■ NetApp

A-Series systems

Install and maintain

NetApp August 29, 2025

This PDF was generated from https://docs.netapp.com/us-en/ontap-systems/asa150/install-setup.html on August 29, 2025. Always check docs.netapp.com for the latest.

Table of Contents

ASA A-Series systems	 	 1
ASA A150 systems		
Install and setup	 	 1
Maintain	 	 15
ASA A250 systems	 	 92
Install and setup	 	 92
Maintain		
ASA A400 systems	 	 187
Install and setup	 	 187
Maintain		
ASA A800 systems	 	 313
Install and setup	 	 313
Maintain	 	 329
ASA A900 systems	 	 438
Install and setup	 	 438
Maintain	 	 457

ASA A-Series systems

ASA A150 systems

Install and setup

Start here: Choose your installation and setup experience

For most configurations, you can choose from different content formats.

Quick steps

A printable PDF of step-by-step instructions with live links to additional content.

• Video steps

Video step-by-step instructions.

· Detailed steps

Online step-by-step instructions with live links to additional content.

If your system is in a MetroCluster IP configuration, see the Install MetroCluster IP Configuration instructions.

Warning: If your system is being installed with ONTAP 9.13.1P8 - 9.13.1P11, ONTAP 9.14.1P1 - 9.14.1P7 or ONTAP 9.15.1 - 9.15.1P2 and your system contains 10 or more internal solid-state drives, you must take additional steps to prepare the system for installation. See issue CONTAP-285173 - ADP does not leave a spare root partition on an AFF A150 with 10 or more internal drives.

Quick guide - ASA A150

Warning: If your system is being installed with ONTAP 9.13.1P8 - 9.13.1P11, ONTAP 9.14.1P1 - 9.14.1P7 or ONTAP 9.15.1 - 9.15.1P2 and your system contains 10 or more internal solid-state drives, you must take additional steps to prepare the system for installation. See issue CONTAP-285173 - ADP does not leave a spare root partition on an AFF A150 with 10 or more internal drives.

The Installation and Setup instructions give graphic instructions for a typical installation of your system, from racking and cabling, through initial system bring-up. Use this guide if you are familiar with installing NetApp systems.

Use the xref:./asa150/AFF A150 System Installation and Setup Instructions

The ASA A150 uses the same installation procedure as the AFF A150 system.

Video steps - ASA A150

Use the following videos to learn how to rack and cable your system and perform initial system configuration.

If you have a MetroCluster configuration, use the MetroCluster documentation.

Warning: If your system is being installed with ONTAP 9.13.1P8 - 9.13.1P11, ONTAP 9.14.1P1 - 9.14.1P7 or ONTAP 9.15.1 - 9.15.1P2 and your system contains 10 or more internal solid-state drives, you must take additional steps to prepare the system for installation. See issue CONTAP-285173 - ADP does not leave a spare root partition on an AFF A150 with 10 or more internal drives.

Hardware installation and cabling

The following video shows how to install and cable your system.

Animation - Install and setup of an AFF A150

The ASA A150 uses the same installation procedure as the AFF A150 system.

Detailed guide - ASA A150

Learn how to install your ASA A150 system.

If you have a MetroCluster configuration, use the MetroCluster documentation.

Warning: If your system is being installed with ONTAP 9.13.1P8 - 9.13.1P11, ONTAP 9.14.1P1 - 9.14.1P7 or ONTAP 9.15.1 - 9.15.1P2 and your system contains 10 or more internal solid-state drives, you must take additional steps to prepare the system for installation. See issue CONTAP-285173 - ADP does not leave a spare root partition on an AFF A150 with 10 or more internal drives.

Step 1: Prepare for installation

To install your system, create an account on the NetApp Support Site, register your system, and obtain your license keys. You also need to inventory the appropriate number and type of cables for your system and collect specific network information.

Before you begin

- Make sure you have access to NetApp Hardware Universe (HWU) for information about site requirements as well as additional information on your configured system.
- Make sure you have access to the Release Notes for your version of ONTAP for more information about this system.
- Contact your network administrator for information about connecting your system to the switches.
- Make sure you have the following items at your site:
 - Rack space for the storage system
 - Phillips #2 screwdriver
 - Additional networking cables to connect your system to your network switch and laptop or console with a Web browser
 - A laptop or console with an RJ-45 connection and access to a Web browser

Steps

- 1. Unpack the contents of all boxes.
- 2. Record the system serial number from the controllers.

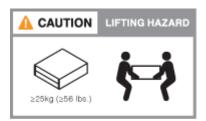
- 3. Set up your account:
 - a. Log in to your existing account or create an account.
 - b. Register your system.
- 4. Download and install Config Advisor on your laptop.
- 5. Inventory and make a note of the number and types of cables you received.

The following table identifies the types of cables you might receive. If you receive a cable not listed in the table, see NetApp Hardware Universe to locate the cable and identify its use.

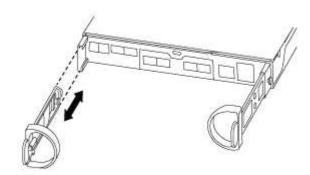
Type of cable	Part number and length	Connector type	For
10 GbE cable (order dependent)	X6566B-05-R6 (112-00297), 0.5m X6566B-2-R6 (112-00299), 2m		Cluster interconnect network
10 GbE cable (order dependent)	Part number X6566B-2-R6 (112-00299), 2m or X6566B-3-R6 (112-00300), 3m X6566B-5-R6 (112-00301), 5m		Data
Optical network cables (order dependent)	X6553-R6 (112-00188), 2m X6536-R6 (112-00090), 5m X6554-R6(112-00189), 15m		FC host network
Cat 6, RJ-45 (order dependent)	Part numbers X6585-R6 (112-00291), 3m X6562-R6 (112-00196), 5m		Management network and Ethernet data
Storage (order dependent)	Part number X66030A (112-00435), 0.5m X66031A (112-00436), 1m X66032A (112-00437), 2m X66033A (112-00438), 3m		Storage
Micro-USB console cable	Not applicable		Console connection during software setup on non-Windows or Mac laptop/console
Power cables	Not applicable		Powering up the system

6. Download and complete the Cluster Configuration Worksheet.

Step 2: Install the hardware


Install your system in a 4-post rack or NetApp system cabinet, as applicable.

Steps


- 1. Install the rail kits, as needed.
- 2. Install and secure your system using the instructions included with the rail kit.

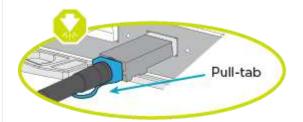
You need to be aware of the safety concerns associated with the weight of the system.

3. Attach cable management devices (as shown).

4. Place the bezel on the front of the system.

Step 3: Cable controllers to network

Cable the controllers to your network by using either the two-node switchless cluster method or the cluster interconnect network method.

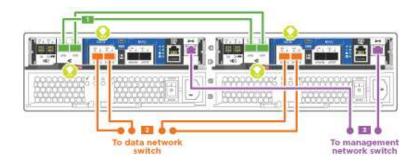

Management network, UTA2 data network, Ethernet data network, and management ports on the controllers are connected to switches. The cluster interconnect ports are cabled on both controllers.

Option 1: Two-node switchless cluster

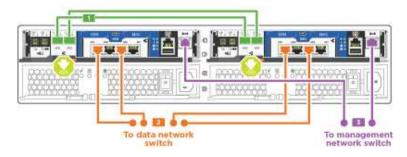
Learn how to cable a two-node switchless cluster.

Before you begin

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.



As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.


About this task

You can use either the UTA2 data network ports or the ethernet data network ports to connect the controllers to your host network. Refer to the following cabling illustrations when cabling between the controllers and the switches.

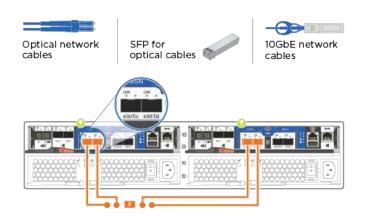
UTA2 data network configurations

Ethernet network configurations

Perform the following steps on each controller module.

Steps

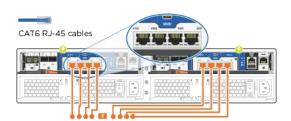
1. Cable the cluster interconnect ports e0a to e0a and e0b to e0b with the cluster interconnect cable.

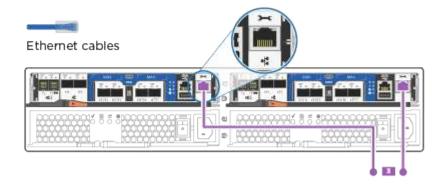


2. Do one of the following:

UTA2 data network configurations

Use one of the following cable types to cable the UTA2 data ports to your host network.

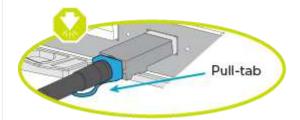

- For an FC host, use 0c and 0d or 0e and 0f.
- For an 10GbE system, use e0c and e0d or e0e and e0f.


You can connect one port pair as CNA and one port pair as FC, or you can connect both port pairs as CNA or both port pairs as FC.

Ethernet network configurations

Use the Cat 6 RJ45 cable to cable the e0c through e0f ports to your host network. in the following illustration.

3. Cable the e0M ports to the management network switches with the RJ45 cables.

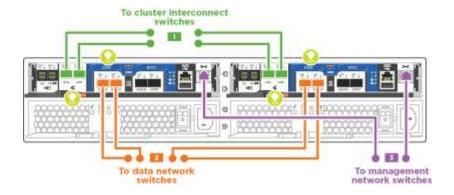

DO NOT plug in the power cords at this point.

Option 2: Switched cluster

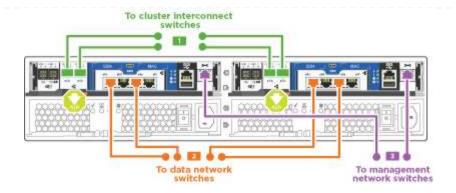
Learn how to cable a switched cluster.

Before you begin

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

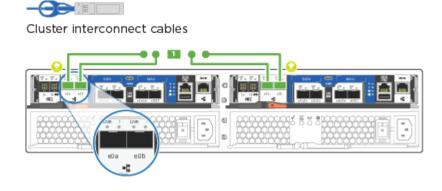


As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.


About this task

You can use either the UTA2 data network ports or the ethernet data network ports to connect the controllers to your host network. Refer to the following cabling illustrations when cabling between the controllers and the switches.

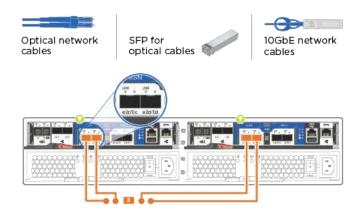
Unified network cabling


Ethernet network cabling

Perform the following steps on each controller module.

Steps

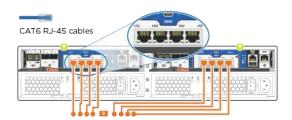
1. For each controller module, cable e0a and e0b to the cluster interconnect switches with the cluster interconnect cable.

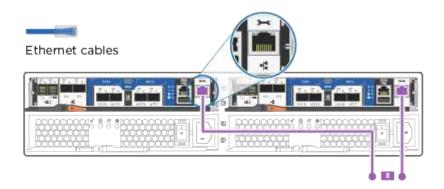


2. Do one of the following:

UTA2 data network configurations

Use one of the following cable types to cable the UTA2 data ports to your host network.


- For an FC host, use 0c and 0d or 0e and 0f.
- For an 10GbE system, use e0c and e0d or e0e and e0f.

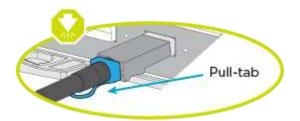

You can connect one port pair as CNA and one port pair as FC, or you can connect both port pairs as CNA or both port pairs as FC.

Ethernet network configurations

Use the Cat 6 RJ45 cable to cable the e0c through e0f ports to your host network.

3. Cable the e0M ports to the management network switches with the RJ45 cables.

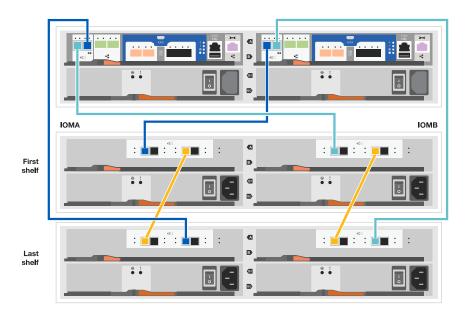
Step 4: Cable controllers to drive shelves


Cable the controllers to your shelves using the onboard storage ports. NetApp recommends MP-HA cabling for systems with external storage.

About this task

If you have a SAS tape drive, you can use single-path cabling. If you have no external shelves, MP-HA cabling to internal drives is optional (not shown) if the SAS cables are ordered with the system.

You must cable the shelf-to-shelf connections, and then cable both controllers to the drive shelves.


Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

Steps

1. Cable the HA pair with external drive shelves.

The following example shows cabling for DS224C drive shelves. The cabling is similar with other supported drive shelves.

- 2. Cable the shelf-to-shelf ports.
 - Port 3 on IOM A to port 1 on the IOM A on the shelf directly below.
 - Port 3 on IOM B to port 1 on the IOM B on the shelf directly below.

- 3. Connect each node to IOM A in the stack.
 - Controller 1 port 0b to IOM A port 3 on last drive shelf in the stack.
 - Controller 2 port 0a to IOM A port 1 on the first drive shelf in the stack.
 - mini-SAS HD to mini-SAS HD cables
- 4. Connect each node to IOM B in the stack
 - Controller 1 port 0a to IOM B port 1 on first drive shelf in the stack.
 - Controller 2 port 0b to IOM B port 3 on the last drive shelf in the stack.
 mini-SAS HD to mini-SAS HD cables

For additional cabling information, see Install and cable shelves for a new system installation - shelves with IOM12/IOM12B modules.

Step 5: Complete system setup

You can complete the system setup and configuration using cluster discovery with only a connection to the switch and laptop, or by connecting directly to a controller in the system and then connecting to the management switch.

Option 1: If network discovery is enabled

If you have network discovery enabled on your laptop, you can complete system setup and configuration using automatic cluster discovery.

Steps

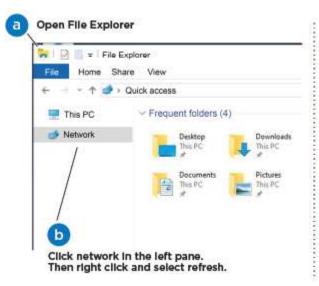
1. Use the following animation to set one or more drive shelf IDs

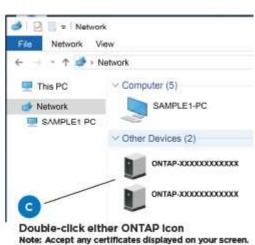
Animation - Set drive shelf IDs

- 2. Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.
- 3. Turn on the power switches to both nodes.

(i)

Initial booting may take up to eight minutes.


4. Make sure that your laptop has network discovery enabled.


See your laptop's online help for more information.

5. Use the following animation to connect your laptop to the Management switch.

Animation - Connect your laptop to the Management switch

6. Select an ONTAP icon listed to discover:

a. Open File Explorer.

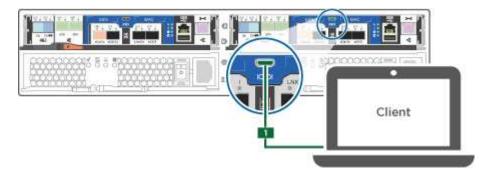
- b. Click **Network** in the left pane and right-click and select **refresh**.
- c. Double-click either ONTAP icon and accept any certificates displayed on your screen.

XXXXX is the system serial number for the target node.

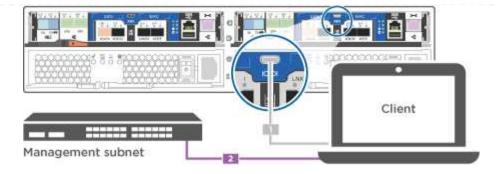
System Manager opens.

- 7. Configure the system using the data you collected in the ONTAP Configuration Guide.
- 8. Set up your account and download Active IQ Config Advisor:
 - a. Log in to your existing account or create and account.
 - b. Register your system.
 - c. Download Active IQ Config Advisor.
- 9. Verify the health of your system by running Config Advisor.
- 10. After you have completed the initial configuration, go to the ONTAP documentation site for information about configuring additional features in ONTAP.

Option 2: If network discovery is not enabled


If network discovery is not enabled on your laptop, you must complete the configuration and setup using this task.

Steps


- 1. Cable and configure your laptop or console.
 - a. Set the console port on the laptop or console to 115,200 baud with N-8-1.

See your laptop or console's online help for instructions on how to configure the console port.

b. Connect the console cable to the laptop or console, and connect the console port on the controller using the console cable that came with your system.

c. Connect the laptop or console to the switch on the management subnet.

- d. Assign a TCP/IP address to the laptop or console, using one that is on the management subnet.
- 2. Use the following animation to set one or more drive shelf IDs:

Animation - Set drive shelf IDs

- 3. Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.
- 4. Turn on the power switches to both nodes.

(i)

Initial booting may take up to eight minutes.

5. Assign an initial node management IP address to one of the nodes.

If the management network has DHCP	Then	
Configured	Record the IP address assigned to the new controllers.	
Not configured	 a. Open a console session using PuTTY, a terminal server, or the equivalent for your environment. 	
	Check your laptop or console's online help if you do not know how to configure PuTTY.	
	b. Enter the management IP address when prompted by the script.	

- 6. Using System Manager on your laptop or console, configure your cluster.
 - a. Point your browser to the node management IP address.

The format for the address is https://x.x.x.x.

- b. Configure the system using the data you collected in the ONTAP Configuration Guide.
- 7. Set up your account and download Active IQ Config Advisor:
 - a. Log in to your existing account or create and account.
 - b. Register your system.
 - c. Download Active IQ Config Advisor.
- 8. Verify the health of your system by running Config Advisor.
- 9. After you have completed the initial configuration, go to the ONTAP documentation site for information about configuring additional features in ONTAP.

Maintain

Maintain ASA A150 hardware

For the ASA A150 storage system, you can perform maintenance procedures on the following components.

Boot media

The boot media stores a primary and secondary set of boot image files that the system uses when it boots.

Chassis

The chassis is the physical enclosure housing all the controller components such as the controller/CPU unit, power supply, and I/O.

Controller

A controller consists of a board, firmware, and software. It controls the drives and implements the ONTAP functions.

DIMM

You must replace a DIMM (dual in-line memory module) when a memory mismatch is present, or you have a failed DIMM.

Drive

A drive is a device that provides the physical storage media for data.

NVEM Battery

A battery is included with a controller and preserves cached data if the AC power fails.

Power supply

A power supply provides a redundant power source in a controller shelf.

Real time clock battery

A real time clock battery preserves system date and time information if the power is off.

////July 2025: ontap-systems 370: deleted caching module since not supported for this platform.

Boot media

Overview of boot media replacement - ASA A150

The boot media stores a primary and secondary set of system (boot image) files that the system uses when it boots. Depending on your network configuration, you can perform either a nondisruptive or disruptive replacement.

You must have a USB flash drive, formatted to FAT32, with the appropriate amount of storage to hold the image xxx.tgz file.

You also must copy the image xxx.tgz file to the USB flash drive for later use in this procedure.

- The nondisruptive and disruptive methods for replacing a boot media both require you to restore the var file system:
 - $^{\circ}$ For nondisruptive replacement, the HA pair must be connected to a network to restore the var file system.
 - For disruptive replacement, you do not need a network connection to restore the var file system, but the process requires two reboots.
- You must replace the failed component with a replacement FRU component you received from your provider.
- It is important that you apply the commands in these steps on the correct node:
 - The *impaired* node is the node on which you are performing maintenance.
 - The *healthy node* is the HA partner of the impaired node.

Check encryption key support and status - ASA A150

To ensure data security on your storage system, you need to verify the encryption key support and status on your boot media. Check if your ONTAP version supports NetApp Volume Encryption (NVE), and before you shut down the controller check if the key manager is active.

Step 1: Check if your version of ONTAP supports NetApp Volume Encryption

Check whether your ONTAP version supports NetApp Volume Encryption (NVE). This information is crucial for downloading the correct ONTAP image.

Steps

1. Determine if your ONTAP version supports encryption by running the following command:

```
version -v
```

If the output includes 10no-DARE, NVE is not supported on your cluster version.

- 2. Depending on whether NVE is supported on your system, take one of the following actions:
 - If NVE is supported, download the ONTAP image with NetApp Volume Encryption.
 - If NVE is not supported, download the ONTAP image without NetApp Volume Encryption.

Step 2: Determine if it is safe to shut down the controller

To safely shut down a controller, first identify whether the External Key Manager (EKM) or the Onboard Key Manager (OKM) is active. Then, verify the key manager in use, display the appropriate key information, and take action based on the status of the authentication keys.

Steps

1. Determine which key manager is enabled on your system:

ONTAP version	Run this command
ONTAP 9.14.1 or later	security key-manager keystore show
	If EKM is enabled, EKM is listed in the command output.
	• If OKM is enabled, OKM is listed in the command output.
	• If no key manager is enabled, No key manager keystores configured is listed in the command output.
ONTAP 9.13.1 or earlier	security key-manager show-key-store
	• If EKM is enabled, external is listed in the command output.
	• If OKM is enabled, onboard is listed in the command output.
	• If no key manager is enabled, No key managers configured is listed in the command output.

2. Depending on whether a key manger is configured on your system, select one of the following options.

No key manager configured

You can safely shut down the impaired controller. Go to shutdown the impaired controller.

External or Onboard key manager configured

a. Enter the following query command to display the status of the authentication keys in your key manager.

security key-manager key query

b. Check the output for the value in the Restored column for your key manager.

This column indicates whether the authentication keys for your key manager (either EKM or OKM) have been successfully restored.

3. Depending on whether your system is using the External Key Manager or Onboard Key Manager, select

one of the following options.

External Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	You can safely shut down the impaired controller. Go to shutdown the impaired controller.
Anything other than true	 a. Restore the external key management authentication keys to all nodes in the cluster using the following command: <pre>security key-manager external restore</pre> If the command fails, contact NetApp Support. b. Verify that the Restored column displays true for all authentication keys by entering the security key-manager key query command. If all the authentication keys are true, you can safely shut down the impaired controller. Go to shutdown the impaired controller.

Onboard Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	Manually back up the OKM information.
	a. Go to the advanced mode by entering set -priv advanced and then enter Y when prompted.
	b. Enter the following command to display the key management information:
	security key-manager onboard show-backup
	c. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	d. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Output value in Restored column	Follow these steps
Anything other than true	a. Enter the onboard security key-manager sync command:
	security key-manager onboard sync
	b. Enter the 32 character, alphanumeric onboard key management passphrase when prompted.
	If the passphrase cannot be provided, contact NetApp Support.
	c. Verify the Restored column displays true for all authentication keys:
	security key-manager key query
	d. Verify that the Key Manager type displays onboard, and then manually back up the OKM information.
	e. Enter the command to display the key management backup information:
	security key-manager onboard show-backup
	f. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	g. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Shut down the impaired controller - ASA A150

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

Option 1: Most configurations

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

Steps

a. Take the impaired controller to the LOADER prompt:

If the impaired controller displays	Then
The LOADER prompt	Go to Remove controller module.

If the impaired controller displays	Then
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

b. From the LOADER prompt, enter: printenv to capture all boot environmental variables. Save the output to your log file.

This command may not work if the boot device is corrupted or non-functional.

Option 2: Controller is in a MetroCluster

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration

 State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

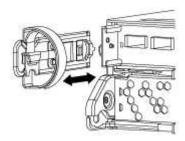
- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

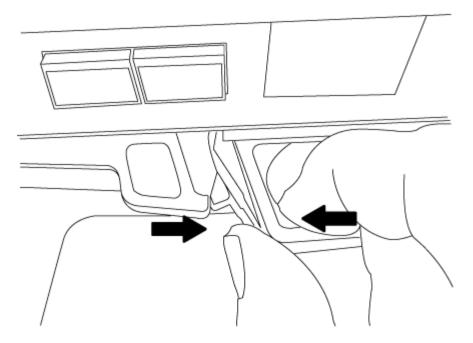
If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Replace the boot media - ASA A150

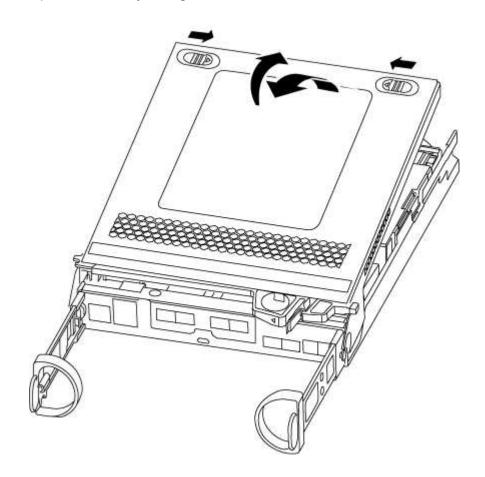
To replace the boot media, you must remove the impaired controller module, install the replacement boot media, and transfer the boot image to a USB flash drive.


Step 1: Remove the controller module

To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.

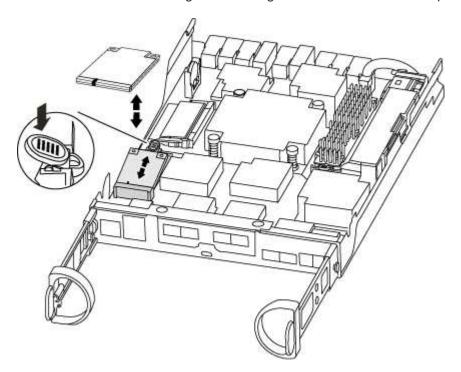

- 1. If you are not already grounded, properly ground yourself.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.


3. Remove and set aside the cable management devices from the left and right sides of the controller module.

4. Squeeze the latch on the cam handle until it releases, open the cam handle fully to release the controller module from the midplane, and then, using two hands, pull the controller module out of the chassis.

- 5. Turn the controller module over and place it on a flat, stable surface.
- 6. Open the cover by sliding in the blue tabs to release the cover, and then swing the cover up and open.



Step 2: Replace the boot media

You must locate the boot media in the controller and follow the directions to replace it.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Locate the boot media using the following illustration or the FRU map on the controller module:

3. Press the blue button on the boot media housing to release the boot media from its housing, and then gently pull it straight out of the boot media socket.

Do not twist or pull the boot media straight up, because this could damage the socket or the boot media.

- 4. Align the edges of the replacement boot media with the boot media socket, and then gently push it into the socket.
- 5. Check the boot media to make sure that it is seated squarely and completely in the socket.

If necessary, remove the boot media and reseat it into the socket.

- 6. Push the boot media down to engage the locking button on the boot media housing.
- 7. Close the controller module cover.

Step 3: Transfer the boot image to the boot media

You can install the system image to the replacement boot media using a USB flash drive with the image installed on it. However, you must restore the var file system during this procedure.

