMARTnet Service contract for your company.
- Cisco SMARTnet Service must be in place for the device to be registered.

The [Cisco support site](#) contains information about the commands to configure Smart Call Home.

#### Install hardware

##### Hardware install workflow for Cisco Nexus 3232C switches

To install and configure the hardware for a 3232C storage switch, follow these steps:

**1**

## Install the switch

Install the 3232C storage switch.

**2**

## Install the switch in a NetApp cabinet

Install the 3232C storage switch and pass-through panel in a NetApp cabinet as required.

**3**

## Review cabling and configuration considerations

Review the cabling and configuration considerations for the 3232C storage switch.

### Install the 3232C storage switch

Follow this procedure to set up and configure the Cisco Nexus 3232C storage switch.

#### Before you begin

Make sure you have the following:

- Access to an HTTP, FTP, or TFTP server at the installation site to download the applicable NX-OS and Reference Configuration File (RCF) releases.
- Applicable NX-OS version, downloaded from the [Cisco Software Download](#) page.
- Applicable licenses, network and configuration information, and cables.
- Applicable NetApp cluster network and management network RCFs downloaded from the NetApp Support Site at [mysupport.netapp.com](http://mysupport.netapp.com). All Cisco cluster network and management network switches arrive with the standard Cisco factory-default configuration. These switches also have the current version of the NX-OS software but do not have the RCFs loaded.
- [Required switch and ONTAP documentation](#).

#### Steps

1. Rack the cluster network and management network switches and controllers.

| If you are installing the...                 | Then...                                                                                                                                                                   |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cisco Nexus 3232C in a NetApp system cabinet | See the <i>Installing a Cisco Nexus 3232C cluster switch and pass-through panel in a NetApp cabinet</i> guide for instructions to install the switch in a NetApp cabinet. |
| Equipment in a Telco rack                    | See the procedures provided in the switch hardware installation guides and the NetApp installation and setup instructions.                                                |

2. Cable the cluster network and management network switches to the controllers using the completed cabling worksheets.
3. Power on the cluster network and management network switches and controllers.

#### What's next?

After you've installed the 3232C storage switch, you can then [install the switch in a NetApp cabinet](#).

## Install a Cisco Nexus 3232C storage switch in a NetApp cabinet

Depending on your configuration, you might need to install the Cisco Nexus 3232C storage switch and pass-through panel in a NetApp cabinet with the standard brackets that are included with the switch.

### Before you begin

Verify that you have the following:

- \* The initial preparation requirements, kit contents, and safety precautions in the [Cisco Nexus 3000 Series Hardware Installation Guide](#).
- \* For each switch, the eight 10-32 or 12-24 screws and clip nuts to mount the brackets and slider rails to the front and rear cabinet posts.
- \* Cisco standard rail kit to install the switch in a NetApp cabinet.

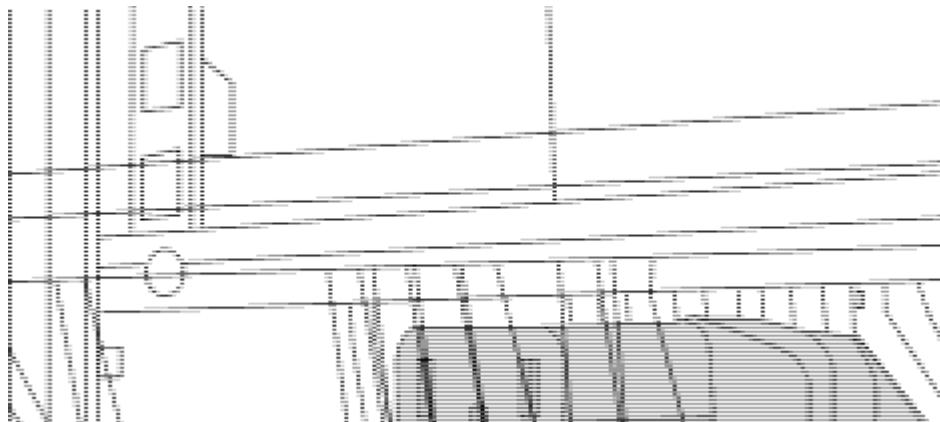


The jumper cords are not included with the pass-through kit and should be included with your switches. If they were not shipped with the switches, you can order them from NetApp (part number X1558A-R6).

### Steps

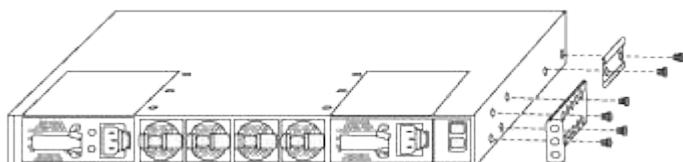
1. Install the pass-through blanking panel in the NetApp cabinet.

The pass-through panel kit is available from NetApp (part number X8784-R6).

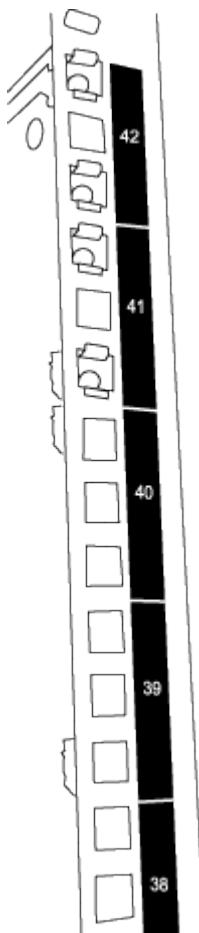

The NetApp pass-through panel kit contains the following hardware:

- One pass-through blanking panel
- Four 10-32 x .75 screws
- Four 10-32 clip nuts

- a. Determine the vertical location of the switches and blanking panel in the cabinet.

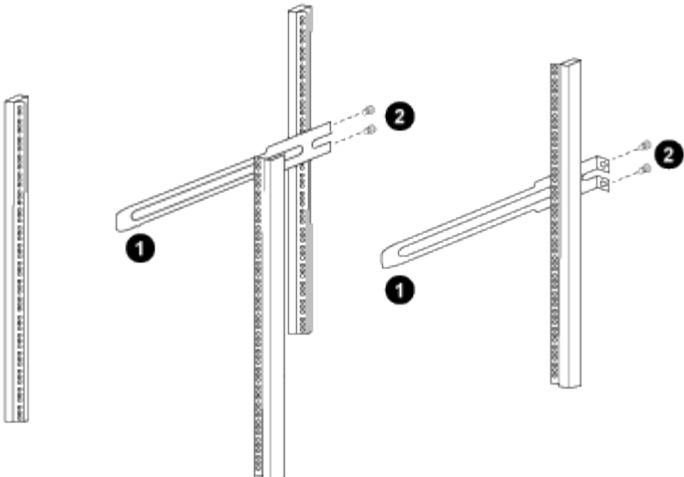

In this procedure, the blanking panel will be installed in U40.

  - b. Install two clip nuts on each side in the appropriate square holes for front cabinet rails.
  - c. Center the panel vertically to prevent intrusion into adjacent rack space, and then tighten the screws.
  - d. Insert the female connectors of both 48-inch jumper cords from the rear of the panel and through the brush assembly.




(1) *Female connector of the jumper cord.*

1. Install the rack-mount brackets on the Nexus 3232C storage switch chassis.
  - a. Position a front rack-mount bracket on one side of the switch chassis so that the mounting ear is aligned with the chassis faceplate (on the PSU or fan side), and then use four M4 screws to attach the bracket to the chassis.




- b. Repeat step 2a with the other front rack-mount bracket on the other side of the switch.
  - c. Install the rear rack-mount bracket on the switch chassis.
  - d. Repeat step 2c with the other rear rack-mount bracket on the other side of the switch.
2. Install the clip nuts in the square hole locations for all four IEA posts.



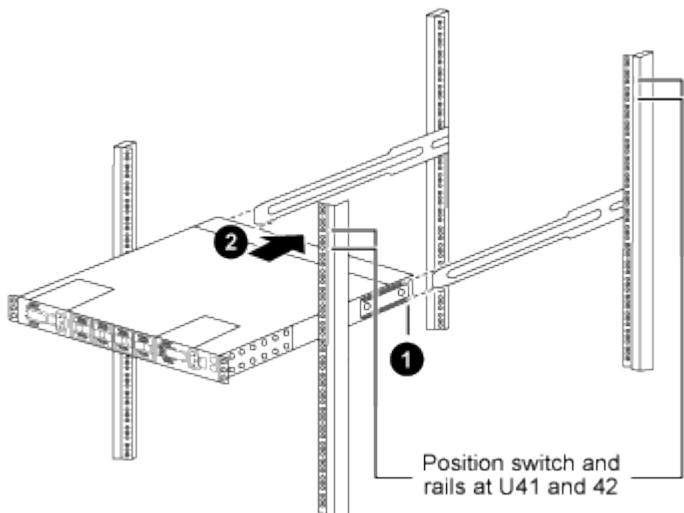
The two 3232C switches will always be mounted in the top 2U of the cabinet RU41 and 42.

3. Install the slider rails in the cabinet.
  - a. Position the first slider rail at the RU42 mark on the back side of the rear left post, insert screws with the matching thread type, and then tighten the screws with your fingers.



(1) As you gently slide the slider rail, align it to the screw holes in the rack.

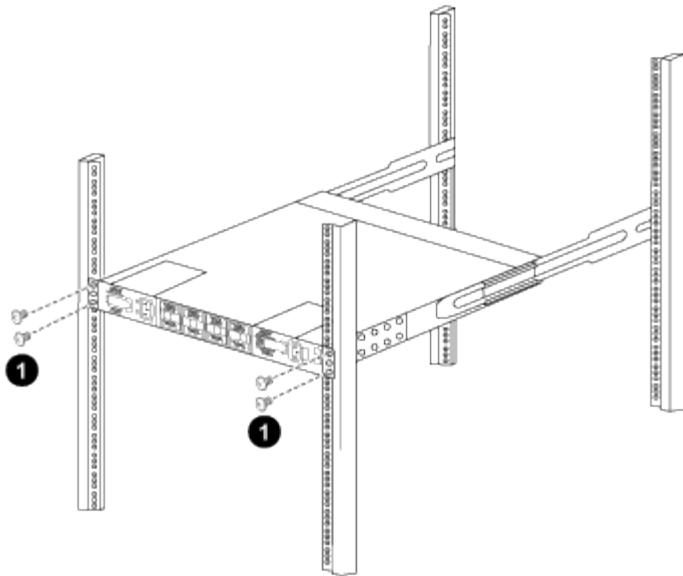
(2) Tighten the screws of the slider rails to the cabinet posts.


- b. Repeat step 4a for the right side rear post.
- c. Repeat steps 4a and 4b at the RU41 locations on the cabinet.

4. Install the switch in the cabinet.



This step requires two people: one person to support the switch from the front and another to guide the switch into the rear slider rails.


- a. Position the back of the switch at RU41.



(1) As the chassis is pushed toward the rear posts, align the two rear rack-mount guides with the slider rails.

(2) Gently slide the switch until the front rack-mount brackets are flush with the front posts.

- b. Attach the switch to the cabinet.



*(1) With one person holding the front of the chassis level, the other person should fully tighten the four rear screws to the cabinet posts.*

- c. With the chassis now supported without assistance, fully tighten the front screws to the posts.
- d. Repeat steps 5a through 5c for the second switch at the RU42 location.



By using the fully installed switch as a support, it is not necessary to hold the front of the second switch during the installation process.

- 5. When the switches are installed, connect the jumper cords to the switch power inlets.
- 6. Connect the male plugs of both jumper cords to the closest available PDU outlets.



To maintain redundancy, the two cords must be connected to different PDUs.

- 7. Connect the management port on each 3232C switch to either of the management switches (if ordered) or connect them directly to your management network.

The management port is the upper-right port located on the PSU side of the switch. The CAT6 cable for each switch needs to be routed through the pass-through panel after the switches are installed to connect to the management switches or management network.

## Review cabling and configuration considerations

Before configuring your 3232C switches, review the cabling and configuration requirements.

### Support for NVIDIA CX6, CX6-DX, and CX7 Ethernet ports

If you are connecting a switch port to an ONTAP controller using NVIDIA ConnectX-6 (CX6), ConnectX-6 Dx (CX6-DX), or ConnectX-7 (CX7) NIC ports, you must hard-code the switch port speed.

```
(s1) (config) # interface Ethernet1/19
For 100GbE speed:
(s1) (config-if) # speed 100000
For 40GbE speed:
(s1) (config-if) # speed 40000
(s1) (config-if) # no negotiate auto
(s1) (config-if) # exit
(s1) (config) # exit
Save the changes:
(s1) # copy running-config startup-config
```

#### Related information

- Refer to [Hardware Universe](#) for more information on switch ports.
- See [What additional information do I need to install my equipment that is not in HWU?](#) for more information about switch installation requirements.

## Configure software

### Software install workflow for Cisco Nexus 3232C storage switches

To install and configure the software for a Cisco Nexus 3232C switch and install or upgrade the Reference Configuration File (RCF), follow these steps:

1

#### [Configure the switch](#)

Configure the 3232C storage switch.

2

#### [Prepare to install the NX-OS software and RCF](#)

The Cisco NX-OS software and reference configuration files (RCFs) must be installed on Cisco 3232C storage switches.

3

#### [Install or upgrade the NX-OS software](#)

Download and install or upgrade the NX-OS software on the Cisco 3232C storage switch.

4

#### [Install the RCF](#)

Install the RCF after setting up the Cisco 3232C storage switch for the first time.

5

#### [Upgrade the RCF](#)

Upgrade your existing RCF version as necessary.

**6**

## Verify SSH configuration

Verify that SSH is enabled on the switches to use the Ethernet Switch Health Monitor (CSHM) and log collection features.

**7**

## Reset the switch to factory defaults

Erase the 3232C storage switch settings.

### Configure the 3232C storage switch

Follow this procedure to set up and configure the Cisco Nexus 3232C switch.

#### Before you begin

- Access to an HTTP, FTP or TFTP server at the installation site to download the applicable NX-OS and reference configuration file (RCF) releases.
- Applicable NX-OS version, downloaded from the [Cisco software download](#) page.
- Required network and management network switch documentation.

See [Required documentation](#) for more information.

- Required controller documentation and ONTAP documentation.

#### NetApp documentation

- Applicable licenses, network and configuration information, and cables.
- Applicable NetApp storage network and management network RCFs, downloaded from the NetApp Support Site at [mysupport.netapp.com](http://mysupport.netapp.com) for the switches that you receive. All Cisco storage network and management network switches arrive with the standard Cisco factory-default configuration. These switches also have the current version of the NX-OS software, but do not have the RCFs loaded.

#### Steps

- Rack the storage network and management network switches and controllers.

| If you are installing your...                | Then...                                                                                                                                                           |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cisco Nexus 3232C in a NetApp system cabinet | See the <i>Installing a Cisco Nexus 3232C switch and pass-through panel in a NetApp cabinet</i> guide for instructions to install the switch in a NetApp cabinet. |
| Equipment in a Telco rack                    | See the procedures provided in the switch hardware installation guides and the NetApp installation and setup instructions.                                        |

- Cable the storage network and management network switches to the controllers using the completed cabling worksheets.
- Power on the storage network and management network switches and controllers.
- Perform an initial configuration of the storage network switches.

Provide applicable responses to the following initial setup questions when you first boot the switch. Your

site's security policy defines the responses and services to enable.

| Prompt                                                               | Response                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abort Auto Provisioning and continue with normal setup? (yes/no)     | Respond with <b>yes</b> . The default is no.                                                                                                                                                                                                                                                   |
| Do you want to enforce secure password standard? (yes/no)            | Respond with <b>yes</b> . The default is yes.                                                                                                                                                                                                                                                  |
| Enter the password for admin.                                        | The default password is "admin"; you must create a new, strong password. A weak password can be rejected.                                                                                                                                                                                      |
| Would you like to enter the basic configuration dialog? (yes/no)     | Respond with <b>yes</b> at the initial configuration of the switch.                                                                                                                                                                                                                            |
| Create another login account? (yes/no)                               | Your answer depends on your site's policies on alternate administrators. The default is <b>no</b> .                                                                                                                                                                                            |
| Configure read-only SNMP community string? (yes/no)                  | Respond with <b>no</b> . The default is no.                                                                                                                                                                                                                                                    |
| Configure read-write SNMP community string? (yes/no)                 | Respond with <b>no</b> . The default is no.                                                                                                                                                                                                                                                    |
| Enter the switch name.                                               | The switch name is limited to 63 alphanumeric characters.                                                                                                                                                                                                                                      |
| Continue with Out-of-band (mgmt0) management configuration? (yes/no) | Respond with <b>yes</b> (the default) at that prompt. At the mgmt0 IPv4 address: prompt, enter your IP address: ip_address.                                                                                                                                                                    |
| Configure the default-gateway? (yes/no)                              | Respond with <b>yes</b> . At the IPv4 address of the default-gateway: prompt, enter your default_gateway.                                                                                                                                                                                      |
| Configure advanced IP options? (yes/no)                              | Respond with <b>no</b> . The default is no.                                                                                                                                                                                                                                                    |
| Enable the telnet service? (yes/no)                                  | Respond with <b>no</b> . The default is no.                                                                                                                                                                                                                                                    |
| Enabled SSH service? (yes/no)                                        | Respond with <b>yes</b> . The default is yes.<br><br> SSH is recommended when using Ethernet Switch Health Monitor (CSHM) for its log collection features. SSHv2 is also recommended for enhanced security. |

| Prompt                                                         | Response                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enter the type of SSH key you want to generate (dsa/rsa/rsa1). | The default is <b>rsa</b> .                                                                                                                                                                                                                                                                                                                     |
| Enter the number of key bits (1024-2048).                      | Enter the number of key bits from 1024-2048.                                                                                                                                                                                                                                                                                                    |
| Configure the NTP server? (yes/no)                             | Respond with <b>no</b> . The default is no.                                                                                                                                                                                                                                                                                                     |
| Configure default interface layer (L3/L2):                     | Respond with <b>L2</b> . The default is L2.                                                                                                                                                                                                                                                                                                     |
| Configure default switch port interface state (shut/noshut):   | Respond with <b>noshut</b> . The default is noshut.                                                                                                                                                                                                                                                                                             |
| Configure CoPP system profile (strict/moderate/lenient/dense): | Respond with <b>strict</b> . The default is strict.                                                                                                                                                                                                                                                                                             |
| Would you like to edit the configuration? (yes/no)             | You should see the new configuration at this point. Review and make any necessary changes to the configuration you just entered. Respond with <b>no</b> at the prompt if you are satisfied with the configuration. Respond with <b>yes</b> if you want to edit your configuration settings.                                                     |
| Use this configuration and save it? (yes/no)                   | <p>Respond with <b>yes</b> to save the configuration. This automatically updates the kickstart and system images.</p> <p> If you do not save the configuration at this stage, none of the changes will be in effect the next time you reboot the switch.</p> |

5. Verify the configuration choices you made in the display that appears at the end of the setup, and make sure that you save the configuration.
6. Check the version on the network switches, and if necessary, download the NetApp-supported version of the software to the switches from the [Cisco software download](#) page.

