

Boot media

Install and maintain

NetApp

February 13, 2026

This PDF was generated from <https://docs.netapp.com/us-en/ontap-systems/asa-r2-a20-30-50/bootmedia-replace-workflow-bmr.html> on February 13, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Boot media	1
Boot media replacement workflow - ASA A20, ASA A30, and ASA A50	1
Requirements to replace the boot media - ASA A20, ASA A30, and ASA A50	1
Shut down the controller to replace the boot media - ASA A20, ASA A30, and ASA A50	2
Replace the boot media - ASA A20, ASA A30, and ASA A50	3
About this task	3
Step 1: Remove the controller	3
Step 2: Replace the boot media	5
Step 3: Reinstall the controller	6
Restore the ONTAP image on the boot media - ASA A20, ASA A30, and ASA A50	8
Return the failed part to NetApp - ASA A20, ASA A30, and ASA A50	15

Boot media

Boot media replacement workflow - ASA A20, ASA A30, and ASA A50

Get started with replacing the boot media in your ASA A30, ASA A20, or ASA A50 storage system by reviewing the replacement requirements, shutting down the impaired controller, replacing the boot media, restoring the image on the boot media, and verifying the system functionality.

1

Review the boot media requirements

Review the requirements for boot media replacement.

2

Shut down the impaired controller

Shut down or take over the impaired controller so that the healthy controller continues to serve data from the impaired controller storage.

3

Replace the boot media

Remove the failed boot media from the impaired controller and install the replacement boot media.

4

Restore the image on the boot media

Restore the ONTAP image from the healthy controller.

5

Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Requirements to replace the boot media - ASA A20, ASA A30, and ASA A50

Before replacing the boot media in your ASA A20, ASA A30 or ASA A50 storage system, ensure you meet the necessary requirements and considerations for a successful replacement. This includes verifying that you have the correct replacement boot media, confirming that the e0M (wrench) port on the impaired controller is working properly, and determining whether Onboard Key Manager (OKM) or External Key Manager (EKM) is enabled.

Review the following requirements.

- You must replace the failed component with a replacement FRU component of the same capacity that you received from NetApp.

- Verify that the e0M (wrench) port on the impaired controller is connected and not faulty.

The e0M port is used to communicate between the two controllers during the automated boot recovery process.

- For OKM, you need the cluster-wide passphrase and also the backup data.
- For EKM, you need copies of the following files from the partner node:
 - /cfcard/kmip/servers.cfg file.
 - /cfcard/kmip/certs/client.crt file.
 - /cfcard/kmip/certs/client.key file.
 - /cfcard/kmip/certs/CA.pem file.
- It is critical to apply the commands to the correct controller when you are replacing the impaired boot media:
 - The *impaired controller* is the controller on which you are performing maintenance.
 - The *healthy controller* is the HA partner of the impaired controller.

What's next

After you've reviewed the boot media requirements, you [shut down the impaired controller](#).

Shut down the controller to replace the boot media - ASA A20, ASA A30, and ASA A50

Shut down the impaired controller in your ASA A20, ASA A30, or ASA A50 storage system to prevent data loss and ensure system stability when replacing the boot media.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

- If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The `cluster kernel-service show` command (from priv advanced mode) displays the node name, [quorum status](#) of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see [Synchronize a node with the cluster](#).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

2. Disable automatic giveback:

- Enter the following command from the console of the healthy controller:

```
storage failover modify -node impaired_node_name -auto-giveback false
```

- Enter *y* when you see the prompt *Do you want to disable auto-giveback?*

3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying...	Then...
The LOADER prompt	Go to the next step.
Waiting for giveback...	Press Ctrl-C, and then respond <i>y</i> when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: <pre>storage failover takeover -ofnode impaired_node_name -halt true</pre> The <i>-halt true</i> parameter brings you to the LOADER prompt.

What's next

After you shut down the impaired controller, you [replace the boot media](#).

Replace the boot media - ASA A20, ASA A30, and ASA A50

The boot media in your ASA A20, ASA A30, or ASA A50 storage system stores essential firmware and configuration data. The replacement process involves removing the controller module, removing the impaired boot media, installing the replacement boot media, and then reinstalling the controller module.

About this task

If needed, you can turn on the platform chassis location (blue) LEDs to aid in physically locating the affected platform. Log into the BMC using SSH and enter the `system location-led on` command.