- You must have a USB flash drive, formatted to FAT32, with at least 4GB capacity.
- A copy of the same image version of ONTAP as what the impaired controller was running. You can
 download the appropriate image from the Downloads section on the NetApp Support Site
 - If NVE is enabled, download the image with NetApp Volume Encryption, as indicated in the download button.
 - If NVE is not enabled, download the image without NetApp Volume Encryption, as indicated in the download button.

- If your system is an HA pair, you must have a network connection.
- If your system is a stand-alone system you do not need a network connection, but you must perform an additional reboot when restoring the var file system.

Steps

- 1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
- 2. Reinstall the cable management device and recable the system, as needed.

When recabling, remember to reinstall the media converters (SFPs) if they were removed.

3. Insert the USB flash drive into the USB slot on the controller module.

Make sure that you install the USB flash drive in the slot labeled for USB devices, and not in the USB console port.

4. Push the controller module all the way into the system, making sure that the cam handle clears the USB flash drive, firmly push the cam handle to finish seating the controller module, push the cam handle to the closed position, and then tighten the thumbscrew.

The controller begins to boot as soon as it is completely installed into the chassis.

5. Interrupt the boot process to stop at the LOADER prompt by pressing Ctrl-C when you see Starting AUTOBOOT press Ctrl-C to abort....

If you miss this message, press Ctrl-C, select the option to boot to Maintenance mode, and then halt the controller to boot to LOADER.

6. For systems with one controller in the chassis, reconnect the power and turn on the power supplies.

The system begins to boot and stops at the LOADER prompt.

- 7. Set your network connection type at the LOADER prompt:
 - ° If you are configuring DHCP: ifconfig e0a -auto

The target port you configure is the target port you use to communicate with the impaired controller from the healthy controller during var file system restore with a network connection. You can also use the e0M port in this command.

- If you are configuring manual connections: ifconfig e0a -addr=filer_addr -mask=netmask
 -gw=gateway-dns=dns_addr-domain=dns_domain
 - filer addr is the IP address of the storage system.
 - netmask is the network mask of the management network that is connected to the HA partner.
 - gateway is the gateway for the network.
 - dns addr is the IP address of a name server on your network.
 - dns domain is the Domain Name System (DNS) domain name.

If you use this optional parameter, you do not need a fully qualified domain name in the netboot server URL. You need only the server's host name.

Other parameters might be necessary for your interface. You can enter help ifconfig at the firmware prompt for details.

Boot the recovery image - ASA A150

You must boot the ONTAP image from the USB drive, restore the file system, and verify the environmental variables.

Steps

- From the LOADER prompt, boot the recovery image from the USB flash drive: boot_recovery
 The image is downloaded from the USB flash drive.
- 2. When prompted, either enter the name of the image or accept the default image displayed inside the brackets on your screen.
- 3. Restore the var file system:

If your system has	Then
A network connection	a. Press ${\bf y}$ when prompted to restore the backup configuration.
	b. Set the healthy controller to advanced privilege level: set-privilege advanced
	c. Run the restore backup command: system node restore- backup -node local -target-address impaired_node_IP_address
	d. Return the controller to admin level: set -privilege admin
	e. Press ${\bf y}$ when prompted to use the restored configuration.
	f. Press ${\bf y}$ when prompted to reboot the controller.
No network connection	a. Press ${\tt n}$ when prompted to restore the backup configuration.
	b. Reboot the system when prompted by the system.
	c. Select the Update flash from backup config (sync flash) option from the displayed menu.
	If you are prompted to continue with the update, press ${\bf y}$.

- 4. Ensure that the environmental variables are set as expected:
 - a. Take the controller to the LOADER prompt.
 - b. Check the environment variable settings with the printenv command.
 - c. If an environment variable is not set as expected, modify it with the setenv environment-variable-name changed-value command.
 - d. Save your changes using the saveny command.
- 5. The next depends on your system configuration:

- If your system has onboard keymanager, NSE or NVE configured, go to Restore OKM, NSE, and NVE as needed
- If your system does not have onboard keymanager, NSE or NVE configured, complete the steps in this section.
- 6. From the LOADER prompt, enter the boot ontap command.

If you see	Then
The login prompt	Go to the next Step.
Waiting for giveback	a. Log into the partner controller.b. Confirm the target controller is ready for giveback with the storage failover show command.

- 7. Connect the console cable to the partner controller.
- 8. Give back the controller using the storage failover giveback -fromnode local command.
- 9. At the cluster prompt, check the logical interfaces with the net int -is-home false command.

If any interfaces are listed as "false", revert those interfaces back to their home port using the net intrevert command.

- 10. Move the console cable to the repaired controller and run the version -v command to check the ONTAP versions.
- 11. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command.

Restore OKM, NSE, and NVE - ASA A150

Restore encryption on the replacement boot media.

You must complete steps specific to systems that have Onboard Key Manager (OKM), NetApp Storage Encryption (NSE) or NetApp Volume Encryption (NVE) enabled using the settings that you captured at the beginning of the boot media replace procedure.

Depending on which a key manger is configured on your system, select one of the following options to restore it from the boot menu.

- Option 1: Restore the Onboard Key Manager configuration
- Option 2: Restore the External Key Manager configuration

Option 1: Restore the Onboard Key Manager configuration

Restore the Onboard Key Manager (OKM) configuration from the ONTAP boot menu.

Before you begin

- Make sure you have following information while restoring the OKM configuration:
 - · Cluster-wide passphrase entered while enabling onboard key management.
 - · Backup information for the Onboard Key Manager.

• Perform the How to verify onboard key management backup and cluster-wide passphrase procedure before proceeding.

Steps

- 1. Connect the console cable to the target controller.
- 2. From the ONTAP boot menu select the appropriate option from the boot menu.

ONTAP version	Select this option
ONTAP 9.8 or later	Select option 10.
	Show example boot menu
	Please choose one of the following: (1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	(10) Set Onboard Key Manager recovery
	secrets.
	(11) Configure node for external key
	management.
	Selection (1-11)? 10

ONTAP version	Select this option
ONTAP 9.7 and earlier	Select the hidden option recover_onboard_keymanager
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	Selection (1-19)?
	recover_onboard_keymanager

3. Confirm that you want to continue the recovery process.

Show example prompt

This option must be used only in disaster recovery procedures. Are you sure? (y or n):

4. Enter the cluster-wide passphrase twice.

While entering the passphrase the console will not show any input.

Show example prompt

Enter the passphrase for onboard key management:

Enter the passphrase again to confirm:

- 5. Enter the backup information.
 - a. Paste the entire content from the BEGIN BACKUP line through the END BACKUP line.

Enter the backup data:

-----END BACKUP-----

b. Press the enter key twice at the end of the input.

The recovery process completes.

Show example prompt

Do not proceed if the displayed output is anything other than ${\tt Successfully recovered}$ keymanager secrets.

Perform troubleshooting to correct the error.

6. Select option 1 from the boot menu to continue booting into ONTAP.

Show example prompt

```
**************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
******************
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6)
   Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

7. Confirm that the controller's console displays the following message.

```
Waiting for giveback...(Press Ctrl-C to abort wait)
```

8. From the partner node, giveback the partner controller by entering the following command.

```
storage failover giveback -fromnode local -only-cfo-aggregates true.
```

9. After booting with only the CFO aggregate, run the following command.

```
security key-manager onboard sync
```

10. Enter the cluster-wide passphrase for the Onboard Key Manager.

Show example prompt

Enter the cluster-wide passphrase for the Onboard Key Manager:

All offline encrypted volumes will be brought online and the corresponding volume encryption keys (VEKs) will be restored automatically within 10 minutes. If any offline encrypted volumes are not brought online automatically, they can be brought online manually using the "volume online -vserver <vserver> -volume <volume_name>" command.

If the sync is successful the cluster prompt is returned with no additional messages. If the sync fails an error message appears before returning to the cluster prompt. Do not continue until the the error is corrected and the sync runs successfully.

11. Ensure that all keys are synced by entering the following command.

security key-manager key query -restored false.

There are no entries matching your query.

No results should appear when filtering for false in the restored parameter.

12. Giveback the node from the partner by entering the following command.

```
storage failover giveback -fromnode local
```

13. Restore automatic giveback, if you disabled it, by entering the following command.

```
storage failover modify -node local -auto-giveback true
```

14. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Option 2: Restore the External Key Manager configuration

Restore the External Key Manager configuration from the ONTAP boot menu.

Before you begin

You need the following information for restoring the External Key Manager (EKM) configuration.

- A copy of the /cfcard/kmip/servers.cfg file from another cluster node or the following information:
 - The KMIP server address.
 - The KMIP port.
- A copy of the /cfcard/kmip/certs/client.crt file from another cluster node or the client certificate.

- A copy of the /cfcard/kmip/certs/client.key file from another cluster node or the client key.
- A copy of the /cfcard/kmip/certs/CA.pem file from another cluster node or the KMIP server CA(s).

Steps

- 1. Connect the console cable to the target controller.
- 2. Select option 11 from the ONTAP boot menu.

Show example boot menu

```
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 11
```

3. When prompted, confirm you have gathered the required information.

Show example prompt

```
Do you have a copy of the /cfcard/kmip/certs/client.crt file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/client.key file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/CA.pem file? {y/n}
Do you have a copy of the /cfcard/kmip/servers.cfg file? {y/n}
```

4. When prompted, enter the client and server information.

Show prompt

```
Enter the client certificate (client.crt) file contents:
Enter the client key (client.key) file contents:
Enter the KMIP server CA(s) (CA.pem) file contents:
Enter the server configuration (servers.cfg) file contents:
```

Show example

```
Enter the client certificate (client.crt) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the client key (client.key) file contents:
----BEGIN RSA PRIVATE KEY----
<key value>
----END RSA PRIVATE KEY----
Enter the KMIP server CA(s) (CA.pem) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the IP address for the KMIP server: 10.10.10.10
Enter the port for the KMIP server [5696]:
System is ready to utilize external key manager(s).
Trying to recover keys from key servers....
kmip init: configuring ports
Running command '/sbin/ifconfig eOM'
kmip init: cmd: ReleaseExtraBSDPort e0M
```

After you enter the client and server information, the recovery process completes.

Show example

```
System is ready to utilize external key manager(s).

Trying to recover keys from key servers....

Performing initialization of OpenSSL

Successfully recovered keymanager secrets.
```

5. Select option 1 from the boot menu to continue booting into ONTAP.

Show example prompt

```
*****************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
*****************
*****
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

6. Restore automatic giveback if you disabled it.

```
storage failover modify -node local -auto-giveback true
```

7. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
\verb|system| node autosupport invoke -node * -type all -message MAINT=END| \\
```

Return the failed part to NetApp - ASA A150

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Chassis

Overview of chassis replacement - ASA A150

To replace the chassis, you must move the power supplies, hard drives, and controller module or modules from the impaired chassis to the new chassis, and swap out the impaired chassis from the equipment rack or system cabinet with the new chassis of the same model as the impaired chassis.

All other components in the system must be functioning properly; if not, you must contact technical support.

- You can use this procedure with all versions of ONTAP supported by your system.
- This procedure is written with the assumption that you are moving all drives and controller module or modules to the new chassis, and that the chassis is a new component from NetApp.
- This procedure is disruptive. For a two-controller cluster, you will have a complete service outage and a partial outage in a multi-node cluster.

Shut down the controllers - ASA A150

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

Option 1: Most configurations

This procedure is for systems with two node configurations. For more information about graceful shutdown when servicing a cluster, see Gracefully shutdown and power up your storage system Resolution Guide - NetApp Knowledge Base.

Before you begin

- Make sure you have the necessary permissions and credentials:
 - Local administrator credentials for ONTAP.
 - BMC accessability for each controller.
- Make sure you have the necessary tools and equipment for the replacement.
- As a best practice before shutdown, you should:
 - Perform additional system health checks.
 - Upgrade ONTAP to a recommended release for the system.
 - Resolve any Active IQ Wellness Alerts and Risks.
 Make note of any faults presently on the system, such as LEDs on the system components.

Steps

- 1. Log into the cluster through SSH or log in from any node in the cluster using a local console cable and a laptop/console.
- Stop all clients/host from accessing data on the NetApp system.
- 3. Suspend external backup jobs.
- 4. If AutoSupport is enabled, suppress case creation and indicate how long you expect the system to be offline:

```
system node autosupport invoke -node * -type all -message "MAINT=2h Replace chassis"
```

5. Identify the SP/BMC address of all cluster nodes:

```
system service-processor show -node * -fields address
```

6. Exit the cluster shell:

exit

7. Log into SP/BMC over SSH using the IP address of any of the nodes listed in the output from the previous

step to monitor progress.

If you are using a console/laptop, log into the controller using the same cluster administrator credentials.

8. Halt the two nodes located in the impaired chassis:

system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown
true -ignore-quorum-warnings true -inhibit-takeover true

For clusters using SnapMirror synchronous operating in StrictSync mode: system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown true -ignore-quorum-warnings true -inhibit-takeover true -ignore-strict -sync-warnings true

9. Enter **y** for each controller in the cluster when you see:

```
Warning: Are you sure you want to halt node <node name>? {y|n}:
```

10. Wait for each controller to halt and display the LOADER prompt.

Option 2: Controller is in a MetroCluster configuration

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Replace the chassis - ASA A150

Move the power supplies, hard drives, and controller module or modules from the impaired chassis to the new chassis, and swap out the impaired chassis from the equipment rack or system cabinet with the new chassis of the same model as the impaired chassis.

Step 1: Move a power supply

Moving out a power supply when replacing a chassis involves turning off, disconnecting, and removing the power supply from the old chassis and installing and connecting it on the replacement chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Turn off the power supply and disconnect the power cables:
 - a. Turn off the power switch on the power supply.
 - b. Open the power cable retainer, and then unplug the power cable from the power supply.
 - c. Unplug the power cable from the power source.
- 3. Squeeze the latch on the power supply cam handle, and then open the cam handle to fully release the power supply from the mid plane.
- 4. Use the cam handle to slide the power supply out of the system.

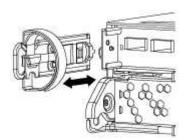
When removing a power supply, always use two hands to support its weight.

- 5. Repeat the preceding steps for any remaining power supplies.
- 6. Using both hands, support and align the edges of the power supply with the opening in the system chassis, and then gently push the power supply into the chassis using the cam handle.

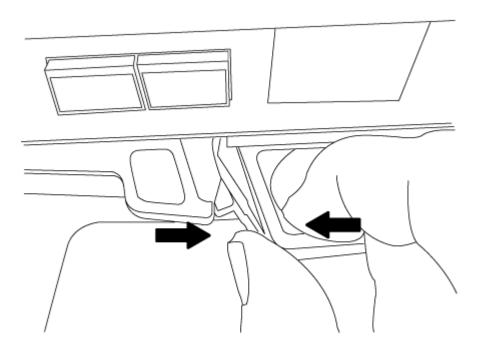
The power supplies are keyed and can only be installed one way.

Do not use excessive force when sliding the power supply into the system. You can damage the connector.

- 7. Close the cam handle so that the latch clicks into the locked position and the power supply is fully seated.
- 8. Reconnect the power cable and secure it to the power supply using the power cable locking mechanism.



Only connect the power cable to the power supply. Do not connect the power cable to a power source at this time.


Step 2: Remove the controller module

Remove the controller module or modules from the old chassis.

- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.
 - Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.
- 2. Remove and set aside the cable management devices from the left and right sides of the controller module.

3. Squeeze the latch on the cam handle until it releases, open the cam handle fully to release the controller module from the midplane, and then, using two hands, pull the controller module out of the chassis.

4. Set the controller module aside in a safe place, and repeat these steps if you have another controller module in the chassis.

Step 3: Move drives to the new chassis

You need to move the drives from each bay opening in the old chassis to the same bay opening in the new

chassis.

- 1. Gently remove the bezel from the front of the system.
- 2. Remove the drives:
 - a. Press the release button at the top of the carrier face below the LEDs.
 - b. Pull the cam handle to its fully open position to unseat the drive from the midplane, and then gently slide the drive out of the chassis.

The drive should disengage from the chassis, allowing it to slide free of the chassis.

When removing a drive, always use two hands to support its weight.

Drives are fragile. Handle them as little as possible to prevent damage to them.

- Align the drive from the old chassis with the same bay opening in the new chassis.
- 4. Gently push the drive into the chassis as far as it will go.

The cam handle engages and begins to rotate upward.

5. Firmly push the drive the rest of the way into the chassis, and then lock the cam handle by pushing it up and against the drive holder.

Be sure to close the cam handle slowly so that it aligns correctly with the front of the drive carrier. It click when it is secure.

6. Repeat the process for the remaining drives in the system.

Step 4: Replace a chassis from within the equipment rack or system cabinet

You must remove the existing chassis from the equipment rack or system cabinet before you can install the replacement chassis.

- 1. Remove the screws from the chassis mount points.
- 2. With the help of two or three people, slide the old chassis off the rack rails in a system cabinet or *L* brackets in an equipment rack, and then set it aside.
- 3. If you are not already grounded, properly ground yourself.
- 4. Using two or three people, install the replacement chassis into the equipment rack or system cabinet by guiding the chassis onto the rack rails in a system cabinet or *L* brackets in an equipment rack.
- 5. Slide the chassis all the way into the equipment rack or system cabinet.
- 6. Secure the front of the chassis to the equipment rack or system cabinet, using the screws you removed from the old chassis.
- 7. If you have not already done so, install the bezel.

Step 5: Install the controller

After you install the controller module and any other components into the new chassis, boot it.

For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis.

1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

- 2. Recable the console to the controller module, and then reconnect the management port.
- 3. Repeat the preceding steps if there is a second controller to install in the new chassis.
- 4. Complete the installation of the controller module:

If your system is in	Then perform these steps	
An HA pair	With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seat and then close the cam handle to the locked position.	
	Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.	
	b. If you have not already done so, reinstall the cable management device.	
	c. Bind the cables to the cable management device with the hook and loop strap.	
	d. Repeat the preceding steps for the second controller module in the new chassis.	
A stand-alone configuration	With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated and then close the cam handle to the locked position.	
	Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.	
	b. If you have not already done so, reinstall the cable management device.	
	c. Bind the cables to the cable management device with the hook and loop strap.	
	d. Reinstall the blanking panel and then go to the next step.	

- 5. Connect the power supplies to different power sources, and then turn them on.
- 6. Boot each controller to Maintenance mode:
 - a. As each controller starts the booting, press Ctrl-C to interrupt the boot process when you see the message Press Ctrl-C for Boot Menu.

If you miss the prompt and the controller modules boot to ONTAP, enter halt, and then at the LOADER prompt enter boot_ontap, press Ctrl-C when prompted, and then repeat this step.

b. From the boot menu, select the option for Maintenance mode.

Restore and verify the configuration - ASA A150

You must verify the HA state of the chassis, switch back aggregates, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Verify and set the HA state of the chassis

You must verify the HA state of the chassis, and, if necessary, update the state to match your system configuration.

1. In Maintenance mode, from either controller module, display the HA state of the local controller module and chassis: ha-config show

The HA state should be the same for all components.

- 2. If the displayed system state for the chassis does not match your system configuration:
 - a. Set the HA state for the chassis: ha-config modify chassis HA-state

The value for HA-state can be one of the following:

- ha
- mcc
- mcc-2n
- mccip
- non-ha
- b. Confirm that the setting has changed: ha-config show
- 3. If you have not already done so, recable the rest of your system.
- 4. Reboot the system.

Step 2: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 3: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Controller

Overview of controller replacement - ASA A150

You must review the prerequisites for the replacement procedure and select the correct one for your version of the ONTAP operating system.

- All drive shelves must be working properly.
- If your system is in an HA pair, the healthy controller must be able to take over the controller that is being replaced (referred to in this procedure as the "impaired controller").
- If your system is in a MetroCluster configuration, you must review the section Choosing the correct recovery procedure to determine whether you should use this procedure.

If this is the procedure you should use, note that the controller replacement procedure for a controller in a four or eight node MetroCluster configuration is the same as that in an HA pair. No MetroCluster-specific steps are required because the failure is restricted to an HA pair and storage failover commands can be used to provide nondisruptive operation during the replacement.

• This procedure includes steps for automatically or manually reassigning drives to the *replacement* controller, depending on your system's configuration.

You should perform the drive reassignment as directed in the procedure.

- You must replace the failed component with a replacement FRU component you received from your provider.
- You must be replacing a controller module with a controller module of the same model type. You cannot upgrade your system by just replacing the controller module.
- You cannot change any drives or drive shelves as part of this procedure.
- In this procedure, the boot device is moved from the impaired controller to the *replacement* controller so that the *replacement* controller will boot up in the same version of ONTAP as the old controller module.
- It is important that you apply the commands in these steps on the correct systems:
 - The *impaired* controller is the controller that is being replaced.
 - The *replacement* controller is the new controller that is replacing the impaired controller.
 - The *healthy* controller is the surviving controller.
- You must always capture the controller's console output to a text file.

This provides you a record of the procedure so that you can troubleshoot any issues that you might encounter during the replacement process.

Shut down the impaired controller - ASA A150

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

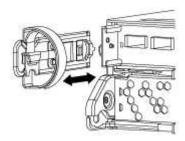
```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt Do you want to disable auto-giveback?
- 3. Take the impaired controller to the LOADER prompt:

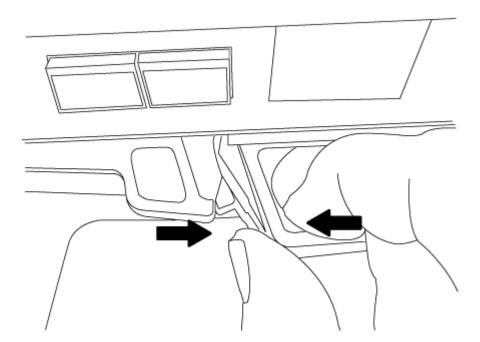
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Replace the controller - ASA A150

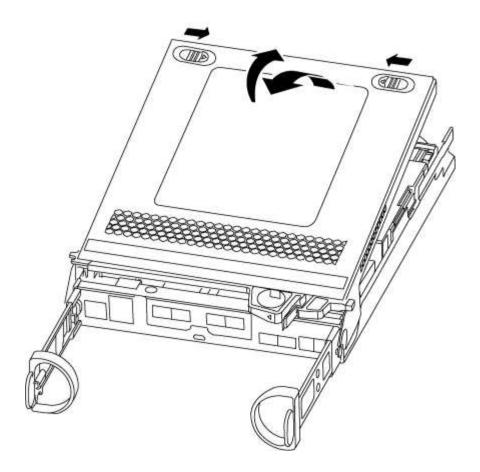
To replace the controller module hardware, you must remove the impaired controller, move FRU components to the replacement controller module, install the replacement controller module in the chassis, and then boot the system to Maintenance mode.


Step 1: Remove controller module

To replace the controller module, you must first remove the old controller module from the chassis.


- 1. If you are not already grounded, properly ground yourself.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.


3. Remove and set aside the cable management devices from the left and right sides of the controller module.

- 4. If you left the SFP modules in the system after removing the cables, move them to the new controller module.
- 5. Squeeze the latch on the cam handle until it releases, open the cam handle fully to release the controller module from the midplane, and then, using two hands, pull the controller module out of the chassis.

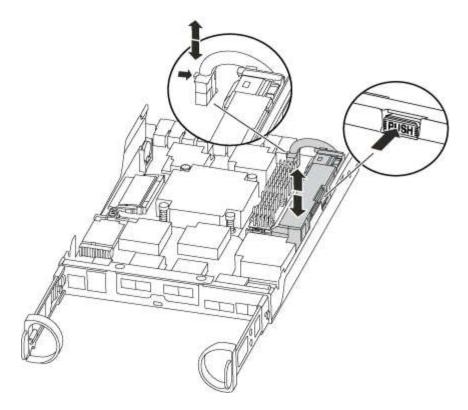
- 6. Turn the controller module over and place it on a flat, stable surface.
- 7. Open the cover by sliding in the blue tabs to release the cover, and then swing the cover up and open.

Step 2: Move the NVMEM battery

To move the NVMEM battery from the old controller module to the new controller module, you must perform a specific sequence of steps.

1. Check the NVMEM LED:

- If your system is in an HA configuration, go to the next step.
- If your system is in a stand-alone configuration, cleanly shut down the controller module, and then check the NVRAM LED identified by the NV icon.

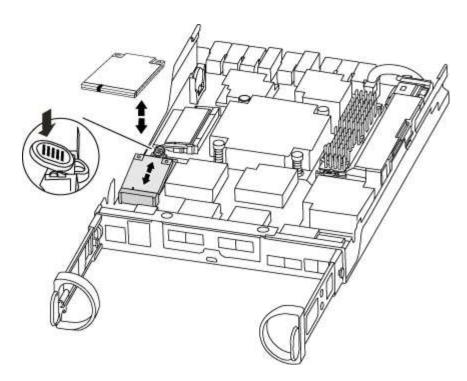


The NVRAM LED blinks while destaging contents to the flash memory when you halt the system. After the destage is complete, the LED turns off.

- If power is lost without a clean shutdown, the NVMEM LED flashes until the destage is complete, and then the LED turns off.
- If the LED is on and power is on, unwritten data is stored on NVMEM.

This typically occurs during an uncontrolled shutdown after ONTAP has successfully booted.

2. Locate the NVMEM battery in the controller module.



- 3. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket.
- 4. Grasp the battery and press the blue locking tab marked PUSH, and then lift the battery out of the holder and controller module.
- 5. Move the battery to the replacement controller module.
- 6. Loop the battery cable around the cable channel on the side of the battery holder.
- 7. Position the battery pack by aligning the battery holder key ribs to the "V" notches on the sheet metal side wall.
- 8. Slide the battery pack down along the sheet metal side wall until the support tabs on the side wall hook into the slots on the battery pack, and the battery pack latch engages and clicks into the opening on the side wall.

Step 3: Move the boot media

You must locate the boot media and follow the directions to remove it from the old controller module and insert it in the new controller module.

1. Locate the boot media using the following illustration or the FRU map on the controller module:

2. Press the blue button on the boot media housing to release the boot media from its housing, and then gently pull it straight out of the boot media socket.

Do not twist or pull the boot media straight up, because this could damage the socket or the boot media.

- 3. Move the boot media to the new controller module, align the edges of the boot media with the socket housing, and then gently push it into the socket.
- 4. Check the boot media to make sure that it is seated squarely and completely in the socket.

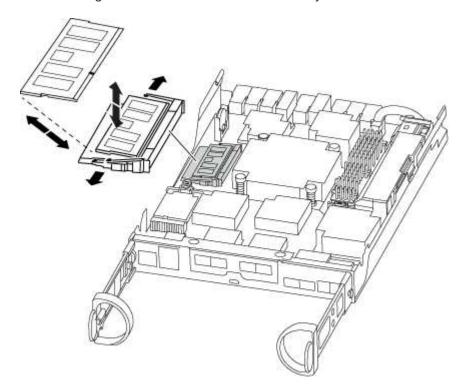
If necessary, remove the boot media and reseat it into the socket.

5. Push the boot media down to engage the locking button on the boot media housing.

Step 4: Move the DIMMs

To move the DIMMs, you must follow the directions to locate and move them from the old controller module into the replacement controller module.

You must have the new controller module ready so that you can move the DIMMs directly from the impaired controller module to the corresponding slots in the replacement controller module.