#### What's next?

After you've configured your switches, you can [prepare to install the NX-OS and RCF](#).

#### Prepare to install NX-OS software and Reference Configuration File (RCF)

Before you install the NX-OS software and the Reference Configuration File (RCF), follow this procedure.

#### About the examples

The examples in this procedure use the following switch and node nomenclature:

- The names of the two Cisco switches are s1 and s2.
- The node names are cluster1-01 and cluster1-02.

See the [Hardware Universe](#) to verify the correct network ports on your platforms. See [What additional information do I need to install my equipment that is not in HWU?](#) for more information about switch installation requirements.

## About this task

The procedure requires the use of both ONTAP commands and Cisco Nexus 3000 Series Switches commands; ONTAP commands are used unless otherwise indicated.

## Steps

1. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=x h
```

where x is the duration of the maintenance window in hours.



The AutoSupport message notifies technical support of this maintenance task so that automatic case creation is suppressed during the maintenance window.

2. Change the privilege level to advanced, entering **y** when prompted to continue:

```
set -privilege advanced
```

The advanced prompt (**\*>**) appears.

3. Display how many interfaces are configured in each node for each switch:

```
network device-discovery show -protocol cdp
```

**Show example**

```
cluster1::*> network device-discovery show -protocol cdp

Node/      Local  Discovered
Protocol   Port   Device (LLDP: ChassisID)  Interface
Platform

-----
-----
cluster1-02/cdp
      e5a    s1          Eth1/2      N3K-
C3232C
      e3b    s2          Eth1/2      N3K-
C3232C
cluster1-01/cdp
      e5a    s1          Eth1/1      N3K-
C3232C
      e3b    s2          Eth1/1      N3K-
C3232C
.
.
```

4. Check the administrative or operational status of each node storage port and storage shelf port.

a. Display the node storage port attributes:

```
storage port show
```

**Show example**

```
cluster1::*> storage port show
Speed          VLAN
Node          Port  Type   Mode    (Gb/s)  State   Status   ID
-----
-----
cluster1-01
      e5a  ENET  storage   100  enabled  online   -
      e3b  ENET  storage   100  enabled  online   -
cluster1-02
      e5a  ENET  storage   100  enabled  online   -
      e3b  ENET  storage   100  enabled  online   -
.
.
```

b. Display the storage shelf port attributes:

```
storage shelf port show
```

**Show example**

```
cluster1::*> storage shelf port show
Shelf ID Module State      Internal?
-----  -----
1.4
  0 A    connected    false
  1 A    connected    false
  2 B    connected    false
  3 B    connected    false
.
.
```

c. Verify that switch health monitoring (CSHM) is enabled for the switches so that they are monitored:

```
system switch ethernet show
```

## Show example

```
cluster1::> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network 1.0.0.0        N3K-
  C3232C
    Serial Number: FFYYYYYYYY1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network 1.1.0.0        N3K-
  C3232C
    Serial Number: FEEYYYYYYY2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

## What's next?

After you've prepared to install the NX-OS software and RCF, you can [install the NX-OS software](#).

### Install or upgrade the NX-OS software

You can use this procedure to install the NX-OS software on the Nexus 3232C storage switch.

#### Before you begin

Verify that you have the following:

- A current backup of the switch configuration.
- A fully functioning cluster (no errors in the logs or similar issues).
- [Cisco Ethernet switch page](#). Consult the switch compatibility table for the supported ONTAP and NX-OS versions.
- [Cisco Nexus 3000 Series Switches](#). Refer to the appropriate software and upgrade guides available on the Cisco web site for complete documentation on the Cisco switch upgrade and downgrade procedures.

## Install or upgrade the software

The procedure requires the use of both ONTAP commands and Cisco Nexus 3000 Series Switches commands; ONTAP commands are used unless otherwise indicated.

Complete the procedure in [Prepare to install NX-OS and RCF](#), and then follow the steps below.

### Steps

1. Connect the switch to the management network.
2. Use the `ping` command to verify connectivity to the server hosting the NX-OS software and the RCF.

#### Show example

This example verifies that the switch can reach the server at IP address 172.19.2.1:

```
s2# ping 172.19.2.1
Pinging 172.19.2.1 with 0 bytes of data:
Reply From 172.19.2.1: icmp_seq = 0. time= 5910 usec.
```

3. If you are setting up your switch for the first time, skip to step 5. If you are upgrading your switch, proceed to the next step.
4. Check the administrative or operational status of each node storage port and storage shelf port.
  - a. Display the node storage port attributes:

```
storage port show
```

#### Show example

```
cluster1::>*> storage port show
Speed                  VLAN
Node      Port  Type   Mode    (Gb/s)  State   Status    ID
-----  -----  -----  -----  -----  -----  -----  -----
cluster1-01
          e5a   ENET  storage    100  enabled  online   -
          e3b   ENET  storage    100  enabled  online   -
cluster1-02
          e5a   ENET  storage    100  enabled  online   -
          e3b   ENET  storage    100  enabled  online   -
.
.
```

- b. Display the storage shelf port attributes:

```
storage shelf port show
```

**Show example**

```
cluster1::*> storage shelf port show
Shelf ID Module State      Internal?
-----
1.4
  0 A    connected    false
  1 A    connected    false
  2 B    connected    false
  3 B    connected    false
.
.
```

c. Verify that switch health monitoring (CSHM) is enabled for the switches so that they are monitored:

```
system switch ethernet show
```

**Show example**

```
cluster1::> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network  1.0.0.0        N3K-
C3232C
    Serial Number: FFFYYYYYYYY1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
Software, Version
                    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network  1.1.0.0        N3K-
C3232C
    Serial Number: FEEYYYYYYYY2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
Software, Version
                    10.3(4a)
    Version Source: CDP/ISDP
```

5. Log in to the switch using SSH or by using a serial console.
6. Copy the NX-OS software and EPLD images to the Nexus 3232C switch.

**Show example**

```
s2# copy sftp: bootflash: vrf management
Enter source filename: /code/nxos.9.3.4.bin
Enter hostname for the sftp server: 172.19.2.1
Enter username: user1

Outbound-ReKey for 172.19.2.1:22
Inbound-ReKey for 172.19.2.1:22
user1@172.19.2.1's password:
sftp> progress
Progress meter enabled
sftp> get /code/nxos.9.3.4.bin /bootflash/nxos.9.3.4.bin
/code/nxos.9.3.4.bin 100% 1261MB 9.3MB/s 02:15
sftp> exit
Copy complete, now saving to disk (please wait)...
Copy complete.
```

```
s2# copy sftp: bootflash: vrf management
Enter source filename: /code/n9000-epld.9.3.4.img
Enter hostname for the sftp server: 172.19.2.1
Enter username: user1

Outbound-ReKey for 172.19.2.1:22
Inbound-ReKey for 172.19.2.1:22
user1@172.19.2.1's password:
sftp> progress
Progress meter enabled
sftp> get /code/n9000-epld.9.3.4.img /bootflash/n9000-
epld.9.3.4.img
/code/n9000-epld.9.3.4.img 100% 161MB 9.5MB/s 00:16
sftp> exit
Copy complete, now saving to disk (please wait)...
Copy complete.
```

7. Verify the running version of the NX-OS software:

```
show version
```

## Show example

```
s2# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2019, Cisco and/or its affiliates.
All rights reserved.

The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their
own

licenses, such as open source. This software is provided "as is,"
and unless

otherwise stated, there is no warranty, express or implied,
including but not

limited to warranties of merchantability and fitness for a
particular purpose.

Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.

A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/library.txt.
```

### Software

```
BIOS: version 08.37
NXOS: version 9.3(3)
BIOS compile time: 01/28/2020
NXOS image file is: bootflash:///nxos.9.3.3.bin
NXOS compile time: 12/22/2019 2:00:00 [12/22/2019 14:00:37]
```

### Hardware

```
cisco Nexus3000 C3232C Chassis (Nexus 9000 Series)
Intel(R) Xeon(R) CPU E5-2403 v2 @ 1.80GHz with 8154432 kB of
memory.
```

```
Processor Board ID FOCXXXXXXGD
```

```
Device name: s2
bootflash: 53298520 kB
Kernel uptime is 0 day(s), 0 hour(s), 3 minute(s), 36 second(s)
```

```
Last reset at 74117 usecs after Tue Nov 24 06:24:23 2020
Reason: Reset Requested by CLI command reload
```

```
System version: 9.3(3)
Service:

plugin
  Core Plugin, Ethernet Plugin

Active Package(s):
```

## 8. Install the NX-OS image.

Installing the image file causes it to be loaded every time the switch is rebooted.

Show example

```
s2# install all nxos bootflash:nxos.9.3.4.bin
Installer will perform compatibility check first. Please wait.
Installer is forced disruptive

Verifying image bootflash:/nxos.9.3.4.bin for boot variable "nxos".
[] 100% -- SUCCESS

Verifying image type.
[] 100% -- SUCCESS

Preparing "nxos" version info using image bootflash:/nxos.9.3.4.bin.
[] 100% -- SUCCESS

Preparing "bios" version info using image bootflash:/nxos.9.3.4.bin.
[] 100% -- SUCCESS

Performing module support checks.
[] 100% -- SUCCESS

Notifying services about system upgrade.
[] 100% -- SUCCESS

Compatibility check is done:
Module  bootable          Impact          Install-type  Reason
-----  -----  -----  -----  -----
-----  -----
1      Yes      Disruptive      Reset      Default
upgrade is not hitless

Images will be upgraded according to following table:
Module      Image      Running-Version(pri:alt)
New-Version      Upg-Required
-----  -----
-----  -----
1      nxos      9.3(3)
9.3(4)          yes
1      bios      v08.37(01/28/2020):v08.32(10/18/2016)
v08.37(01/28/2020)  no

Switch will be reloaded for disruptive upgrade.
Do you want to continue with the installation (y/n)? [n] y

Install is in progress, please wait.
```

Performing runtime checks.

[] 100% -- SUCCESS

Setting boot variables.

[] 100% -- SUCCESS

Performing configuration copy.

[] 100% -- SUCCESS

Module 1: Refreshing compact flash and upgrading  
bios/loader/bootrom.

Warning: please do not remove or power off the module at this time.

[] 100% -- SUCCESS

Finishing the upgrade, switch will reboot in 10 seconds.

9. Verify the new version of NX-OS software after the switch has rebooted:

```
show version
```

## Show example

```
s2# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2020, Cisco and/or its affiliates.
All rights reserved.

The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their
own

licenses, such as open source. This software is provided "as is,"
and unless

otherwise stated, there is no warranty, express or implied,
including but not

limited to warranties of merchantability and fitness for a
particular purpose.

Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.

A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/library.txt.
```

### Software

```
BIOS: version 08.37
NXOS: version 9.3(4)
BIOS compile time: 01/28/2020
NXOS image file is: bootflash:///nxos.9.3.4.bin
NXOS compile time: 4/28/2020 21:00:00 [04/29/2020 06:28:31]
```

### Hardware

```
cisco Nexus3000 C3232C Chassis (Nexus 9000 Series)
Intel(R) Xeon(R) CPU E5-2403 v2 @ 1.80GHz with 8154432 kB of
memory.
```

```
Processor Board ID FOCXXXXXXGS
```

```
Device name: rtpnpi-mcc01-8200-ms-A1
bootflash: 53298520 kB
Kernel uptime is 0 day(s), 0 hour(s), 3 minute(s), 14 second(s)
```

```
Last reset at 196755 usecs after Tue Nov 24 06:37:36 2020
Reason: Reset due to upgrade
```

System version: 9.3(3)

Service:

plugin

Core Plugin, Ethernet Plugin

Active Package(s):

10. Upgrade the EPLD image and reboot the switch.

## Show example

```
s2# show version module 1 epld

EPLD Device          Version
-----
MI    FPGA           0x12
IO    FPGA           0x11

s2# install epld bootflash:n9000-epld.9.3.4.img module 1
Compatibility check:
Module      Type      Upgradable      Impact      Reason
-----  -----
-----  -----
1          SUP       Yes            Disruptive   Module
Upgradable

Retrieving EPLD versions.... Please wait.
Images will be upgraded according to following table:
Module  Type  EPLD          Running-Version  New-Version  Upg-
Required
-----  -----  -----          -----  -----
-----  -----
1      SUP   MI  FPGA        0x12          0x12        No
1      SUP   IO  FPGA        0x11          0x12        Yes
The above modules require upgrade.
The switch will be reloaded at the end of the upgrade
Do you want to continue (y/n) ?  [n] y

Proceeding to upgrade Modules.

Starting Module 1 EPLD Upgrade

Module 1 : IO FPGA [Programming] : 100.00% (      64 of      64
sectors)
Module 1 EPLD upgrade is successful.
Module      Type  Upgrade-Result
-----  -----
1          SUP   Success

Module 1 EPLD upgrade is successful.
```

11. If you are upgrading to NX-OS version 9.3(11), you must upgrade the EPLD golden image and reboot the switch once again. Otherwise, skip to step 12.

See [EPLD Upgrade Release Notes, Release 9.3\(11\)](#) for further details.

**Show example**

```
s2# install epld bootflash:n9000-epld.9.3.11.img module 1 golden
Digital signature verification is successful
Compatibility check:
Module          Type          Upgradable      Impact      Reason
-----  -----
-----  -----
1           SUP           Yes           Disruptive  Module
Upgradable

Retrieving EPLD versions.... Please wait.
The above modules require upgrade.
The switch will be reloaded at the end of the upgrade
Do you want to continue (y/n) ? [n] y

Proceeding to upgrade Modules.

Starting Module 1 EPLD Upgrade

Module 1 : MI FPGA [Programming] : 100.00% (      64 of      64 sect)
Module 1 : IO FPGA [Programming] : 100.00% (      64 of      64 sect)
Module 1 EPLD upgrade is successful.
Module          Type          Upgrade-Result
-----  -----
-----  -----
1           SUP           Success

EPLDs upgraded.

Module 1 EPLD upgrade is successful.
```

12. After the switch reboot, log in to verify that the new version of EPLD loaded successfully.

**Show example**

```
s2# show version module 1 epld

EPLD Device          Version
-----
MI    FPGA           0x12
IO    FPGA           0x12
```

13. If you are setting up your switch for the first time, skip to step 15. If you are upgrading your switch, proceed to the next step.
14. Verify the health status of each node storage port and storage shelf port.
  - a. Display the node storage port attributes:

```
storage port show
```

**Show example**

```
cluster1::*> storage port show
Speed                  VLAN
Node      Port Type Mode   (Gb/s) State  Status  ID
-----  -----  -----  -----  -----  -----  -----
cluster1-01
      e5a  ENET  storage    100  enabled  online   -
      e3b  ENET  storage    100  enabled  online   -
cluster1-02
      e5a  ENET  storage    100  enabled  online   -
      e3b  ENET  storage    100  enabled  online   -
```

14. Verify the health status of each node storage port and storage shelf port.
  - a. Display the node storage port attributes:

```
storage shelf port show
```

**Show example**

```
cluster1::*> storage shelf port show
Shelf  ID Module State      Internal?
-----  ---  -----  -----  -----
1.4
      0  A    connected  false
      1  A    connected  false
      2  B    connected  false
      3  B    connected  false
      .
      .
```

14. Verify that switch health monitoring (CSHM) is enabled for the switches so that they are monitored:

```
system switch ethernet show
```

## Show example

```
cluster1::> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network  1.0.0.0        N3K-
  C3232C
    Serial Number: FFYYYYYYYY1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network  1.1.0.0        N3K-
  C3232C
    Serial Number: FEEYYYYYYY2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP  false
```

15. Repeat steps 5 to 13 to install the NX-OS software on switch s1.

### What's next?

After you've installed the NX-OS software, you can [install or upgrade the Reference Configuration File \(RCF\)](#).

### Install the Reference Configuration File (RCF)

You install the Reference Configuration File (RCF) after setting up the Nexus 3232C switches for the first time.

#### Before you begin

Verify the following installations and connections:

- A current backup of the switch configuration.
- A fully functioning cluster (no errors in the logs or similar issues).
- The current RCF.
- A console connection to the switch, this is required when installing the RCF.

#### About this task

The procedure requires the use of both ONTAP commands and Cisco Nexus 3000 Series Switches

commands; ONTAP commands are used unless otherwise indicated.

Complete the procedure in [Prepare to install NX-OS and RCF](#), and then follow the steps below.

#### Step 1: Install the RCF on the switches

1. Login to switch s2 using SSH or by using a serial console.
2. Copy the RCF to the bootflash of switch s2 using one of the following transfer protocols: FTP, TFTP, SFTP, or SCP. For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 3000 Series NX-OS Command Reference](#).

##### Show example

This example shows TFTP being used to copy an RCF to the bootflash on switch s2:

```
s2# copy tftp: bootflash: vrf management
Enter source filename: NX3232C-RCF-v1.13-1-Storage.txt
Enter hostname for the tftp server: 172.22.201.50
Trying to connect to tftp server.....Connection to Server
Established.
TFTP get operation was successful
Copy complete, now saving to disk (please wait)...
```

3. Apply the RCF previously downloaded to the bootflash.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 3000 Series NX-OS Command Reference](#).

##### Show example

This example shows the RCF file NX9336C-FX2-RCF-v1.13-1-Storage.txt being installed on switch s2:

```
s2# copy NX9336C-FX2-RCF-v1.13-1-Storage.txt running-config echo-
commands
```



Make sure to read thoroughly the **Installation notes**, **Important Notes**, and **banner** sections of your RCF. You must read and follow these instructions to verify the proper configuration and operation of the switch.

4. Examine the banner output from the `show banner motd` command. You must read and follow the instructions under **Important Notes** to make sure the proper configuration and operation of the switch.
5. Verify that the RCF is the correct newer version:

```
show running-config
```

When you check the output to verify you have the correct RCF, make sure that the following information is correct:

- The RCF banner
- The node and port settings
- Customizations

The output varies according to your site configuration. Check the port settings and refer to the release notes for any changes specific to the RCF that you have installed.

6. Reapply any previous customizations to the switch configuration.
7. After you verify that the RCF versions and switch settings are correct, copy the `running-config` file to the `startup-config` file.

```
s2# copy running-config startup-config [] 100% Copy complete
```

8. Reboot switch s2:

```
s2# reload
```

```
This command will reboot the system. (y/n) ? [n] y
```

9. Repeat Steps 1 to 8 on switch s1.
10. Connect the node storage ports and storage shelf ports of all nodes in the ONTAP cluster to switches s1 and s2.

### Step 2: Verify the switch connections

1. Verify that the switch ports are **up**.

```
show interface brief
```

2. Verify that the node storage ports and storage shelf ports are in their correct VLANs using the following commands:

```
show vlan brief
```

```
show interface trunk
```

### Step 3: Set up your ONTAP cluster

NetApp recommends that you use System Manager to set up new clusters.

System Manager provides a simple and easy workflow for cluster set up and configuration including assigning a node management IP address, initializing the cluster, creating a local tier, configuring protocols, and provisioning initial storage.