A platform chassis has three location LEDs: one on the operator display panel and one on each controller. Location LEDs remain illuminated for 30 minutes.

You can turn them off by entering the `system location-led off` command. If you are unsure if the LEDs are on or off, you can check their state by entering the `system location-led show` command.

Step 1: Remove the controller

You must remove the controller from the chassis when you replace the controller or replace a component inside the controller.

Before you begin

Make sure all other components in the storage system are functioning properly; if not, you must contact [NetApp Support](#) before continuing with this procedure.

Steps

1. On the impaired controller, make sure the NV LED is off.

When the NV LED is off, destaging is complete and it is safe to remove the impaired controller.

If the NV LED is flashing (green), destage is in progress. You must wait for the NV LED to turn off. However, if the flashing continues for longer than five minutes, contact [NetApp Support](#) before continuing with this procedure.

The NV LED is located next to the NV icon on the controller.

1 NV icon and LED on the controller

2. If you are not already grounded, properly ground yourself.

3. Disconnect the power on the impaired controller:

Power supplies (PSUs) do not have a power switch.

If you are disconnecting a...	Then...
AC PSU	<ol style="list-style-type: none">1. Open the power cord retainer.2. Unplug the power cord from the PSU and set it aside.
DC PSU	<ol style="list-style-type: none">1. Unscrew the two thumb screws on the D-SUB DC power cord connector.2. Unplug the power cord from the PSU and set it aside.

4. Unplug all cables from the impaired controller.

Keep track of where the cables were connected.

5. Remove the impaired controller:

The following illustration shows the operation of the controller handles (from the left side of the controller) when removing a controller:

1	On both ends of the controller, push the vertical locking tabs outward to release the handles.
2	<ul style="list-style-type: none"> Pull the handles towards you to unseat the controller from the midplane. <p>As you pull, the handles extend out from the controller and then you feel some resistance, keep pulling.</p> <ul style="list-style-type: none"> Slide the controller out of the chassis while supporting the bottom of the controller, and place it on a flat, stable surface.
3	If needed, rotate the handles upright (next to the tabs) to move them out of the way.

6. Place the controller on an anti-static mat.
7. Open the controller cover by turning the thumbscrew counterclockwise to loosen, and then open the cover.

Step 2: Replace the boot media

To replace the boot media, locate it inside the controller and follow the specific sequence of steps.

1. If you are not already grounded, properly ground yourself.
2. Remove the boot media:

1	Boot media location
2	Press down on the blue tab to release the right end of the boot media.
3	Lift the right end of the boot media up at a slight angle to get a good grip along the sides of the boot media.
4	Gently pull the left end of the boot media out of its socket.

3. Install the replacement boot media:

- Remove the boot media from its package.
- Slide the socket end of the boot media into its socket.
- At the opposite end of the boot media, press down and hold the blue tab (in the open position), gently push down on that end of the boot media until it stops, and then release the tab to lock the boot media into place.

Step 3: Reinstall the controller

Reinstall the controller into the chassis and reboot it.

About this task

The following illustration shows the operation of the controller handles (from the left side of a controller) when reinstalling the controller, and can be used as a reference for the rest of the controller reinstallation steps.

1	If you rotated the controller handles upright (next to the tabs) to move them out of the way while you serviced the controller, rotate them down to the horizontal position.
2	Push the handles to reinsert the controller into the chassis halfway and then, when instructed, push until the controller is fully seated.
3	Rotate the handles to the upright position and lock in place with the locking tabs.

Steps

1. Close the controller cover and turn the thumbscrew clockwise until tightened.

2. Insert the controller halfway into the chassis.

Align the rear of the controller with the opening in the chassis, and then gently push the controller using the handles.

Do not completely insert the controller in the chassis until instructed to do so later in this procedure.

3. Reconnect the cables to the controller; however, do not plug in the power cord to the power supply (PSU) at this time.

Make sure that the console cable is connected to the controller because you want to catch and log the boot sequence later in the boot media replacement procedure when you fully seat the controller in the chassis and it begins to boot.

4. Fully seat the controller in the chassis:

a. Firmly push on the handles until the controller meets the midplane and is fully seated.

Do not use excessive force when sliding the controller into the chassis; it could damage the connectors.

The controller boots to the LOADER prompt when fully seated in the chassis. It gets its power from the partner controller.

b. Rotate the controller handles up and lock in place with the tabs.