- 1. Locate the DIMMs on your controller module.
- 2. Note the orientation of the DIMM in the socket so that you can insert the DIMM in the replacement controller module in the proper orientation.
- 3. Eject the DIMM from its slot by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot.

Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

The number and placement of system DIMMs depends on the model of your system.

The following illustration shows the location of system DIMMs:

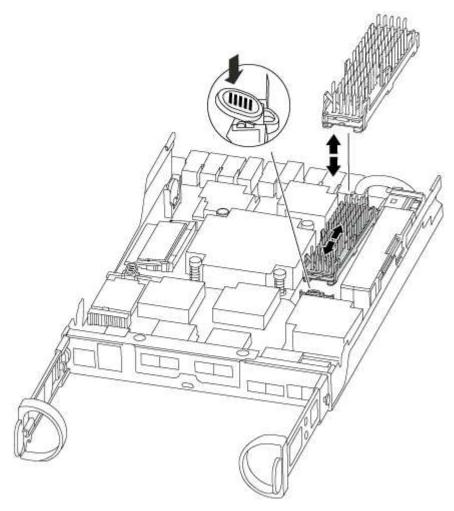
- 4. Repeat these steps to remove additional DIMMs as needed.
- Verify that the NVMEM battery is not plugged into the new controller module.
- 6. Locate the slot where you are installing the DIMM.
- 7. Make sure that the DIMM ejector tabs on the connector are in the open position, and then insert the DIMM squarely into the slot.

The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.

Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.

- 8. Repeat these steps for the remaining DIMMs.
- 9. Locate the NVMEM battery plug socket, and then squeeze the clip on the face of the battery cable plug to insert it into the socket.

Make sure that the plug locks down onto the controller module.


Step 5: Move a caching module, if present

If your AFF A220 or FAS2700 system has a caching module, you need to move the caching module from the old controller module to the replacement controller module. The caching module is referred to as the "M.2 PCIe card" on the controller module label.

You must have the new controller module ready so that you can move the caching module directly from the old controller module to the corresponding slot in the new one. All other components in the storage system must be functioning properly; if not, you must contact technical support.

1. Locate the caching module at the rear of the controller module and remove it.

- a. Press the release tab.
- b. Remove the heatsink.

- 2. Gently pull the caching module straight out of the housing.
- Move the caching module to the new controller module, and then align the edges of the caching module with the socket housing and gently push it into the socket.
- 4. Verify that the caching module is seated squarely and completely in the socket.

If necessary, remove the caching module and reseat it into the socket.

- 5. Reseat and push the heatsink down to engage the locking button on the caching module housing.
- 6. Close the controller module cover, as needed.

Step 6: Install the controller

After you install the components from the old controller module into the new controller module, you must install the new controller module into the system chassis and boot the operating system.

For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis.

The system might update system firmware when it boots. Do not abort this process. The procedure requires you to interrupt the boot process, which you can typically do at any time after prompted to do so. However, if the system updates the system firmware when it boots, you must wait until after the update is complete before interrupting the boot process.

- 1. If you are not already grounded, properly ground yourself.
- 2. If you have not already done so, replace the cover on the controller module.
- 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

4. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

5. Complete the reinstallation of the controller module:

If your system is in... Then perform these steps... An HA pair The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. a. With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated, and then close the cam handle to the locked position. Do not use excessive force when sliding the controller module into the chassis; you might damage the connectors. The controller begins to boot as soon as it is seated in the chassis. b. If you have not already done so, reinstall the cable management c. Bind the cables to the cable management device with the hook and loop strap. d. Interrupt the boot process **only** after determining the correct timing: You must look for an Automatic firmware update console message. If the update message appears, do not press Ctrl-C to interrupt the boot process until after you see a message confirming that the update is complete. Only press Ctrl-C when you see the message Press Ctrl-C for Boot Menu. If the firmware update is aborted, the boot process exits to the LOADER prompt. You must run the update flash command and then exit LOADER and boot to Maintenance mode by pressing Ctrl-C when you see Starting AUTOBOOT press Ctrl-C to abort. If you miss the prompt and the controller module boots to ONTAP, enter halt, and then at the LOADER prompt enter boot ontap, press Ctrl-C when prompted, and then boot to Maintenance mode. e. Select the option to boot to Maintenance mode from the displayed menu.

If your system is in... Then perform these steps... A stand-alone configuration a. With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated, and then close the cam handle to the locked position. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. b. If you have not already done so, reinstall the cable management device. c. Bind the cables to the cable management device with the hook and loop strap. d. Reconnect the power cables to the power supplies and to the power sources, and then turn on the power to start the boot process. e. Interrupt the boot process **only** after determining the correct timing: You must look for an Automatic firmware update console message. If the update message appears, do not press Ctrl-C to interrupt the boot process until after you see a message confirming that the update is complete. Only press Ctrl-C after you see the Press Ctrl-C for Boot Menu message. If the firmware update is aborted, the boot process exits to the LOADER prompt. You must run the update flash command and then exit LOADER and boot to Maintenance mode by pressing Ctrl-C when you see Starting AUTOBOOT press Ctrl-C to abort. If you miss the prompt and the controller module boots to ONTAP, enter halt, and then at the LOADER prompt enter boot ontap, press Ctrl-C when prompted, and then boot to Maintenance mode. f. From the boot menu, select the option for Maintenance mode.

Important: During the boot process, you might see the following prompts:

- A prompt warning of a system ID mismatch and asking to override the system ID.
- A prompt warning that when entering Maintenance mode in an HA configuration you must ensure that the healthy controller remains down.

You can safely respond y to these prompts.

Restore and verify the system configuration - ASA A150

After completing the hardware replacement and booting to Maintenance mode, you verify the low-level system configuration of the replacement controller and reconfigure system settings as necessary.

Step 1: Set and verify system time after replacing the controller

You should check the time and date on the replacement controller module against the healthy controller module in an HA pair, or against a reliable time server in a stand-alone configuration. If the time and date do not match, you must reset them on the replacement controller module to prevent possible outages on clients due to time differences.

About this task

It is important that you apply the commands in the steps on the correct systems:

- The *replacement* node is the new node that replaced the impaired node as part of this procedure.
- The *healthy* node is the HA partner of the *replacement* node.

Steps

- 1. If the *replacement* node is not at the LOADER prompt, halt the system to the LOADER prompt.
- 2. On the healthy node, check the system time: cluster date show

The date and time are based on the configured timezone.

- At the LOADER prompt, check the date and time on the replacement node: show date
 The date and time are given in GMT.
- If necessary, set the date in GMT on the replacement node: set date mm/dd/yyyy
- 5. If necessary, set the time in GMT on the replacement node: set time hh:mm:ss
- 6. At the LOADER prompt, confirm the date and time on the replacement node: show date

The date and time are given in GMT.

Step 2: Verify and set the HA state of the controller module

You must verify the HA state of the controller module and, if necessary, update the state to match your system configuration.

 In Maintenance mode from the new controller module, verify that all components display the same HA state: ha-config show

The HA state should be the same for all components.

- If the displayed system state for the chassis does not match your system configuration:
 - a. Set the HA state for the chassis: ha-config modify chassis HA-state

The value for HA-state can be one of the following:

- ha
- mcc
- mcc-2n
- mccip
- non-ha
- b. Confirm that the setting has changed: ha-config show

Recable the system and reassign disks - ASA A150

To complete the replacement procedure and restore your system to full operation, you must recable the storage, confirm disk reassignment, restore the NetApp Storage Encryption configuration (if necessary), and install licenses for the new controller. You must complete a series of tasks before restoring your system to full operation.

Step 1: Recable the system

Verify the controller module's storage and network connections.

Steps

- 1. Verify that the cabling is correct by using Active IQ Config Advisor.
 - a. Download and install Config Advisor.
 - b. Enter the information for the target system, and then click Collect Data.
 - c. Click the Cabling tab, and then examine the output. Make sure that all disk shelves are displayed and all disks appear in the output, correcting any cabling issues you find.
 - d. Check other cabling by clicking the appropriate tab, and then examining the output from Config Advisor.

Step 2: Reassign disks

If the storage system is in an HA pair, the system ID of the new controller module is automatically assigned to the disks when the giveback occurs at the end of the procedure. In a stand-alone system, you must manually reassign the ID to the disks.

You must use the correct procedure for your configuration:

Controller redundancy	Then use this procedure
HA pair	Option 1: Verify the system ID change on an HA system
Stand-alone	Option 2: Manually reassign the system ID on a stand-alone system in ONTAP
Two-node MetroCluster configuration	Option 3: Manually reassign the system ID on systems in a two-node MetroCluster configuration

Option 1: Verify the system ID change on an HA system

You must confirm the system ID change when you boot the *replacement* controller and then verify that the change was implemented.

This procedure applies only to systems running ONTAP in an HA pair.

- 1. If the *replacement* controller is in Maintenance mode (showing the *> prompt, exit Maintenance mode and go to the LOADER prompt: halt
- 2. From the LOADER prompt on the *replacement* controller, boot the controller, entering y if you are prompted to override the system ID due to a system ID mismatch:boot ontap
- 3. Wait until the Waiting for giveback... message is displayed on the *replacement* controller console and then, from the healthy controller, verify that the new partner system ID has been automatically assigned: storage failover show

In the command output, you should see a message that the system ID has changed on the impaired controller, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706.

node1> `storage	failover show`	Takeover	
Node	Partner	Possible	State Description
node1	node2	false	System ID changed on
partner (Old:			454550555
			151759755, New:
151759706), In	takeover		
node2	node1	-	Waiting for giveback
(HA mailboxes)			

- 4. From the healthy controller, verify that any coredumps are saved:
 - a. Change to the advanced privilege level: set -privilege advanced

You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>).

- b. Save any coredumps: system node run -node local-node-name partner savecore
- c. Wait for the `savecore` command to complete before issuing the giveback.

You can enter the following command to monitor the progress of the savecore command: system node run -node *local-node-name* partner savecore -s

- d. Return to the admin privilege level: set -privilege admin
- 5. If your storage system has Storage or Volume Encryption configured, you must restore Storage or Volume Encryption functionality by using one of the following procedures, depending on whether you are using onboard or external key management:

- Restore onboard key management encryption keys
- Restore external key management encryption keys
- 6. Give back the controller:
 - a. From the healthy controller, give back the replaced controller's storage: storage failover giveback -ofnode replacement node name

The *replacement* controller takes back its storage and completes booting.

If you are prompted to override the system ID due to a system ID mismatch, you should enter y.

If the giveback is vetoed, you can consider overriding the vetoes.

Find the High-Availability Configuration content for your version of ONTAP 9

b. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show

The output from the storage failover show command should not include the System ID changed on partner message.

7. Verify that the disks were assigned correctly: storage disk show -ownership

The disks belonging to the *replacement* controller should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 1873775277:

Option 2: Manually reassign the system ID on a stand-alone system in ONTAP

In a stand-alone system, you must manually reassign disks to the new controller's system ID before you return the system to normal operating condition.

About this task

This procedure applies only to systems that are in a stand-alone configuration.

Steps

- 1. If you have not already done so, reboot the *replacement* node, interrupt the boot process by pressing Ctrl-C, and then select the option to boot to Maintenance mode from the displayed menu.
- 2. You must enter Y when prompted to override the system ID due to a system ID mismatch.
- 3. View the system IDs: disk show -a
- 4. You should make a note of the old system ID, which is displayed as part of the disk owner column.

The following example shows the old system ID of 118073209:

- 5. Reassign disk ownership by using the system ID information obtained from the disk show command: disk reassign -s old system ID disk reassign -s 118073209
- 6. Verify that the disks were assigned correctly: disk show -a

The disks belonging to the replacement node should show the new system ID. The following example now show the disks owned by system-1 the new system ID, 118065481:

7. If your storage system has Storage or Volume Encryption configured, you must restore Storage or Volume Encryption functionality by using one of the following procedures, depending on whether you are using onboard or external key management:

- · Restore onboard key management encryption keys
- Restore external key management encryption keys
- 8. Boot the node: boot ontap

Option 3: Manually reassign the system ID on systems in a two-node MetroCluster configuration

In a two-node MetroCluster configuration running ONTAP, you must manually reassign disks to the new controller's system ID before you return the system to normal operating condition.

About this task

This procedure applies only to systems in a two-node MetroCluster configuration running ONTAP.

You must be sure to issue the commands in this procedure on the correct node:

- The *impaired* node is the node on which you are performing maintenance.
- The replacement node is the new node that replaced the impaired node as part of this procedure.
- The *healthy* node is the DR partner of the impaired node.

Steps

1. If you have not already done so, reboot the *replacement* node, interrupt the boot process by entering Ctrl-C, and then select the option to boot to Maintenance mode from the displayed menu.

You must enter Y when prompted to override the system ID due to a system ID mismatch.

2. View the old system IDs from the healthy node: `metrocluster node show -fields node-systemid,dr-partner-systemid`

In this example, the Node_B_1 is the old node, with the old system ID of 118073209:

dr-group- partner-s	id cluster ystemid	node		node-systemid dr-
1 118073209	 Cluster_A	Node	e_A_1	536872914
1 536872914	Cluster_B	Node	e_B_1	118073209
2 entrie	s were displayed.			

3. View the new system ID at the Maintenance mode prompt on the impaired node: disk show In this example, the new system ID is 118065481:

```
Local System ID: 118065481 ...
```

4. Reassign disk ownership (for FAS systems), by using the system ID information obtained from the disk show command: disk reassign -s old system ID

In the case of the preceding example, the command is: disk reassign -s 118073209

You can respond Y when prompted to continue.

5. Verify that the disks were assigned correctly: disk show -a

Verify that the disks belonging to the *replacement* node show the new system ID for the *replacement* node. In the following example, the disks owned by system-1 now show the new system ID, 118065481:

- 6. From the healthy node, verify that any coredumps are saved:
 - a. Change to the advanced privilege level: set -privilege advanced

You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>).

b. Verify that the coredumps are saved: system node run -node *local-node-name* partner savecore

If the command output indicates that savecore is in progress, wait for savecore to complete before issuing the giveback. You can monitor the progress of the savecore using the system node run -node <code>local-node-name</code> partner savecore -s command.

- c. Return to the admin privilege level: set -privilege admin
- 7. If the *replacement* node is in Maintenance mode (showing the *> prompt), exit Maintenance mode and go to the LOADER prompt: halt
- 8. Boot the replacement node: boot ontap
- 9. After the replacement node has fully booted, perform a switchback: metrocluster switchback
- 10. Verify the MetroCluster configuration: metrocluster node show fields configuration-state

11. Verify the operation of the MetroCluster configuration in Data ONTAP:

- a. Check for any health alerts on both clusters: system health alert show
- b. Confirm that the MetroCluster is configured and in normal mode: metrocluster show
- c. Perform a MetroCluster check: metrocluster check run
- d. Display the results of the MetroCluster check: metrocluster check show
- e. Run Config Advisor. Go to the Config Advisor page on the NetApp Support Site at support.netapp.com/NOW/download/tools/config_advisor/.

After running Config Advisor, review the tool's output and follow the recommendations in the output to address any issues discovered.

12. Simulate a switchover operation:

- a. From any node's prompt, change to the advanced privilege level: set -privilege advanced
 - You need to respond with y when prompted to continue into advanced mode and see the advanced mode prompt (*>).
- b. Perform the switchback operation with the -simulate parameter: metrocluster switchover -simulate
- C. Return to the admin privilege level: set -privilege admin

Complete system restoration - ASA A150

To restore your system to full operation, you must restore the NetApp Storage Encryption configuration (if necessary), and install licenses for the new controller, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Install licenses for the replacement controller in ONTAP

You must install new licenses for the *replacement* node if the impaired node was using ONTAP features that require a standard (node-locked) license. For features with standard licenses, each node in the cluster should have its own key for the feature.

About this task

Until you install license keys, features requiring standard licenses continue to be available to the *replacement* node. However, if the impaired node was the only node in the cluster with a license for the feature, no configuration changes to the feature are allowed.

Also, using unlicensed features on the node might put you out of compliance with your license agreement, so you should install the replacement license key or keys on the *replacement* node as soon as possible.

Before you begin

The licenses keys must be in the 28-character format.

You have a 90-day grace period in which to install the license keys. After the grace period, all old licenses are invalidated. After a valid license key is installed, you have 24 hours to install all of the keys before the grace period ends.

If your system was initially running ONTAP 9.10.1 or later, use the procedure documented in Post Motherboard Replacement Process to update Licensing on a AFF/FAS system. If you are unsure of the initial ONTAP release for your system, see NetApp Hardware Universe for more information.

Steps

1. If you need new license keys, obtain replacement license keys on the NetApp Support Site in the My Support section under Software licenses.

The new license keys that you require are automatically generated and sent to the email address on file. If you fail to receive the email with the license keys within 30 days, you should contact technical support.

- 2. Install each license key: system license add -license-code license-key, license-key...
- 3. Remove the old licenses, if desired:
 - a. Check for unused licenses: license clean-up -unused -simulate
 - b. If the list looks correct, remove the unused licenses: license clean-up -unused

Step 2: Verify LIFs and register the serial number

Before returning the *replacement* node to service, you should verify that the LIFs are on their home ports, and register the serial number of the *replacement* node if AutoSupport is enabled, and reset automatic giveback.

Steps

1. Verify that the logical interfaces are reporting to their home server and ports: network interface show -is-home false

If any LIFs are listed as false, revert them to their home ports: network interface revert -vserver
* -lif *

- 2. Register the system serial number with NetApp Support.
 - If AutoSupport is enabled, send an AutoSupport message to register the serial number.
 - If AutoSupport is not enabled, call NetApp Support to register the serial number.
- 3. Check the health of your cluster. See the How to perform a cluster health check with a script in ONTAP KB article for more information.

- 4. If an AutoSupport maintenance window was triggered, end it by using the system node autosupport invoke -node * -type all -message MAINT=END command.
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 3: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 4: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the DIMM - ASA A150

You must replace a DIMM in the controller when your storage system encounters errors such as, excessive CECC (Correctable Error Correction Codes) errors that are based on Health Monitor alerts or uncorrectable ECC errors, typically caused by a single DIMM failure preventing the storage system from booting ONTAP.

All other components in the system must be functioning properly; if not, you must contact technical support.

You must replace the failed component with a replacement FRU component you received from your provider.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

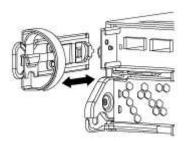
```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

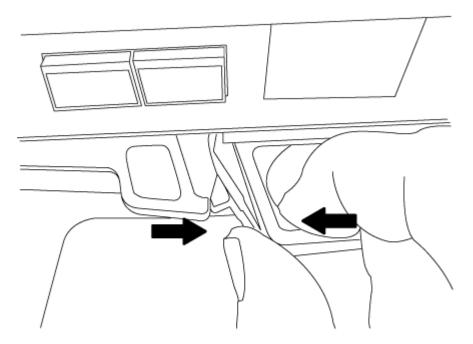
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

4. If the system has only one controller module in the chassis, turn off the power supplies, and then unplug the impaired controller's power cords from the power source.

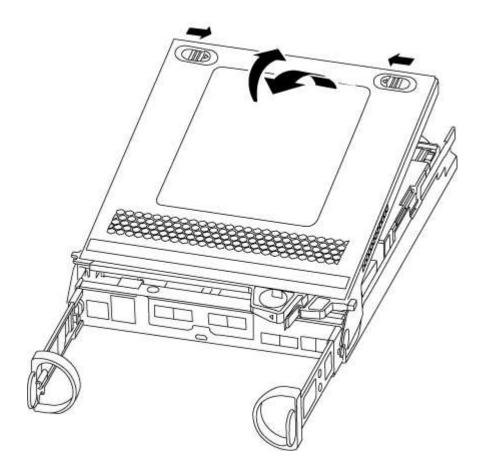
Step 2: Remove controller module


To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.

Steps


- 1. If you are not already grounded, properly ground yourself.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.


3. Remove and set aside the cable management devices from the left and right sides of the controller module.

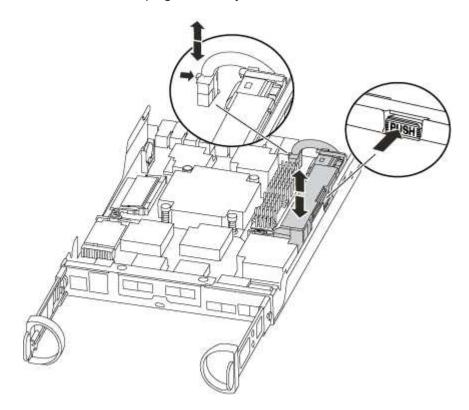
4. Squeeze the latch on the cam handle until it releases, open the cam handle fully to release the controller module from the midplane, and then, using two hands, pull the controller module out of the chassis.

- 5. Turn the controller module over and place it on a flat, stable surface.
- 6. Open the cover by sliding in the blue tabs to release the cover, and then swing the cover up and open.

Step 3: Replace the DIMMs

To replace the DIMMs, locate them inside the controller and follow the specific sequence of steps.

If you are replacing a DIMM, you need to remove it after you have unplugged the NVMEM battery from the controller module.

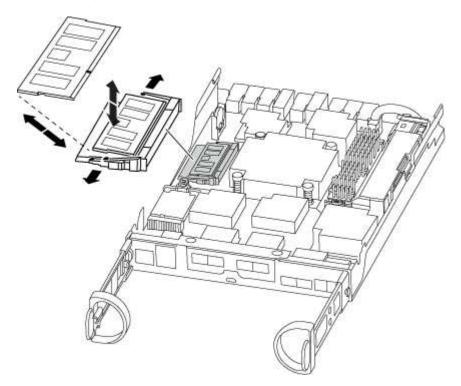

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Check the NVMEM LED on the back of controller module.

You must perform a clean system shutdown before replacing system components to avoid losing unwritten data in the nonvolatile memory (NVMEM). The LED is located on the back of the controller module. Look for the following icon:

- 3. If the NVMEM LED is not flashing, there is no content in the NVMEM; you can skip the following steps and proceed to the next task in this procedure.
- 4. If the NVMEM LED is flashing, there is data in the NVMEM and you must disconnect the battery to clear the memory:
 - a. Locate the battery, press the clip on the face of the battery plug to release the lock clip from the plug socket, and then unplug the battery cable from the socket.

- b. Confirm that the NVMEM LED is no longer lit.
- c. Reconnect the battery connector.


- 5. Return to Step 3: Replace the DIMMs of this procedure to recheck the NVMEM LED.
- 6. Locate the DIMMs on your controller module.
- 7. Note the orientation of the DIMM in the socket so that you can insert the replacement DIMM in the proper orientation.
- 8. Eject the DIMM from its slot by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot.

Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

The number and placement of system DIMMs depends on the model of your system.

The following illustration shows the location of system DIMMs:

9. Remove the replacement DIMM from the antistatic shipping bag, hold the DIMM by the corners, and align it to the slot.

The notch among the pins on the DIMM should line up with the tab in the socket.

10. Make sure that the DIMM ejector tabs on the connector are in the open position, and then insert the DIMM squarely into the slot.

The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.

Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.

- 11. Push carefully, but firmly, on the top edge of the DIMM until the ejector tabs snap into place over the notches at the ends of the DIMM.
- 12. Locate the NVMEM battery plug socket, and then squeeze the clip on the face of the battery cable plug to insert it into the socket.

Make sure that the plug locks down onto the controller module.

13. Close the controller module cover.

Step 4: Reinstall the controller module

After you replace components in the controller module, reinstall it into the chassis.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. If you have not already done so, replace the cover on the controller module.
- 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

4. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

5. Complete the reinstallation of the controller module:

If your system is in	Then perform these steps	
An HA pair	The controller module begins to boot as soon as it is fully seated in the chassis.	
	a. With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated, and then close the cam handle to the locked position.	
	Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.	
	The controller begins to boot as soon as it is seated in the chassis.	
	b. If you have not already done so, reinstall the cable management device.	
	c. Bind the cables to the cable management device with the hook and loop strap.	

If your system is in	Then perform these steps	
A stand-alone configuration	 a. With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated, and then close the cam handle to the locked position. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. b. If you have not already done so, reinstall the cable management device. c. Bind the cables to the cable management device with the hook and loop strap. 	
		the power cables to the power supplies and to the rces, then turn on the power to start the boot process.

Step 5: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 6: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the SSD drive or HDD Drive - ASA 150

You can replace a failed drive nondisruptively while I/O is in progress. The procedure for replacing an SSD is meant for non-spinning drives and the procedure for replacing an HDD is meant for spinning drives.

When a drive fails, the platform logs a warning message to the system console indicating which drive has failed. In addition, both the fault LED on the operator display panel and the fault LED on the failed drive are illuminated.

Before you begin

- Follow best practice and install the current version of the Disk Qualification Package (DQP) before replacing a drive.
- Identify the failed drive by running the storage disk show -broken command from the system console.

The failed drive appears in the list of failed drives. If it does not, you should wait, and then run the command again.

Depending on the type and capacity, it can take up to several hours for the drive to appear in the list of failed drives.

• Determine whether SED authentication is enabled.

How you replace the drive depends on how the drive is being used. If SED authentication is enabled, you must use the SED replacement instructions in the ONTAP 9 NetApp Encryption Power Guide. These Instructions describe additional steps you must perform before and after replacing an SED.

- Make sure the replacement drive is supported by your platform. See the NetApp Hardware Universe.
- Make sure all other components in the system are functioning properly; if not, you must contact technical support.

About this task

- Drive firmware is automatically updated (nondisruptively) on new drives that have non current firmware versions.
- When replacing a drive, you must wait one minute between the removal of the failed drive and the insertion of the replacement drive to allow the storage system to recognize the existence of the new drive.

Option 1: Replace SSD

Steps

- 1. If you want to manually assign drive ownership for the replacement drive, you need to disable automatic drive assignment, if it is enabled.
 - a. Verify whether automatic drive assignment is enabled: storage disk option show

You can enter the command on either controller module.

If automatic drive assignment is enabled, the output shows on in the "Auto Assign" column (for each controller module).

b. If automatic drive assignment is enabled, disable it: storage disk option modify -node node name -autoassign off

You must disable automatic drive assignment on both controller modules.

- 2. Properly ground yourself.
- 3. Physically identify the failed drive.

When a drive fails, the system logs a warning message to the system console indicating which drive failed. Additionally, the attention (amber) LED on the drive shelf operator display panel and the failed drive illuminate.

The activity (green) LED on a failed drive can be illuminated (solid), which indicates that the drive has power, but should not be blinking, which indicates I/O activity. A failed drive has no I/O activity.

- 4. Remove the failed drive:
 - a. Press the release button on the drive face to open the cam handle.
 - b. Slide the drive out of the shelf using the cam handle and supporting the drive with your other hand.
- 5. Wait a minimum of 70 seconds before inserting the replacement drive.

This allows the system to recognize that a drive was removed.

- 6. Insert the replacement drive:
 - a. With the cam handle in the open position, use both hands to insert the replacement drive.
 - b. Push until the drive stops.
 - c. Close the cam handle so that the drive is fully seated into the midplane and the handle clicks into place.

Be sure to close the cam handle slowly so that it aligns correctly with the face of the drive.

7. Verify that the drive's activity (green) LED is illuminated.

When the drive's activity LED is solid, it means that the drive has power. When the drive's activity LED is blinking, it means that the drive has power and I/O is in progress. If the drive firmware is automatically updating, the LED blinks.

- 8. If you are replacing another drive, repeat steps 3 through 7.
- 9. If you disabled automatic drive assignment in Step 1, then, manually assign drive ownership and then reenable automatic drive assignment if needed.
 - a. Display all unowned drives:

```
storage disk show -container-type unassigned
```

You can enter the command on either controller module.

b. Assign each drive:

```
storage disk assign -disk disk name -owner node name
```

You can enter the command on either controller module.

You can use the wildcard character to assign more than one drive at once.

c. Reenable automatic drive assignment if needed:

```
storage disk option modify -node node_name -autoassign on
```

You must reenable automatic drive assignment on both controller modules.

10. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Contact NetApp Support if you need the RMA number or additional help with the replacement procedure.

Option 2: Replace HDD

1. If you want to manually assign drive ownership for the replacement drive, you need to disable automatic drive assignment replacement drive, if it is enabled

You manually assign drive ownership and then reenable automatic drive assignment later in this procedure.

a. Verify whether automatic drive assignment is enabled: storage disk option show

You can enter the command on either controller module.

If automatic drive assignment is enabled, the output shows on in the "Auto Assign" column (for each controller module).

b. If automatic drive assignment is enabled, disable it: storage disk option modify -node node name -autoassign off

You must disable automatic drive assignment on both controller modules.

- 2. Properly ground yourself.
- 3. Gently remove the bezel from the front of the platform.
- 4. Identify the failed disk drive from the system console warning message and the illuminated fault LED on the disk drive

5. Press the release button on the disk drive face.

Depending on the storage system, the disk drives have the release button located at the top or on the left of the disk drive face.

For example, the following illustration shows a disk drive with the release button located on the top of the disk drive face:

The cam handle on the disk drive springs open partially and the disk drive releases from the midplane.

- 6. Pull the cam handle to its fully open position to unseat the disk drive from the midplane.
- 7. Slide out the disk drive slightly and allow the disk to safely spin down, which can take less than one minute, and then, using both hands, remove the disk drive from the disk shelf.
- 8. With the cam handle in the open position, insert the replacement disk drive into the drive bay, firmly pushing until the disk drive stops.

Wait a minimum of 10 seconds before inserting a new disk drive. This allows the system to recognize that a disk drive was removed.

If your platform drive bays are not fully loaded with drives, it is important to place the replacement drive into the same drive bay from which you removed the failed drive.

Use two hands when inserting the disk drive, but do not place hands on the disk drive boards that are exposed on the underside of the disk carrier.

9. Close the cam handle so that the disk drive is fully seated into the midplane and the handle clicks into place.

Be sure to close the cam handle slowly so that it aligns correctly with the face of the disk drive..

- 10. If you are replacing another disk drive, repeat Steps 4 through 9.
- 11. Reinstall the bezel.
- 12. If you disabled automatice drive assignment in Step 1, then, manually assign drive ownership and then reenable automatic drive assignment if needed.
 - a. Display all unowned drives: storage disk show -container-type unassigned

 You can enter the command on either controller module.
 - b. Assign each drive: storage disk assign -disk disk_name -owner_name

You can enter the command on either controller module.

You can use the wildcard character to assign more than one drive at once.

c. Reenable automatic drive assignment if needed: storage disk option modify -node node_name -autoassign on

You must reenable automatic drive assignment on both controller modules.

13. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure.

Replace the NVMEM battery - ASA A150

To replace an NVMEM battery in the system, you must remove the controller module from the system, open it, replace the battery, and close and replace the controller module.

All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

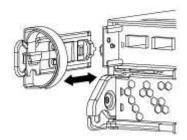
```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt Do you want to disable auto-giveback?
- 3. Take the impaired controller to the LOADER prompt:

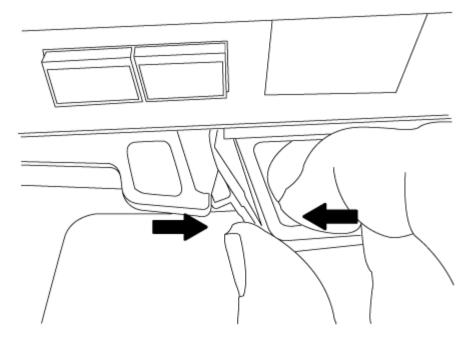
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

4. If the system has only one controller module in the chassis, turn off the power supplies, and then unplug the impaired controller's power cords from the power source.

Step 2: Remove controller module


To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.

Steps


- 1. If you are not already grounded, properly ground yourself.
- 2. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

3. Remove and set aside the cable management devices from the left and right sides of the controller module.

4. Squeeze the latch on the cam handle until it releases, open the cam handle fully to release the controller module from the midplane, and then, using two hands, pull the controller module out of the chassis.

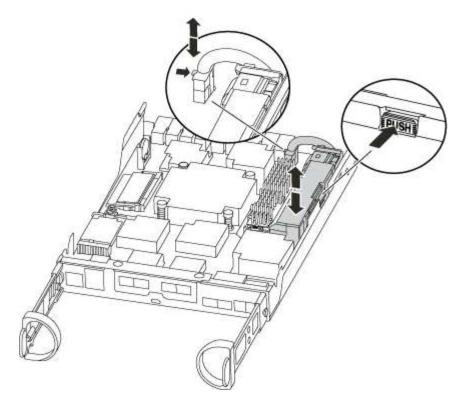
- 5. Turn the controller module over and place it on a flat, stable surface.
- 6. Open the cover by sliding in the blue tabs to release the cover, and then swing the cover up and open.

Step 3: Replace the NVMEM battery

To replace the NVMEM battery in your system, you must remove the failed NVMEM battery from the system and replace it with a new NVMEM battery.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Check the NVMEM LED:
 - ∘ If your system is in an HA configuration, go to the next step.
 - If your system is in a stand-alone configuration, cleanly shut down the controller module, and then check the NVRAM LED identified by the NV icon.



The NVRAM LED blinks while destaging contents to the flash memory when you halt the system. After the destage is complete, the LED turns off.

- If power is lost without a clean shutdown, the NVMEM LED flashes until the destage is complete, and then the LED turns off.
- If the LED is on and power is on, unwritten data is stored on NVMEM.

This typically occurs during an uncontrolled shutdown after ONTAP has successfully booted.

3. Locate the NVMEM battery in the controller module.

- 4. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket.
- 5. Remove the battery from the controller module and set it aside.
- 6. Remove the replacement battery from its package.
- 7. Loop the battery cable around the cable channel on the side of the battery holder.
- 8. Position the battery pack by aligning the battery holder key ribs to the "V" notches on the sheet metal side wall.
- 9. Slide the battery pack down along the sheet metal side wall until the support tabs on the side wall hook into the slots on the battery pack, and the battery pack latch engages and clicks into the opening on the side wall.
- 10. Plug the battery plug back into the controller module.

Step 4: Reinstall the controller module

After you replace components in the controller module, reinstall it into the chassis.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. If you have not already done so, replace the cover on the controller module.
- 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
 - (i)

Do not completely insert the controller module in the chassis until instructed to do so.

4. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber

optic cables.

5. Complete the reinstallation of the controller module:

If your system is in	Then perform these steps		
An HA pair	The controller module begins to boot as soon as it is fully seated in the chassis. a. With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated, and then close the cam handle to the locked position.		
	i	Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.	
	The contr	oller begins to boot as soon as it is seated in the	
	 b. If you have not already done so, reinstall the cable management device. 		
	c. Bind the c	cables to the cable management device with the hook strap.	
A stand-alone configuration	controller	cam handle in the open position, firmly push the module in until it meets the midplane and is fully seated, close the cam handle to the locked position.	
	i	Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.	
	b. If you hav device.	re not already done so, reinstall the cable management	
	c. Bind the c	cables to the cable management device with the hook strap.	
		ct the power cables to the power supplies and to the urces, turn on the power to start the boot process.	

Step 5: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

```
cluster_B::> metrocluster show
Cluster Configuration State Mode
-----
Local: cluster_B configured normal
Remote: cluster_A configured normal
```

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 6: Return the failed part to NetApp

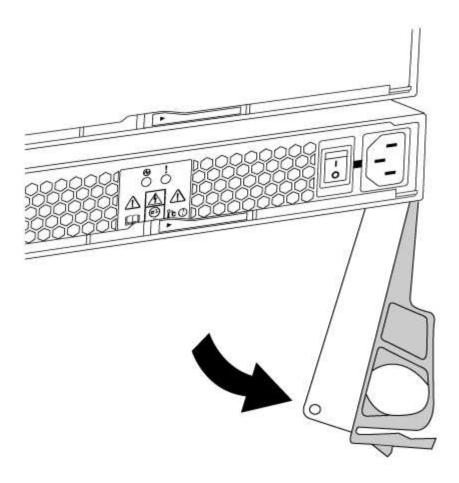
Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Swap out a power supply - ASA A150

Swapping out a power supply involves turning off, disconnecting, and removing the old power supply and installing, connecting, and turning on the replacement power supply.

All other components in the system must be functioning properly; if not, you must contact technical support.

- The power supplies are redundant and hot-swappable.
- This procedure is written for replacing one power supply at a time.



Cooling is integrated with the power supply, so you must replace the power supply within two minutes of removal to prevent overheating due to reduced airflow. Because the chassis provides a shared cooling configuration for the two HA nodes, a delay longer than two minutes will shut down all controller modules in the chassis. If both controller modules do shut down, make sure that both power supplies are inserted, turn both off for 30 seconds, and then turn both on.

· Power supplies are auto-ranging.

Steps

- 1. Identify the power supply you want to replace, based on console error messages or through the LEDs on the power supplies.
- 2. If you are not already grounded, properly ground yourself.
- 3. Turn off the power supply and disconnect the power cables:
 - a. Turn off the power switch on the power supply.
 - b. Open the power cable retainer, and then unplug the power cable from the power supply.
 - c. Unplug the power cable from the power source.
- 4. Squeeze the latch on the power supply cam handle, and then open the cam handle to fully release the power supply from the mid plane.

5. Use the cam handle to slide the power supply out of the system.

When removing a power supply, always use two hands to support its weight.

- 6. Make sure that the on/off switch of the new power supply is in the Off position.
- 7. Using both hands, support and align the edges of the power supply with the opening in the system chassis, and then gently push the power supply into the chassis using the cam handle.

The power supplies are keyed and can only be installed one way.

Do not use excessive force when sliding the power supply into the system. You can damage the connector.

- 8. Close the cam handle so that the latch clicks into the locked position and the power supply is fully seated.
- 9. Reconnect the power supply cabling:
 - a. Reconnect the power cable to the power supply and the power source.
 - b. Secure the power cable to the power supply using the power cable retainer.

Once power is restored to the power supply, the status LED should be green.

10. Turn on the power to the new power supply, and then verify the operation of the power supply activity LEDs.

The power supply LEDs are lit when the power supply comes online.

11. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the real-time clock battery - ASA A150

You replace the real-time clock (RTC) battery in the controller module so that your system's services and applications that depend on accurate time synchronization continue to function.

- You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

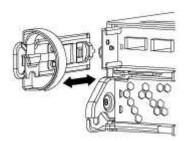
- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

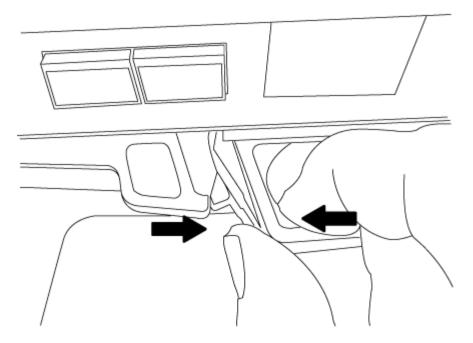
- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

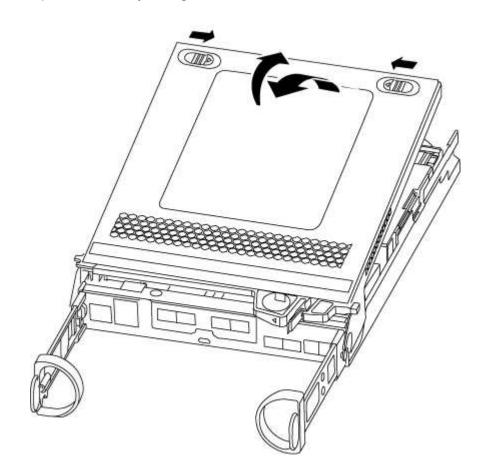
If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.


Step 2: Remove controller module

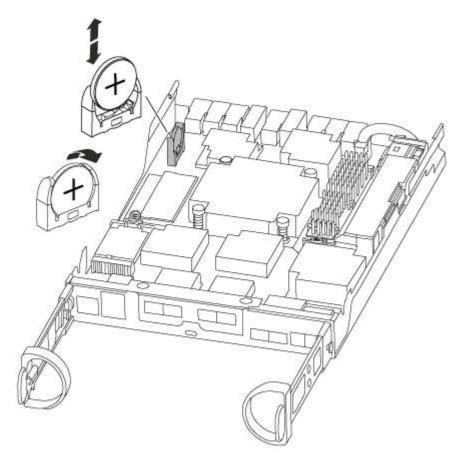
To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.


- 1. If you are not already grounded, properly ground yourself.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.


3. Remove and set aside the cable management devices from the left and right sides of the controller module.

4. Squeeze the latch on the cam handle until it releases, open the cam handle fully to release the controller module from the midplane, and then, using two hands, pull the controller module out of the chassis.


- 5. Turn the controller module over and place it on a flat, stable surface.
- 6. Open the cover by sliding in the blue tabs to release the cover, and then swing the cover up and open.

Step 3: Replace the RTC battery

To replace the RTC battery, locate it inside the controller and follow the specific sequence of steps.

- 1. If you are not already grounded, properly ground yourself.
- 2. Locate the RTC battery.

3. Gently push the battery away from the holder, rotate it away from the holder, and then lift it out of the holder.

Note the polarity of the battery as you remove it from the holder. The battery is marked with a plus sign and must be positioned in the holder correctly. A plus sign near the holder tells you how the battery should be positioned.

- 4. Remove the replacement battery from the antistatic shipping bag.
- 5. Locate the empty battery holder in the controller module.
- 6. Note the polarity of the RTC battery, and then insert it into the holder by tilting the battery at an angle and pushing down.
- 7. Visually inspect the battery to make sure that it is completely installed into the holder and that the polarity is correct.

Step 4: Reinstall the controller module and set time/date after RTC battery replacement

After you replace a component within the controller module, you must reinstall the controller module in the system chassis, reset the time and date on the controller, and then boot it.

- 1. If you have not already done so, close the air duct or controller module cover.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 4. If the power supplies were unplugged, plug them back in and reinstall the power cable retainers.
- 5. Complete the reinstallation of the controller module:
 - a. With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated, and then close the cam handle to the locked position.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. If you have not already done so, reinstall the cable management device.
- c. Bind the cables to the cable management device with the hook and loop strap.
- d. Reconnect the power cables to the power supplies and to the power sources, and then turn on the power to start the boot process.
- e. Halt the controller at the LOADER prompt.
- 6. Reset the time and date on the controller:
 - a. Check the date and time on the healthy controller with the show date command.
 - b. At the LOADER prompt on the target controller, check the time and date.
 - c. If necessary, modify the date with the set date mm/dd/yyyy command.
 - d. If necessary, set the time, in GMT, using the set time hh:mm:ss command.
 - e. Confirm the date and time on the target controller.
- 7. At the LOADER prompt, enter bye to reinitialize the PCle cards and other components and let the controller reboot.
- 8. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 9. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 6: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

ASA A250 systems

Install and setup

Start here: Choose your installation and setup experience

For most configurations, you can choose from different content formats.

Quick steps

A printable PDF of step-by-step instructions with live links to additional content.

• Video steps

Video step-by-step instructions.

Detailed steps

Online step-by-step instructions with live links to additional content.

If your system is in a MetroCluster IP configuration, see the Install MetroCluster IP Configuration instructions.

Quick steps - ASA A250

The Installation and Setup instructions give graphic instructions for a typical installation of your system, from racking and cabling, through initial system bring-up. Use this guide if you are familiar with installing NetApp systems.

The ASA A250 and ASA C250 use the same installation procedure as the AFF A250 system.

AFF A250 Installation and Setup Instructions

Video steps - ASA A250

The following video shows how to install and cable your new system.

Animation - Installation and Setup of an AFF A250

The ASA A250 uses the same installation procedure as the AFF A250 system.

Detailed steps - ASA A250

This page gives detailed step-by-step instructions for installing an ASA A250 system.

Step 1: Prepare for installation

To install your system, you need to create an account and register the system. You also need to inventory the appropriate number and type of cables for your system and collect specific network information.

Customers with specific power requirements must check HWU for their configuration options.

Before you begin

- Make sure you have access to the NetApp Hardware Universe (HWU) for information about site requirements.
- Make sure you have access to the Release Notes for your version of ONTAP for more information about this system.
- · You need to provide the following at your site:
 - Rack space for the storage system
 - Phillips #2 screwdriver
 - Additional networking cables to connect your system to your network switch and laptop or console with a Web browser

Steps

- 1. Unpack the contents of all boxes.
- Record the system serial number from the controllers.

- 3. Set up your account:
 - a. Log in to your existing account or create an account.
 - b. Register your system.
- 4. Download and install NetApp Downloads: Config Advisor on your laptop.
- 5. Inventory and make a note of the number and types of cables you received.

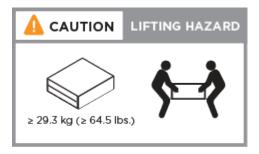
The following table identifies the types of cables you might receive. If you receive a cable not listed in the table, see the NetApp Hardware Universe to locate the cable and identify its use.

Type of cable	Part number and length	Connector type	For
25 GbE cable	X66240A-05 (112-00595), 0.5m;		Cluster interconnect network
	X66240-2 (112-00573), 2m		
	X66240A-2 (112-00598), 2m;		Data
	X66240A-5 (112-00600), 5m		
100 GbE cable	X66211-2 (112-00574), 2m;		Storage
	X66211-5 (112-00576), 5m		

Type of cable	Part number and length	Connector type	For
RJ-45 (order dependent)	Not applicable		Management network (BMC and wrench port) and Ethernet data (e0a and e0b)
Fibre Channel	X66250-2 (112-00342) 2m; X66250-5 (112-00344) 5m; X66250-15 (112-00346) 15m; X66250-30 (112-00347) 30m		
Micro-USB console cable	Not applicable		Console connection during software setup
Power cables	Not applicable	Ith	Powering up the system

6. Review the ONTAP Configuration Guide and collect the required information listed in that guide.

Step 2: Install the hardware


You need to install your system in a 4-post rack or NetApp system cabinet, as applicable.

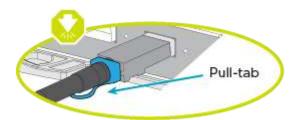
Steps

- 1. Install the rail kits, as needed.
- 2. Install and secure your system using the instructions included with the rail kit.

You need to be aware of the safety concerns associated with the weight of the system.

- 3. Identify and manage cables because this system does not have a cable management device.
- 4. Place the bezel on the front of the system.

Step 3: Cable controllers to cluster


Cable the controllers to a cluster by using the two-node switchless cluster method or by using the cluster interconnect network method.

Option 1: Two-node switchless cluster

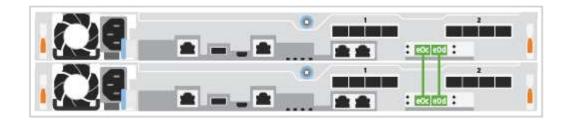
The management, Fibre Channel, and data or host network ports on the controller modules are connected to switches. The cluster interconnect ports are cabled on both controller modules.

Before you begin

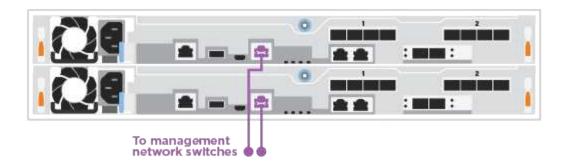
- Contact your network administrator for information about connecting the system to the switches.
- Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

About this task

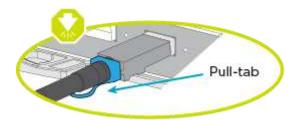

Use the animation or the tabulated steps to complete the cabling between the controllers and the switches. Perform the steps on each controller.

Animation - Cable two-node switchless cluster


Steps

1. Use the the 25GbE cluster interconnect cable to connect the cluster interconnect ports e0c to e0c and e0d to e0d.

2. Cable the wrench ports to the management network switches with the RJ45 cables.


DO NOT plug in the power cords at this point.

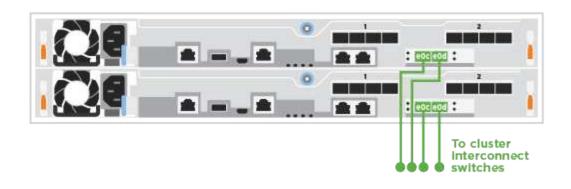
Option 2: Switched cluster

All ports on the controllers are connected to switches; cluster interconnect, management, Fibre Channel, and data or host network switches.

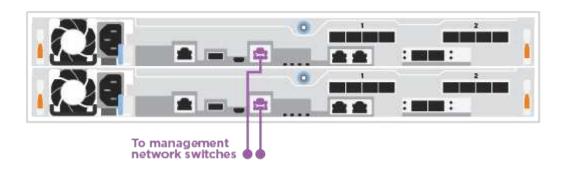
Before you begin

- Contact your network administrator for information about connecting the system to the switches.
- Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.


About this task

Use the animation or the steps to complete the cabling between the controllers and the switches. Perform the steps on each controller.

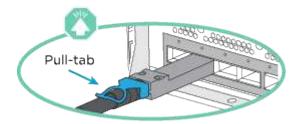

Animation - Cable switched cluster

Steps

1. Cable the cluster interconnect ports e0c and e0d to the 25 GbE cluster interconnect switches.

2. Cable the wrench ports to the management network switches with the RJ45 cables.

Step 4: Cable to host network or storage (Optional)


You have configuration-dependent optional cabling to the Fibre Channel or iSCSI host networks or direct-attached storage. This cabling is not exclusive; you can have cabling to a host network and storage.

Option 1: Cable to Fibre Channel host network

Fibre Channel ports on the controllers are connected to Fibre Channel host network switches.

Before you begin

- Contact your network administrator for information about connecting the system to the switches.
- Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

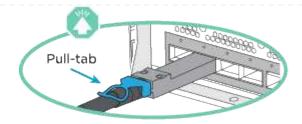
As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again..

About this task

Perform the following step on each controller module.

Steps

1. Cable ports 2a through 2d to the FC host switches.

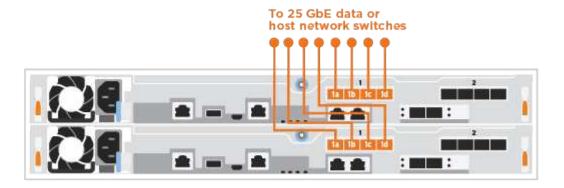


Option 2: Cable to 25GbE data or host network

25GbE ports on the controllers are connected to 25GbE data or host network switches.

Before you begin

- Contact your network administrator for information about connecting the system to the switches.
- Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

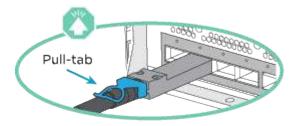

As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

About this task

Perform the following step on each controller module.

Steps

1. Cable ports e4a through e4d to the 10GbE host network switches.



Option 3: Cable controllers to single drive shelf

Cable each controller to the NSM modules on the NS224 drive shelf.

Before you begin

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.



As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

About this task

Use the animation or the tabulated steps to complete the cabling between the controllers and the single shelf. Perform the steps on each controller module.

Step 5: Complete system setup

Complete the system setup and configuration using cluster discovery with only a connection to the switch and laptop, or by connecting directly to a controller in the system and then connecting to the management switch.

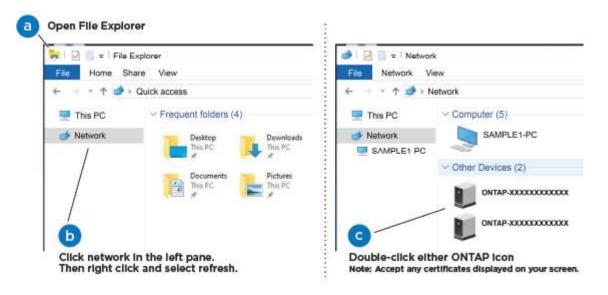
Option 1: If network discovery is enabled

If you have network discovery enabled on your laptop, you can complete system setup and configuration using automatic cluster discovery.

Steps

1. Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.

The system begins to boot. Initial booting may take up to eight minutes.


2. Make sure that your laptop has network discovery enabled.

See your laptop's online help for more information.

3. Use the animation to connect your laptop to the Management switch:

Animation - Connect your laptop to the Management switch

4. Select an ONTAP icon listed to discover:

- a. Open File Explorer.
- b. Click **Network** in the left pane and right-click and select **refresh**.
- c. Double-click either ONTAP icon and accept any certificates displayed on your screen.

XXXXX is the system serial number for the target node.

System Manager opens.

- 5. Use System Manager guided setup to configure your system using the data you collected in the ONTAP Configuration Guide.
- 6. Verify the health of your system by running Config Advisor.
- 7. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Option 2: If network discovery is not enabled

If network discovery is not enabled on your laptop, you must complete the configuration and setup using this task.

Steps

- 1. Cable and configure your laptop or console:
 - a. Set the console port on the laptop or console to 115,200 baud with N-8-1.

See your laptop or console's online help for how to configure the console port.

b. Connect the laptop or console to the switch on the management subnet.

- c. Assign a TCP/IP address to the laptop or console, using one that is on the management subnet.
- 2. Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.

The system begins to boot. Initial booting may take up to eight minutes.

3. Assign an initial node management IP address to one of the nodes.

If the management network has DHCP	Then	
Configured	Record the IP address assigned to the new controllers.	
Not configured	Open a console session using PuTTY, a terminal server, or the equivalent for your environment.	
	Check your laptop or console's online help if you do not know how to configure PuTTY.	
	b. Enter the i	management IP address when prompted by the

- 4. Using System Manager on your laptop or console, configure your cluster:
 - a. Point your browser to the node management IP address.

The format for the address is https://x.x.x.x.

b. Configure the system using the data you collected in the ONTAP Configuration Guide.

- 5. Verify the health of your system by running Config Advisor.
- 6. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Maintain

Maintain ASA A250 hardware

For the ASA A250 storage system, you can perform maintenance procedures on the following components.

Boot media

The boot media stores a primary and secondary set of boot image files that the system uses when it boots.

Chassis

The chassis is the physical enclosure housing all the controller components such as the controller/CPU unit, power supply, and I/O.

Controller

A controller consists of a board, firmware, and software. It controls the drives and implements the ONTAP functions.

DIMM

You must replace a DIMM (dual in-line memory module) when a memory mismatch is present, or you have a failed DIMM.