Refer to [Configure ONTAP on a new cluster with System Manager](#) for setup instructions.

### What's next?

After you've installed the RCF, you can [verify the SSH configuration](#).

## Upgrade your Reference Configuration File (RCF)

You upgrade your RCF version when you have an existing version of the RCF file installed on your operational switches.

### Before you begin

Make sure you have the following:

- A current backup of the switch configuration.
- A fully functioning cluster (no errors in the logs or similar issues).
- The current RCF.
- If you are updating your RCF version, you need a boot configuration in the RCF that reflects the desired boot images.

If you need to change the boot configuration to reflect the current boot images, you must do so before reapplying the RCF so that the correct version is included in future reboots.

 Before installing a new switch software version and RCFs, you must erase the switch settings and perform basic configuration. You must be connected to the switch using the serial console or have preserved basic configuration information before erasing the switch settings.

### Step 1: Prepare for the upgrade

1. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=xh
```

Where x is the duration of the maintenance window in hours.

2. Change the privilege level to advanced, entering **y** when prompted to continue:

```
set -privilege advanced
```

The advanced prompt (\*>) appears.

3. Display the ports on each node that are connected to the switches:

```
network device-discovery show
```

#### Show example

```
cluster1::*> network device-discovery show
Node/      Local  Discovered
Protocol    Port   Device (LLDP: ChassisID)  Interface      Platform
-----  -----  -----
-----  
cluster1-01/cdp
      e5a    s1          Ethernet1/7      N3K-
C3232C
      e3b    s2          Ethernet1/7      N3K-
C3232C
cluster1-02/cdp
      e5a    s1          Ethernet1/8      N3K-
C3232C
      e3b    s2          Ethernet1/8      N3K-
C3232C
.
.
```

4. Check the administrative or operational status of each node storage port and storage shelf port.

a. Verify that all the node storage ports are up with a healthy status:

```
storage port show -port-type ENET
```

#### Show example

```
cluster1::*> storage port show -port-type ENET  
  
Speed
-----  -----
Node      Port  Type  Mode  (Gb/s)  State  Status
-----  -----
cluster1-01
      e5a  ENET  -    100  enabled  online
      e3b  ENET  -    100  enabled  online
cluster1-02
      e5a  ENET  -    100  enabled  online
      e3b  ENET  -    100  enabled  online
.
.
```

b. Verify that all the storage shelf ports are up with a healthy status:

```
storage shelf port show
```

**Show example**

```
cluster1::> storage shelf port show

Shelf ID Module State           Internal?
----- -- -----
1.4
    0 A     connected    false
    1 A     connected    false
    2 B     connected    false
    3 B     connected    false
    .
    .
```

c. Verify that the switches are being monitored.

```
system switch ethernet show
```

## Show example

```
cluster1::*> system switch ethernet show
  Switch          Type          Address          Model
  -----
  -----
  s1              storage-network 1.2.3.4        N3K-
  C3232C
    Serial Number: FFFXXXXXXX1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2              storage-network 2.3.4.5        N3K-
  C3232C
    Serial Number: FEEXXXXXXX2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

## Step 2: Upgrade the RCF

1. Log in to switch s2 using SSH or by using a serial console.
2. Shut down the ports connected to all of the ports of the nodes.

```
s2> enable
s2# configure
s2(config)# interface e1/1-32
s2(config-if-range)# shutdown
s2(config-if-range)# exit
s2(config)# exit
```



Make sure to shutdown **all** connected ports to avoid any network connection issues.  
See the Knowledge Base article [Node out of quorum when migrating cluster LIF during switch OS upgrade](#) for further details.

3. If you have not already done so, save a copy of the current switch configuration by copying the output of the following command to a text file:

```
show running-config
```

- a. Record any custom additions between the current `running-config` and the RCF file in use (such as an SNMP configuration for your organization).
- b. For NX-OS 10.2 and later, use the `show diff running-config` command to compare with the saved RCF file in the bootflash. Otherwise, use a third-party diff or compare tool.

4. Save basic configuration details to the `write_erase.cfg` file on the bootflash.

Make sure to configure the following:



- Username and password
- Management IP address
- Default gateway
- Switch name

```
s2# show run | section "switchname" > bootflash:write_erase.cfg  
s2# show run | section "hostname" >> bootflash:write_erase.cfg  
s2# show run | i "username admin password" >> bootflash:write_erase.cfg  
s2# show run | section "vrf context management" >> bootflash:write_erase.cfg  
s2# show run | section "interface mgmt0" >> bootflash:write_erase.cfg
```

See the Knowledge Base article [How to clear configuration on a Cisco interconnect switch while retaining remote connectivity](#) for further details.

5. Verify that the `write_erase.cfg` file is populated as expected:

```
show file bootflash:write_erase.cfg
```

6. Issue the `write erase` command to erase the current saved configuration:

```
s2# write erase
```

Warning: This command will erase the startup-configuration.

Do you wish to proceed anyway? (y/n) [n] **y**

7. Copy the previously saved basic configuration into the startup configuration.

```
s2# copy bootflash:write_erase.cfg startup-config
```

8. Reboot the switch:

```
s2# reload
```

This command will reboot the system. (y/n) ? [n] **y**

9. After the management IP address is reachable again, log in to the switch through SSH.

You might need to update host file entries related to the SSH keys.

10. Copy the RCF to the bootflash of switch s2 using one of the following transfer protocols: FTP, TFTP, SFTP, or SCP.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 3000 Series NX-OS Documentation](#).

#### Show example

This example shows TFTP being used to copy an RCF to the bootflash on switch s2:

```
s2# copy tftp: bootflash: vrf management
Enter source filename: NX3232C-RCF-v1.13-1-Storage.txt
Enter hostname for the tftp server: 172.22.201.50
Trying to connect to tftp server.....Connection to Server
Established.
TFTP get operation was successful
Copy complete, now saving to disk (please wait)...
```

11. Apply the RCF previously downloaded to the bootflash.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 3000 Series documentation](#).

This example shows the RCF file NX3232C-RCF-v1.13-1-Storage.txt being installed on switch s2:

```
s2# copy NX3232C-RCF-v1.13-1-Storage.txt running-config echo-commands
```



Make sure to thoroughly read the **Installation notes**, **Important Notes**, and **banner** sections of your RCF. You must read and follow these instructions to ensure the proper configuration and operation of the switch.

12. Verify that the RCF file is the correct newer version:

```
show running-config
```

When you check the output to verify you have the correct RCF, make sure that the following information is correct:

- The RCF banner
- The node and port settings
- Customizations

The output varies according to your site configuration. Check the port settings and refer to the release notes for any changes specific to the RCF that you have installed.

13. Reapply any previous customizations to the switch configuration.
14. After you verify the RCF versions, custom additions, and switch settings are correct, copy the `running-config` file to the `startup-config` file.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 9000 Series documentation](#).

```
s2# copy running-config startup-config
```

```
[ ] 100% Copy complete
```

15. Reboot switch s2. You can ignore the “cluster switch health monitor” alerts and “cluster ports down” events reported on the nodes while the switch reboots.

```
s2# reload
```

```
This command will reboot the system. (y/n) ? [n] y
```

16. Check the administrative or operational status of each node storage port and storage shelf port.

- a. Verify that all the storage ports are up with a healthy status:

```
storage port show -port-type ENET
```

#### Show example

```
cluster1::*> storage port show -port-type ENET
```

| Node        | Port | Type | Mode | Speed (Gb/s) | State   | Status |
|-------------|------|------|------|--------------|---------|--------|
| cluster1-01 | e5a  | ENET | -    | 100          | enabled | online |
|             | e3b  | ENET | -    | 100          | enabled | online |
| cluster1-02 | e5a  | ENET | -    | 100          | enabled | online |
|             | e3b  | ENET | -    | 100          | enabled | online |
| .           |      |      |      |              |         |        |
| .           |      |      |      |              |         |        |

- b. Verify that all the storage shelf ports are up with a healthy status:

```
storage shelf port show
```

**Show example**

```
cluster1::> storage shelf port show

Shelf ID Module State           Internal?
----- -- ----- -----
1.4
    0 A    connected    false
    1 A    connected    false
    2 B    connected    false
    3 B    connected    false
.
.
```

c. Verify that the switches are being monitored:

```
system switch ethernet show
```

**Show example**

```
cluster1::*> system switch ethernet show
  Switch          Type          Address          Model
  -----  -----
  s1          storage-network  1.2.3.4          N3K-C3232C
    Serial Number: FFFXXXXXXX1
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
  s2          storage-network  2.3.4.5          N3K-C3232C
    Serial Number: FEEXXXXXXX2
    Is Monitored: true
    Reason: None
    Software Version: Cisco Nexus Operating System (NX-OS)
    Software, Version
    10.3(4a)
    Version Source: CDP/ISDP
```

17. Repeat steps 1 to 16 on switch s1.

### Step 3: Verify the storage network

Complete the following steps on each storage switch to verify that the storage network is functioning properly after the RCF upgrade.

1. Verify that the switch ports are up.

```
show interface brief
```

2. Verify that the expected node storage ports are still connected:

```
show cdp neighbors
```

3. Verify that the expected storage shelf ports are still connected:

```
show lldp neighbors
```

4. Verify that the node storage ports and storage shelf ports are in their correct VLANs using the following commands:

```
show vlan brief
```

```
show interface trunk
```

### What's next?

After you've upgraded your RCF, you can [verify the SSH configuration](#).

### Verify your SSH configuration

If you are using the Ethernet Switch Health Monitor (CSHM) and log collection features, verify that SSH and SSH keys are enabled on the switches.

#### Steps

1. Verify that SSH is enabled:

```
(switch) show ssh server
ssh version 2 is enabled
```

2. Verify that the SSH keys are enabled:

```
show ssh key
```

## Show example

```
(switch) # show ssh key

rsa Keys generated:Fri Jun 28 02:16:00 2024

ssh-rsa
AAAAB3NzaC1yc2EAAAQABAAgQDiNrD52Q586wTGJjFAbjB1FaA23EpDrZ2sDCew
17nwlioC6HBejxluI0bAH8hrW8kR+gj0ZAfPpNeLGTg3APj/yiPTBoIZZxbWRShywAM5
PqyxWwRb7kp9Zt1YHzVuHYpSO82KUDowKrL6lox/YtpKoZUDZjrZjAp8hTv3JZsPgQ==

bitcount:1024
fingerprint:
SHA256:aHwhpz07+YCD Srp3isJv2uVGz+mjMMokqdMeXVVXfdo

could not retrieve dsa key information

ecdsa Keys generated:Fri Jun 28 02:30:56 2024

ecdsa-sha2-nistp521
AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAIBmlzdHA1MjEAAACFBABJ+ZX5SFKhS57e
vkE273e0VoqZi4/32dt+f14fBuKv80MjMsmLfjKtCWylwgVt1Zi+C5TIBbugpzez529z
kFSF0ADb8JaGCoaAYe2HvWR/f6QLbKbqVlewCdqWgxzrIY5BPP5GBdxQJMBiOwEdnHg1
u/9Pzh/Vz9cHDcCW9qGE780QHA==

bitcount:521
fingerprint:
SHA256:TFGe2hXn6QIpcsvyHzftHJ7Dceg0vQaULYRALZeHwQ

(switch) # show feature | include scpServer
scpServer          1          enabled
(switch) # show feature | include ssh
sshServer          1          enabled
(switch) #
```



When enabling FIPS, you must change the bitcount to 256 on the switch using the command `ssh key ecdsa 256 force`. See [Configure network security using FIPS](#) for more details.

## What's next?

After you've verified your SSH configuration, you can [configure switch health monitoring](#).

## Reset the 3232C storage switch to factory defaults

To reset the 3232C storage switch to factory defaults, you must erase the 3232C storage switch settings.

### About this task

- You must be connected to the switch using the serial console.
- This task resets the configuration of the management network.

### Steps

1. Erase the existing configuration:

```
write erase
```

```
(s2) # write erase
```

```
Warning: This command will erase the startup-configuration.  
Do you wish to proceed anyway? (y/n) [n] y
```

2. Reload the switch software:

```
reload
```

```
(s2) # reload
```

```
This command will reboot the system. (y/n) ? [n] y
```

The system reboots and enters the configuration wizard. During the boot, if you receive the prompt “Abort Auto Provisioning and continue with normal setup? (yes/no)[n]”, you should respond **yes** to proceed.

### What's next

After resetting the switch, you can [reconfigure](#) it according to your requirements.

## Replace a Cisco Nexus 3232C storage switch

Follow these steps to replace a defective Cisco Nexus 3232C storage switch. This is a non-disruptive procedure.

### Review requirements

The existing network configuration must have the following characteristics:

- The Cisco Ethernet Switches page has the latest RCF and NX-OS versions on your switches.
- Management connectivity must exist on both switches.



Make sure that all troubleshooting steps have been completed to confirm that your switch needs replacing.

The replacement Cisco Nexus 3232C switch must have the following characteristics:

- Management network connectivity must be functional.
- Console access to the replacement switch must be in place.
- The appropriate RCF and NX-OS operating system image must be loaded onto the switch.
- Initial customization of the switch must be complete.

## Replace the switch

This procedure replaces the second Nexus 3232C storage switch s2 with the new 3232C switch ns2. The two nodes are cluster1-01 and cluster1-02.

### Step 1: Confirm the switch to be replaced is s2

1. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all - message MAINT=xh
```

x is the duration of the maintenance window in hours.



The AutoSupport message notifies technical support of this maintenance task so that automatic case creation is suppressed during the maintenance window.

2. Check on the health status of the storage node ports to make sure that there is connection to storage switch s1:

```
storage port show -port-type ENET
```

**Show example**

| storage::*> <b>storage port show -port-type ENET</b> |      |      |         |        |         |         |    |
|------------------------------------------------------|------|------|---------|--------|---------|---------|----|
| Node                                                 | Port | Type | Mode    | Speed  | VLAN    |         |    |
|                                                      |      |      |         | (Gb/s) | State   | Status  | ID |
| <hr/>                                                |      |      |         |        |         |         |    |
| cluster1-01                                          | e5a  | ENET | storage | 100    | enabled | online  | 30 |
|                                                      | e3b  | ENET | storage | 0      | enabled | offline | 30 |
|                                                      | e7a  | ENET | storage | 0      | enabled | offline | 30 |
|                                                      | e7b  | ENET | storage | 0      | enabled | offline | 30 |
| cluster1-02                                          | e5a  | ENET | storage | 100    | enabled | online  | 30 |
|                                                      | e3b  | ENET | storage | 0      | enabled | offline | 30 |
|                                                      | e7a  | ENET | storage | 0      | enabled | offline | 30 |
|                                                      | e7b  | ENET | storage | 0      | enabled | offline | 30 |

3. Verify that storage switch s1 is available:

```
network device-discovery show
```

## Show example

```
storage::*> network device-discovery show
Node/      Local  Discovered
Protocol   Port   Device (LLDP: ChassisID)  Interface
Platform

-----
-----
cluster1-01/cdp
    e5a    s1
    NX3232C
    e4a    cluster1-02
    AFF-A700
    e4e    cluster1-02
    AFF-A700
cluster1-01/lldp
    e5a    s1
    e4a    cluster1-02
    -
    e4e    cluster1-02
    -
cluster1-02/cdp
    e3a    s1
    NX3232C
    e4a    cluster1-01
    AFF-A700
    e4e    cluster1-01
    AFF-A700
cluster1-02/lldp
    e3a    s1
    e4a    cluster1-01
    -
    e4e    cluster1-01
    -
    .
    .

```

4. Run the `show lldp neighbors` command on the working switch to confirm that you can see both nodes and all shelves:

```
show lldp neighbors
```

### Show example

```
s1# show lldp neighbors
Capability codes:
  (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
  (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID          Local Intf      Hold-time  Capability  Port
ID
cluster1-01        Eth1/1        121         S           e5a
cluster1-02        Eth1/2        121         S           e5a
SHFGD2008000011   Eth1/5        121         S           e0a
SHFGD2008000011   Eth1/6        120         S           e0a
SHFGD2008000022   Eth1/7        120         S           e0a
SHFGD2008000022   Eth1/8        120         S           e0a
```

### Step 2: Configure cabling

1. Verify the shelf ports in the storage system:

```
storage shelf port show -fields remote-device,remote-port
```

### Show example

```
storage::*: storage shelf port show -fields remote-device,remote-
port

shelf  id  remote-port  remote-device
-----  --
3.20  0   Ethernet1/5  s1
3.20  1   -           -
3.20  2   Ethernet1/6  s1
3.20  3   -           -
3.30  0   Ethernet1/7  s1
3.20  1   -           -
3.30  2   Ethernet1/8  s1
3.20  3   -           -
```

2. Remove all cables attached to storage switch s2.
3. Reconnect all cables to the replacement switch ns2.

### Step 3: Verify all device configurations on switch ns2

1. Verify the health status of the storage node ports:

```
storage port show -port-type ENET
```

#### Show example

```
storage::*> storage port show -port-type ENET
                                         Speed
VLAN
Node          Port  Type   Mode    (Gb/s)  State   Status
ID
-----
---  
cluster1-01
30           e5a   ENET   storage  100  enabled  online
30           e3b   ENET   storage   0  enabled  offline
30           e7a   ENET   storage   0  enabled  offline
30           e7b   ENET   storage  100  enabled  online
30
cluster1-02
30           e5a   ENET   storage  100  enabled  online
30           e3b   ENET   storage   0  enabled  offline
30           e7a   ENET   storage   0  enabled  offline
30           e7b   ENET   storage  100  enabled  online
30
.
.
```

2. Verify that both switches are available:

```
network device-discovery show
```

### Show example

```
storage::*#> network device-discovery show
Node/      Local  Discovered
Protocol    Port   Device (LLDP: ChassisID)  Interface
Platform

-----
-----
cluster1-01/cdp
    e5a    s1
NX3232C
    e4a    cluster1-02
A700
    e4e    cluster1-02
A700
    e7b    ns2
NX3232C
cluster1-01/lldp
    e5a    s1
    e4a    cluster1-02
    e4e    cluster1-02
    e7b    ns2
cluster1-02/cdp
    e5a    s1
NX3232C
    e4a    cluster1-01
A700
    e4e    cluster1-01
A700
    e7b    ns2
NX3232C
cluster1-02/lldp
    e5a    s1
    e4a    cluster1-01
    e4e    cluster1-01
    e7b    ns2
.
.
```

### 3. Verify the shelf ports in the storage system:

```
storage shelf port show -fields remote-device,remote-port
```

## Show example

```
storage::*> storage shelf port show -fields remote-device,remote-
port
shelf id remote-port remote-device
-----
3.20 0 Ethernet1/5 s1
3.20 1 Ethernet1/5 ns2
3.20 2 Ethernet1/6 s1
3.20 3 Ethernet1/6 ns2
3.30 0 Ethernet1/7 s1
3.20 1 Ethernet1/7 ns2
3.30 2 Ethernet1/8 s1
3.20 3 Ethernet1/8 ns2
.
.
```

4. If you suppressed automatic case creation, re-enable it by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

## What's next?

After you've replaced your switch, you can [configure switch health monitoring](#).

## Upgrade a Cisco Nexus 3232C storage switch

Follow these steps to upgrade the Cisco NX-OS software and reference configuration files (RCF) on Cisco Nexus 3232C switches.

### Review requirements

#### Before you begin

Ensure that the following conditions exist before you upgrade the NX-OS software and RCFs on the storage switch:

- The switch is fully functioning (there should be no errors in the logs or similar issues).
- You have checked or set your desired boot variables in the RCF to reflect the desired boot images if you are installing only NX-OS and keeping your current RCF version.

If you need to change the boot variables to reflect the current boot images, you must do so before reapplying the RCF so that the correct version is instantiated on future reboots.

- You have referred to the appropriate software and upgrade guides available on the [Cisco Nexus 3000 Series Switches](#) page for complete documentation on the Cisco storage upgrade and downgrade procedures.
- The number of 10 GbE and 40/100 GbE ports are defined in the reference configuration files (RCFs) available on the [Cisco® Ethernet Switches](#) page.

## Replace the switch

### About the examples

The examples in this procedure use the following switch and node nomenclature:

- The names of the two storage switches are s1 and s2.
- The nodes are cluster1-01 and cluster1-02.

The examples in this procedure use two nodes; cluster1-01 with two storage ports and cluster1-02 with two storage ports. See the [Hardware Universe](#) to verify the correct storage ports on your platforms. See [What additional information do I need to install my equipment that is not in HWU?](#) for more information about switch installation requirements.



The procedure requires the use of both ONTAP commands and Cisco Nexus 3000 Series Switches commands; ONTAP commands are used unless otherwise indicated. The command outputs might vary depending on different releases of ONTAP.

### Step 1: Check the health status of switches and ports

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all - message MAINT=xh
```

x is the duration of the maintenance window in hours.