5. Reconnect the power cord to the PSU on the impaired controller.

Once power is restored to the PSU, the status LED should be green.

If you are reconnecting a...	Then...
AC PSU	<ol style="list-style-type: none"> 1. Plug the power cord into the PSU. 2. Secure the power cord with the power cord retainer.
DC PSU	<ol style="list-style-type: none"> 1. Plug the D-SUB DC power cord connector into the PSU. 2. Tighten the two thumb screws to secure the D-SUB DC power cord connector to the PSU.

What's next

After physically replacing the impaired boot media, you [restore the ONTAP image from the partner node](#).

Restore the ONTAP image on the boot media - ASA A20, ASA A30, and ASA A50

After installing the new boot media device in your ASA A20, ASA A30, or ASA A50 storage system, you can start the automated boot media recovery process to restore the configuration from the healthy node.

During the recovery process, the system checks whether encryption is enabled and determines the type of key encryption in use. If key encryption is enabled, the system guides you through the appropriate steps to restore it.

Before you begin

- Determine your key manager type:
 - Onboard Key Manager (OKM): Requires cluster-wide passphrase and backup data
 - External Key Manager (EKM): Requires the following files from the partner node:
 - /cfcard/kmip/servers.cfg
 - /cfcard/kmip/certs/client.crt
 - /cfcard/kmip/certs/client.key
 - /cfcard/kmip/certs/CA.pem

Steps

1. From the LOADER prompt, start the boot media recovery process:

```
boot_recovery -partner
```

The screen displays the following message:

```
Starting boot media recovery (BMR) process. Press Ctrl-C to abort...
```

2. Monitor the boot media install recovery process.

The process completes and displays the **Installation complete** message.

3. The system checks for encryption and displays one of the following messages:

If you see this message...	Do this...
key manager is not configured. Exiting.	<p>Encryption is not installed on the system.</p> <p>a. Wait for the login prompt to display.</p> <p>b. Log into the node and give back the storage:</p> <pre>storage failover giveback -ofnode <i>impaired_node_name</i></pre> <p>c. Go to re-enabling automatic giveback if it was disabled.</p>
key manager is configured.	Encryption is installed. Go to restoring the key manager .

If the system cannot identify the key manager configuration, it displays an error message and prompts you to confirm whether key manager is configured and which type (onboard or external). Answer the prompts to proceed.

4. Restore the key manager using the appropriate procedure for your configuration:

Onboard Key Manager (OKM)

The system displays the following message and begins running BootMenu Option 10:

```
key manager is configured.  
Entering Bootmenu Option 10...
```

```
This option must be used only in disaster recovery procedures. Are  
you sure? (y or n):
```

- a. Enter **y** at the prompt to confirm you want to start the OKM recovery process.
- b. Enter the passphrase for onboard key management when prompted.
- c. Enter the passphrase again when prompted to confirm.
- d. Enter the backup data for onboard key manager when prompted.

Show example of passphrase and backup data prompts

```
Enter the passphrase for onboard key management:  
-----BEGIN PASSPHRASE-----  
<passphrase_value>  
-----END PASSPHRASE-----  
Enter the passphrase again to confirm:  
-----BEGIN PASSPHRASE-----  
<passphrase_value>  
-----END PASSPHRASE-----  
Enter the backup data:  
-----BEGIN BACKUP-----  
<passphrase_value>  
-----END BACKUP-----
```

- e. Monitor the recovery process as it restores the appropriate files from the partner node.

When the recovery process is complete, the node reboots. The following messages indicate a successful recovery:

```
Trying to recover keymanager secrets....  
Setting recovery material for the onboard key manager  
Recovery secrets set successfully  
Trying to delete any existing km_onboard.keydb file.  
  
Successfully recovered keymanager secrets.
```

- f. After the node reboots, verify that the system is back online and operational.

g. Return the impaired controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired_node_name
```

h. After the partner node is fully up and serving data, synchronize the OKM keys across the cluster:

```
security key-manager onboard sync
```

Go to [re-enabling automatic giveback](#) if it was disabled.

External Key Manager (EKM)

The system displays the following message and begins running BootMenu Option 11:

```
key manager is configured.  
Entering Bootmenu Option 11...
```

a. Enter the EKM configuration settings when prompted:

i. Enter the client certificate contents from the `/cfcard/kmip/certs/client.crt` file:

Show example of client certificate contents