Drive

A drive is a device that provides the physical storage media for data.

Fan

The fan cools the controller.

Mezzanine card

A Mezzanine card is a printed circuit board that plugs directly into another plug-in card.

NVEM battery

A battery is included with the controller and preserves cached data if the AC power fails.

Power supply

A power supply provides a redundant power source in a controller shelf.

Real time clock battery

A real time clock battery preserves system date and time information if the power is off.

Boot media

Overview and requirements ASA A250

The boot media stores a primary and secondary set of system (boot image) files that the system uses when it boots.

Before you begin

- You must have a USB flash drive, formatted to MBR/FAT32, with the appropriate amount of storage to hold the image xxx.tgz file.
- You also must copy the image xxx.tgz file to the USB flash drive for later use in this procedure.

About this task

- The nondisruptive and disruptive methods for replacing a boot media both require you to restore the var file system:
 - For nondisruptive replacement, the HA pair must be connected to a network to restore the var file system.
 - For disruptive replacement, you do not need a network connection to restore the var file system, but the process requires two reboots.
- You must replace the failed component with a replacement FRU component you received from your provider.
- It is important that you apply the commands in these steps on the correct controller:
 - The *impaired* node is the controller on which you are performing maintenance.
 - The *healthy* node is the HA partner of the impaired controller.

Check encryption key support and status - ASA A250

To ensure data security on your storage system, you need to verify the encryption key support and status on your boot media. Check if your ONTAP version supports NetApp Volume Encryption (NVE), and before you shut down the controller check if the key manager is active.

Step 1: Check if your version of ONTAP supports NetApp Volume Encryption

Check whether your ONTAP version supports NetApp Volume Encryption (NVE). This information is crucial for downloading the correct ONTAP image.

Steps

1. Determine if your ONTAP version supports encryption by running the following command:

```
version -v
```

If the output includes 10no-DARE, NVE is not supported on your cluster version.

- 2. Depending on whether NVE is supported on your system, take one of the following actions:
 - If NVE is supported, download the ONTAP image with NetApp Volume Encryption.
 - If NVE is not supported, download the ONTAP image without NetApp Volume Encryption.

Step 2: Determine if it is safe to shut down the controller

To safely shut down a controller, first identify whether the External Key Manager (EKM) or the Onboard Key Manager (OKM) is active. Then, verify the key manager in use, display the appropriate key information, and take action based on the status of the authentication keys.

Steps

1. Determine which key manager is enabled on your system:

ONTAP version	Run this command	
ONTAP 9.14.1 or later	security key-manager keystore show	
	• If EKM is enabled, EKM is listed in the command output.	
	• If OKM is enabled, OKM is listed in the command output.	
	• If no key manager is enabled, No key manager keystores configured is listed in the command output.	
ONTAP 9.13.1 or earlier	security key-manager show-key-store	
	• If EKM is enabled, external is listed in the command output.	
	• If OKM is enabled, onboard is listed in the command output.	
	• If no key manager is enabled, No key managers configured is listed in the command output.	

2. Depending on whether a key manger is configured on your system, select one of the following options.

No key manager configured

You can safely shut down the impaired controller. Go to shutdown the impaired controller.

External or Onboard key manager configured

a. Enter the following query command to display the status of the authentication keys in your key manager.

security key-manager key query

b. Check the output for the value in the Restored column for your key manager.

This column indicates whether the authentication keys for your key manager (either EKM or OKM) have been successfully restored.

3. Depending on whether your system is using the External Key Manager or Onboard Key Manager, select one of the following options.

External Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	You can safely shut down the impaired controller. Go to shutdown the impaired controller.
Anything other than true	 a. Restore the external key management authentication keys to all nodes in the cluster using the following command: security key-manager external restore If the command fails, contact NetApp Support. b. Verify that the Restored column displays true for all authentication keys by entering the security key-manager key query command. If all the authentication keys are true, you can safely shut down the impaired controller. Go to shutdown the impaired controller.

Onboard Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	Manually back up the OKM information.
	a. Go to the advanced mode by entering set -priv advanced and then enter Y when prompted.
	b. Enter the following command to display the key management information:
	security key-manager onboard show-backup
	c. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	d. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Output value in Restored column	Follow these steps
Anything other than true	a. Enter the onboard security key-manager sync command:
	security key-manager onboard sync
	b. Enter the 32 character, alphanumeric onboard key management passphrase when prompted.
	If the passphrase cannot be provided, contact NetApp Support.
	c. Verify the Restored column displays true for all authentication keys:
	security key-manager key query
	d. Verify that the Key Manager type displays onboard, and then manually back up the OKM information.
	e. Enter the command to display the key management backup information:
	security key-manager onboard show-backup
	f. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	g. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Shut down the controller - ASA A250

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

Option 1: Most systems

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

Steps

a. Take the impaired controller to the LOADER prompt:

If the impaired controller displays	Then
The LOADER prompt	Go to Remove controller module.

If the impaired controller displays	Then
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

b. From the LOADER prompt, enter: printenv to capture all boot environmental variables. Save the output to your log file.

This command may not work if the boot device is corrupted or non-functional.

Option 2: Systems in a MetroCluster

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration

 State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press
	Ctrl-C, and then respond y.

Replace the boot media - ASA A250

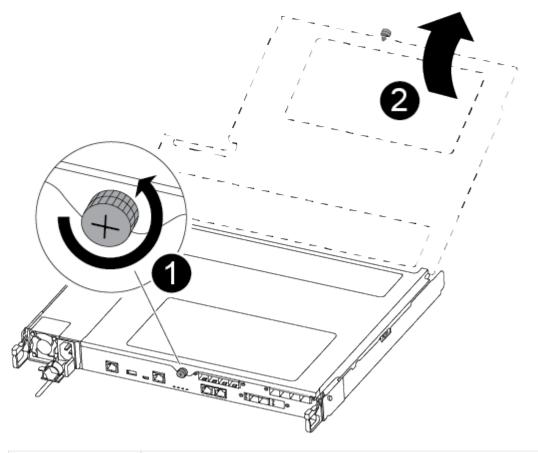
To replace the boot media, you must remove the impaired controller module, install the replacement boot media, and transfer the boot image to a USB flash drive.

Step 1: Remove the controller module

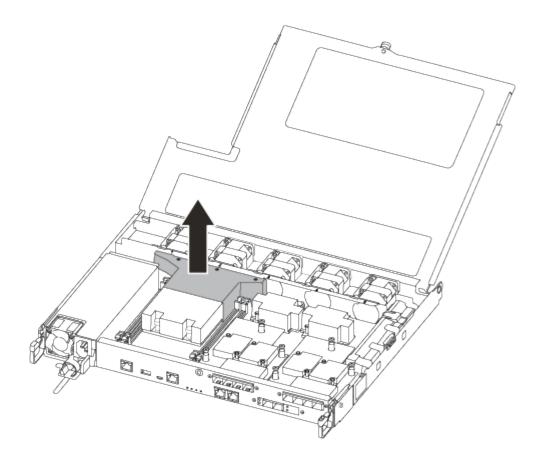

To access components inside the controller module, you must first remove the controller module from the system, and then remove the cover on the controller module.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Unplug the I/O cables from the controller module.
- 5. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.



If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).

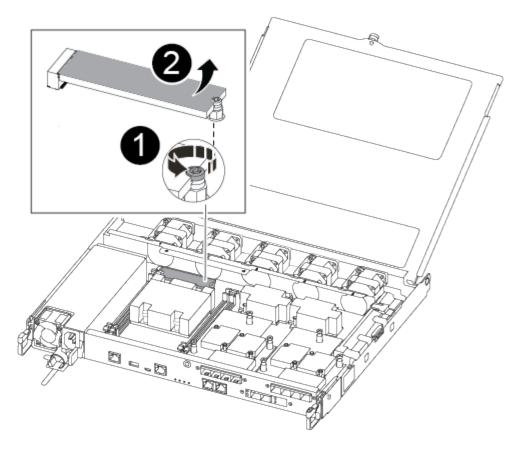

0	Lever
2	Latching mechanism

- 6. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 7. Turn the thumbscrew on the front of the controller module anti-clockwise and open the controller module cover.

0	Thumbscrew
2	Controller module cover.

8. Lift out the air duct cover.

Step 2: Replace the boot media


You locate the failed boot media in the controller module by removing the air duct on the controller module before you can replace the boot media.

You need a #1 magnetic Phillips head screwdriver to remove the screw that holds the boot media in place. Due to the space constraints within the controller module, you should also have a magnet to transfer the screw on to so that you do not lose it.

You can use the following video or the tabulated steps to replace the boot media:

Animation - Replace the boot media

1. Locate and replace the impaired boot media from the controller module.

0	Remove the screw securing the boot media to the motherboard in the controller module.
2	Lift the boot media out of the controller module.

- 2. Using the #1 magnetic screwdriver, remove the screw from the impaired boot media, and set it aside safely on the magnet.
- 3. Gently lift the impaired boot media directly out of the socket and set it aside.
- 4. Remove the replacement boot media from the antistatic shipping bag and align it into place on the controller module.
- 5. Using the #1 magnetic screwdriver, insert and tighten the screw on the boot media.

Do not apply force when tightening the screw on the boot media; you might crack it.

Step 3: Transfer the boot image to the boot media

The replacement boot media that you installed is without a boot image so you need to transfer a boot image using a USB flash drive.

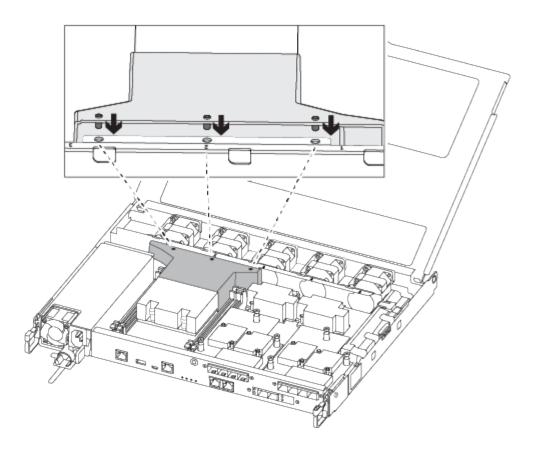
- · You must have a USB flash drive, formatted to MBR/FAT32, with at least 4GB capacity
- A copy of the same image version of ONTAP as what the impaired controller was running. You can
 download the appropriate image from the Downloads section on the NetApp Support Site
 - If NVE is enabled, download the image with NetApp Volume Encryption, as indicated in the download

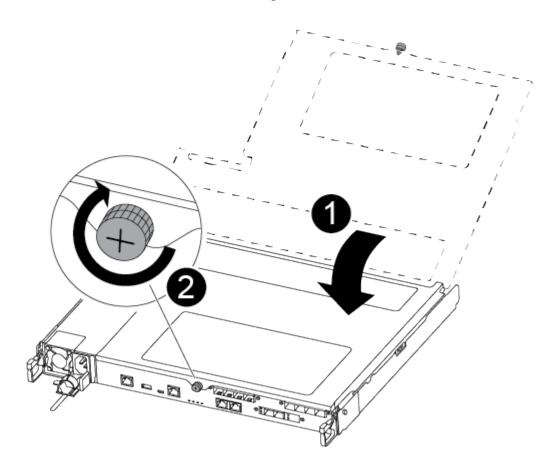
button.

- If NVE is not enabled, download the image without NetApp Volume Encryption, as indicated in the download button.
- If your system is an HA pair, you must have a network connection.
- If your system is a stand-alone system you do not need a network connection, but you must perform an additional reboot when restoring the var file system.
 - 1. Download and copy the appropriate service image from the NetApp Support Site to the USB flash drive.
 - 2. Download the service image to your work space on your laptop.
 - 3. Unzip the service image.

If you are extracting the contents using Windows, do not use winzip to extract the netboot image. Use another extraction tool, such as 7-Zip or WinRAR.

There are two folders in the unzipped service image file:


- boot
- efi
- 4. Copy the efi folder to the top directory on the USB flash drive.


If the service image has no efi folder, see EFI folder missing from Service Image download file used for boot device recovery for FAS and AFF models[^].

The USB flash drive should have the efi folder and the same Service Image (BIOS) version of what the impaired controller is running.

- 5. Remove the USB flash drive from your laptop.
- 6. If you have not already done so, install the air duct.

7. Close the controller module cover and tighten the thumbscrew.

0	Controller module cover
2	Thumbscrew

- 8. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
- 9. Insert the USB flash drive into the USB slot on the controller module.

Make sure that you install the USB flash drive in the slot labeled for USB devices, and not in the USB console port.

- 10. Push the controller module all the way into the chassis:
- 11. Place your index fingers through the finger holes from the inside of the latching mechanism.
- 12. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
- 13. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

- 14. Reconnect the controller module I/O cables.
- 15. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

16. Interrupt the boot process to stop at the LOADER prompt by pressing Ctrl-C when you see Starting AUTOBOOT press Ctrl-C to abort....

If you miss this message, press Ctrl-C, select the option to boot to Maintenance mode, and then halt the controller to boot to LOADER.

17. For systems with one controller in the chassis, reconnect the power and turn on the power supplies.

The system begins to boot and stops at the LOADER prompt.

Boot the recovery image - ASA A250

After installing the new boot media device in your system, you can boot the recovery image from a USB drive and restore the configuration from the partner node.

Steps

- 1. From the LOADER prompt, boot the recovery image from the USB flash drive: boot_recovery
 - The image is downloaded from the USB flash drive.
- 2. When prompted, either enter the name of the image or accept the default image displayed inside the brackets on your screen.

3. Restore the var file system:

Option 1: ONTAP 9.16.0 or earlier

- a. On the impaired controller, press Y when you see Do you want to restore the backup configuration now?
- b. If prompted on the impaired controller, press Y to overwrite /etc/ssh/ssh_host_ecdsa_key.
- c. On the healthy partner controller, set the impaired controller to advanced privilege level: set -privilege advanced.
- d. On the healthy partner controller, run the restore backup command: system node restore-backup -node local -target-address impaired node IP address.

NOTE: If you see any message other than a successful restore, contact NetApp Support.

- e. On the healthy partner controller, return the impaired controller to admin level: set -privilege admin.
- f. On the impaired controller, press Y when you see Was the restore backup procedure successful?.
- g. On the impaired controller, press Y when you see ...would you like to use this restored copy now?.
- h. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- i. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.

Option 2: ONTAP 9.16.1 or later

a. On the impaired controller, press Y when prompted to restore the backup configuration.

After restore procedure is successful, this message will be seen on the console-syncflash_partner: Restore from partner complete.

- b. On the impaired controller, press Y when prompted to confirm if the restore backup was successful.
- c. On the impaired controller, press Y when prompted to use the restored configuration.
- d. On the impaired controller, press Y when prompted to reboot the node.
- e. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- f. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.
- 4. Connect the console cable to the partner controller.
- 5. Give back the controller using the storage failover giveback -fromnode local command.
- 6. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command.

7. If AutoSupport is enabled, restore/unsuppress automatic case creation by using the system node autosupport invoke -node * -type all -message MAINT=END command.

NOTE: If the process fails, contact NetApp Support.

Restore encryption - ASA A250

Restore encryption on the replacement boot media.

You must complete steps specific to systems that have Onboard Key Manager (OKM), NetApp Storage Encryption (NSE) or NetApp Volume Encryption (NVE) enabled using the settings that you captured at the beginning of the boot media replace procedure.

Depending on which a key manger is configured on your system, select one of the following options to restore it from the boot menu.

- Option 1: Restore the Onboard Key Manager configuration
- Option 2: Restore the External Key Manager configuration

Option 1: Restore the Onboard Key Manager configuration

Restore the Onboard Key Manager (OKM) configuration from the ONTAP boot menu.

Before you begin

- Make sure you have following information while restoring the OKM configuration:
 - · Cluster-wide passphrase entered while enabling onboard key management.
 - · Backup information for the Onboard Key Manager.
- Perform the How to verify onboard key management backup and cluster-wide passphrase procedure before proceeding.

Steps

- 1. Connect the console cable to the target controller.
- 2. From the ONTAP boot menu select the appropriate option from the boot menu.

ONTAP version	Select this option
ONTAP 9.8 or later	Select option 10.
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	(10) Set Onboard Key Manager recovery
	secrets.
	(11) Configure node for external key
	management.
	Selection (1-11)? 10

ONTAP version	Select this option
ONTAP 9.7 and earlier	Select the hidden option recover_onboard_keymanager
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	Selection (1-19)?
	recover_onboard_keymanager

3. Confirm that you want to continue the recovery process.

Show example prompt

This option must be used only in disaster recovery procedures. Are you sure? (y or n):

4. Enter the cluster-wide passphrase twice.

While entering the passphrase the console will not show any input.

Show example prompt

Enter the passphrase for onboard key management:

Enter the passphrase again to confirm:

- 5. Enter the backup information.
 - a. Paste the entire content from the BEGIN BACKUP line through the END BACKUP line.

Enter the backup data:

-----END BACKUP-----

b. Press the enter key twice at the end of the input.

The recovery process completes.

Do not proceed if the displayed output is anything other than ${\tt Successfully recovered}$ keymanager secrets.

Perform troubleshooting to correct the error.

6. Select option 1 from the boot menu to continue booting into ONTAP.

```
*************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
******************
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6)
   Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

7. Confirm that the controller's console displays the following message.

```
Waiting for giveback...(Press Ctrl-C to abort wait)
```

8. From the partner node, giveback the partner controller by entering the following command.

```
storage failover giveback -fromnode local -only-cfo-aggregates true.
```

9. After booting with only the CFO aggregate, run the following command.

```
security key-manager onboard sync
```

10. Enter the cluster-wide passphrase for the Onboard Key Manager.

Enter the cluster-wide passphrase for the Onboard Key Manager:

All offline encrypted volumes will be brought online and the corresponding volume encryption keys (VEKs) will be restored automatically within 10 minutes. If any offline encrypted volumes are not brought online automatically, they can be brought online manually using the "volume online -vserver <vserver> -volume <volume name>" command.

If the sync is successful the cluster prompt is returned with no additional messages. If the sync fails an error message appears before returning to the cluster prompt. Do not continue until the the error is corrected and the sync runs successfully.

11. Ensure that all keys are synced by entering the following command.

security key-manager key query -restored false.

There are no entries matching your query.

No results should appear when filtering for false in the restored parameter.

12. Giveback the node from the partner by entering the following command.

```
storage failover giveback -fromnode local
```

13. Restore automatic giveback, if you disabled it, by entering the following command.

```
storage failover modify -node local -auto-giveback true
```

14. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Option 2: Restore the External Key Manager configuration

Restore the External Key Manager configuration from the ONTAP boot menu.

Before you begin

You need the following information for restoring the External Key Manager (EKM) configuration.

- A copy of the /cfcard/kmip/servers.cfg file from another cluster node or the following information:
 - The KMIP server address.
 - The KMIP port.
- A copy of the /cfcard/kmip/certs/client.crt file from another cluster node or the client certificate.

- A copy of the /cfcard/kmip/certs/client.key file from another cluster node or the client key.
- A copy of the /cfcard/kmip/certs/CA.pem file from another cluster node or the KMIP server CA(s).

Steps

- 1. Connect the console cable to the target controller.
- 2. Select option 11 from the ONTAP boot menu.

Show example boot menu

```
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 11
```

3. When prompted, confirm you have gathered the required information.

Show example prompt

```
Do you have a copy of the /cfcard/kmip/certs/client.crt file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/client.key file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/CA.pem file? {y/n}
Do you have a copy of the /cfcard/kmip/servers.cfg file? {y/n}
```

4. When prompted, enter the client and server information.

Show prompt

```
Enter the client certificate (client.crt) file contents:
Enter the client key (client.key) file contents:
Enter the KMIP server CA(s) (CA.pem) file contents:
Enter the server configuration (servers.cfg) file contents:
```

Show example

```
Enter the client certificate (client.crt) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the client key (client.key) file contents:
----BEGIN RSA PRIVATE KEY----
<key value>
----END RSA PRIVATE KEY----
Enter the KMIP server CA(s) (CA.pem) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the IP address for the KMIP server: 10.10.10.10
Enter the port for the KMIP server [5696]:
System is ready to utilize external key manager(s).
Trying to recover keys from key servers....
kmip init: configuring ports
Running command '/sbin/ifconfig eOM'
kmip init: cmd: ReleaseExtraBSDPort e0M
```

After you enter the client and server information, the recovery process completes.

Show example

```
System is ready to utilize external key manager(s).

Trying to recover keys from key servers....

Performing initialization of OpenSSL

Successfully recovered keymanager secrets.
```

5. Select option 1 from the boot menu to continue booting into ONTAP.

```
*****************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
*****************
*****
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

6. Restore automatic giveback if you disabled it.

```
storage failover modify -node local -auto-giveback true
```

7. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Return the failed part to NetApp - ASA A250

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Chassis

Overview of chassis replacement - ASA A250

To replace the chassis, you must move the bezel, controller modules, and NVMe drives from the impaired chassis to the replacement chassis, and then remove the impaired chassis from the equipment rack or system cabinet and install the replacement chassis in its place.

About this task

All other components in the system must be functioning properly; if not, you must contact technical support.

- You can use this procedure with all versions of ONTAP supported by your system.
- This procedure is written with the assumption that you are moving the bezel, NVMe drives, and controller modules to the new chassis, and that the replacement chassis is a new component from NetApp.
- This procedure is disruptive. For a two-node cluster, you will have a complete service outage and a partial outage in a multi-node cluster.

Shut down the controllers - ASA A250

This procedure is for systems with two node configurations. For more information about graceful shutdown when servicing a cluster, see Gracefully shutdown and power up your storage system Resolution Guide - NetApp Knowledge Base.

Before you begin

- Make sure you have the necessary permissions and credentials:
 - Local administrator credentials for ONTAP.
 - BMC accessability for each controller.
- Make sure you have the necessary tools and equipment for the replacement.
- · As a best practice before shutdown, you should:
 - · Perform additional system health checks.
 - Upgrade ONTAP to a recommended release for the system.
 - Resolve any Active IQ Wellness Alerts and Risks.
 Make note of any faults presently on the system, such as LEDs on the system components.

Steps

- 1. Log into the cluster through SSH or log in from any node in the cluster using a local console cable and a laptop/console.
- 2. Stop all clients/host from accessing data on the NetApp system.
- 3. Suspend external backup jobs.
- 4. If AutoSupport is enabled, suppress case creation and indicate how long you expect the system to be offline:

```
system node autosupport invoke -node * -type all -message "MAINT=2h Replace chassis"
```

5. Identify the SP/BMC address of all cluster nodes:

```
system service-processor show -node \star -fields address
```

6. Exit the cluster shell:

exit

7. Log into SP/BMC over SSH using the IP address of any of the nodes listed in the output from the previous step to monitor progress.

If you are using a console/laptop, log into the controller using the same cluster administrator credentials.

8. Halt the two nodes located in the impaired chassis:

system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown
true -ignore-quorum-warnings true -inhibit-takeover true

For clusters using SnapMirror synchronous operating in StrictSync mode: system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown true -ignore-quorum-warnings true -inhibit-takeover true -ignore-strict -sync-warnings true

9. Enter **v** for each controller in the cluster when you see:

Warning: Are you sure you want to halt node <node name>? {y|n}:

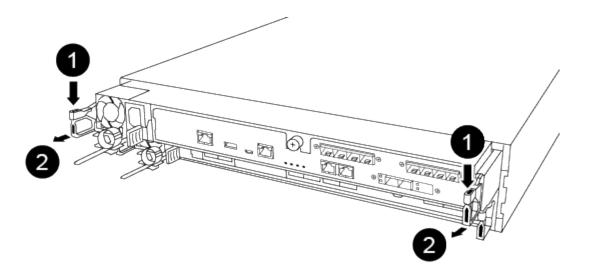
10. Wait for each controller to halt and display the LOADER prompt.

Replace chassis - ASA A250

To replace the chassis, you move the power supplies, hard drives, and controller module from the impaired chassis to the new chassis, and swap out the impaired chassis from with the new chassis of the same model as the impaired chassis.

Step 1: Remove the controller modules

To replace the chassis, you must remove the controller modules from the old chassis.


Use the following video or the tabulated steps to replace the chassis; it assumes the removal and replacement of the bezel:

Animation - Replace the chassis

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.

If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).

0	Lever
2	Latching mechanism

- 5. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 6. Set the controller module aside in a safe place, and repeat these steps for the other controller module in the chassis.

Step 2: Move drives to the new chassis

You need to move the drives from each bay opening in the old chassis to the same bay opening in the new chassis.

- 1. Gently remove the bezel from the front of the system.
- 2. Remove the drives:
 - a. Press the release button at the top of the carrier face below the LEDs.
 - b. Pull the cam handle to its fully open position to unseat the drive from the midplane, and then gently slide the drive out of the chassis.

The drive should disengage from the chassis, allowing it to slide free of the chassis.

When removing a drive, always use two hands to support its weight.

Drives are fragile. Handle them as little as possible to prevent damage to them.

- 3. Align the drive from the old chassis with the same bay opening in the new chassis.
- 4. Gently push the drive into the chassis as far as it will go.

The cam handle engages and begins to rotate upward.

5. Firmly push the drive the rest of the way into the chassis, and then lock the cam handle by pushing it up

and against the drive holder.

Be sure to close the cam handle slowly so that it aligns correctly with the front of the drive carrier. It clicks when it is secure.

6. Repeat the process for the remaining drives in the system.

Step 3: Replace a chassis from within the equipment rack or system cabinet

You must remove the existing chassis from the equipment rack or system cabinet before you can install the replacement chassis.

- 1. Remove the screws from the chassis mount points.
- 2. With two people, slide the old chassis off the rack rails in a system cabinet or equipment rack, and then set it aside.
- 3. If you are not already grounded, properly ground yourself.
- 4. Using two people, install the replacement chassis into the equipment rack or system cabinet by guiding the chassis onto the rack rails in a system cabinet or equipment rack.
- 5. Slide the chassis all the way into the equipment rack or system cabinet.
- 6. Secure the front of the chassis to the equipment rack or system cabinet, using the screws you removed from the old chassis.
- 7. If you have not already done so, install the bezel.

Step 4: Install the controller modules

After you install the controller modules into the new chassis, you need to boot the system.

For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis.

1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

- 2. Recable the console to the controller module, and then reconnect the management port.
- 3. Insert the controller module into the chassis:
 - a. Ensure the latching mechanism arms are locked in the fully extended position.
 - b. Using both hands, align and gently slide the controller module into the latching mechanism arms until it stops.
 - c. Place your index fingers through the finger holes from the inside of the latching mechanism.
 - d. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
 - e. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

a. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect

the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

4. Repeat the preceding steps to install the second controller into the new chassis.

Complete the restoration and replacement process - ASA A250

You must verify the HA state of the chassis, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Verify and set the HA state of the chassis

You must verify the HA state of the chassis, and, if necessary, update the state to match your system configuration.

1. In Maintenance mode, from either controller module, display the HA state of the local controller module and chassis: ha-config show

The HA state should be the same for all components.

- 2. If the displayed system state for the chassis does not match your system configuration:
 - a. Set the HA state for the chassis: ha-config modify chassis HA-state

The value for HA-state can be one of the following:

- ha
- mcc
- mccip
- non-ha
- b. Confirm that the setting has changed: ha-config show
- 3. If you have not already done so, recable the rest of your system.
- 4. Reinstall the bezel on the front of the system.