The AutoSupport message notifies technical support of this maintenance task so that automatic case creation is suppressed during the maintenance window.

2. Check that the storage switches are available:

```
system switch ethernet show
```

**Show example**

```
storage::*> system switch ethernet show
Switch          Type          Address          Model
-----
-----
s1
          storage-network    172.17.227.5    NX3232C
  Serial Number: FOC221206C2
  Is Monitored: true
  Reason: None
  Software Version: Cisco Nexus Operating System (NX-OS) Software,
Version
          9.3(3)
  Version Source: CDP

s2
          storage-network    172.17.227.6    NX3232C
  Serial Number: FOC220443LZ
  Is Monitored: true
  Reason: None
  Software Version: Cisco Nexus Operating System (NX-OS) Software,
Version
          9.3(3)
  Version Source: CDP

2 entries were displayed.
storage::*>
```

3. Verify that the node ports are healthy and operational:

```
storage port show -port-type ENET
```

**Show example**

```
storage::*> storage port show -port-type ENET
                                         Speed
VLAN
Node          Port Type  Mode    (Gb/s) State  Status
ID
-----
-----
cluster1-01
30          e5a  ENET  storage  100  enabled  online
30          e3b  ENET  storage   0  enabled  offline
30          e7a  ENET  storage   0  enabled  offline
30          e7b  ENET  storage  100  enabled  online
30
cluster1-02
30          e5a  ENET  storage  100  enabled  online
30          e3b  ENET  storage   0  enabled  offline
30          e7a  ENET  storage   0  enabled  offline
30          e7b  ENET  storage  100  enabled  online
30
.
.
```

4. Check that there are no storage switch or cabling issues:

```
system health alert show -instance
```

**Show example**

```
storage::*> system health alert show -instance
There are no entries matching your query.
```

**Step 2: Copy the RCF to Cisco switch s2**

1. Copy the RCF on switch s2 to the switch bootflash using one of the following transfer protocols: FTP, HTTP, TFTP, SFTP, or SCP.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 3000 Series NX-OS Command References](#).

### Show example

The following example shows HTTP being used to copy an RCF to the bootflash on switch s2:

```
s2# copy http://172.16.10.1//cfg/Nexus_3232C_RCF_v1.6-Storage.txt
bootflash: vrf management
% Total      % Received % Xferd  Average   Speed    Time     Time
Time                                         Current
                                         Dload    Upload   Total   Spent
Left                                         Speed
  100          3254       100     3254      0        0      8175      0
---:---:--- ---:---:--- ---:---:--- 8301
Copy complete, now saving to disk (please wait)...
Copy complete.
s2#
```

## 2. Apply the RCF previously downloaded to the bootflash:

```
copy bootflash:
```

### Show example

The following example shows the RCF file `Nexus_3232C_RCF_v1.6-Storage.txt` being installed on switch s2:

```
s2# copy Nexus_3232C_RCF_v1.6-Storage.txt running-config echo-
commands
```

## 3. Verify that the RCF file is the correct newer version:

```
show running-config
```

When you check the output to verify you have the correct RCF, make sure that the following information is correct:

- The RCF banner
- The node and port settings
- Customizations

The output varies according to your site configuration. Check the port settings and refer to the release notes for any changes specific to the RCF that you have installed.



In the banner output from the `show banner motd` command, you must read and follow the instructions in the **IMPORTANT NOTES** section to make sure the proper configuration and operation of the switch.

## Show example

```
s2# show banner motd

*****
* NetApp Reference Configuration File (RCF)
*
* Switch      : Cisco Nexus 3232C
* Filename    : Nexus_3232C_RCF_v1.6-Storage.txt
* Date        : Oct-20-2020
* Version     : v1.6
*
* Port Usage  : Storage configuration
* Ports 1-32: Controller and Shelf Storage Ports
* Ports 33-34: Disabled
*
* IMPORTANT NOTES*
* - This RCF utilizes QoS and requires TCAM re-configuration,
  requiring RCF
* to be loaded twice with the Storage Switch rebooted in
between.
*
* - Perform the following 4 steps to ensure proper RCF
  installation:
*
* (1) Apply RCF first time, expect following messages:
*      - Please save config and reload the system...
*      - Edge port type (portfast) should only be enabled on
  ports...
*      - TCAM region is not configured for feature QoS class
  IPv4 ingress...
*
* (2) Save running-configuration and reboot Cluster Switch
*
* (3) After reboot, apply same RCF second time and expect
  following messages:
*      - % Invalid command at '^' marker
*      - Syntax error while parsing...
*
* (4) Save running-configuration again
*****
s2#
```



When applying the RCF for the first time, the **ERROR: Failed to write VSH commands** message is expected and can be ignored.

4. After you verify that the software versions and switch settings are correct, copy the `running-config` file to the `startup-config` file on switch s2.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 3000 Series NX-OS Command References](#).

#### Show example

The following example shows the `running-config` file successfully copied to the `startup-config` file:

```
s2# copy running-config startup-config
[#####] 100% Copy complete.
```

#### Step 3: Copy the NX-OS image to Cisco switch s2 and reboot

1. Copy the NX-OS image to switch s2.

Show example

```
s2# copy sftp: bootflash: vrf management
Enter source filename: /code/nxos.9.3.4.bin
Enter hostname for the sftp server: 172.19.2.1
Enter username: user1

Outbound-ReKey for 172.19.2.1:22
Inbound-ReKey for 172.19.2.1:22
user1@172.19.2.1's password:
sftp> progress
Progress meter enabled
sftp> get /code/nxos.9.3.4.bin /bootflash/nxos.9.3.4.bin
/code/nxos.9.3.4.bin 100% 1261MB 9.3MB/s 02:15
sftp> exit
Copy complete, now saving to disk (please wait)...
Copy complete.

s2# copy sftp: bootflash: vrf management
Enter source filename: /code/n9000-epld.9.3.4.img
Enter hostname for the sftp server: 172.19.2.1
Enter username: user1

Outbound-ReKey for 172.19.2.1:22
Inbound-ReKey for 172.19.2.1:22
user1@172.19.2.1's password:
sftp> progress
Progress meter enabled
sftp> get /code/n9000-epld.9.3.4.img /bootflash/n9000-
epld.9.3.4.img
/code/n9000-epld.9.3.4.img 100% 161MB 9.5MB/s 00:16
sftp> exit
Copy complete, now saving to disk (please wait)...
Copy complete.
```

2. Install the system image so that the new version will be loaded the next time switch S2 is rebooted.

The switch will be reboot in 10 seconds with the new image as shown in the following output:

Show example

```
s2# install all nxos bootflash:nxos.9.3.4.bin
Installer will perform compatibility check first. Please wait.
Installer is forced disruptive

Verifying image bootflash:/nxos.9.3.4.bin for boot variable "nxos".
[] 100% -- SUCCESS

Verifying image type.
[] 100% -- SUCCESS

Preparing "nxos" version info using image bootflash:/nxos.9.3.4.bin.
[] 100% -- SUCCESS

Preparing "bios" version info using image bootflash:/nxos.9.3.4.bin.
[] 100% -- SUCCESS

Performing module support checks.
[] 100% -- SUCCESS

Notifying services about system upgrade.
[] 100% -- SUCCESS

Compatibility check is done:
Module  bootable      Impact  Install-type  Reason
-----  -----  -----  -----  -----
1       yes      disruptive      reset  default upgrade is
not hitless

Images will be upgraded according to following table:
Module      Image          Running-Version(pri:alt)
New-Version  Upg-Required
-----  -----
1           nxos          9.3(3)
9.3(4)      yes
1           bios          v08.37(01/28/2020):v08.23(09/23/2015)
v08.38(05/29/2020)      no

Switch will be reloaded for disruptive upgrade.
Do you want to continue with the installation (y/n)? [n] y
input string too long
```

```
Do you want to continue with the installation (y/n)? [n] y
```

Install is in progress, please wait.

Performing runtime checks.

```
[] 100% -- SUCCESS
```

Setting boot variables.

```
[] 100% -- SUCCESS
```

Performing configuration copy.

```
[] 100% -- SUCCESS
```

Module 1: Refreshing compact flash and upgrading  
bios/loader/bootrom.

Warning: please do not remove or power off the module at this time.

```
[] 100% -- SUCCESS
```

Finishing the upgrade, switch will reboot in 10 seconds.

```
s2#
```

### 3. Save the configuration.

For more information on Cisco commands, see the appropriate guide in the [Cisco Nexus 3000 Series NX-OS Command References](#).

You are prompted to reboot the system.

#### Show example

```
s2# copy running-config startup-config  
[] 100% Copy complete.  
s2# reload  
This command will reboot the system. (y/n)? [n] y
```

### 4. Confirm that the new NX-OS version number is on the switch:

## Show example

```
s2# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2020, Cisco and/or its affiliates.
All rights reserved.

The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their
own

licenses, such as open source. This software is provided "as is,"
and unless

otherwise stated, there is no warranty, express or implied,
including but not

limited to warranties of merchantability and fitness for a
particular purpose.

Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.

A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/library.txt.
```

### Software

```
BIOS: version 08.38
NXOS: version 9.3(4)
BIOS compile time: 05/29/2020
NXOS image file is: bootflash:///nxos.9.3.4.bin
NXOS compile time: 4/28/2020 21:00:00 [04/29/2020 02:28:31]
```

### Hardware

```
cisco Nexus3000 C3232C Chassis (Nexus 9000 Series)
Intel(R) Xeon(R) CPU E5-2403 v2 @ 1.80GHz with 8154432 kB of
memory.

Processor Board ID FOC20291J6K
```

```
Device name: S2
bootflash: 53298520 kB
Kernel uptime is 0 day(s), 0 hour(s), 3 minute(s), 42 second(s)
```

```
Last reset at 157524 usecs after Mon Nov 2 18:32:06 2020
```

Reason: Reset due to upgrade

System version: 9.3(3)

Service:

plugin

Core Plugin, Ethernet Plugin

Active Package(s):

s2#

#### **Step 4: Recheck the health status of switches and ports**

1. Recheck that the storage switches are available after the reboot:

```
system switch ethernet show
```

[Show example](#)

```
storage::*> system switch ethernet show
Switch          Type          Address
Model
-----
-----
s1              storage-network  172.17.227.5
NX3232C
  Serial Number: FOC221206C2
  Is Monitored: true
  Reason: None
  Software Version: Cisco Nexus Operating System (NX-OS) Software,
Version
  9.3(4)
  Version Source: CDP

s2              storage-network  172.17.227.6
NX3232C
  Serial Number: FOC220443LZ
  Is Monitored: true
  Reason: None
  Software Version: Cisco Nexus Operating System (NX-OS) Software,
Version
  9.3(4)
  Version Source: CDP
```

2. Verify that the switch ports are healthy and operational after the reboot:

```
storage port show -port-type ENET
```

**Show example**

```
storage::*> storage port show -port-type ENET
                                         Speed
VLAN
Node          Port Type  Mode    (Gb/s) State   Status
ID
-----
-----
cluster1-01
30          e5a  ENET  storage  100  enabled  online
30          e3b  ENET  storage   0  enabled  offline
30          e7a  ENET  storage   0  enabled  offline
30          e7b  ENET  storage  100  enabled  online
30
cluster1-02
30          e5a  ENET  storage  100  enabled  online
30          e3b  ENET  storage   0  enabled  offline
30          e7a  ENET  storage   0  enabled  offline
30          e7b  ENET  storage  100  enabled  online
30
```

3. Recheck that there are no storage switch or cabling issues with the cluster:

```
system health alert show -instance
```

**Show example**

```
storage::*> system health alert show -instance
There are no entries matching your query.
```

4. Repeat the procedure to upgrade the NX-OS software and RCF on switch s1.
5. If you suppressed automatic case creation, re-enable it by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

**What's next?**

After you've upgraded your switch, you can [configure switch health monitoring](#).

# NVIDIA SN2100

## Get started

### Installation and setup workflow for NVIDIA SN2100 switches

The NVIDIA SN2100 is an Ethernet switch that allows you to switch data between controllers and disk shelves.

Follow these workflow steps to install and setup your SN2100 switches.

1

#### [Review the configuration requirements](#)

Review the configuration requirements for the SN2100 storage switch.

2

#### [Review the components and part numbers](#)

Review the components and part numbers for the SN2100 storage switch.

3

#### [Review the required documentation](#)

Review specific switch and controller documentation to set up your SN2100 switches and the ONTAP cluster.

4

#### [Install the hardware](#)

Install the switch hardware.

5

#### [Configure the software](#)

Configure the switch software.

### Configuration requirements for NVIDIA SN2100 switches

For NVIDIA SN2100 switch installation and maintenance, be sure to review all requirements.

#### Installation requirements

If you want to build ONTAP clusters with more than two nodes, you need two supported cluster network switches. You can use additional management switches, which are optional.

You install the NVIDIA SN2100 switch (X190006/X190106) in the NVIDIA dual/single switch cabinet with the standard brackets that are included with the switch.

For cabling guidelines, see [Cabling and configuration considerations](#).

## ONTAP and Linux support

The NVIDIA SN2100 switch is a 10/25/40/100 Gb Ethernet switch running Cumulus Linux. The switch supports the following:

- ONTAP 9.10.1P3. The SN2100 switch serves Cluster and Storage applications in ONTAP 9.10.1P3 over different switch-pairs. From ONTAP 9.10.1P3, you can use NVIDIA SN2100 switches to combine storage and cluster functionality into a shared switch configuration.
- Cumulus Linux (CL) OS version 4.4.3. For current compatibility information, see the [NVIDIA Ethernet Switches](#) information page.
- You can install Cumulus Linux when the switch is running Cumulus Linux or ONIE.

## What's next

After you've reviewed the configuration requirements, you can confirm your [components and part numbers](#).

## Components and part numbers for NVIDIA SN2100 switches

For NVIDIA SN2100 switch installation and maintenance, be sure to review the list of components and part numbers for the cabinet and rail kit.

### Cabinet details

You install the NVIDIA SN2100 switch (X190006/X190106) in the NVIDIA dual/single switch cabinet with the standard brackets that are included with the switch.

### Rail kit details

The following table lists the part number and description for the SN2100 switches and rail kits:

| Part number   | Description                                       |
|---------------|---------------------------------------------------|
| X190006-PE    | Cluster Switch, NVIDIA SN2100, 16PT 100G, PTSX    |
| X190006-PI    | Cluster Switch, NVIDIA SN2100, 16PT 100G, PSIN    |
| X190106-FE-PE | Switch, NVIDIA SN2100, 16PT 100G, PTSX, Front End |
| X190106-FE-PI | Switch, NVIDIA SN2100, 16PT 100G, PSIN, Front End |
| X-MTEF-KIT-D  | Rail Kit, NVIDIA Dual switch side by side         |
| X-MTEF-KIT-E  | Rail Kit, NVIDIA Single switch short depth        |



See NVIDIA documentation for details on [installing your SN2100 switch and rail kit](#).

## What's next

After you've confirmed your components and part numbers, you can review the [required documentation](#).

## Documentation requirements for NVIDIA SN2100 switches

For NVIDIA SN2100 switch installation and maintenance, be sure to review all the recommended documentation.

The following table lists the documentation available for the NVIDIA SN2100 switches.

| Title                                                                                      | Description                                                                                                                              |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <a href="#">Setup and configure your NVIDIA SN2100 switches</a>                            | Describes how to setup and configure your NVIDIA SN2100 switches, including installing Cumulus Linux and applicable RCFs.                |
| <a href="#">Migrate from a Cisco storage switch to a NVIDIA SN2100 storage switch</a>      | Describes how to migrate from environments that use Cisco storage switches to environments that use NVIDIA SN2100 storage switches.      |
| <a href="#">Migrate to a two-node switched cluster with NVIDIA SN2100 cluster switches</a> | Describes how to migrate to a two-node switched environment using NVIDIA SN2100 cluster switches.                                        |
| <a href="#">Replace a NVIDIA SN2100 storage switch</a>                                     | Describes the procedure to replace a defective NVIDIA SN2100 storage switch and download Cumulus Linux and reference configuration file. |

## Install hardware

### Hardware install workflow for NVIDIA SN2100 storage switches

To install and configure the hardware for a SN2100 storage switch, follow these steps:

1

#### [Install the hardware](#)

Install the switch hardware.

2

#### [Review cabling and configuration considerations](#)

Review requirements for optical connections, the QSA adapter, and the switchport speed.

3

#### [Cable the NS224 shelves](#)

Follow the cabling procedures if you have a system in which the NS224 drive shelves need to be cabled as switch-attached storage (not direct-attached storage).

### Install the hardware for the NVIDIA SN2100 switch

To install the SN2100 hardware, refer to NVIDIA's documentation.

#### Steps

1. Review the [configuration requirements](#).

2. Follow the instructions in [NVIDIA Switch Installation Guide](#).

### What's next?

After you've installed your hardware, you can [review cabling and configuration](#) requirements.

### Review cabling and configuration considerations

Before configuring your NVIDIA SN2100 switch, review the following considerations.

#### NVIDIA port details

| Switch ports | Ports usage                          |
|--------------|--------------------------------------|
| swp1s0-3     | 4x10GbE breakout cluster port nodes  |
| swp2s0-3     | 4x25GbE breakout cluster port nodes  |
| swp3-14      | 40/100GbE cluster port nodes         |
| swp15-16     | 100GbE Inter-Switch Link (ISL) ports |

See the [Hardware Universe](#) for more information on switch ports.