```
-----BEGIN CERTIFICATE-----  
<certificate_value>  
-----END CERTIFICATE-----
```

ii. Enter the client key file contents from the `/cfcard/kmip/certs/client.key` file:

Show example of client key file contents

```
-----BEGIN RSA PRIVATE KEY-----  
<key_value>  
-----END RSA PRIVATE KEY-----
```

iii. Enter the KMIP server CA(s) file contents from the `/cfcard/kmip/certs/CA.pem` file:

Show example of KMIP server file contents

```
-----BEGIN CERTIFICATE-----  
<KMIP_certificate_CA_value>  
-----END CERTIFICATE-----
```

iv. Enter the server configuration file contents from the `/cfcard/kmip/servers.cfg` file:

Show example of server configuration file contents

```
xxx.xxx.xxx.xxx:5696.host=xxx.xxx.xxx.xxx
xxx.xxx.xxx.xxx:5696.port=5696
xxx.xxx.xxx.xxx:5696.trusted_file=/cfcard/kmip/certs/CA.pem
xxx.xxx.xxx.xxx:5696.protocol=KMIP1_4
1xxx.xxx.xxx.xxx:5696.timeout=25
xxx.xxx.xxx.xxx:5696.nbio=1
xxx.xxx.xxx.xxx:5696.cert_file=/cfcard/kmip/certs/client.crt
xxx.xxx.xxx.xxx:5696.key_file=/cfcard/kmip/certs/client.key
xxx.xxx.xxx.xxx:5696.ciphers="TLSv1.2:kRSA:!CAMELLIA:!IDEA:
!RC2:!RC4:!SEED:!eNULL:!aNULL"
xxx.xxx.xxx.xxx:5696.verify=true
xxx.xxx.xxx.xxx:5696.netapp_keystore_uuid=<id_value>
```

v. If prompted, enter the ONTAP Cluster UUID from the partner node. You can check the cluster UUID from the partner node using the `cluster identify show` command.

Show example of ONTAP Cluster UUID prompt

```
Notice: bootarg.mgwd.cluster_uuid is not set or is empty.
Do you know the ONTAP Cluster UUID? {y/n} y
Enter the ONTAP Cluster UUID: <cluster_uuid_value>
```

```
System is ready to utilize external key manager(s).
```

vi. If prompted, enter the temporary network interface and settings for the node:

- The IP address for the port
- The netmask for the port
- The IP address of the default gateway

Show example of temporary network setting prompts

In order to recover key information, a temporary network interface needs to be configured.

```
Select the network port you want to use (for example,  
'e0a')  
e0M
```

```
Enter the IP address for port : xxx.xxx.xxx.xxx  
Enter the netmask for port : xxx.xxx.xxx.xxx  
Enter IP address of default gateway: xxx.xxx.xxx.xxx  
Trying to recover keys from key servers....  
[discover_versions]  
[status=SUCCESS reason= message=]
```

b. Verify the key restoration status:

- If you see `kmip2_client: Successfully imported the keys from external key server: xxx.xxx.xxx.xxx:5696` in the output, the EKM configuration has been successfully restored. The process restores the appropriate files from the partner node and reboots the node. Proceed to the next step.
- If the key is not successfully restored, the system halts and displays error and warning messages. Rerun the recovery process from the **LOADER** prompt: `boot_recovery -partner`

Show example of key recovery error and warning messages

```
ERROR: kmip_init: halting this system with encrypted
mroot...
WARNING: kmip_init: authentication keys might not be
available.
*****
*          A T T E N T I O N
*
*      System cannot connect to key managers.
*
*****
ERROR: kmip_init: halting this system with encrypted
mroot...
.
Terminated

Uptime: 11m32s
System halting...

LOADER-B>
```

- c. After the node reboots, verify that the system is back online and operational.
- d. Return the controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired_node_name
```

Go to [re-enabling automatic giveback](#) if it was disabled.

5. If automatic giveback was disabled, reenable it:

```
storage failover modify -node local -auto-giveback true
```

6. If AutoSupport is enabled, restore automatic case creation:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

What's next

After you've restored the ONTAP image and the node is up and serving data, you [return the failed part to NetApp](#).

Return the failed part to NetApp - ASA A20, ASA A30, and ASA A50

When a component in your ASA A20, ASA A30, or ASA A50 storage system fails, return the failed part to NetApp. See the [Part Return and Replacements](#) page for further information.

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—with prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.