Step 2: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Controller

Overview of controller module replacement- ASA A250

You must review the prerequisites for the replacement procedure and select the correct one for your version of the ONTAP operating system.

- All drive shelves must be working properly.
- If your system is in a MetroCluster configuration, you must review the section Choosing the correct

recovery procedure to determine whether you should use this procedure.

- You must replace the failed component with a replacement FRU component you received from your provider.
- You must be replacing a controller module with a controller module of the same model type. You cannot upgrade your system by just replacing the controller module.
- You cannot change any drives or drive shelves as part of this procedure.
- In this procedure, the boot device is moved from the impaired controller to the *replacement* controller so that the *replacement* controller will boot up in the same version of ONTAP as the old controller module.
- It is important that you apply the commands in these steps on the correct systems:
 - The *impaired* controller is the controller that is being replaced.
 - The replacement controller is the new controller that is replacing the impaired controller.
 - The *healthy* controller is the surviving controller.
- You must always capture the controller's console output to a text file.

This provides you a record of the procedure so that you can troubleshoot any issues that you might encounter during the replacement process.

Shut down the impaired controller module - ASA A250

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
\verb|system| node autosupport invoke -node * -type all -message MAINT=< \# of hours> h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

- b. Enter y when you see the prompt Do you want to disable auto-giveback?
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

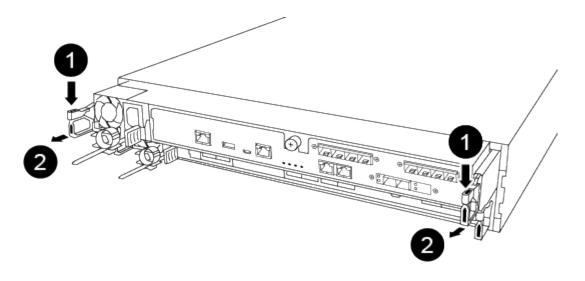
Replace controller - ASA A250

To replace the controller module hardware, you must remove the impaired controller, move FRU components to the replacement controller module, install the replacement controller module in the chassis, and then boot the system to Maintenance mode.

Step 1: Remove the controller module

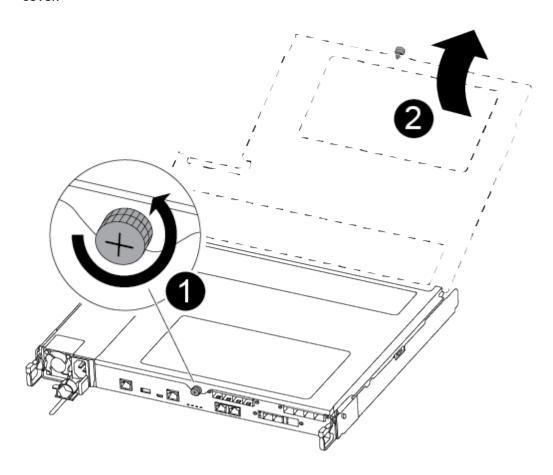
You must remove the controller module from the chassis when you replace a component inside the controller module.

Make sure that you label the cables so that you know where they came from.

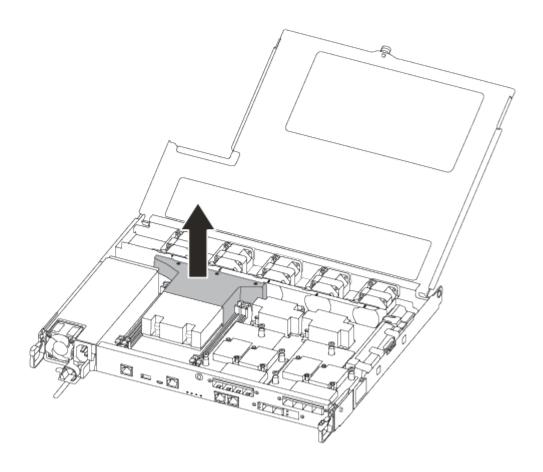

Use the following video or the tabulated steps to replace a controller module:

Animation - Replace a controller module

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.



If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).

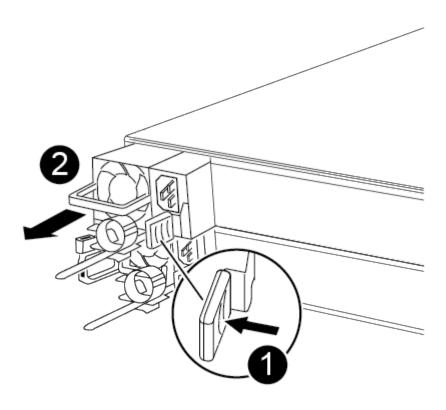

0	Lever
2	Latching mechanism

- 5. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 6. Turn the thumbscrew on the front of the controller module anti-clockwise and open the controller module cover.

0	Thumbscrew
2	Controller module cover.

7. Lift out the air duct cover.

Step 2: Move the power supply


You must move the power supply from the impaired controller module to the replacement controller module when you replace a controller module.

- 1. Disconnect the power supply.
- 2. Open the power cable retainer, and then unplug the power cable from the power supply.
- 3. Unplug the power cable from the power source.
- 4. Rotate the cam handle such that it can be used to pull power supply out of the controller module while pressing the locking tab.

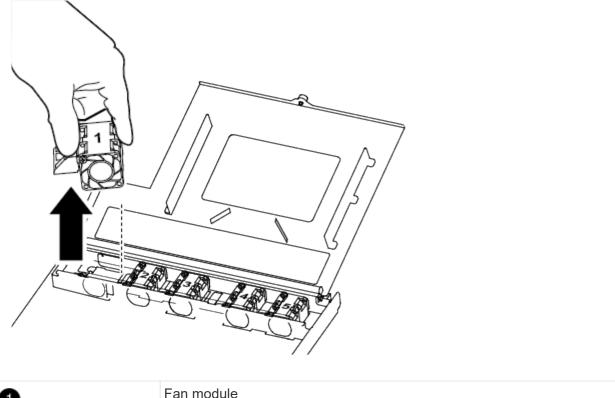
Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

The power supply is short. Always use two hands to support it when removing it from the controller module so that it does not suddenly swing free from the controller module and injure you.

0	Blue power supply locking tab
2	Power supply

- 5. Move the power supply to the new controller module, and then install it.
- 6. Using both hands, support and align the edges of the power supply with the opening in the controller module, and then gently push the power supply into the controller module until the locking tab clicks into place.

The power supplies will only properly engage with the internal connector and lock in place one way.



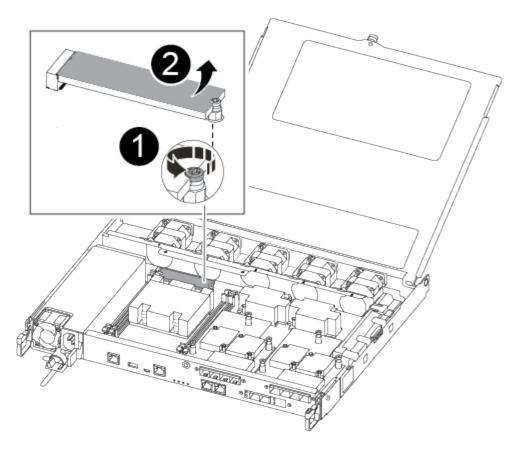
To avoid damaging the internal connector, do not use excessive force when sliding the power supply into the system.

Step 3: Move the fans

You must move the fans from the impaired controller module to the replacement module when replacing a failed controller module.

1. Remove the fan module by pinching the side of the fan module, and then lifting the fan module straight out of the controller module.

- 1 Fan module
- 2. Move the fan module to the replacement controller module, and align the edges of the fan module with the opening in the controller module, and then slide the fan module in.
- 3. Repeat these steps for the remaining fan modules.


Step 4: Move the boot media

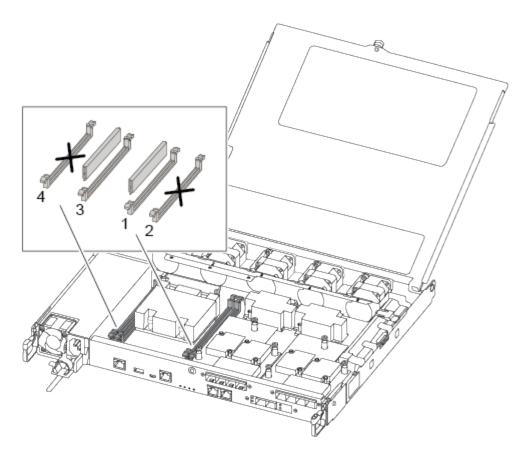
You must move the boot media device from the impaired controller module to the replacement controller module.

You need a #1 magnetic Phillips head screwdriver to remove the screw that holds the boot media in place. Due to the space constraints within the controller module, you should also have a magnet to transfer the screw on to so that you do not lose it.

1. Locate and move the boot media from the impaired controller module to the replacement controller module.

The boot media is located under the air duct cover you removed earlier in this procedure.

1	Remove the screw securing the boot media to the motherboard in the impaired controller module.
2	Lift the boot media out of the impaired controller module.


- 2. Using the #1 magnetic screwdriver, remove the screw from the boot media, and set it aside safely on the magnet.
- 3. Gently lift the boot media directly out of the socket and align it into place in the replacement controller module.
- 4. Using the #1 magnetic screwdriver, insert and tighten the screw on the boot media.

Do not apply force when tightening the screw on the boot media; you might crack it.

Step 5: Move the DIMMs

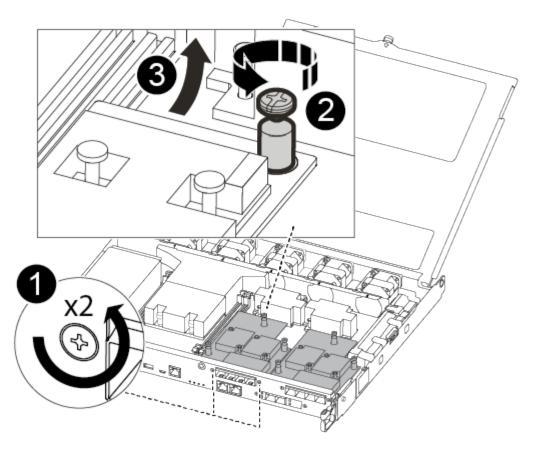
To move the DIMMs, locate and move them from the impaired controller into the replacement controller and follow the specific sequence of steps.

(i) Install each DIMM into the same slot it occupied in the impaired controller module.

1. Slowly push apart the DIMM ejector tabs on either side of the DIMM, and slide the DIMM out of the slot.

Hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

- 2. Locate the corresponding DIMM slot on the replacement controller module.
- 3. Make sure that the DIMM ejector tabs on the DIMM socket are in the open position, and then insert the DIMM squarely into the socket.


The DIMMs fit tightly in the socket. If not, reinsert the DIMM to realign it with the socket.

- 4. Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the socket.
- 5. Repeat these steps for the remaining DIMM.

Step 6: Move a mezzanine card

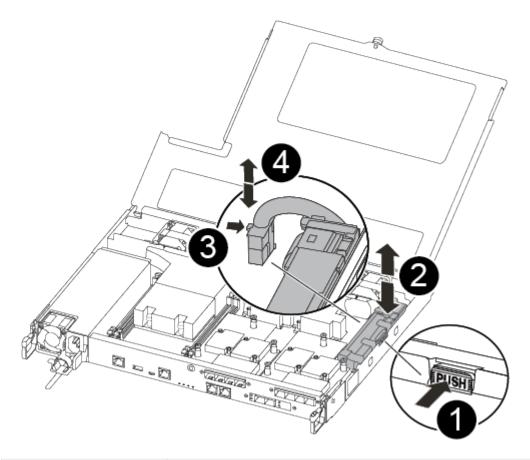
To move a mezzanine card, you must remove the cabling and any QSFPs and SFPs from the ports, move the mezzanine card to the replacement controller, reinstall any QSFPs and SFPs onto the ports, and cable the ports.

1. Locate and move the mezzanine cards from your impaired controller module.

0	Remove screws on the face of the controller module.
2	Loosen the screw in the controller module.
3	Move the mezzanine card.

2. Unplug any cabling associated with the mezzanine card.

Make sure that you label the cables so that you know where they came from.


- a. Remove any SFP or QSFP modules that might be in the mezzanine card and set it aside.
- b. Using the #1 magnetic screwdriver, remove the screws from the face of the impaired controller module and from the mezzanine card, and set them aside safely on the magnet.
- c. Gently lift the mezzanine card out of the socket and move it to the same position in the replacement controller.
- d. Gently align the mezzanine card into place in the replacement controller.
- e. Using the #1 magnetic screwdriver, insert and tighten the screws on the face of the replacement controller module and on the mezzanine card.
 - Do not apply force when tightening the screw on the mezzanine card; you might crack it.
- 3. Repeat these steps if there is another mezzanine card in the impaired controller module.

4. Insert the SFP or QSFP modules that were removed onto the mezzanine card.

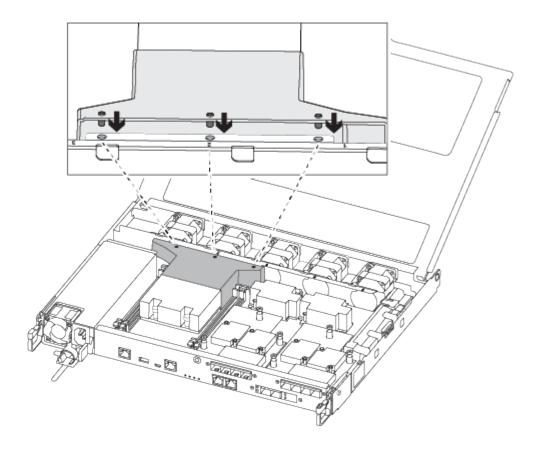
Step 7: Move the NV battery

When replacing the controller module, you must move the NV battery from the impaired controller module to the replacement controller module.

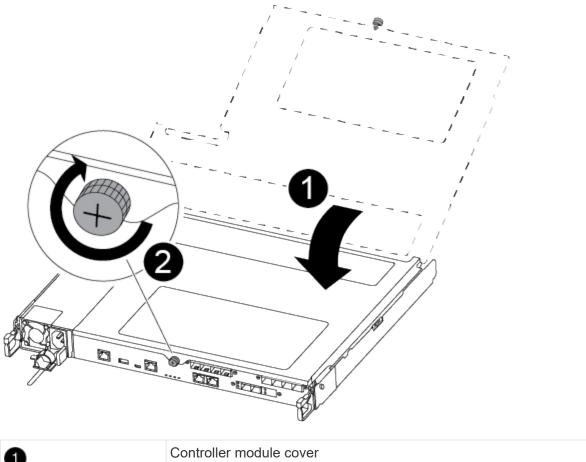
1. Locate and move the NVMEM battery from your impaired controller module to the replacement controller module.

0	Squeeze the clip on the face of the battery plug.
2	Unplug the battery cable from the socket.
3	Grasp the battery and press the blue locking tab marked PUSH.
4	Lift the battery out of the holder and controller module.

- 2. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket.
- 3. Grasp the battery and press the blue locking tab marked PUSH, and then lift the battery out of the holder and controller module.


- 4. Locate the corresponding NV battery holder on the replacement controller module and align the NV battery to the battery holder.
- 5. Insert the NV battery plug into the socket.
- 6. Slide the battery pack down along the sheet metal side wall until the support tabs on the side wall hook into the slots on the battery pack, and the battery pack latch engages and clicks into the opening on the side wall
- 7. Press firmly down on the battery pack to make sure that it is locked into place.

Step 8: Install the controller module


After all of the components have been moved from the impaired controller module to the replacement controller module, you must install the replacement controller module into the chassis, and then boot it to Maintenance mode.

You can use the following illustrations or the written steps to install the replacement controller module in the chassis.

1. If you have not already done so, install the air duct.

2. Close the controller module cover and tighten the thumbscrew.

1	Controller module cover
2	Thumbscrew

3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

4. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 5. Insert the controller module into the chassis:
 - a. Ensure the latching mechanism arms are locked in the fully extended position.
 - b. Using both hands, align and gently slide the controller module into the latching mechanism arms until it stops.
 - c. Place your index fingers through the finger holes from the inside of the latching mechanism.
 - d. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
 - e. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching

mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

f. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

Restore and verify the system configuration - ASA A250

After completing the hardware replacement and booting to Maintenance mode, you verify the low-level system configuration of the replacement controller and reconfigure system settings as necessary.

Step 1: Set and verify system time after replacing the controller

You should check the time and date on the replacement controller module against the healthy controller module in an HA pair, or against a reliable time server in a stand-alone configuration. If the time and date do not match, you must reset them on the replacement controller module to prevent possible outages on clients due to time differences.

About this task

It is important that you apply the commands in the steps on the correct systems:

- The *replacement* node is the new node that replaced the impaired node as part of this procedure.
- The *healthy* node is the HA partner of the *replacement* node.

Steps

- 1. If the replacement node is not at the LOADER prompt, halt the system to the LOADER prompt.
- 2. On the healthy node, check the system time: cluster date show

The date and time are based on the configured timezone.

3. At the LOADER prompt, check the date and time on the replacement node: show date

The date and time are given in GMT.

- If necessary, set the date in GMT on the replacement node: set date mm/dd/yyyy
- 5. If necessary, set the time in GMT on the replacement node: set time hh:mm:ss
- 6. At the LOADER prompt, confirm the date and time on the replacement node: show date

The date and time are given in GMT.

Step 2: Verify and set the HA state of the controller

You must verify the HA state of the controller module and, if necessary, update the state to match your system configuration.

 In Maintenance mode from the new controller module, verify that all components display the same HA state: ha-config show

The HA state should be the same for all components.

2. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state

The value for HA-state can be one of the following:

- ∘ ha
- mcc
- mccip
- ∘ non-ha
- 3. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state
- 4. Confirm that the setting has changed: ha-config show

Recable the system and reassign disks - ASA A250

Continue the replacement procedure by recabling the storage and confirming disk reassignment.

Step 1: Recable the system

Verify the controller module's storage and network connections.

Steps

- 1. Verify that the cabling is correct by using Active IQ Config Advisor.
 - a. Download and install Config Advisor.
 - b. Enter the information for the target system, and then click Collect Data.
 - c. Click the Cabling tab, and then examine the output. Make sure that all disk shelves are displayed and all disks appear in the output, correcting any cabling issues you find.
 - d. Check other cabling by clicking the appropriate tab, and then examining the output from Config Advisor.

Step 2: Reassign disks

If the storage system is in an HA pair, the system ID of the new controller module is automatically assigned to the disks when the giveback occurs at the end of the procedure. You must confirm the system ID change when you boot the *replacement* controller and then verify that the change was implemented.

This procedure applies only to systems running ONTAP in an HA pair.

- If the replacement controller is in Maintenance mode (showing the *> prompt, exit Maintenance mode and go to the LOADER prompt: halt
- 2. From the LOADER prompt on the *replacement* controller, boot the controller, entering y if you are prompted to override the system ID due to a system ID mismatch:
- 3. Wait until the Waiting for giveback... message is displayed on the replacement controller console and

then, from the healthy controller, verify that the new partner system ID has been automatically assigned: storage failover show

In the command output, you should see a message that the system ID has changed on the impaired controller, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706.

node1> `storage	failover show`	_ ,	
Node	Partner	Takeover Possible	State Description
node1 partner (Old:	node2	false	System ID changed on
1 (151759755, New:
151759706), In takeover			
node2 (HA mailboxes)	node1	-	Waiting for giveback

- 4. From the healthy controller, verify that any coredumps are saved:
 - a. Change to the advanced privilege level: set -privilege advanced

You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>).

- b. Save any coredumps: system node run -node local-node-name partner savecore
- c. Wait for the `savecore` command to complete before issuing the giveback.

You can enter the following command to monitor the progress of the savecore command: system node run -node *local-node-name* partner savecore -s

- d. Return to the admin privilege level: set -privilege admin
- 5. If your storage system has Storage or Volume Encryption configured, you must restore Storage or Volume Encryption functionality by using one of the following procedures, depending on whether you are using onboard or external key management:
 - · Restore onboard key management encryption keys
 - Restore external key management encryption keys
- 6. Give back the controller:
 - a. From the healthy controller, give back the replaced controller's storage: storage failover giveback -ofnode replacement_node_name

The *replacement* controller takes back its storage and completes booting.

If you are prompted to override the system ID due to a system ID mismatch, you should enter y.

If the giveback is vetoed, you can consider overriding the vetoes.

Find the High-Availability Configuration content for your version of ONTAP 9

b. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show

The output from the storage failover show command should not include the System ID changed on partner message.

7. Verify that the disks were assigned correctly: storage disk show -ownership

The disks belonging to the *replacement* controller should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 1873775277:

8. If the system is in a MetroCluster configuration, monitor the status of the controller: metrocluster node show

The MetroCluster configuration takes a few minutes after the replacement to return to a normal state, at which time each controller will show a configured state, with DR Mirroring enabled and a mode of normal. The metrocluster node show -fields node-systemid command output displays the old system ID until the MetroCluster configuration returns to a normal state.

9. If the controller is in a MetroCluster configuration, depending on the MetroCluster state, verify that the DR home ID field shows the original owner of the disk if the original owner is a controller on the disaster site.

This is required if both of the following are true:

- $\,^\circ\,$ The MetroCluster configuration is in a switchover state.
- The *replacement* controller is the current owner of the disks on the disaster site.

Disk ownership changes during HA takeover and MetroCluster switchover in a four-node MetroCluster configuration

10. If your system is in a MetroCluster configuration, verify that each controller is configured: metrocluster node show - fields configuration-state

- 11. Verify that the expected volumes are present for each controller: vol show -node node-name
- 12. If you disabled automatic takeover on reboot, enable it from the healthy controller: storage failover modify -node replacement-node-name -onreboot true

Complete system restoration - ASA A250

To restore your system to full operation, you must restore the NetApp Storage Encryption configuration (if necessary), and install licenses for the new controller, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Install licenses for the replacement controller in ONTAP

You must install new licenses for the *replacement* node if the impaired node was using ONTAP features that require a standard (node-locked) license. For features with standard licenses, each node in the cluster should have its own key for the feature.

About this task

Until you install license keys, features requiring standard licenses continue to be available to the *replacement* node. However, if the impaired node was the only node in the cluster with a license for the feature, no configuration changes to the feature are allowed.

Also, using unlicensed features on the node might put you out of compliance with your license agreement, so you should install the replacement license key or keys on the *replacement* node as soon as possible.

Before you begin

The licenses keys must be in the 28-character format.

You have a 90-day grace period in which to install the license keys. After the grace period, all old licenses are invalidated. After a valid license key is installed, you have 24 hours to install all of the keys before the grace period ends.

If your system was initially running ONTAP 9.10.1 or later, use the procedure documented in Post Motherboard Replacement Process to update Licensing on a AFF/FAS system. If you are unsure of the initial ONTAP release for your system, see NetApp Hardware Universe for more information.

Steps

1. If you need new license keys, obtain replacement license keys on the NetApp Support Site in the My Support section under Software licenses.

The new license keys that you require are automatically generated and sent to the email address on file. If you fail to receive the email with the license keys within 30 days, you should contact technical support.

- 2. Install each license key: system license add -license-code license-key, license-key...
- 3. Remove the old licenses, if desired:
 - a. Check for unused licenses: license clean-up -unused -simulate
 - b. If the list looks correct, remove the unused licenses: license clean-up -unused

Step 2: Verify LIFs and registering the serial number

Before returning the *replacement* node to service, you should verify that the LIFs are on their home ports, and register the serial number of the *replacement* node if AutoSupport is enabled, and reset automatic giveback.

Steps

1. Verify that the logical interfaces are reporting to their home server and ports: network interface show -is-home false

If any LIFs are listed as false, revert them to their home ports: network interface revert -vserver
* -lif *

- 2. Register the system serial number with NetApp Support.
 - If AutoSupport is enabled, send an AutoSupport message to register the serial number.
 - If AutoSupport is not enabled, call NetApp Support to register the serial number.
- Check the health of your cluster. See the How to perform a cluster health check with a script in ONTAP KB article for more information.
- 4. If an AutoSupport maintenance window was triggered, end it by using the system node autosupport invoke -node * -type all -message MAINT=END command.
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 3: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace a DIMM - ASA A250

You must replace a DIMM in the controller when your storage system encounters errors such as, excessive CECC (Correctable Error Correction Codes) errors that are based on Health Monitor alerts or uncorrectable ECC errors, typically caused by a single DIMM failure preventing the storage system from booting ONTAP.

About this task

All other components in the system must be functioning properly; if not, you must contact technical support.