#### Link-up delays with optical connections

If you are experiencing link-up delays of more than five seconds, Cumulus Linux 5.4 and later includes support for fast link-up. You can configure the links by using the `nv set` command as follows:

```
nv set interface <interface-id> link fast-linkup on
nv config apply
reload the switchd
```

#### Show example

```
cumulus@cumulus-cs13:mgmt:~$ nv set interface swp5 link fast-linkup on
cumulus@cumulus-cs13:mgmt:~$ nv config apply
switchd need to reload on this config change
```

```
Are you sure? [y/N] y
applied [rev_id: 22]
```

```
Only switchd reload required
```

## Support for copper connections

The following configuration changes are required to fix this issue.

### Cumulus Linux 4.4.3

1. Identify the name for each interface using 40GbE/100GbE copper cables:

```
cumulus@cumulus:mgmt:~$ net show interface pluggables

Interface Identifier Vendor Name Vendor PN Vendor SN
Vendor Rev

-----
-----
swp3      0x11 (QSFP28) Molex      112-00576  93A2229911111
B0
swp4      0x11 (QSFP28) Molex      112-00576  93A2229922222
B0
```

2. Add the following two lines to the `/etc/cumulus/switchd.conf` file for every port (`swp<n>`) that is using 40GbE/100GbE copper cables:

- `interface.swp<n>.enable_media depended_linkup_flow=TRUE`
- `interface.swp<n>.enable_short_tuning=TRUE`

For example:

```
cumulus@cumulus:mgmt:~$ sudo nano /etc/cumulus/switchd.conf

.
.
.
interface.swp3.enable_media depended_linkup_flow=TRUE
interface.swp3.enable_short_tuning=TRUE
interface.swp4.enable_media depended_linkup_flow=TRUE
interface.swp4.enable_short_tuning=TRUE
```

3. Restart the `switchd` service:

```
cumulus@cumulus:mgmt:~$ sudo systemctl restart switchd.service
```

4. Confirm that the ports are up:

```
cumulus@cumulus:mgmt:~$ net show interface all
```

| State | Name | Spd  | MTU  | Mode     | LLDP | Summary                |
|-------|------|------|------|----------|------|------------------------|
| UP    | swp3 | 100G | 9216 | Trunk/L2 |      | Master:<br>bridge (UP) |
| UP    | swp4 | 100G | 9216 | Trunk/L2 |      | Master:<br>bridge (UP) |

## Cumulus Linux 5.x

1. Identify the name for each interface using 40GbE/100GbE copper cables:

```
cumulus@cumulus:mgmt:~$ nv show interface pluggables
```

| Interface | Identifier    | Vendor Name | Vendor PN | Vendor SN     |
|-----------|---------------|-------------|-----------|---------------|
| Vendor    | Rev           |             |           |               |
| swp3      | 0x11 (QSFP28) | Molex       | 112-00576 | 93A2229911111 |
| B0        |               |             |           |               |
| swp4      | 0x11 (QSFP28) | Molex       | 112-00576 | 93A2229922222 |
| B0        |               |             |           |               |

2. Configure the links using the `nv set` command as follows:

- `nv set interface <interface-id> link fast-linkup on`
- `nv config apply`
- Reload the `switchd` service

For example:

```
cumulus@cumulus:mgmt:~$ nv set interface swp5 link fast-linkup on
cumulus@cumulus:mgmt:~$ nv config apply
switchd need to reload on this config change
```

```
Are you sure? [y/N] y
applied [rev_id: 22]
```

```
Only switchd reload required
```

3. Confirm that the ports are up:

```
cumulus@cumulus:mgmt:~$ net show interface all
```

| State | Name | Spd  | MTU  | Mode     | LLDP | Summary                |
|-------|------|------|------|----------|------|------------------------|
| UP    | swp3 | 100G | 9216 | Trunk/L2 |      | Master:<br>bridge (UP) |
| UP    | swp4 | 100G | 9216 | Trunk/L2 |      | Master:<br>bridge (UP) |

See the Knowledge Base article [SN2100 switch fails to connect using 40/100GbE copper cables](#) for further details.

On Cumulus Linux 4.4.2, copper connections are not supported on SN2100 switches with X1151A NIC, X1146A NIC, or onboard 100GbE ports.

For example:

- AFF A800 on ports e0a and e0b
- AFF A320 on ports e0g and e0h

#### QSA adapter

When a QSA adapter is used to connect to the 10GbE/25GbE cluster ports on a platform, the link might not come up.

To resolve this issue, do the following:

- For 10GbE, manually set the swp1s0-3 link speed to 10000 and set auto-negotiation to off.
- For 25GbE, manually set the swp2s0-3 link speed to 25000 and set auto-negotiation to off.



When using 10GbE/25GbE QSA adapters, insert them in non-breakout 40GbE/100GbE ports (swp3-swp14). Do not insert the QSA adapter in a port that is configured for breakout.

#### Set interface speed on breakout ports

Depending on the transceiver in the switch port, you might need to set the speed on the switch interface to a fixed speed. If using 10GbE and 25GbE breakout ports, verify that auto-negotiation is off and set the interface speed on the switch.

## Cumulus Linux 4.4.3

For example:

```
cumulus@cumulus:~$ net add int swp1s3 link autoneg off && net com
--- /etc/network/interfaces      2019-11-17 00:17:13.470687027 +0000
+++ /run/nclu/ifupdown2/interfaces.tmp 2019-11-24 00:09:19.435226258
+0000
@0 -37,21 +37,21 @0
    alias 10G Intra-Cluster Node
    link-autoneg off
    link-speed 10000 <---- port speed set
    mstpctl-bpduguard yes
    mstpctl-portadminedge yes
    mtu 9216

auto swp1s3
iface swp1s3
    alias 10G Intra-Cluster Node
    - link-autoneg off
    + link-autoneg on
    link-speed 10000 <---- port speed set
    mstpctl-bpduguard yes
    mstpctl-portadminedge yes
    mtu 9216

auto swp2s0
iface swp2s0
    alias 25G Intra-Cluster Node
    link-autoneg off
    link-speed 25000 <---- port speed set
```

Check the interface and port status to verify that the settings are applied:

```
cumulus@cumulus:~$ net show interface
```

| State           | Name   | Spd  | MTU  | Mode       | LLDP         | Summary |
|-----------------|--------|------|------|------------|--------------|---------|
| <hr/>           |        |      |      |            |              |         |
| <hr/>           |        |      |      |            |              |         |
| <hr/>           |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |
| UP              | swp1s0 | 10G  | 9216 | Trunk/L2   | cs07 (e4c)   | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| UP              | swp1s1 | 10G  | 9216 | Trunk/L2   | cs07 (e4d)   | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| UP              | swp1s2 | 10G  | 9216 | Trunk/L2   | cs08 (e4c)   | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| UP              | swp1s3 | 10G  | 9216 | Trunk/L2   | cs08 (e4d)   | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |
| UP              | swp3   | 40G  | 9216 | Trunk/L2   | cs03 (e4e)   | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| UP              | swp4   | 40G  | 9216 | Trunk/L2   | cs04 (e4e)   | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| DN              | swp5   | N/A  | 9216 | Trunk/L2   |              | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| DN              | swp6   | N/A  | 9216 | Trunk/L2   |              | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| DN              | swp7   | N/A  | 9216 | Trunk/L2   |              | Master: |
| br_default(UP)  |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |
| UP              | swp15  | 100G | 9216 | BondMember | cs01 (swp15) | Master: |
| cluster_isl(UP) |        |      |      |            |              |         |
| UP              | swp16  | 100G | 9216 | BondMember | cs01 (swp16) | Master: |
| cluster_isl(UP) |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |
| .               |        |      |      |            |              |         |

## Cumulus Linux 5.x

For example:

```
cumulus@cumulus:mgmt:~$ nv set interface swp1s3 link auto-negotiate off
cumulus@cumulus:mgmt:~$ nv set interface swp1s3 link speed 10G
cumulus@cumulus:mgmt:~$ nv show interface swp1s3
```

link

|                |      |      |
|----------------|------|------|
| auto-negotiate | off  | off  |
| off            |      |      |
| duplex         | full | full |
| full           |      |      |
| speed          | 10G  | 10G  |
| 10G            |      |      |
| fec            | auto | auto |
| auto           |      |      |
| mtu            | 9216 | 9216 |
| 9216           |      |      |
| [breakout]     |      |      |
| state          | up   | up   |
| up             |      |      |

Check the interface and port status to verify that the settings are applied:

```
cumulus@cumulus:~$ nv show interface
```

| State | Name                     | Spd  | MTU  | Mode       | LLDP         | Summary |
|-------|--------------------------|------|------|------------|--------------|---------|
| UP    | swp1s0<br>br_default(UP) | 10G  | 9216 | Trunk/L2   | cs07 (e4c)   | Master: |
| UP    | swp1s1<br>br_default(UP) | 10G  | 9216 | Trunk/L2   | cs07 (e4d)   | Master: |
| UP    | swp1s2<br>br_default(UP) | 10G  | 9216 | Trunk/L2   | cs08 (e4c)   | Master: |
| UP    | swp1s3<br>br_default(UP) | 10G  | 9216 | Trunk/L2   | cs08 (e4d)   | Master: |
| .     | .                        |      |      |            |              |         |
| UP    | swp3<br>br_default(UP)   | 40G  | 9216 | Trunk/L2   | cs03 (e4e)   | Master: |
| UP    | swp4<br>br_default(UP)   | 40G  | 9216 | Trunk/L2   | cs04 (e4e)   | Master: |
| DN    | swp5<br>br_default(UP)   | N/A  | 9216 | Trunk/L2   |              | Master: |
| DN    | swp6<br>br_default(UP)   | N/A  | 9216 | Trunk/L2   |              | Master: |
| DN    | swp7<br>br_default(UP)   | N/A  | 9216 | Trunk/L2   |              | Master: |
| .     | .                        |      |      |            |              |         |
| UP    | swp15<br>cluster_isl(UP) | 100G | 9216 | BondMember | cs01 (swp15) | Master: |
| UP    | swp16<br>cluster_isl(UP) | 100G | 9216 | BondMember | cs01 (swp16) | Master: |
| .     | .                        |      |      |            |              |         |

## What's next?

After you've reviewed your cabling and configuration requirements, you can [cable the NS224 shelves as switch-attached storage](#).

## Cable NS224 shelves as switch-attached storage

If you have a system in which the NS224 drive shelves need to be cabled as switch-attached storage (not direct-attached storage), use the information provided here.

- Cable NS224 drive shelves through storage switches:

[Information for cabling switch-attached NS224 drive shelves](#)

- Install your storage switches:

[AFF and FAS Switch Documentation](#)

- Confirm supported hardware, such as storage switches and cables, for your platform model:

[NetApp Hardware Universe](#)

## Configure software

### Software install workflow for NVIDIA SN2100 storage switches

To install and configure the software for a NVIDIA SN2100 switch, follow these steps:

1

#### [Configure the switch](#)

Configure the NVIDIA SN2100 switch.

2

#### [Install Cumulus Linux in Cumulus mode](#)

You can install the Cumulus Linux (CL) OS when the switch is running Cumulus Linux.

3

#### [Install Cumulus Linux in ONIE mode](#)

Alternatively, you can install the Cumulus Linux (CL) OS when the switch is running Cumulus Linux in ONIE mode.

4

#### [Install the Reference Configuration File \(RCF\) script](#)

There are two RCF scripts available for Clustering and Storage applications. The procedure for each is the same.

5

#### [Install the CSHM file](#)

You can install the applicable configuration file for Ethernet switch health monitoring of NVIDIA cluster switches.

6

#### [Reset the switch to factory defaults](#)

Erase the SN2100 storage switch settings.

### Configure the NVIDIA SN2100 switch

To configure the SN2100 switch, refer to NVIDIA's documentation.

## Steps

1. Review the [configuration requirements](#).
2. Follow the instructions in [NVIDIA System Bring-Up..](#)

## What's next?

After you've configured your switches, you can [install Cumulus Linux in Cumulus mode](#) or [install Cumulus Linux in ONIE mode](#).

### Install Cumulus Linux in Cumulus mode

Follow this procedure to install Cumulus Linux (CL) OS when the switch is running in Cumulus mode.



Cumulus Linux (CL) OS can be installed either when the switch is running Cumulus Linux or ONIE (see [Install in ONIE mode](#)).

#### Before you begin

Make sure that the following are available:

- Intermediate-level Linux knowledge.
- Familiarity with basic text editing, UNIX file permissions, and process monitoring. A variety of text editors are pre-installed, including `vi` and `nano`.
- Access to a Linux or UNIX shell. If you are running Windows, use a Linux environment as your command line tool for interacting with Cumulus Linux.
- The baud rate requirement must be set to 115200 on the serial console switch for NVIDIA SN2100 switch console access, as follows:
  - 115200 baud
  - 8 data bits
  - 1 stop bit
  - parity: none
  - flow control: none

#### About this task

Be aware of the following:



Each time Cumulus Linux is installed, the entire file system structure is erased and rebuilt.



The default password for the `cumulus` user account is **cumulus**. The first time you log into Cumulus Linux, you must change this default password. Be sure to update any automation scripts before installing a new image. Cumulus Linux provides command line options to change the default password automatically during the installation process.

## Example 1. Steps

### Cumulus Linux 4.4.3

1. Log in to the switch.

First time log in to the switch requires username/password of **cumulus/cumulus** with sudo privileges.

```
cumulus login: cumulus
Password: cumulus
You are required to change your password immediately (administrator
enforced)
Changing password for cumulus.
Current password: cumulus
New password: <new_password>
Retype new password: <new_password>
```

2. Check the Cumulus Linux version: `net show system`

```
cumulus@cumulus:mgmt:~$ net show system
Hostname..... cumulus
Build..... Cumulus Linux 4.4.3
Uptime..... 0:08:20.860000
Model..... Mlnx X86
CPU..... x86_64 Intel Atom C2558 2.40GHz
Memory..... 8GB
Disk..... 14.7GB
ASIC..... Mellanox Spectrum MT52132
Ports..... 16 x 100G-QSFP28
Part Number..... MSN2100-CB2FC
Serial Number.... MT2105T05177
Platform Name.... x86_64-mlnx_x86-r0
Product Name.... MSN2100
ONIE Version..... 2019.11-5.2.0020-115200
Base MAC Address. 04:3F:72:43:92:80
Manufacturer..... Mellanox
```

3. Configure the hostname, IP address, subnet mask, and default gateway. The new hostname only becomes effective after restarting the console/SSH session.



A Cumulus Linux switch provides at least one dedicated Ethernet management port called `eth0`. This interface is specifically for out-of-band management use. By default, the management interface uses DHCPv4 for addressing.



Do not use an underscore (\_), apostrophe ('), or non-ASCII characters in the hostname.

```
cumulus@cumulus:mgmt:~$ net add hostname sw1
cumulus@cumulus:mgmt:~$ net add interface eth0 ip address
10.233.204.71
cumulus@cumulus:mgmt:~$ net add interface eth0 ip gateway
10.233.204.1
cumulus@cumulus:mgmt:~$ net pending
cumulus@cumulus:mgmt:~$ net commit
```

This command modifies both the /etc/hostname and /etc/hosts files.

4. Confirm that the hostname, IP address, subnet mask, and default gateway have been updated.

```
cumulus@sw1:mgmt:~$ hostname sw1
cumulus@sw1:mgmt:~$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.233.204.71 netmask 255.255.254.0 broadcast 10.233.205.255
inet6 fe80::bace:f6ff:fe19:1df6 prefixlen 64 scopeid 0x20<link>
ether b8:ce:f6:19:1d:f6 txqueuelen 1000 (Ethernet)
RX packets 75364 bytes 23013528 (21.9 MiB)
RX errors 0 dropped 7 overruns 0 frame 0
TX packets 4053 bytes 827280 (807.8 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 device
memory 0xdfc00000-dfc1ffff

cumulus@sw1::mgmt:~$ ip route show vrf mgmt
default via 10.233.204.1 dev eth0
unreachable default metric 4278198272
10.233.204.0/23 dev eth0 proto kernel scope link src 10.233.204.71
127.0.0.0/8 dev mgmt proto kernel scope link src 127.0.0.1
```

5. Set the date, time, time zone, and NTP server on the switch.

- a. Verify the current time zone:

```
cumulus@sw1:~$ cat /etc/timezone
```

- b. Update to the new time zone:

```
cumulus@sw1:~$ sudo dpkg-reconfigure --frontend noninteractive
tzdata
```

c. Verify your current time zone:

```
cumulus@switch:~$ date +%Z
```

d. To set the time zone using the guided wizard, run the following command:

```
cumulus@sw1:~$ sudo dpkg-reconfigure tzdata
```

e. Set the software clock according to the configured time zone:

```
cumulus@switch:~$ sudo date -s "Tue Oct 28 00:37:13 2023"
```

f. Set the current value of the software clock to the hardware clock:

```
cumulus@switch:~$ sudo hwclock -w
```

g. Add an NTP server if required:

```
cumulus@sw1:~$ net add time ntp server <cumulus.network.ntp.org> iburst
cumulus@sw1:~$ net pending
cumulus@sw1:~$ net commit
```

h. Verify that ntpd is running on the system:

```
cumulus@sw1:~$ ps -ef | grep ntp
ntp          4074      1  0 Jun20 ?          00:00:33 /usr/sbin/ntpd -p
/var/run/ntpd.pid -g -u 101:102
```

i. Specify the NTP source interface. By default, the source interface that NTP uses is eth0. You can configure a different NTP source interface as follows:

```
cumulus@sw1:~$ net add time ntp source <src_int>
cumulus@sw1:~$ net pending
cumulus@sw1:~$ net commit
```

6. Install Cumulus Linux 4.4.3:

```
cumulus@sw1:mgmt:~$ sudo onie-install -a -i http://<web-server>/<path>/cumulus-linux-4.4.3-mlx-amd64.bin
```

The installer starts the download. Type **y** when prompted.

7. Reboot the NVIDIA SN2100 switch:

```
cumulus@sw1:mgmt:~$ sudo reboot
```

8. The installation starts automatically, and the following GRUB screen choices appear. Do **not** make any selections.

- Cumulus-Linux GNU/Linux
- ONIE: Install OS
- CUMULUS-INSTALL
- Cumulus-Linux GNU/Linux

9. Repeat steps 1 to 4 to log in.

10. Verify that the Cumulus Linux version is 4.4.3: `net show version`

```
cumulus@sw1:mgmt:~$ net show version
NCLU_VERSION=1.0-c14.4.3u0
DISTRIB_ID="Cumulus Linux"
DISTRIB_RELEASE=4.4.3
DISTRIB_DESCRIPTION="Cumulus Linux 4.4.3"
```

11. Create a new user and add this user to the `sudo` group. This user only becomes effective after the console/SSH session is restarted.

```
sudo adduser --ingroup netedit admin
```

```
cumulus@sw1:mgmt:~$ sudo adduser --ingroup netedit admin
[sudo] password for cumulus:
Adding user 'admin' ...
Adding new user 'admin' (1001) with group `netedit' ...
Creating home directory '/home/admin' ...
Copying files from '/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for admin
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] y
```

```
cumulus@sw1:mgmt:~$ sudo adduser admin sudo
[sudo] password for cumulus:
Adding user `admin' to group `sudo' ...
Adding user admin to group sudo
Done.
cumulus@sw1:mgmt:~$ exit
logout
Connection to 10.233.204.71 closed.
```

```
[admin@cycrh6sv101 ~]$ ssh admin@10.233.204.71
admin@10.233.204.71's password:
Linux sw1 4.19.0-cl-1-amd64 #1 SMP Cumulus 4.19.206-1+cl4.4.1ul
(2021-09-09) x86_64
Welcome to NVIDIA Cumulus (R) Linux (R)
```

For support and online technical documentation, visit  
<http://www.cumulusnetworks.com/support>

The registered trademark Linux (R) is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

```
admin@sw1:mgmt:~$
```

## Cumulus Linux 5.4.0

1. Log in to the switch.

First time log in to the switch requires username/password of **cumulus/cumulus** with sudo

privileges.

```
cumulus login: cumulus
Password: cumulus
You are required to change your password immediately (administrator
enforced)
Changing password for cumulus.
Current password: cumulus
New password: <new_password>
Retype new password: <new_password>
```

2. Check the Cumulus Linux version: `nv show system`

```
cumulus@cumulus:mgmt:~$ nv show system
operational      applied      description
-----
hostname          cumulus      cumulus
build             Cumulus Linux 5.3.0  system build version
uptime            6 days, 8:37:36  system uptime
timezone          Etc/UTC      system time zone
```

3. Configure the hostname, IP address, subnet mask, and default gateway. The new hostname only becomes effective after restarting the console/SSH session.



A Cumulus Linux switch provides at least one dedicated Ethernet management port called `eth0`. This interface is specifically for out-of-band management use. By default, the management interface uses DHCPv4 for addressing.



Do not use an underscore (\_), apostrophe ('), or non-ASCII characters in the hostname.

```
cumulus@cumulus:mgmt:~$ nv set system hostname sw1
cumulus@cumulus:mgmt:~$ nv set interface eth0 ip address
10.233.204.71/24
cumulus@cumulus:mgmt:~$ nv set interface eth0 ip gateway
10.233.204.1
cumulus@cumulus:mgmt:~$ nv config apply
cumulus@cumulus:mgmt:~$ nv config save
```

This command modifies both the `/etc/hostname` and `/etc/hosts` files.

4. Confirm that the hostname, IP address, subnet mask, and default gateway have been updated.

```
cumulus@sw1:mgmt:~$ hostname sw1
cumulus@sw1:mgmt:~$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.233.204.71 netmask 255.255.254.0 broadcast 10.233.205.255
inet6 fe80::bace:f6ff:fe19:1df6 prefixlen 64 scopeid 0x20<link>
ether b8:ce:f6:19:1d:f6 txqueuelen 1000 (Ethernet)
RX packets 75364 bytes 23013528 (21.9 MiB)
RX errors 0 dropped 7 overruns 0 frame 0
TX packets 4053 bytes 827280 (807.8 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 device
memory 0xdxfc00000-dfc1ffff

cumulus@sw1::mgmt:~$ ip route show vrf mgmt
default via 10.233.204.1 dev eth0
unreachable default metric 4278198272
10.233.204.0/23 dev eth0 proto kernel scope link src 10.233.204.71
127.0.0.0/8 dev mgmt proto kernel scope link src 127.0.0.1
```

5. Set the time zone, date, time, and NTP server on the switch.

a. Set the time zone:

```
cumulus@sw1:~$ nv set system timezone US/Eastern
cumulus@sw1:~$ nv config apply
```

b. Verify your current time zone:

```
cumulus@switch:~$ date +%Z
```

c. To set the time zone using the guided wizard, run the following command:

```
cumulus@sw1:~$ sudo dpkg-reconfigure tzdata
```

d. Set the software clock according to the configured time zone:

```
cumulus@sw1:~$ sudo date -s "Tue Oct 28 00:37:13 2023"
```

e. Set the current value of the software clock to the hardware clock:

```
cumulus@sw1:~$ sudo hwclock -w
```

- f. Add an NTP server if required:

```
cumulus@sw1:~$ nv set service ntp mgmt listen eth0
cumulus@sw1:~$ nv set service ntp mgmt server <server> iburst on
cumulus@sw1:~$ nv config apply
cumulus@sw1:~$ nv config save
```

See the Knowledge Base article [NTP server configuration is not working with NVIDIA SN2100 switches](#) for further details.

- g. Verify that ntpd is running on the system:

```
cumulus@sw1:~$ ps -ef | grep ntp
ntp        4074      1  0 Jun20 ?          00:00:33 /usr/sbin/ntpd -p
/var/run/ntpd.pid -g -u 101:102
```

- h. Specify the NTP source interface. By default, the source interface that NTP uses is eth0. You can configure a different NTP source interface as follows:

```
cumulus@sw1:~$ nv set service ntp default listen <src_int>
cumulus@sw1:~$ nv config apply
```

6. Install Cumulus Linux 5.4.0:

```
cumulus@sw1:mgmt:~$ sudo onie-install -a -i http://<web-server>/<path>/cumulus-linux-5.4-mlx-amd64.bin
```

The installer starts the download. Type **y** when prompted.

7. Reboot the NVIDIA SN2100 switch:

```
cumulus@sw1:mgmt:~$ sudo reboot
```

8. The installation starts automatically, and the following GRUB screen choices appear. Do **not** make any selections.

- Cumulus-Linux GNU/Linux
- ONIE: Install OS
- CUMULUS-INSTALL
- Cumulus-Linux GNU/Linux

9. Repeat steps 1 to 4 to log in.

10. Verify that the Cumulus Linux version is 5.4.0: nv show system

```
cumulus@cumulus:mgmt:~$ nv show system
operational      applied      description
-----
hostname        cumulus      cumulus
build          Cumulus Linux 5.4.0  system build version
uptime          6 days, 13:37:36  system uptime
timezone        Etc/UTC      system time zone
```

11. Verify that the nodes each have a connection to each switch:

```
cumulus@sw1:mgmt:~$ net show lldp

LocalPort  Speed  Mode      RemoteHost
RemotePort

-----
-----
eth0       100M   Mgmt      mgmt-sw1
Eth110/1/29
swp2s1     25G    Trunk/L2  node1
e0a
swp15      100G   BondMember sw2
swp15
swp16      100G   BondMember sw2
swp16
```

12. Create a new user and add this user to the `sudo` group. This user only becomes effective after the console/SSH session is restarted.

```
sudo adduser --ingroup netedit admin
```

```
cumulus@sw1:mgmt:~$ sudo adduser --ingroup netedit admin
[sudo] password for cumulus:
Adding user 'admin' ...
Adding new user 'admin' (1001) with group `netedit' ...
Creating home directory '/home/admin' ...
Copying files from '/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for admin
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] y
```

```
cumulus@sw1:mgmt:~$ sudo adduser admin sudo
[sudo] password for cumulus:
Adding user `admin' to group `sudo' ...
Adding user admin to group sudo
Done.
cumulus@sw1:mgmt:~$ exit
logout
Connection to 10.233.204.71 closed.
```

```
[admin@cycrh6sv101 ~]$ ssh admin@10.233.204.71
admin@10.233.204.71's password:
Linux sw1 4.19.0-cl-1-amd64 #1 SMP Cumulus 4.19.206-1+cl4.4.1u1
(2021-09-09) x86_64
Welcome to NVIDIA Cumulus (R) Linux (R)
```

For support and online technical documentation, visit  
<http://www.cumulusnetworks.com/support>

The registered trademark Linux (R) is used pursuant to a sublicense  
from LMI, the exclusive licensee of Linus Torvalds, owner of the  
mark on a world-wide basis.

```
admin@sw1:mgmt:~$
```

13. Add additional user groups for the admin user to access nv commands:

```
cumulus@sw1:mgmt:~$ sudo adduser admin nvshow
[sudo] password for cumulus:
Adding user 'admin' to group 'nvshow' ...
Adding user admin to group nvshow
Done.
```

See [NVIDIA User Accounts](#) for more information.

## Cumulus Linux 5.11.0

1. Log in to the switch.

When you log in to the switch for the first time, it requires the username/password of **cumulus** /**cumulus** with `sudo` privileges.

```
cumulus login: cumulus
Password: cumulus
You are required to change your password immediately (administrator
enforced)
Changing password for cumulus.
Current password: cumulus
New password: <new_password>
Retype new password: <new_password>
```

2. Check the Cumulus Linux version: `nv show system`

```
cumulus@cumulus:mgmt:~$ nv show system
operational      applied          description
-----
hostname          cumulus          cumulus
build             Cumulus Linux 5.4.0  system build version
uptime            6 days, 8:37:36    system uptime
timezone          Etc/UTC          system time zone
```

3. Configure the hostname, IP address, subnet mask, and default gateway. The new hostname only becomes effective after restarting the console/SSH session.



A Cumulus Linux switch provides at least one dedicated Ethernet management port called `eth0`. This interface is specifically for out-of-band management use. By default, the management interface uses DHCPv4 for addressing.



Do not use an underscore (\_), apostrophe ('), or non-ASCII characters in the hostname.

```
cumulus@cumulus:mgmt:~$ nv unset interface eth0 ip address dhcp
cumulus@cumulus:mgmt:~$ nv set interface eth0 ip address
10.233.204.71/24
cumulus@cumulus:mgmt:~$ nv set interface eth0 ip gateway
10.233.204.1
cumulus@cumulus:mgmt:~$ nv config apply
cumulus@cumulus:mgmt:~$ nv config save
```

This command modifies both the /etc/hostname and /etc/hosts files.

4. Confirm that the hostname, IP address, subnet mask, and default gateway have been updated.

```
cumulus@sw1:mgmt:~$ hostname sw1
cumulus@sw1:mgmt:~$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.233.204.71 netmask 255.255.254.0 broadcast 10.233.205.255
inet6 fe80::bace:f6ff:fe19:1df6 prefixlen 64 scopeid 0x20<link>
ether b8:ce:f6:19:1d:f6 txqueuelen 1000 (Ethernet)
RX packets 75364 bytes 23013528 (21.9 MiB)
RX errors 0 dropped 7 overruns 0 frame 0
TX packets 4053 bytes 827280 (807.8 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 device
memory 0xdxfc00000-dfc1ffff

cumulus@sw1::mgmt:~$ ip route show vrf mgmt
default via 10.233.204.1 dev eth0
unreachable default metric 4278198272
10.233.204.0/23 dev eth0 proto kernel scope link src 10.233.204.71
127.0.0.0/8 dev mgmt proto kernel scope link src 127.0.0.1
```

5. Set the time zone, date, time, and NTP server on the switch.

- a. Set the time zone:

```
cumulus@sw1:~$ nv set system timezone US/Eastern
cumulus@sw1:~$ nv config apply
```

- b. Verify your current time zone:

```
cumulus@switch:~$ date +%Z
```

- c. To set the time zone using the guided wizard, run the following command:

```
cumulus@sw1:~$ sudo dpkg-reconfigure tzdata
```

d. Set the software clock according to the configured time zone:

```
cumulus@sw1:~$ sudo date -s "Tue Oct 28 00:37:13 2023"
```

e. Set the current value of the software clock to the hardware clock:

```
cumulus@sw1:~$ sudo hwclock -w
```

f. Add an NTP server if required:

```
cumulus@sw1:~$ nv set service ntp mgmt listen eth0
cumulus@sw1:~$ nv set service ntp mgmt server <server> iburst on
cumulus@sw1:~$ nv config apply
cumulus@sw1:~$ nv config save
```

See the Knowledge Base article [NTP server configuration is not working with NVIDIA SN2100 switches](#) for further details.

g. Verify that ntpd is running on the system:

```
cumulus@sw1:~$ ps -ef | grep ntp
ntp      4074      1  0 Jun20 ?          00:00:33 /usr/sbin/ntpd -p
/var/run/ntpd.pid -g -u 101:102
```

h. Specify the NTP source interface. By default, the source interface that NTP uses is eth0. You can configure a different NTP source interface as follows:

```
cumulus@sw1:~$ nv set service ntp default listen <src_int>
cumulus@sw1:~$ nv config apply
```

6. Install Cumulus Linux 5.11.0:

```
cumulus@sw1:mgmt:~$ sudo onie-install -a -i http://<web-server>/<path>/cumulus-linux-5.11.0-mlx-amd64.bin
```

The installer starts the download. Type **y** when prompted.

7. Reboot the NVIDIA SN2100 switch:

```
cumulus@sw1:mgmt:~$ sudo reboot
```

8. The installation starts automatically, and the following GRUB screen choices appear. Do **not** make any selections.
  - Cumulus-Linux GNU/Linux
  - ONIE: Install OS
  - CUMULUS-INSTALL
  - Cumulus-Linux GNU/Linux
9. Repeat steps 1 to 4 to log in.
10. Verify that the Cumulus Linux version is 5.11.0:

```
nv show system
```

```
cumulus@cumulus:mgmt:~$ nv show system
operational           applied           description
-----
build                 Cumulus Linux 5.11.0
uptime                153 days, 2:44:16
hostname              cumulus           cumulus
product-name          Cumulus Linux
product-release       5.11.0
platform              x86_64-mlnx_x86-r0
system-memory         2.76 GB used / 2.28 GB free / 7.47 GB total
swap-memory           0 Bytes used / 0 Bytes free / 0 Bytes total
health-status         not OK
date-time             2025-04-23 09:55:24
status                N/A
timezone              Etc/UTC
maintenance
  mode                disabled
  ports               enabled
version
  kernel              6.1.0-cl-1-amd64
  build-date          Thu Nov 14 13:06:38 UTC 2024
  image               5.11.0
  onie                2019.11-5.2.0020-115200
```

11. Verify that each node has a connection to each switch:

```
cumulus@sw1:mgmt:~$ nv show interface lldp

  LocalPort  Speed  Mode          RemoteHost
  RemotePort

  -----  -----  -----  -----
  -----
  eth0      100M  eth    mgmt-sw1
  Eth110/1/14
  swp2s1    25G   Trunk/L2    node1
  e0a
  swp1s1    10G   swp    sw2
  e0a
  swp9      100G  swp    sw3
  e4a
  swp10     100G  swp    sw4
  e4a
  swp15     100G  swp    sw5
  swp15
  swp16     100G  swp    sw6
  swp16
```

See [NVIDIA User Accounts](#) for more information.

## What's next?

After you've installed Cumulus Linux in Cumulus mode, you can [install or upgrade the RCF script](#).

### Install Cumulus Linux in ONIE mode

Follow this procedure to install Cumulus Linux (CL) OS when the switch is running in ONIE mode.



Cumulus Linux (CL) OS can be installed either when the switch is running Cumulus Linux or ONIE (see [Install in Cumulus mode](#)).

#### About this task

You can install the Cumulus Linux using Open Network Install Environment (ONIE) that allows for automatic discovery of a network installer image. This facilitates the system model of securing switches with an operating system choice, such as Cumulus Linux. The easiest way to install Cumulus Linux with ONIE is with local HTTP discovery.



If your host is IPv6-enabled, make sure it is running a web server. If your host is IPv4-enabled, make sure it is running DHCP in addition to a web server.

This procedure demonstrates how to upgrade Cumulus Linux after the admin has booted in ONIE.

#### Steps

1. Download the Cumulus Linux installation file to the root directory of the web server. Rename this file `onie-installer`.
2. Connect your host to the management Ethernet port of the switch using an Ethernet cable.
3. Power on the switch. The switch downloads the ONIE image installer and boots. After the installation completes, the Cumulus Linux login prompt appears in the terminal window.



Each time Cumulus Linux is installed, the entire file system structure is erased and rebuilt.

4. Reboot the SN2100 switch:

```
cumulus@cumulus:mgmt:~$ sudo reboot
```

5. Press the **Esc** key at the GNU GRUB screen to interrupt the normal boot process, select **ONIE** and press **Enter**.
6. On the next screen displayed, select **ONIE: Install OS**.
7. The ONIE installer discovery process runs searching for the automatic installation. Press **Enter** to temporarily stop the process.
8. When the discovery process has stopped:

```
ONIE:/ # onie-stop
discover: installer mode detected.
Stopping: discover...start-stop-daemon: warning: killing process 427:
No such process done.
```

9. If the DHCP service is running on your network, verify that the IP address, subnet mask, and the default gateway are correctly assigned:

```
ifconfig eth0
```

## Show example

```
ONIE:/ # ifconfig eth0
eth0      Link encap:Ethernet  HWaddr B8:CE:F6:19:1D:F6
          inet  addr:10.233.204.71  Bcast:10.233.205.255
          Mask:255.255.254.0
                  inet6 addr: fe80::bace:f6ff:fe19:1df6/64 Scope:Link
                      UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
                      RX packets:21344 errors:0 dropped:2135 overruns:0 frame:0
                      TX packets:3500 errors:0 dropped:0 overruns:0 carrier:0
                      collisions:0 txqueuelen:1000
                      RX bytes:6119398 (5.8 MiB)  TX bytes:472975 (461.8 KiB)
                      Memory:dfc00000-dfc1ffff

ONIE:/ # route
Kernel IP routing table
Destination      Gateway          Genmask        Flags Metric Ref
Use  Iface

default          10.233.204.1    0.0.0.0        UG      0      0
0    eth0
10.233.204.0    *               255.255.254.0  U       0      0
0    eth0
```

10. If the IP addressing scheme is manually defined, do the following:

```
ONIE:/ # ifconfig eth0 10.233.204.71 netmask 255.255.254.0
ONIE:/ # route add default gw 10.233.204.1
```

11. Repeat step 9 to verify that the static information is correctly entered.

12. Install Cumulus Linux:

```
ONIE:/ # route

Kernel IP routing table

ONIE:/ # onie-nos-install http://<web-server>/<path>/cumulus-linux-4.4.3-mlx-amd64.bin

Stopping: discover... done.
Info: Attempting
http://10.60.132.97/x/eng/testbedN,sv1/nic/files/cumulus-linux-4.4.3-mlx-amd64.bin ...
Connecting to 10.60.132.97 (10.60.132.97:80)
installer          100% |*|    552M  0:00:00 ETA
...
...
```

13. Once the installation has completed, log in to the switch:

**Show example**

```
cumulus login: cumulus
Password: cumulus
You are required to change your password immediately (administrator enforced)
Changing password for cumulus.
Current password: cumulus
New password: <new_password>
Retype new password: <new_password>
```

14. Verify the Cumulus Linux version:

```
net show version
```

**Show example**

```
cumulus@cumulus:mgmt:~$ net show version
NCLU_VERSION=1.0-c14.4.3u4
DISTRIB_ID="Cumulus Linux"
DISTRIB_RELEASE=4.4.3
DISTRIB_DESCRIPTION="Cumulus Linux 4.4.3"
```

**What's next?**

After you've installed Cumulus Linux in ONIE mode, you can [install or upgrade the RCF script](#).