You must replace the failed component with a replacement FRU component you received from your provider.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

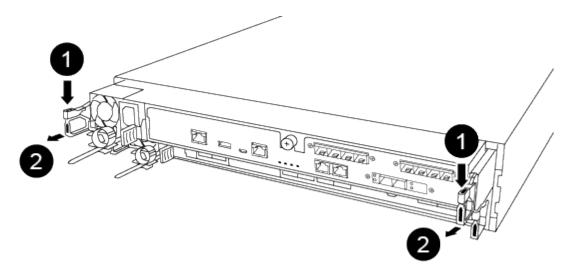
```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

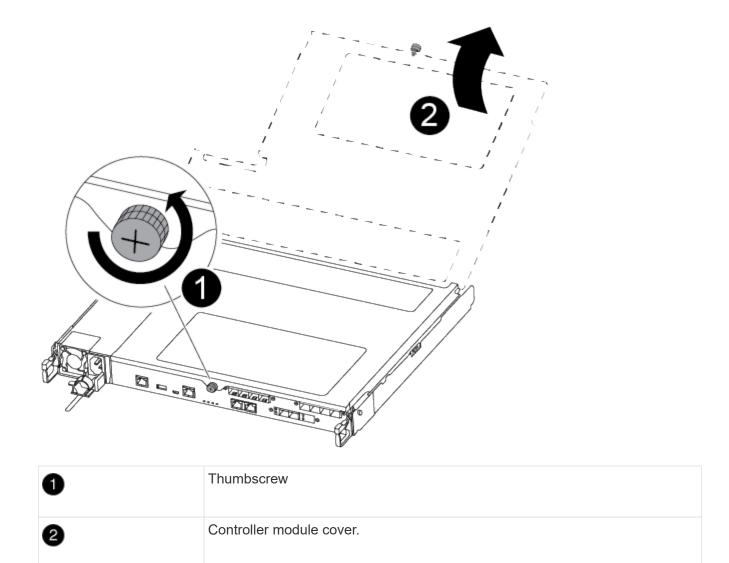
- b. Enter y when you see the prompt Do you want to disable auto-giveback?
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond \underline{y} when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

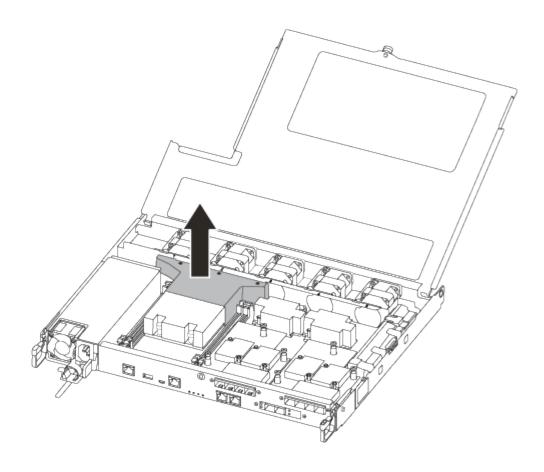

Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace a component inside the controller module.

Make sure that you label the cables so that you know where they came from.


- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.

If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).

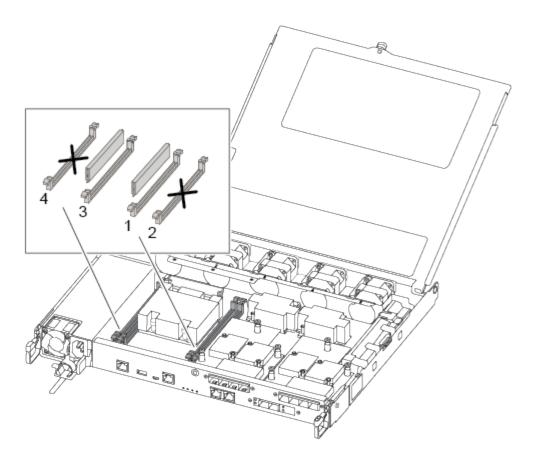


0	Lever
2	Latching mechanism

- 5. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 6. Turn the thumbscrew on the front of the controller module anti-clockwise and open the controller module cover.

7. Lift out the air duct cover.

Step 3: Replace a DIMM


To replace a DIMM, you must locate it in the controller module using the DIMM map label on top of the air duct and then replace it following the specific sequence of steps.

Use the following video or the tabulated steps to replace a DIMM:

Animation - Replace a DIMM

1. Replace the impaired DIMM on your controller module.

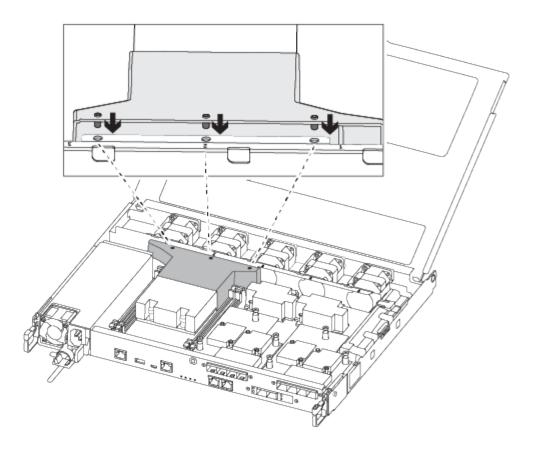
The DIMMs are in slot 3 or 1 on the motherboard. Slot 2 and 4 are left empty. Do not attempt to install DIMMs into these slots.

- 2. Note the orientation of the DIMM in the socket so that you can insert the replacement DIMM in the proper orientation.
- 3. Slowly push apart the DIMM ejector tabs on either side of the DIMM, and slide the DIMM out of the slot.
- 4. Leave DIMM ejector tabs on the connector in the open position.
- 5. Remove the replacement DIMM from the antistatic shipping bag, hold the DIMM by the corners, and align it to the slot.

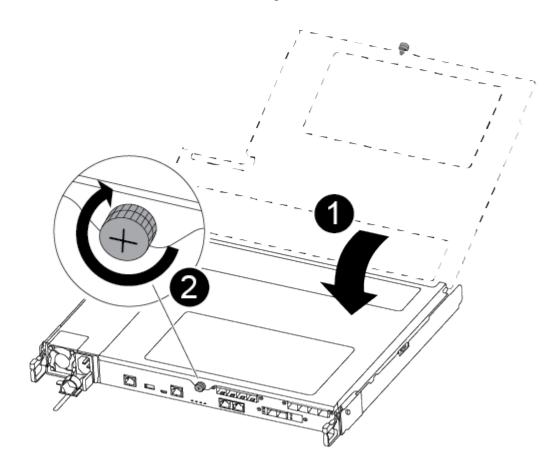
Hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

6. Insert the replacement DIMM squarely into the slot.

The DIMMs fit tightly in the socket. If not, reinsert the DIMM to realign it with the socket.


7. Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the socket.

Step 4: Install the controller module


After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it.

You can use the following illustrations or the written steps to install the replacement controller module in the chassis.

1. If you have not already done so, install the air duct.

2. Close the controller module cover and tighten the thumbscrew.

1	Controller module cover
2	Thumbscrew

- 3. Insert the controller module into the chassis:
 - a. Ensure the latching mechanism arms are locked in the fully extended position.
 - b. Using both hands, align and gently slide the controller module into the latching mechanism arms until it stops.
 - c. Place your index fingers through the finger holes from the inside of the latching mechanism.
 - d. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
 - e. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

4. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

- 5. Recable the system, as needed.
- 6. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired_node_name
- 7. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace SSD Drive or HDD Drive - ASA A250

You can replace a failed drive nondisruptively while I/O is in progress. The procedure for replacing an SSD is meant for non-spinning drives and the procedure for replacing an HDD is meant for spinning drives.

When a drive fails, the platform logs a warning message to the system console indicating which drive has failed. In addition, both the fault LED on the operator display panel and the fault LED on the failed drive are illuminated.

Before you begin

- Follow best practice and install the current version of the Disk Qualification Package (DQP) before replacing a drive.
- Identify the failed drive by running the storage disk show -broken command from the system

console.

The failed drive appears in the list of failed drives. If it does not, you should wait, and then run the command again.

Depending on the type and capacity, it can take up to several hours for the drive to appear in the list of failed drives.

• Determine whether SED authentication is enabled.

How you replace the drive depends on how the drive is being used. If SED authentication is enabled, you must use the SED replacement instructions in the ONTAP 9 NetApp Encryption Power Guide. These Instructions describe additional steps you must perform before and after replacing an SED.

- Make sure the replacement drive is supported by your platform. See the NetApp Hardware Universe.
- Make sure all other components in the system are functioning properly; if not, you must contact technical support.

About this task

- Drive firmware is automatically updated (nondisruptively) on new drives that have non current firmware versions.
- When replacing a drive, you must wait one minute between the removal of the failed drive and the insertion of the replacement drive to allow the storage system to recognize the existence of the new drive.

Option 1: Replace SSD

Steps

- 1. If you want to manually assign drive ownership for the replacement drive, you need to disable automatic drive assignment, if it is enabled.
 - a. Verify whether automatic drive assignment is enabled: storage disk option show

You can enter the command on either controller module.

If automatic drive assignment is enabled, the output shows on in the "Auto Assign" column (for each controller module).

b. If automatic drive assignment is enabled, disable it: storage disk option modify -node node name -autoassign off

You must disable automatic drive assignment on both controller modules.

- 2. Properly ground yourself.
- 3. Physically identify the failed drive.

When a drive fails, the system logs a warning message to the system console indicating which drive failed. Additionally, the attention (amber) LED on the drive shelf operator display panel and the failed drive illuminate.

The activity (green) LED on a failed drive can be illuminated (solid), which indicates that the drive has power, but should not be blinking, which indicates I/O activity. A failed drive has no I/O activity.

- 4. Remove the failed drive:
 - a. Press the release button on the drive face to open the cam handle.
 - b. Slide the drive out of the shelf using the cam handle and supporting the drive with your other hand.
- 5. Wait a minimum of 70 seconds before inserting the replacement drive.

This allows the system to recognize that a drive was removed.

- 6. Insert the replacement drive:
 - a. With the cam handle in the open position, use both hands to insert the replacement drive.
 - b. Push until the drive stops.
 - c. Close the cam handle so that the drive is fully seated into the midplane and the handle clicks into place.

Be sure to close the cam handle slowly so that it aligns correctly with the face of the drive.

7. Verify that the drive's activity (green) LED is illuminated.

When the drive's activity LED is solid, it means that the drive has power. When the drive's activity LED is blinking, it means that the drive has power and I/O is in progress. If the drive firmware is automatically updating, the LED blinks.

- 8. If you are replacing another drive, repeat steps 3 through 7.
- 9. If you disabled automatic drive assignment in Step 1, then, manually assign drive ownership and then reenable automatic drive assignment if needed.
 - a. Display all unowned drives:

```
storage disk show -container-type unassigned
```

You can enter the command on either controller module.

b. Assign each drive:

```
storage disk assign -disk disk_name -owner node_name
```

You can enter the command on either controller module.

You can use the wildcard character to assign more than one drive at once.

c. Reenable automatic drive assignment if needed:

```
storage disk option modify -node node_name -autoassign on
```

You must reenable automatic drive assignment on both controller modules.

10. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Contact NetApp Support if you need the RMA number or additional help with the replacement procedure.

Option 2: Replace HDD

1. If you want to manually assign drive ownership for the replacement drive, you need to disable automatic drive assignment replacement drive, if it is enabled

You manually assign drive ownership and then reenable automatic drive assignment later in this procedure.

a. Verify whether automatic drive assignment is enabled: storage disk option show

You can enter the command on either controller module.

If automatic drive assignment is enabled, the output shows on in the "Auto Assign" column (for each controller module).

b. If automatic drive assignment is enabled, disable it: storage disk option modify -node node name -autoassign off

You must disable automatic drive assignment on both controller modules.

- 2. Properly ground yourself.
- 3. Gently remove the bezel from the front of the platform.
- 4. Identify the failed disk drive from the system console warning message and the illuminated fault LED on the disk drive

5. Press the release button on the disk drive face.

Depending on the storage system, the disk drives have the release button located at the top or on the left of the disk drive face.

For example, the following illustration shows a disk drive with the release button located on the top of the disk drive face:

The cam handle on the disk drive springs open partially and the disk drive releases from the midplane.

- 6. Pull the cam handle to its fully open position to unseat the disk drive from the midplane.
- 7. Slide out the disk drive slightly and allow the disk to safely spin down, which can take less than one minute, and then, using both hands, remove the disk drive from the disk shelf.
- 8. With the cam handle in the open position, insert the replacement disk drive into the drive bay, firmly pushing until the disk drive stops.

Wait a minimum of 10 seconds before inserting a new disk drive. This allows the system to recognize that a disk drive was removed.

If your platform drive bays are not fully loaded with drives, it is important to place the replacement drive into the same drive bay from which you removed the failed drive.

Use two hands when inserting the disk drive, but do not place hands on the disk drive boards that are exposed on the underside of the disk carrier.

9. Close the cam handle so that the disk drive is fully seated into the midplane and the handle clicks into place.

Be sure to close the cam handle slowly so that it aligns correctly with the face of the disk drive..

- 10. If you are replacing another disk drive, repeat Steps 4 through 9.
- 11. Reinstall the bezel.
- 12. If you disabled automatice drive assignment in Step 1, then, manually assign drive ownership and then reenable automatic drive assignment if needed.
 - a. Display all unowned drives: storage disk show -container-type unassigned

You can enter the command on either controller module.

b. Assign each drive: storage disk assign -disk disk_name -owner_owner_name

You can enter the command on either controller module.

You can use the wildcard character to assign more than one drive at once.

c. Reenable automatic drive assignment if needed: storage disk option modify -node node_name -autoassign on

You must reenable automatic drive assignment on both controller modules.

13. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure.

Replace a fan - ASA A250

To replace a fan, remove the failed fan module and replace it with a new fan module.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

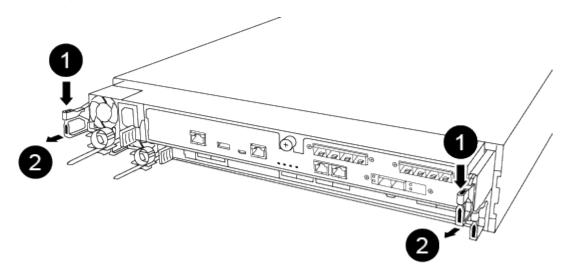
```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

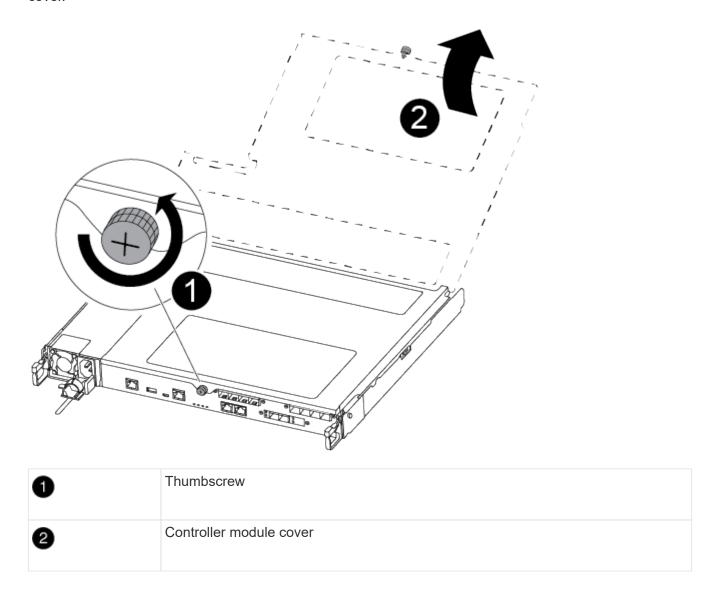
If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module


You must remove the controller module from the chassis when you replace a component inside the controller module.

Make sure that you label the cables so that you know where they came from.

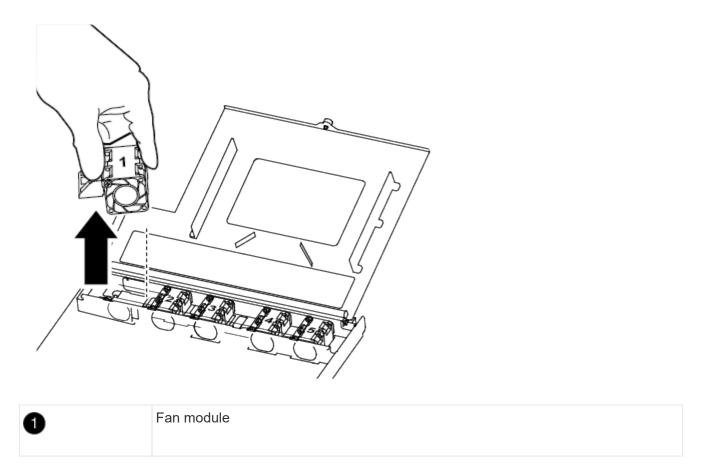
- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.



If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).

0	Lever
2	Latching mechanism

- 5. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 6. Turn the thumbscrew on the front of the controller module anti-clockwise and open the controller module cover.

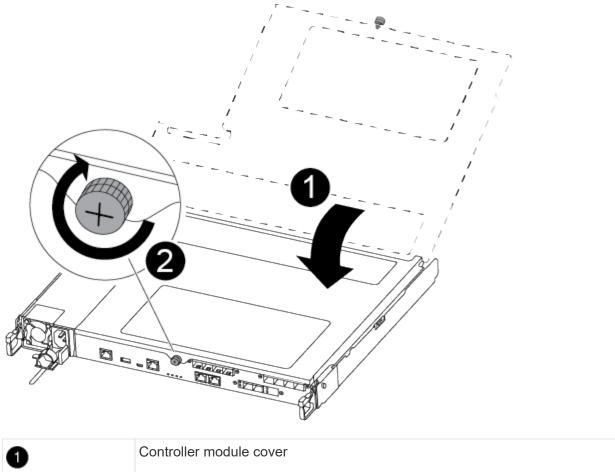

Step 3: Replace a fan

To replace a fan, remove the failed fan module and replace it with a new fan module.

Use the following video or the tabulated steps to replace a fan:

Animation - Replace a fan

- 1. Identify the fan module that you must replace by checking the console error messages or by locating the lit LED for the fan module on the motherboard.
- 2. Remove the fan module by pinching the side of the fan module, and then lifting the fan module straight out of the controller module.



3. Align the edges of the replacement fan module with the opening in the controller module, and then slide the replacement fan module into the controller module.

Step 4: Reinstall the controller module

After you replace a component within the controller module, you must reinstall the controller module in the system chassis and boot it.

1. Close the controller module cover and tighten the thumbscrew.

0	Controller module cover
2	Thumbscrew

2. Insert the controller module into the chassis:

- a. Ensure the latching mechanism arms are locked in the fully extended position.
- b. Using both hands, align and gently slide the controller module into the latching mechanism arms until it stops.
- c. Place your index fingers through the finger holes from the inside of the latching mechanism.
- d. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
- e. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

f. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

3. Recable the system, as needed.

- 4. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace or install a mezzanine card - ASA A250

To replace a failed mezzanine card, you must remove the cables and any SFP or QSFP modules, replace the card, reinstall the SFP or QSFP modules and recable the cards. To install a new mezzanine card, you must have the appropriate cables and SFP or QSFP modules.

About this task

- You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

- If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.
 - Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.
- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

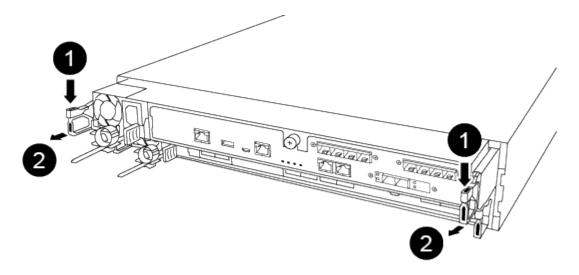
The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

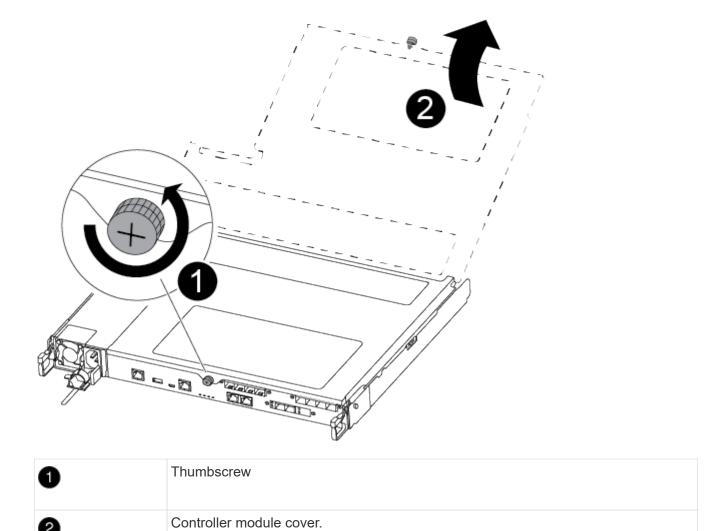
- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.


Step 2: Remove the controller module

Remove the controller module from the chassis when you replace a component inside the controller module.

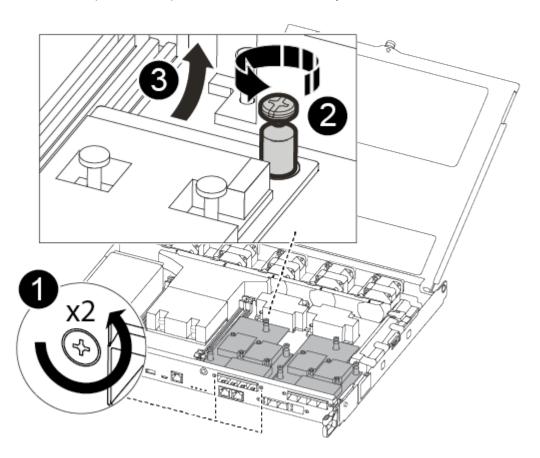
Make sure that you label the cables so that you know where they came from.


- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.

If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).

0	Lever
2	Latching mechanism

- 5. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 6. Turn the thumbscrew on the front of the controller module anti-clockwise and open the controller module cover.


Step 3: Replace or install a mezzanine card

To replace a mezzanine card, you must remove the impaired card and install the replacement card; to install a mezzanine card, you must remove the faceplate and install the new card.

Use the following video or the tabulated steps to replace a mezzanine card:

Animation - Replace a mezzanine card

- 1. To replace a mezzanine card:
- 2. Locate and replace the impaired mezzanine card on your controller module.

0	Remove screws on the face of the controller module.
2	Loosen the screw in the controller module.
3	Remove the mezzanine card.

a. Unplug any cabling associated with the impaired mezzanine card.

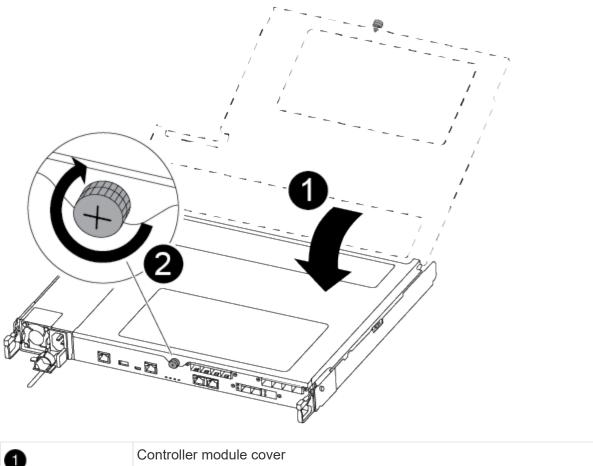
Make sure that you label the cables so that you know where they came from.

- b. Remove any SFP or QSFP modules that might be in the impaired mezzanine card and set it aside.
- c. Using the #1 magnetic screwdriver, remove the screws from the face of the controller module and set them aside safely on the magnet.
- d. Using the #1 magnetic screwdriver, loosen the screw on the impaired mezzanine card.
- e. Using the #1 magnetic screwdriver, gently lift the impaired mezzanine card directly out of the socket and set it aside.
- f. Remove the replacement mezzanine card from the antistatic shipping bag and align it to the inside face of the controller module.
- g. Gently align the replacement mezzanine card into place.

h. Using the #1 magnetic screwdriver, insert and tighten the screws on the face of the controller module and on the mezzanine card.

Do not apply force when tightening the screw on the mezzanine card; you might crack it.

- i. Insert any SFP or QSFP modules that were removed from the impaired mezzanine card to the replacement mezzanine card.
- 3. To install a mezzanine card:
- 4. You install a new mezzanine card if your system does not have one.
 - a. Using the #1 magnetic screwdriver, remove the screws from the face of the controller module and the faceplate covering the mezzanine card slot, and set them aside safely on the magnet.
 - b. Remove the mezzanine card from the antistatic shipping bag and align it to the inside face of the controller module.
 - c. Gently align the mezzanine card into place.
 - d. Using the #1 magnetic screwdriver, insert and tighten the screws on the face of the controller module and on the mezzanine card.



Do not apply force when tightening the screw on the mezzanine card; you might crack it.

Step 4: Reinstall the controller module

After you replace a component within the controller module, you must reinstall the controller module in the system chassis and boot it.

1. Close the controller module cover and tighten the thumbscrew.

0	Controller module cover
2	Thumbscrew

2. Insert the controller module into the chassis:

- a. Ensure the latching mechanism arms are locked in the fully extended position.
- b. Using both hands, align and gently slide the controller module into the latching mechanism arms until it stops.
- c. Place your index fingers through the finger holes from the inside of the latching mechanism.
- d. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
- e. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

f. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

3. Recable the system, as needed.

- 4. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the NVMEM battery - ASA A250

To replace an NVMEM battery in the system, you must remove the controller module from the system, open it, replace the battery, and close and replace the controller module.