## Install or upgrade the RCF script

Follow this procedure to install or upgrade the RCF script.

### Before you begin

Before installing or upgrading the RCF script, make sure that the following are available on the switch:

- Cumulus Linux 4.4.3 is installed.
- IP address, subnet mask, and default gateway defined via DHCP or manually configured.

### Current RCF script versions

There are two RCF scripts available for Clustering and Storage applications. The procedure for each is the same.

- Clustering: **MSN2100-RCF-v1.x-Cluster**
- Storage: **MSN2100-RCF-v1.x-Storage**



The following example procedure shows how to download and apply the RCF script for Cluster switches.



Example command output uses switch management IP address 10.233.204.71, netmask 255.255.254.0 and default gateway 10.233.204.1.

### Steps

1. Display the available interfaces on the SN2100 switch:

```
net show interface all
```

## Show example

```
cumulus@cumulus:mgmt:~$ net show interface all

  State  Name    Spd   MTU    Mode          LLDP          Summary
-----  -----  ---  -----  -----  -----
-----  ...
...
ADMDN  swp1    N/A  9216  NotConfigured
ADMDN  swp2    N/A  9216  NotConfigured
ADMDN  swp3    N/A  9216  NotConfigured
ADMDN  swp4    N/A  9216  NotConfigured
ADMDN  swp5    N/A  9216  NotConfigured
ADMDN  swp6    N/A  9216  NotConfigured
ADMDN  swp7    N/A  9216  NotConfigured
ADMDN  swp8    N/A  9216  NotConfigured
ADMDN  swp9    N/A  9216  NotConfigured
ADMDN  swp10   N/A  9216  NotConfigured
ADMDN  swp11   N/A  9216  NotConfigured
ADMDN  swp12   N/A  9216  NotConfigured
ADMDN  swp13   N/A  9216  NotConfigured
ADMDN  swp14   N/A  9216  NotConfigured
ADMDN  swp15   N/A  9216  NotConfigured
ADMDN  swp16   N/A  9216  NotConfigured
```

## 2. Copy the RCF python script to the switch:

```
admin@sw1:mgmt:~$ pwd
/home/cumulus
cumulus@cumulus:mgmt:~$ cd /tmp
cumulus@cumulus:mgmt:/tmp$ scp <user>@<host>:/<path>/MSN2100-RCF-v1.8-
Cluster
ssologin@10.233.204.71's password:
MSN2100-RCF-v1.8-Cluster                                100%  8607    111.2KB/s
00:00
```

## 3. Apply the RCF python script **MSN2100-RCF-v1.8-Cluster**:

```
cumulus@cumulus:mgmt:/tmp$ sudo python3 MSN2100-RCF-v1.8-Cluster
[sudo] password for cumulus:
...
Step 1: Creating the banner file
Step 2: Registering banner message
Step 3: Updating the MOTD file
Step 4: Ensuring passwordless use of cl-support command by admin
Step 5: Disabling apt-get
Step 6: Creating the interfaces
Step 7: Adding the interface config
Step 8: Disabling cdp
Step 9: Adding the lldp config
Step 10: Adding the RoCE base config
Step 11: Modifying RoCE Config
Step 12: Configure SNMP
Step 13: Reboot the switch
```

The RCF script completes the steps listed above.



For any RCF python script issues that cannot be corrected, contact [NetApp Support](#) for assistance.

4. Reapply any previous customizations to the switch configuration. Refer to [Review cabling and configuration considerations](#) for details of any further changes required.
5. Verify the configuration after the reboot:

```
net show interface all
```

## Show example

```
cumulus@cumulus:mgmt:~$ net show interface all
```

| State | Name                  | Spd  | MTU  | Mode     | LLDP | Summary |
|-------|-----------------------|------|------|----------|------|---------|
| ---   | ---                   | ---  | ---  | ---      | ---  | ---     |
| ...   |                       |      |      |          |      |         |
| ...   |                       |      |      |          |      |         |
| DN    | swp1s0<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp1s1<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp1s2<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp1s3<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp2s0<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp2s1<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp2s2<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp2s3<br>bridge (UP) | N/A  | 9216 | Trunk/L2 |      | Master: |
| UP    | swp3<br>bridge (UP)   | 100G | 9216 | Trunk/L2 |      | Master: |
| UP    | swp4<br>bridge (UP)   | 100G | 9216 | Trunk/L2 |      | Master: |
| DN    | swp5<br>bridge (UP)   | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp6<br>bridge (UP)   | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp7<br>bridge (UP)   | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp8<br>bridge (UP)   | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp9<br>bridge (UP)   | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp10<br>bridge (UP)  | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp11<br>bridge (UP)  | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp12<br>bridge (UP)  | N/A  | 9216 | Trunk/L2 |      | Master: |
| DN    | swp13<br>bridge (UP)  | N/A  | 9216 | Trunk/L2 |      | Master: |

|                                                      |       |     |          |            |         |        |                 |
|------------------------------------------------------|-------|-----|----------|------------|---------|--------|-----------------|
| DN                                                   | swp14 | N/A | 9216     | Trunk/L2   | Master: |        |                 |
| bridge (UP)                                          |       |     |          |            |         |        |                 |
| UP                                                   | swp15 | N/A | 9216     | BondMember | Master: |        |                 |
| bond_15_16 (UP)                                      |       |     |          |            |         |        |                 |
| UP                                                   | swp16 | N/A | 9216     | BondMember | Master: |        |                 |
| bond_15_16 (UP)                                      |       |     |          |            |         |        |                 |
| ...                                                  |       |     |          |            |         |        |                 |
| ...                                                  |       |     |          |            |         |        |                 |
| cumulus@cumulus:mgmt:~\$ <b>net show roce config</b> |       |     |          |            |         |        |                 |
| RoCE mode..... lossless                              |       |     |          |            |         |        |                 |
| Congestion Control:                                  |       |     |          |            |         |        |                 |
| Enabled SPs.... 0 2 5                                |       |     |          |            |         |        |                 |
| Mode..... ECN                                        |       |     |          |            |         |        |                 |
| Min Threshold.. 150 KB                               |       |     |          |            |         |        |                 |
| Max Threshold.. 1500 KB                              |       |     |          |            |         |        |                 |
| PFC:                                                 |       |     |          |            |         |        |                 |
| Status..... enabled                                  |       |     |          |            |         |        |                 |
| Enabled SPs.... 2 5                                  |       |     |          |            |         |        |                 |
| Interfaces..... swp10-16, swp1s0-3, swp2s0-3, swp3-9 |       |     |          |            |         |        |                 |
| DSCP                                                 |       |     |          |            |         | 802.1p | switch-priority |
| -----                                                |       |     |          |            |         | -----  | -----           |
| 0 1 2 3 4 5 6 7                                      |       | 0   | 0        |            |         |        |                 |
| 8 9 10 11 12 13 14 15                                |       | 1   | 1        |            |         |        |                 |
| 16 17 18 19 20 21 22 23                              |       | 2   | 2        |            |         |        |                 |
| 24 25 26 27 28 29 30 31                              |       | 3   | 3        |            |         |        |                 |
| 32 33 34 35 36 37 38 39                              |       | 4   | 4        |            |         |        |                 |
| 40 41 42 43 44 45 46 47                              |       | 5   | 5        |            |         |        |                 |
| 48 49 50 51 52 53 54 55                              |       | 6   | 6        |            |         |        |                 |
| 56 57 58 59 60 61 62 63                              |       | 7   | 7        |            |         |        |                 |
| switch-priority                                      |       |     |          |            |         | TC     | ETS             |
| -----                                                |       |     |          |            |         | ---    | -----           |
| 0 1 3 4 6 7                                          |       | 0   | DWRR 28% |            |         |        |                 |
| 2                                                    |       | 2   | DWRR 28% |            |         |        |                 |
| 5                                                    |       | 5   | DWRR 43% |            |         |        |                 |

## 6. Verify information for the transceiver in the interface:

```
net show interface pluggables
```

**Show example**

```
cumulus@cumulus:mgmt:~$ net show interface pluggables
Interface Identifier      Vendor Name  Vendor PN      Vendor SN
      Vendor Rev
-----
-----
swp3      0x11 (QSFP28)  Amphenol      112-00574
APF20379253516  B0
swp4      0x11 (QSFP28)  AVAGO        332-00440      AF1815GU05Z
      A0
swp15     0x11 (QSFP28)  Amphenol      112-00573
APF21109348001  B0
swp16     0x11 (QSFP28)  Amphenol      112-00573
APF21109347895  B0
```

7. Verify that the nodes each have a connection to each switch:

```
net show lldp
```

**Show example**

```
cumulus@cumulus:mgmt:~$ net show lldp
LocalPort  Speed  Mode          RemoteHost      RemotePort
-----
swp3       100G   Trunk/L2      sw1            e3a
swp4       100G   Trunk/L2      sw2            e3b
swp15      100G   BondMember   sw13           swp15
swp16      100G   BondMember   sw14           swp16
```

8. Verify the health of cluster ports on the cluster.

a. Verify that e0d ports are up and healthy across all nodes in the cluster:

```
network port show -role cluster
```

## Show example

```
cluster1::*> network port show -role cluster

Node: node1

Ignore                                         Speed (Mbps)
Health   Health
Port     IPspace      Broadcast Domain Link MTU Admin/Oper
Status   Status
----- -----
----- -----
e3a     Cluster      Cluster          up    9000  auto/10000
healthy  false
e3b     Cluster      Cluster          up    9000  auto/10000
healthy  false

Node: node2

Ignore                                         Speed (Mbps)
Health   Health
Port     IPspace      Broadcast Domain Link MTU Admin/Oper
Status   Status
----- -----
----- -----
e3a     Cluster      Cluster          up    9000  auto/10000
healthy  false
e3b     Cluster      Cluster          up    9000  auto/10000
healthy  false
```

b. Verify the switch health from the cluster (this might not show switch sw2, since LIFs are not homed on e0d).

## Show example

```
cluster1::*> network device-discovery show -protocol lldp
Node/      Local   Discovered
Protocol   Port    Device (LLDP: ChassisID)  Interface Platform
-----
node1/lldp
      e3a      sw1 (b8:ce:f6:19:1a:7e)  swp3      -
      e3b      sw2 (b8:ce:f6:19:1b:96)  swp3      -
node2/lldp
      e3a      sw1 (b8:ce:f6:19:1a:7e)  swp4      -
      e3b      sw2 (b8:ce:f6:19:1b:96)  swp4      -

cluster1::*> system switch ethernet show -is-monitoring-enabled -operational true
Switch          Type          Address
Model
-----
-----
sw1            cluster-network  10.233.205.90
MSN2100-CB2RC
  Serial Number: MNXXXXXXGD
  Is Monitored: true
  Reason: None
  Software Version: Cumulus Linux version 4.4.3 running on
  Mellanox
  Technologies Ltd. MSN2100
  Version Source: LLDP

sw2            cluster-network  10.233.205.91
MSN2100-CB2RC
  Serial Number: MNCXXXXXXGS
  Is Monitored: true
  Reason: None
  Software Version: Cumulus Linux version 4.4.3 running on
  Mellanox
  Technologies Ltd. MSN2100
  Version Source: LLDP
```

## What's next?

After you've installed or upgraded the RCF, you can [install the CSHM file](#).

## Install the Ethernet Switch Health Monitor configuration file

Follow this procedure to install the applicable configuration file for Ethernet switch health monitoring of NVIDIA cluster switches.

Supported models are:

- MSN2100-CB2FC
- MSN2100-CB2RC
- X190006-PE
- X190006-PI



This installation procedure applies to ONTAP 9.10.1 and later.

### Before you begin

- Verify that you need to download the configuration file by running `system switch ethernet show` and checking if **OTHER** is shown for your model.

If your model is still showing **OTHER** after applying the configuration file, contact NetApp support.

- Make sure that the ONTAP cluster is up and running.
- Enable SSH to use all of the features available in CSHM.
- Clear the `/mroot/etc/cshm_nod/nod_sign/` directory on all nodes:
  - a. Enter the nodeshell:

```
system node run -node <name>
```

- b. Change to advanced privilege:

```
priv set advanced
```

- c. List the configuration files in the `/etc/cshm_nod/nod_sign` directory. If the directory exists and contains configuration files, it lists the file names.

```
ls /etc/cshm_nod/nod_sign
```

- d. Delete all configuration files corresponding to your connected switch models.

If you are unsure, remove all configuration files for the supported models listed above, then download and install the latest configuration files for those same models.

```
rm /etc/cshm_nod/nod_sign/<filename>
```

- e. Confirm that the deleted configuration files are no longer in the directory:

```
ls /etc/cshm_nod/nod_sign
```

### Steps

1. Download the Ethernet switch health monitor configuration zip file based on the corresponding ONTAP release version. This file is available from the [NVIDIA Ethernet switches](#) page.

- a. On the NVIDIA SN2100 Software download page, select **Nvidia CSHM File**.
- b. On the Caution/Must read page, select the check box to agree.
- c. On the End User License Agreement page, select the check box to agree and click **Accept & Continue**.
- d. On the Nvidia CSHM File - Download page, select the applicable configuration file. The following files are available:

#### **ONTAP 9.15.1 and later**

- MSN2100-CB2FC-v1.4.zip
- MSN2100-CB2RC-v1.4.zip
- X190006-PE-v1.4.zip
- X190006-PI-v1.4.zip

#### **ONTAP 9.11.1 through 9.14.1**

- MSN2100-CB2FC\_PRIOR\_R9.15.1-v1.4.zip
- MSN2100-CB2RC\_PRIOR\_R9.15.1-v1.4.zip
- X190006-PE\_PRIOR\_9.15.1-v1.4.zip
- X190006-PI\_PRIOR\_9.15.1-v1.4.zip

2. Upload the applicable zip file to your internal web server.
3. Access the advanced mode setting from one of the ONTAP systems in the cluster.

```
set -privilege advanced
```

4. Run the switch health monitor configure command.

```
cluster1::> system switch ethernet configure-health-monitor
```

5. Verify that the command output ends with the following text for your ONTAP version:

#### **ONTAP 9.15.1 and later**

Ethernet switch health monitoring installed the configuration file.

#### **ONTAP 9.11.1 through 9.14.1**

SHM installed the configuration file.

#### **ONTAP 9.10.1**

CSHM downloaded package processed successfully.

If an error occurs, contact NetApp support.

6. Wait up to twice the Ethernet switch health monitor polling interval, found by running `system switch ethernet polling-interval show`, before completing the next step.

7. Run the command `system switch ethernet configure-health-monitor show` on the ONTAP system and make sure that the cluster switches are discovered with the monitored field set to **True** and the serial number field not showing **Unknown**.

```
cluster1::> system switch ethernet configure-health-monitor show
```

#### What's next?

After you've installed the CSHM file, you can [configure switch health monitoring](#).

#### Reset the SN2100 storage switch to factory defaults

To reset the SN2100 storage switch to factory defaults:

- For Cumulus Linux 5.10 and earlier, you apply the Cumulus image.
- For Cumulus Linux 5.11 and later, you use the `nv action reset system factory-default` command.

#### About this task

- You must be connected to the switch using the serial console.
- You must have the root password for sudo access to the commands.



For more information about installing Cumulus Linux, see [Software install workflow for NVIDIA SN2100 switches](#).

## Example 2. Steps

### Cumulus Linux 5.10 and earlier

1. From the Cumulus console, download and queue the switch software installation with the command `onie-install -a -i` followed by the file path to the switch software, for example:

```
cumulus@sw1:mgmt:~$ sudo onie-install -a -i http://<web-server>/<path>/cumulus-linux-5.10.0-mlx-amd64.bin
```

2. The installer starts the download. Type **y** when prompted to confirm the installation when the image is downloaded and verified.
3. Reboot the switch to install the new software.

```
sudo reboot
```

```
cumulus@sw1:mgmt:~$ sudo reboot
```



The switch reboots and enters the switch software installation which takes some time. When the installation is complete, the switch reboots and remains at the log-in prompt.

### Cumulus Linux 5.11 and later

1. To reset the switch to the factory defaults and remove all configuration, system files, and log files, run:

```
nv action reset system factory-default
```

For example:

```
cumulus@switch:~$ nv action reset system factory-default
```

This operation will reset the system configuration, delete the log files and reboot the switch.

Type [y] continue.

Type [n] to abort.

Do you want to continue? [y/n] **y**

See the NVIDIA [Factory Reset](#) documentation for further details.

### What's next

After you've reset your switches, you can [reconfigure](#) them as needed.

## Migrate switches

### Migrate from a Cisco storage switch to a NVIDIA SN2100 storage switch

You can migrate older Cisco switches for an ONTAP cluster to NVIDIA SN2100 storage switches. This is a non-disruptive procedure.

#### Review requirements

The following storage switches are supported:

- Cisco Nexus 9336C-FX2
- Cisco Nexus 3232C
- See the [Hardware Universe](#) for full details of supported ports and their configurations.

#### Before you begin

Make sure that you have the following:

- The existing cluster is properly set up and functioning.
- All storage ports are in the up state to ensure nondisruptive operations.
- The NVIDIA SN2100 storage switches are configured and operating under the proper version of Cumulus Linux installed with the reference configuration file (RCF) applied.
- The existing storage network configuration has the following:
  - A redundant and fully functional NetApp cluster using both older Cisco switches.
  - Management connectivity and console access to both the older Cisco switches and the new switches.
  - All cluster LIFs in the up state with the cluster LIFs are on their home ports.
  - ISL ports enabled and cabled between the older Cisco switches and between the new switches.
- See the [Hardware Universe](#) for full details of supported ports and their configurations.
- Some of the ports are configured on NVIDIA SN2100 switches to run at 100 GbE.
- You have planned, migrated, and documented 100 GbE connectivity from nodes to NVIDIA SN2100 storage switches.

#### Migrate the switches

##### About the examples

In this procedure, Cisco Nexus 9336C-FX2 storage switches are used for example commands and outputs.

The examples in this procedure use the following switch and node nomenclature:

- The existing Cisco Nexus 9336C-FX2 storage switches are *S1* and *S2*.
- The new NVIDIA SN2100 storage switches are *sw1* and *sw2*.
- The nodes are *node1* and *node2*.
- The cluster LIFs are *node1\_clus1* and *node1\_clus2* on node 1, and *node2\_clus1* and *node2\_clus2* on node 2 respectively.
- The `cluster1::*` prompt indicates the name of the cluster.
- The network ports used in this procedure are *e5a* and *e5b*.

- Breakout ports take the format: `swp1s0-3`. For example four breakout ports on `swp1` are `swp1s0`, `swp1s1`, `swp1s2`, and `swp1s3`.
- Switch S2 is replaced by switch `sw2` first and then switch S1 is replaced by switch `sw1`.
  - Cabling between the nodes and S2 are then disconnected from S2 and reconnected to `sw2`.
  - Cabling between the nodes and S1 are then disconnected from S1 and reconnected to `sw1`.

## Step 1: Prepare for migration

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=xh
```

where `x` is the duration of the maintenance window in hours.

2. Change the privilege level to advanced, entering `y` when prompted to continue:

```
set -privilege advanced
```

The advanced prompt (`*>`) appears.

3. Determine the administrative or operational status for each storage interface:

Each port should display enabled for Status.

## Step 2: Configure cables and ports

1. Display the network port attributes:

```
storage port show
```

### Show example

```
cluster1::*> storage port show
               Speed
               (Gb/s)
-----  -----
Node      Port Type  Mode      State   Status   VLAN
-----  -----
node1
          e0c  ENET  storage  100    enabled  online   30
          e0d  ENET  storage   0     enabled  offline  30
          e5a  ENET  storage   0     enabled  offline  30
          e5b  ENET  storage  100    enabled  online   30
node2
          e0c  ENET  storage  100    enabled  online   30
          e0d  ENET  storage   0     enabled  offline  30
          e5a  ENET  storage   0     enabled  offline  30
          e5b  ENET  storage  100    enabled  online   30
cluster1::*
```

2. Verify that the storage ports on each node are connected to existing storage switches in the following way (from the nodes' perspective) using the command:

```
network device-discovery show -protocol lldp
```

**Show example**

```
cluster1::*> network device-discovery show -protocol lldp
Node/      Local   Discovered
Protocol   Port    Device (LLDP: ChassisID)  Interface
Platform

-----
-----
node1      /lldp
          e0c    S1 (7c:ad:4f:98:6d:f0)    Eth1/1      -
          e5b    S2 (7c:ad:4f:98:8e:3c)    Eth1/1      -
node2      /lldp
          e0c    S1 (7c:ad:4f:98:6d:f0)    Eth1/2      -
          e5b    S2 (7c:ad:4f:98:8e:3c)    Eth1/2      -
```

3. On switch S1 and S2, make sure that the storage ports and switches are connected in the following way (from the switches' perspective) using the command:

```
show lldp neighbors
```

## Show example

```
S1# show lldp neighbors
```

Capability Codes: (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device,

(W) WLAN Access Point, (P) Repeater, (S) Station

(O) Other

| Device-ID<br>Port ID   | Local Intf | Holdtime | Capability |
|------------------------|------------|----------|------------|
| node1<br>e0c           | Eth1/1     | 121      | S          |
| node2<br>e0c           | Eth1/2     | 121      | S          |
| SHFGD1947000186<br>e0a | Eth1/10    | 120      | S          |
| SHFGD1947000186<br>e0a | Eth1/11    | 120      | S          |
| SHFGB2017000269<br>e0a | Eth1/12    | 120      | S          |
| SHFGB2017000269<br>e0a | Eth1/13    | 120      | S          |

```
S2# show lldp neighbors
```

Capability Codes: (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device,

(W) WLAN Access Point, (P) Repeater, (S) Station

(O) Other

| Device-ID<br>Port ID   | Local Intf | Holdtime | Capability |
|------------------------|------------|----------|------------|
| node1<br>e5b           | Eth1/1     | 121      | S          |
| node2<br>e5b           | Eth1/2     | 121      | S          |
| SHFGD1947000186<br>e0b | Eth1/10    | 120      | S          |
| SHFGD1947000186<br>e0b | Eth1/11    | 120      | S          |
| SHFGB2017000269<br>e0b | Eth1/12    | 120      | S          |
| SHFGB2017000269<br>e0b | Eth1/13    | 120      | S          |

4. On switch sw2, shut down the ports connected to the storage ports and nodes of the disk shelves.

**Show example**

```
cumulus@sw2:~$ net add interface swp1-16 link down
cumulus@sw2:~$ net pending
cumulus@sw2:~$ net commit
```

5. Move the node storage ports of the controller and disk shelves from the old switch S2 to the new switch sw2, using appropriate cabling supported by NVIDIA SN2100.

6. On switch sw2, bring up the ports connected to the storage ports of the nodes and the disk shelves.

**Show example**

```
cumulus@sw2:~$ net del interface swp1-16 link down
cumulus@sw2:~$ net pending
cumulus@sw2:~$ net commit
```

7. Verify that the storage ports on each node are now connected to the switches in the following way, from the nodes' perspective:

```
network device-discovery show -protocol lldp
```

**Show example**

```
cluster1::*> network device-discovery show -protocol lldp

Node/      Local   Discovered
Protocol   Port    Device (LLDP: ChassisID)  Interface      Platform
-----  -----  -----
-----  -----
node1      /lldp
          e0c     S1 (7c:ad:4f:98:6d:f0)    Eth1/1      -
          e5b     sw2 (b8:ce:f6:19:1a:7e)    swp1       -
          e0c     S1 (7c:ad:4f:98:6d:f0)    Eth1/2      -
          e5b     sw2 (b8:ce:f6:19:1a:7e)    swp2       -
```

8. Verify the network port attributes:

```
storage port show
```

**Show example**

```
cluster1::*> storage port show
                                         Speed
                                         (Gb/s)
Node      Port Type  Mode      State    Status     VLAN
-----  -----  -----  -----  -----  -----  -----
node1
        e0c  ENET  storage  100  enabled  online   30
        e0d  ENET  storage   0  enabled  offline   30
        e5a  ENET  storage   0  enabled  offline   30
        e5b  ENET  storage  100  enabled  online   30
node2
        e0c  ENET  storage  100  enabled  online   30
        e0d  ENET  storage   0  enabled  offline   30
        e5a  ENET  storage   0  enabled  offline   30
        e5b  ENET  storage  100  enabled  online   30
cluster1::*
```

9. On switch sw2, verify that all node storage ports are up:

```
net show interface
```

**Show example**

```
cumulus@sw2:~$ net show interface

  State  Name      Spd      MTU      Mode          LLDP
Summary
-----  -----  -----  -----  -----
...
...
UP      swp1      100G    9216    Trunk/L2    node1  (e5b)
Master: bridge (UP)
UP      swp2      100G    9216    Trunk/L2    node2  (e5b)
Master: bridge (UP)
UP      swp3      100G    9216    Trunk/L2    SHFFG1826000112 (e0b)
Master: bridge (UP)
UP      swp4      100G    9216    Trunk/L2    SHFFG1826000112 (e0b)
Master: bridge (UP)
UP      swp5      100G    9216    Trunk/L2    SHFFG1826000102 (e0b)
Master: bridge (UP)
UP      swp6      100G    9216    Trunk/L2    SHFFG1826000102 (e0b)
Master: bridge (UP))
...
...
```

10. On switch sw1, shut down the ports connected to the storage ports of the nodes and the disk shelves.

**Show example**

```
cumulus@sw1:~$ net add interface swp1-16 link down
cumulus@sw1:~$ net pending
cumulus@sw1:~$ net commit
```

11. Move the node storage ports of the controller and the disk shelves from the old switch S1 to the new switch sw1, using appropriate cabling supported by NVIDIA SN2100.
12. On switch sw1, bring up the ports connected to the storage ports of the nodes and the disk shelves.

### Show example

```
cumulus@sw1:~$ net del interface swp1-16 link down
cumulus@sw1:~$ net pending
cumulus@sw1:~$ net commit
```

13. Verify that the storage ports on each node are now connected to the switches in the following way, from the nodes' perspective:

```
network device-discovery show -protocol lldp
```

### Show example

```
cluster1::*> network device-discovery show -protocol lldp
```

| Node/    | Local | Discovered               |           |
|----------|-------|--------------------------|-----------|
| Protocol | Port  | Device (LLDP: ChassisID) | Interface |
| Platform |       |                          |           |
| node1    | /lldp |                          |           |
|          | e0c   | sw1 (b8:ce:f6:19:1b:96)  | swp1      |
|          | e5b   | sw2 (b8:ce:f6:19:1a:7e)  | swp1      |
| node2    | /lldp |                          |           |
|          | e0c   | sw1 (b8:ce:f6:19:1b:96)  | swp2      |
|          | e5b   | sw2 (b8:ce:f6:19:1a:7e)  | swp2      |

## Step 3: Verify the configuration

1. Verify the final configuration:

```
storage port show
```

Each port should display enabled for State and enabled for Status.

**Show example**

```
cluster1::*> storage port show
                                         Speed
                                         (Gb/s)
Node      Port Type  Mode      State    Status     VLAN
-----  -----  -----  -----  -----  -----
node1
        e0c  ENET  storage  100  enabled  online   30
        e0d  ENET  storage   0  enabled  offline  30
        e5a  ENET  storage   0  enabled  offline  30
        e5b  ENET  storage  100  enabled  online   30
node2
        e0c  ENET  storage  100  enabled  online   30
        e0d  ENET  storage   0  enabled  offline  30
        e5a  ENET  storage   0  enabled  offline  30
        e5b  ENET  storage  100  enabled  online   30
cluster1::*
```

2. On switch sw2, verify that all node storage ports are up:

```
net show interface
```

### Show example

```
cumulus@sw2:~$ net show interface

  State  Name      Spd      MTU      Mode      LLDP
Summary
-----  -----  -----  -----  -----
...
...
UP      swp1      100G    9216    Trunk/L2    node1  (e5b)
Master: bridge (UP)
UP      swp2      100G    9216    Trunk/L2    node2  (e5b)
Master: bridge (UP)
UP      swp3      100G    9216    Trunk/L2    SHFFG1826000112 (e0b)
Master: bridge (UP)
UP      swp4      100G    9216    Trunk/L2    SHFFG1826000112 (e0b)
Master: bridge (UP)
UP      swp5      100G    9216    Trunk/L2    SHFFG1826000102 (e0b)
Master: bridge (UP)
UP      swp6      100G    9216    Trunk/L2    SHFFG1826000102 (e0b)
Master: bridge (UP) )
...
...
```

3. Verify that both nodes each have one connection to each switch:

```
net show lldp
```

## Show example

The following example shows the appropriate results for both switches:

```
cumulus@sw1:~$ net show lldp
LocalPort  Speed  Mode      RemoteHost      RemotePort
-----  -----  -----  -----
...
swp1      100G  Trunk/L2  node1           e0c
swp2      100G  Trunk/L2  node2           e0c
swp3      100G  Trunk/L2  SHFFG1826000112  e0a
swp4      100G  Trunk/L2  SHFFG1826000112  e0a
swp5      100G  Trunk/L2  SHFFG1826000102  e0a
swp6      100G  Trunk/L2  SHFFG1826000102  e0a

cumulus@sw2:~$ net show lldp
LocalPort  Speed  Mode      RemoteHost      RemotePort
-----  -----  -----  -----
...
swp1      100G  Trunk/L2  node1           e5b
swp2      100G  Trunk/L2  node2           e5b
swp3      100G  Trunk/L2  SHFFG1826000112  e0b
swp4      100G  Trunk/L2  SHFFG1826000112  e0b
swp5      100G  Trunk/L2  SHFFG1826000102  e0b
swp6      100G  Trunk/L2  SHFFG1826000102  e0b
```

### 1. Change the privilege level back to admin:

```
set -privilege admin
```

### 2. If you suppressed automatic case creation, reenable it by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

## What's next?

After you've migrated your switches, you can [configure switch health monitoring](#).

## Replace a NVIDIA SN2100 storage switch

You can replace a defective NVIDIA SN2100 storage switch. This is a nondisruptive procedure.

### Before you begin

Before installing the Cumulus software and RCFs on a NVIDIA SN2100 storage switch, ensure that:

- Your system can support NVIDIA SN2100 storage switches.

- You have downloaded the applicable RCFs.

The [Hardware Universe](#) provides full details of supported ports and their configurations.

The existing network configuration must have the following characteristics:

- Complete all troubleshooting steps to confirm you need to replace your switch.
- Ensure management connectivity exists on both switches.



Make sure that all troubleshooting steps have been completed to confirm that your switch needs replacing.

The replacement NVIDIA SN2100 switch must have the following characteristics:

- Management network connectivity is functional.
- You can access the replacement switch using the console.
- The appropriate RCF and Cumulus operating system image is loaded onto the switch.
- Initial customization of the switch is complete.

### Procedure summary

This procedure replaces the second NVIDIA SN2100 storage switch sw2 with the new NVIDIA SN2100 switch nsw2. The two nodes are node1 and node2.

Steps to complete:

- Confirm the switch to be replaced is sw2.
- Disconnect the cables from switch sw2.
- Reconnect the cables to switch nsw2.
- Verify all device configurations on switch nsw2.

### Steps

1. If AutoSupport is enabled on this cluster, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all - message MAINT=xh
```

*x* is the duration of the maintenance window in hours.

2. Change the privilege level to advanced, entering **y** when prompted to continue:

```
set -privilege advanced
```

3. Check the health status of storage node ports to confirm connection to storage switch S1:

```
storage port show -port-type ENET
```

**Show example**

```
cluster1::*> storage port show -port-type ENET
                                         Speed
                                         (Gb/s)
Node      Port Type  Mode      State    Status   VLAN
-----  -----  -----  -----  -----  -----
node1
        e3a  ENET  storage  100  enabled  online   30
        e3b  ENET  storage   0  enabled  offline   30
        e7a  ENET  storage   0  enabled  offline   30
        e7b  ENET  storage  100  enabled  online   30
node2
        e3a  ENET  storage  100  enabled  online   30
        e3b  ENET  storage   0  enabled  offline   30
        e7a  ENET  storage   0  enabled  offline   30
        e7b  ENET  storage  100  enabled  online   30
cluster1::*
```

4. Verify that storage switch sw1 is available:

```
network device-discovery show -protocol lldp
```

## Show example

```
cluster1::*> network device-discovery show -protocol lldp
Node/      Local   Discovered
Protocol   Port    Device (LLDP: ChassisID)  Interface
Platform

-----
-----
node1/lldp
      e0M    sw1  (00:ea:bd:68:6a:e8)    Eth1/46      -
      e0b    sw2  (6c:b2:ae:5f:a5:b2)    Ethernet1/16  -
      e0c    SHFFG1827000286 (d0:39:ea:1c:16:92)
                  e0a          -
      e0e    sw3  (6c:b2:ae:5f:a5:ba)    Ethernet1/18  -
      e0f    SHFFG1827000286 (00:a0:98:fd:e4:a9)
                  e0b          -
      e0g    sw4  (28:ac:9e:d5:4a:9c)    Ethernet1/11  -
      e0h    sw5  (6c:b2:ae:5f:a5:ca)    Ethernet1/22  -
      e1a    sw6  (00:f6:63:10:be:7c)    Ethernet1/33  -
      e1b    sw7  (00:f6:63:10:be:7d)    Ethernet1/34  -
      e2a    sw8  (b8:ce:f6:91:3d:88)    Ethernet1/35  -
Press <space> to page down, <return> for next line, or 'q' to
quit...
10 entries were displayed.
```

5. Run the `net show interface` command on the working switch to confirm that you can see both nodes and all shelves:

```
net show interface
```

## Show example

```
cumulus@sw1:~$ net show interface

  State  Name      Spd      MTU      Mode          LLDP
Summary
-----  -----  -----  -----  -----
...
...
UP      swp1      100G    9216    Trunk/L2    node1 (e3a)
Master: bridge (UP)
UP      swp2      100G    9216    Trunk/L2    node2 (e3a)
Master: bridge (UP)
UP      swp3      100G    9216    Trunk/L2    SHFFG1826000112 (e0b)
Master: bridge (UP)
UP      swp4      100G    9216    Trunk/L2    SHFFG1826000112 (e0b)
Master: bridge (UP)
UP      swp5      100G    9216    Trunk/L2    SHFFG1826000102 (e0b)
Master: bridge (UP)
UP      swp6      100G    9216    Trunk/L2    SHFFG1826000102 (e0b)
Master: bridge (UP))
...
...
```

## 6. Verify the shelf ports in the storage system:

```
storage shelf port show -fields remote-device, remote-port
```

**Show example**

```
cluster1::*> storage shelf port show -fields remote-device, remote-port
shelf    id  remote-port  remote-device
-----  --  -----
3.20    0    swp3        sw1
3.20    1    -           -
3.20    2    swp4        sw1
3.20    3    -           -
3.30    0    swp5        sw1
3.20    1    -           -
3.30    2    swp6        sw1
3.20    3    -           -
cluster1::*
```

7. Remove all cables attached to storage switch sw2.
8. Reconnect all cables to the replacement switch nsw2.
9. Recheck the health status of the storage node ports:

```
storage port show -port-type ENET
```

**Show example**

```
cluster1::*> storage port show -port-type ENET
                                         Speed
                                         VLAN
Node          Port  Type   Mode    (Gb/s)  State   Status   ID
-----  -----  -----  -----  -----  -----  -----  -----
node1
                    e3a  ENET  storage  100  enabled  online   30
                    e3b  ENET  storage   0  enabled  offline   30
                    e7a  ENET  storage   0  enabled  offline   30
                    e7b  ENET  storage  100  enabled  online   30
node2
                    e3a  ENET  storage  100  enabled  online   30
                    e3b  ENET  storage   0  enabled  offline   30
                    e7a  ENET  storage   0  enabled  offline   30
                    e7b  ENET  storage  100  enabled  online   30
cluster1::*
```

10. Verify that both switches are available:

```
net device-discovery show -protocol lldp
```

## Show example

```
cluster1::*> network device-discovery show -protocol lldp
Node/      Local   Discovered
Protocol   Port    Device (LLDP: ChassisID)  Interface
Platform

-----
-----
node1/lldp
      e0M    sw1  (00:ea:bd:68:6a:e8)    Eth1/46      -
      e0b    sw2  (6c:b2:ae:5f:a5:b2)    Ethernet1/16  -
      e0c    SHFFG1827000286 (d0:39:ea:1c:16:92)
                  e0a          -
      e0e    sw3  (6c:b2:ae:5f:a5:ba)    Ethernet1/18  -
      e0f    SHFFG1827000286 (00:a0:98:fd:e4:a9)
                  e0b          -
      e0g    sw4  (28:ac:9e:d5:4a:9c)    Ethernet1/11  -
      e0h    sw5  (6c:b2:ae:5f:a5:ca)    Ethernet1/22  -
      e1a    sw6  (00:f6:63:10:be:7c)    Ethernet1/33  -
      e1b    sw7  (00:f6:63:10:be:7d)    Ethernet1/34  -
      e2a    sw8  (b8:ce:f6:91:3d:88)    Ethernet1/35  -
Press <space> to page down, <return> for next line, or 'q' to
quit...
10 entries were displayed.
```

## 11. Verify the shelf ports in the storage system:

```
storage shelf port show -fields remote-device, remote-port
```

**Show example**

```
cluster1::*> storage shelf port show -fields remote-device, remote-port
shelf    id    remote-port    remote-device
-----  --  -----
3.20     0    swp3        sw1
3.20     1    swp3        nsw2
3.20     2    swp4        sw1
3.20     3    swp4        nsw2
3.30     0    swp5        sw1
3.20     1    swp5        nsw2
3.30     2    swp6        sw1
3.20     3    swp6        nsw2
cluster1::*
```

12. Change the privilege level back to admin:

```
set -privilege admin
```

13. If you suppressed automatic case creation, re-enable it by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

**What's next?**

After you've replaced your switches, you can [configure switch health monitoring](#).

## Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

**LIMITED RIGHTS LEGEND:** Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

## Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.