All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

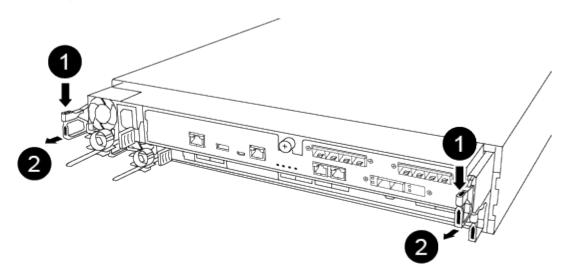
```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

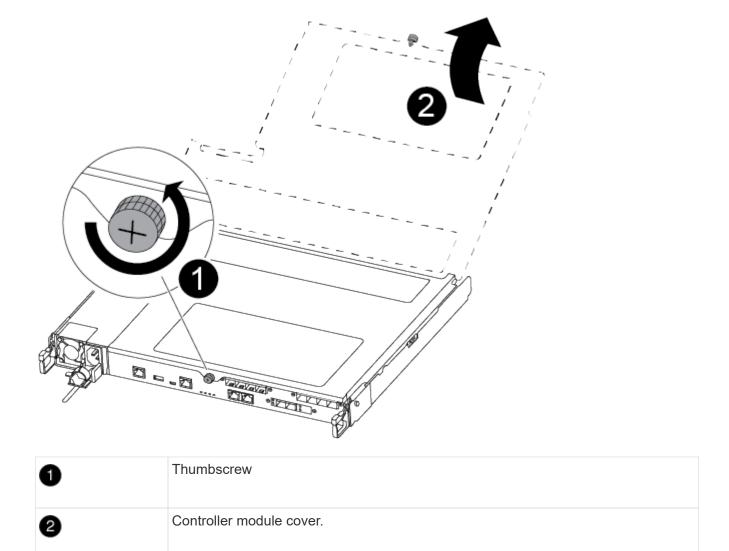
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.


Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace a component inside the controller module.

Make sure that you label the cables so that you know where they came from.

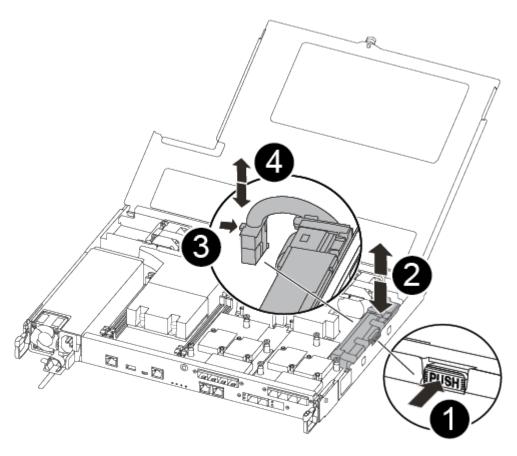
- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.
 - (i)


If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).

0	Lever

- 5. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 6. Turn the thumbscrew on the front of the controller module anti-clockwise and open the controller module cover

Step 3: Replace the NVMEM battery

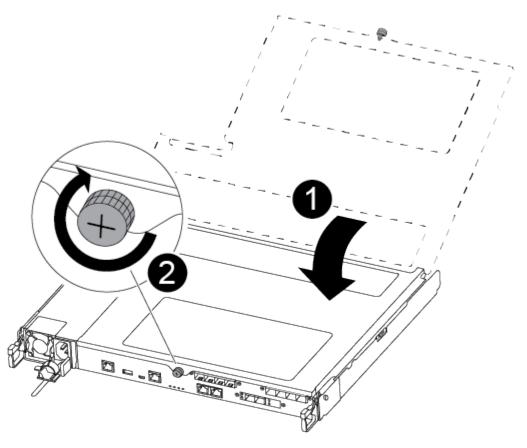

To replace the NVMEM battery, you must remove the failed battery from the controller module and install the replacement battery into the controller module.

Use the following video or the tabulated steps to replace the NVMEM battery:

Animation - Replace the NVMEM battery

1. Locate and replace the impaired NVMEM battery on your controller module.

0	Squeeze the clip on the face of the battery plug.
2	Unplug the battery cable from the socket.
3	Grasp the battery and press the blue locking tab marked PUSH.
4	Lift the battery out of the holder and controller module.


- 2. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket.
- 3. Grasp the battery and press the blue locking tab marked PUSH, and then lift the battery out of the holder and controller module and set it aside.
- 4. Remove the replacement NV battery from the antistatic shipping bag and align it to the battery holder.
- 5. Insert the replacement NV battery plug into the socket.
- 6. Slide the battery pack down along the sheet metal side wall until the support tabs on the side wall hook into the slots on the battery pack, and the battery pack latch engages and clicks into the opening on the side wall.
- 7. Press firmly down on the battery pack to make sure that it is locked into place.

Step 4: Install the controller module

After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it.

You can use the following illustration or the written steps to install the replacement controller module in the chassis.

1. Close the controller module cover and tighten the thumbscrew.

0	Controller module cover
2	Thumbscrew

2. Insert the controller module into the chassis:

- a. Ensure the latching mechanism arms are locked in the fully extended position.
- b. Using both hands, align and gently slide the controller module into the latching mechanism arms until it stops.
- c. Place your index fingers through the finger holes from the inside of the latching mechanism.
- d. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
- e. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

f. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

- 3. Recable the system, as needed.
- 4. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace a power supply - ASA A250

Replacing a power supply (PSU) involves disconnecting the target PSU from the power source, unplugging the power cable, removing the old PSU and installing the replacement PSU, and then reconnecting it to the power source.

- The power supplies are redundant and hot-swappable.
- This procedure is written for replacing one PSU at a time.

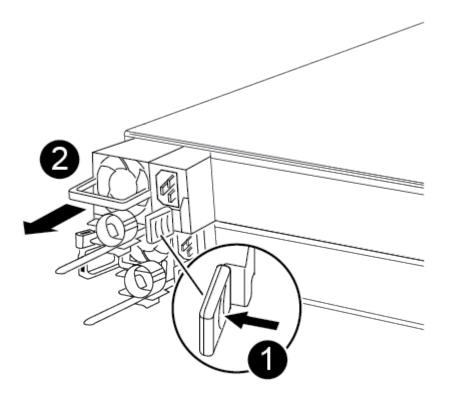
It is a best practice to replace the PSU within two minutes of removing it from the chassis. The system continues to function, but ONTAP sends messages to the console about the degraded PSU until the PSU is replaced.

· Power supplies are auto-ranging.

Do not mix PSUs with different efficiency ratings. Always replace like for like.

Use the appropriate procedure for your type of PSU; AC or DC.

Option 1: Replace an AC PSU


Use the following video or the tabulated steps to replace the PSU:

Animation - Replace the AC PSU

- 1. If you are not already grounded, properly ground yourself.
- 2. Identify the PSU you want to replace, based on console error messages or through the red Fault LED on the PSU.
- 3. Disconnect the PSU:
 - a. Open the power cable retainer, and then unplug the power cable from the PSU.
- 4. Remove the PSU by rotating the handle up, press the locking tab, and then pull the PSU out of the controller module.

The PSU is short. Always use two hands to support it when removing it from the controller module so that it does not suddenly swing free from the controller module and injure you.

0	Blue PSU locking tab
2	Power supply

- 5. Install the replacement PSU in the controller module:
 - a. Using both hands, support and align the edges of the PSU with the opening in the controller module.

b. Gently push the PSU into the controller module until the locking tab clicks into place.

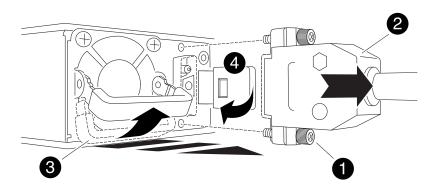
The power supplies will only properly engage with the internal connector and lock in place one way.

To avoid damaging the internal connector, do not use excessive force when sliding the PSU into the system.

- 6. Reconnect the PSU cabling:
 - a. Reconnect the power cable to the PSU.
 - b. Secure the power cable to the PSU using the power cable retainer.

Once power is restored to the PSU, the status LED should be green.

7. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.


Option 2: Replace a DC PSU

To replace a DC PSU, complete the following steps.

- 1. If you are not already grounded, properly ground yourself.
- 2. Identify the PSU you want to replace, based on console error messages or through the red Fault LED on the PSU.
- 3. Disconnect the PSU:
 - a. Unscrew the D-SUB DC power cable connector using the thumb screws on the plug.
 - b. Unplug the power cable from the PSU and set it aside.
- 4. Remove the PSU by rotating the handle up, press the locking tab, and then pull PSU out of the controller module.

The PSU is short. Always use two hands to support it when removing it from the controller module so that it does not suddenly swing free from the controller module and injure you.

0	Thumb screws
2	D-SUB DC power cable connector

3	Power supply handle
4	Blue PSU locking tab

- 5. Install the replacement PSU in the controller module:
 - a. Using both hands, support and align the edges of the PSU with the opening in the controller module.
 - b. Gently push the PSU into the controller module until the locking tab clicks into place.

The power supplies will only properly engage with the internal connector and lock in place one way.

To avoid damaging the internal connector, do not use excessive force when sliding the PSU into the system.

- 6. Reconnect the D-SUB DC power cable:
 - a. Plug the power cable connector into the PSU.
 - b. Secure the power cable to the PSU with the thumbscrews.

Once power is restored to the PSU, the status LED should be green.

7. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the real-time clock battery - ASA A250

You replace the real-time clock (RTC) battery in the controller module so that your system's services and applications that depend on accurate time synchronization continue to function.

- You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a
healthy controller shows false for eligibility and health, you must correct the issue before shutting down the
impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

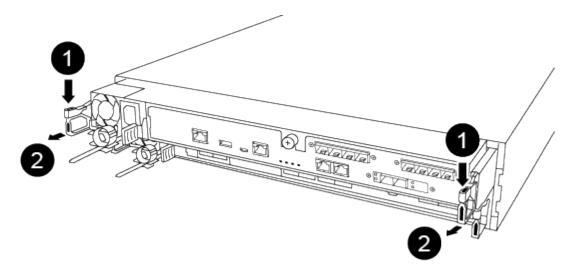
- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

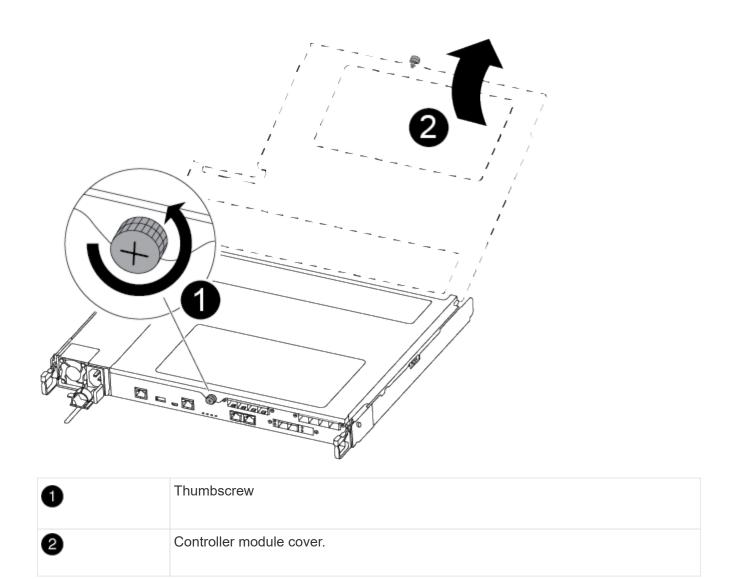
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module

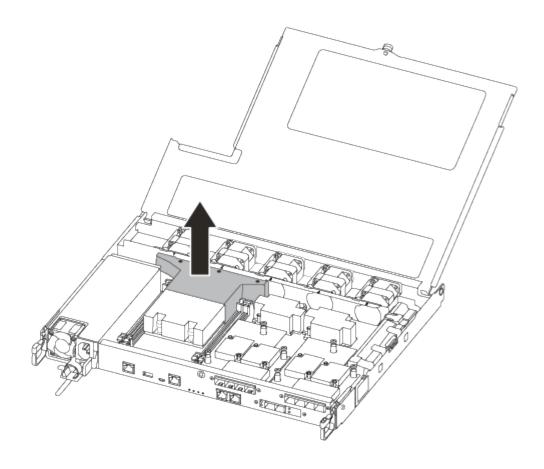

You must remove the controller module from the chassis when you replace a component inside the controller module.

Make sure that you label the cables so that you know where they came from.

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the controller module power supplies from the source.
- 3. Release the power cable retainers, and then unplug the cables from the power supplies.
- 4. Insert your forefinger into the latching mechanism on either side of the controller module, press the lever with your thumb, and gently pull the controller a few inches out of the chassis.



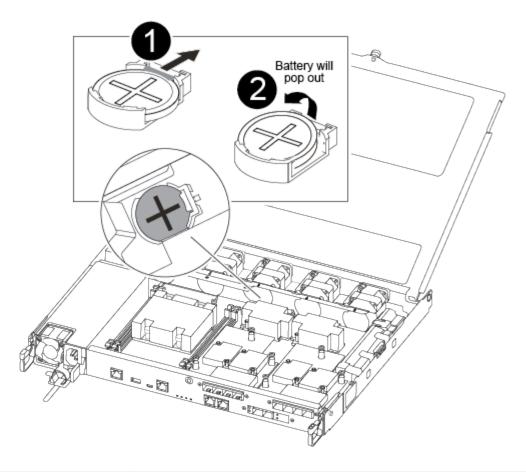
If you have difficulty removing the controller module, place your index fingers through the finger holes from the inside (by crossing your arms).



0	Lever
2	Latching mechanism

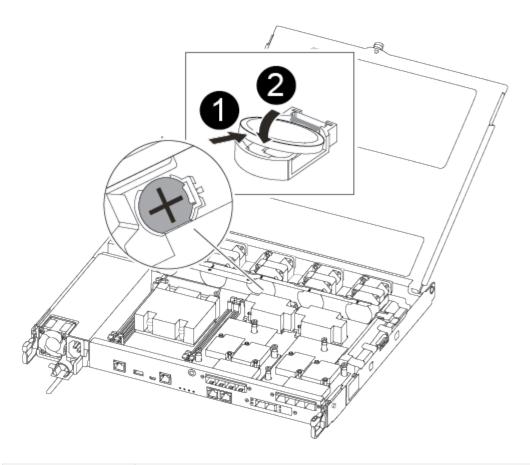
- 5. Using both hands, grasp the controller module sides and gently pull it out of the chassis and set it on a flat, stable surface.
- 6. Turn the thumbscrew on the front of the controller module anti-clockwise and open the controller module cover.

7. Lift out the air duct cover.


Step 3: Replace the RTC battery

To replace the RTC battery, locate it inside the controller and follow the specific sequence of steps.

Use the following video or the tabulated steps to replace the RTC battery:


Animation - Replace the RTC battery

1. Locate the RTC battery between the heatsink and the midplane and remove it exactly as shown in the graphic.

0	Gently pull tab away from the battery housing. Attention: Pulling it away aggressively might displace the tab.
2	Lift the battery up. Note: Make a note of the polarity of the battery.
3	The battery should eject out.

- 2. Remove the replacement battery from the antistatic shipping bag.
- 3. Locate the RTC battery holder between the heatsink and the midplane and insert it exactly as shown in the graphic.

0	With positive polarity face up, slide the battery under the tab of the battery housing.
2	Push the battery gently into place and make sure the tab secures it to the housing. Pushing it in aggressively might cause the battery to eject out again.

4. Visually inspect the battery to make sure that it is completely installed into the holder and that the polarity is correct.

Step 4: Reinstall the controller module and setting time/date after RTC battery replacement

After you replace a component within the controller module, you must reinstall the controller module in the system chassis, reset the time and date on the controller, and then boot it.

- 1. If you have not already done so, close the air duct or controller module cover.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- Insert the controller module into the chassis:
 - a. Ensure the latching mechanism arms are locked in the fully extended position.
 - b. Using both hands, align and gently slide the controller module into the latching mechanism arms until it stops.
 - c. Place your index fingers through the finger holes from the inside of the latching mechanism.
 - d. Press your thumbs down on the orange tabs on top of the latching mechanism and gently push the controller module over the stop.
 - e. Release your thumbs from the top of the latching mechanisms and continue pushing until the latching mechanisms snap into place.

The controller module should be fully inserted and flush with the edges of the chassis.

f. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

- g. Halt the controller at the LOADER prompt.
- 5. Reset the time and date on the controller:
 - a. Check the date and time on the healthy controller with the show date command.
 - b. At the LOADER prompt on the target controller, check the time and date.
 - c. If necessary, modify the date with the set date mm/dd/yyyy command.
 - d. If necessary, set the time, in GMT, using the set time hh:mm:ss command.
 - e. Confirm the date and time on the target controller.
- At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components and let the controller reboot.
- 7. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired_node_name
- 8. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

ASA A400 systems

Install and setup

Start here: Choose your installation and setup experience

For most configurations, you can choose from different content formats.

Quick steps

A printable PDF of step-by-step instructions with live links to additional content.

Video steps

Video step-by-step instructions.

Detailed steps

Online step-by-step instructions with live links to additional content.

For MetroCluster configurations, see either:

- Install MetroCluster IP configuration
- Install MetroCluster Fabric-Attached configuration

Quick guide - ASA A400

The Installation and Setup instructions give graphic instructions for a typical installation of your system, from racking and cabling, through initial system bring-up. Use this guide if you are familiar with installing NetApp systems.

Use the links: AFF A400 Installation and Setup Instructions.

The ASA A400 uses the same installation procedure as the AFF A400 system.

Video steps - ASA A400

The following video shows how to install and cable your new system.

Animation - AFF A400 Installation and setup instructions

The ASA A400 uses the same installation procedure as the AFF A400 system.

Detailed guide - ASA A400

This page provides detailed step-by-step instructions for installing a typical NetApp system. Use this guide if you want more detailed installation instructions.

Step 1: Prepare for installation

To install your system, you need to create an account, register the system, and get license keys. You also need to inventory the appropriate number and type of cables for your system and collect specific network information.

Before you begin

You need to have access to the Hardware Universe for information about site requirements as well as additional information on your configured system. You might also want to have access to the Release Notes for your version of ONTAP for more information about this system.

NetApp Hardware Universe

Find the Release Notes for your version of ONTAP 9

You need to provide the following at your site:

- · Rack space for the storage system
- Phillips #2 screwdriver
- Additional networking cables to connect your system to your network switch and laptop or console with a Web browser

Steps

- 1. Unpack the contents of all boxes.
- 2. Record the system serial number from the controllers.

3. Inventory and make a note of the number and types of cables you received.

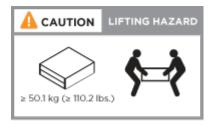
The following table identifies the types of cables you might receive. If you receive a cable not listed in the table, see the Hardware Universe to locate the cable and identify its use.

NetApp Hardware Universe

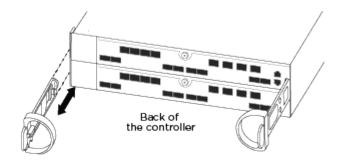
Type of cable	Part number and length	Connector type	For
100 GbE cable (QSF(28)	X66211A-05 (112-00595), 0.5m X66211A-1 (112-00573), 1m X66211A-2 (112-00574), 2m X66211A-5 (112-00574), 5m		Storage, cluster interconnect/HA, and Ethernet data (order-dependent)
25 GbE cable (SFP28s)	X66240-2 (112-00598), 2m X66240-5 (112-00639), 5m		GbE network connection (order-dependent)
32 Gb FC (SFP+ Op)	X66250-2 (112-00342), 2m X66250-5 (112-00344), 5m X66250-15 (112-00346), 15m		FC network connection
Storage Cables	X66030A (112-00435), .5m X66031A (112-00436), 1m X66032A (112-00437), 2m X66033A (112-00438), 3m		mini-SAS HD to mini-SAS HD cables (order-dependent)

Type of cable	Part number and length	Connector type	For
Optical cables	X66250-2-N-C (112-00342)		16 Gb FC or 25GbE cables for mezzanine cards (order-dependent)
RJ-45 (order dependent)	X6585-R6 (112-00291), 3m X6562-R6 (112-00196), 5m		Management network
Micro-USB console cable	Not applicable		Console connection used during software setup if laptop or console does not support network discovery.
Power cables	Not applicable	- mu	Powering up the system

4. Review the NetApp ONTAP Configuration Guide and collect the required information listed in that guide.


ONTAP Configuration Guide

Step 2: Install the hardware


You need to install your system in a 4-post rack or NetApp system cabinet, as applicable.

- 1. Install the rail kits, as needed.
- 2. Install and secure your system using the instructions included with the rail kit.
 - (i)

You need to be aware of the safety concerns associated with the weight of the system.

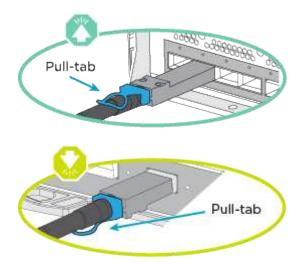
3. Attach cable management devices (as shown).

4. Place the bezel on the front of the system.

Step 3: Cable controllers to your network

You can cable the controllers to your network by using the two-node switchless cluster method or by using the cluster interconnect network.

If the port labels on the card are not visible, check the card installation orientation (the PCle connector socket is on the left side of the card slot in the A400 and FAS8300/8700), and then look for the card, by part number, in the NetApp Hardware Universe for a graphic of the bezel which will show the port labels. The card part number can be found using the sysconfig -a command or on the system packing list.

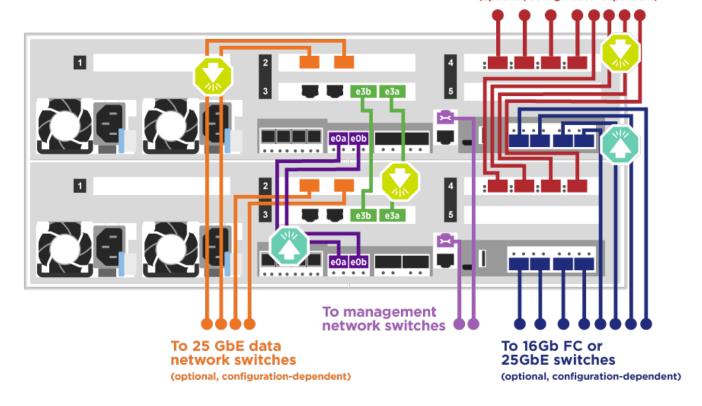

If you are cabling an MetroCluster IP configuration, ports e0a/e0b are available for hosting data LIFs (usually in Default IPSpace).

Option 1: Cable a two-node switchless cluster

The optional data ports, optional NIC cards, and management ports on the controller modules are connected to switches. The cluster interconnect and HA ports are cabled on both controller modules.

You must have contacted your network administrator for information about connecting the system to the switches.

Be sure to check the direction of the cable pull-tabs when inserting the cables in the ports. Cable pull-tabs are up for all onboard ports and down for expansion (NIC) cards.

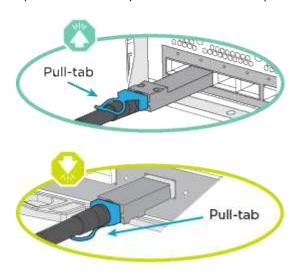

As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Steps

1. Use the animation or illustration to complete the cabling between the controllers and to the switches:

Animation - Two-node switchless cluster cabling

To Ethernet or FC switches (optional, configuration-dependent)

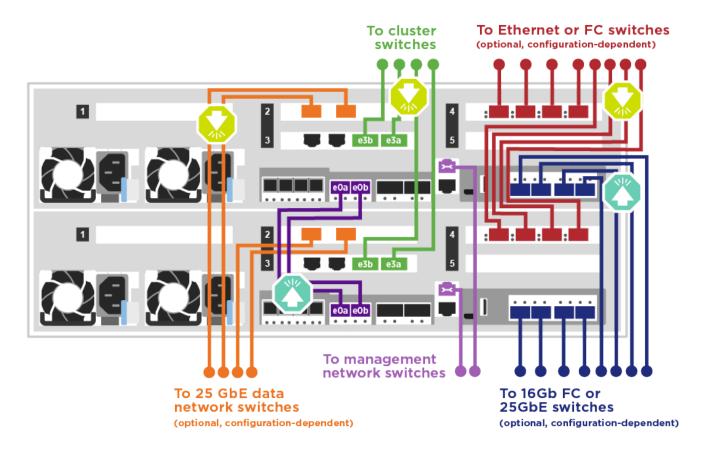

2. Go to Step 4: Cable controllers to drive shelves for drive shelf cabling instructions.

Option 2: Cable a switched cluster

The optional data ports, optional NIC cards, mezzanine cards, and management ports on the controller modules are connected to switches. The cluster interconnect and HA ports are cabled on to the cluster/HA switch.

You must have contacted your network administrator for information about connecting the system to the switches.

Be sure to check the direction of the cable pull-tabs when inserting the cables in the ports. Cable pull-tabs are up for all onboard ports and down for expansion (NIC) cards.



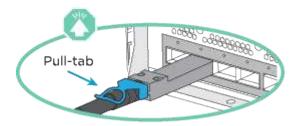
As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Steps

1. Use the animation or illustration to complete the cabling between the controllers and to the switches:

Animation - Switched cluster cabling

2. Go to Step 4: Cable controllers to drive shelves for drive shelf cabling instructions.

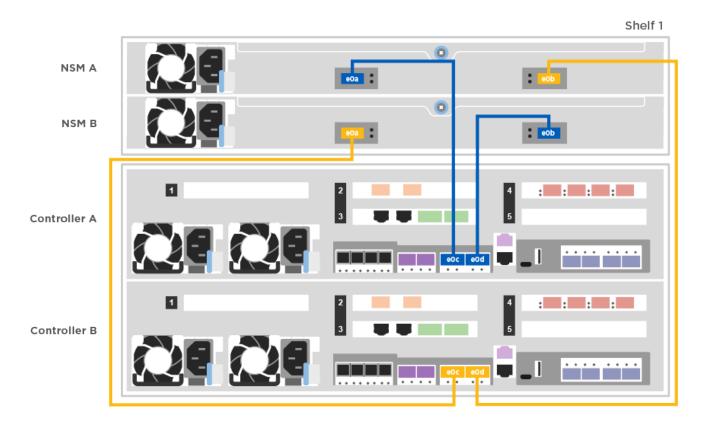

Step 4: Cable controllers to drive shelves

You can cable either NSS224 or SAS shelves to you system.

Option 1: Cable the controllers to a single drive shelf

You must cable each controller to the NSM modules on the NS224 drive shelf.

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation. The cable pull-tab for the NS224 are up.

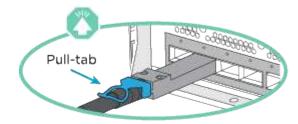


As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Steps

1. Use the following animation or illustration to cable your controllers to a single drive shelf.

Animation - Cable the controllers to one NS224 drive shelf

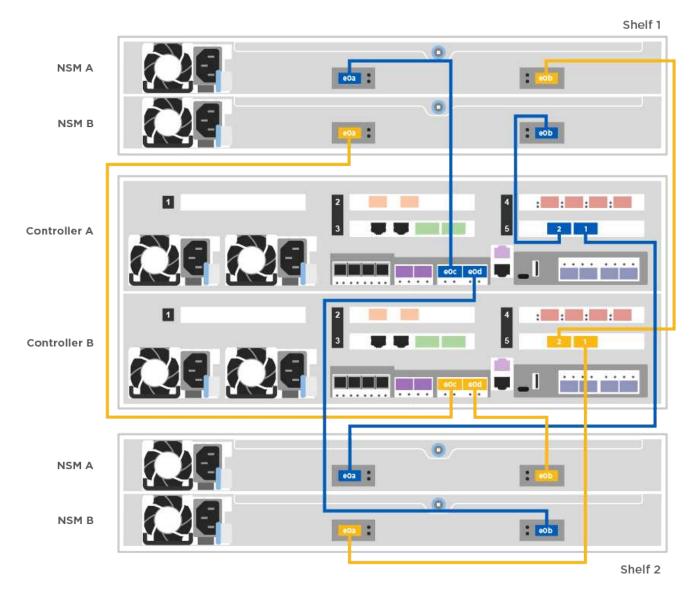


2. Go to Step 5: Complete system setup and configuration to complete system setup and configuration.

Option 2: Cable the controllers to two drive shelves

You must cable each controller to the NSM modules on both NS224 drive shelves.

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation. The cable pull-tab for the NS224 are up.

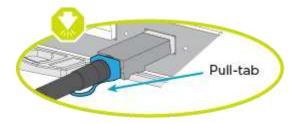


As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Steps

1. Use the following animation or illustration to cable your controllers to two drive shelves.

Animation - Cable the controllers to one NS224 drive shelf

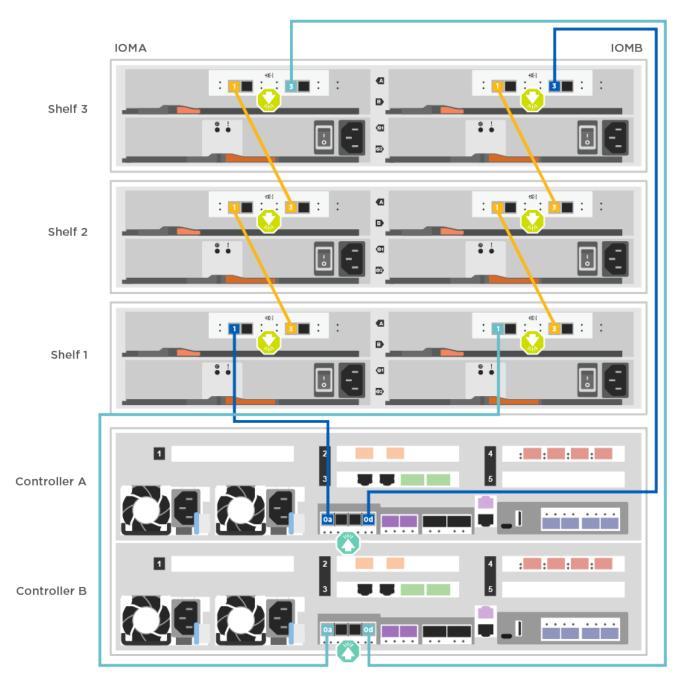


2. Go to Step 5: Complete system setup and configuration to complete system setup and configuration.

Option 3: Cable the controllers to SAS drive shelves

You must cable each controller to the IOM modules on both SAS drive shelves.

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation. The cable pull-tab for the DS224-C are down.



As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Steps

1. Use the following illustration to cable your controllers to two drive shelves.

Animation - Cable the controllers to SAS drive shelves

2. Go to Step 5: Complete system setup and configuration to complete system setup and configuration.

Step 5: Complete system setup and configuration

You can complete the system setup and configuration using cluster discovery with only a connection to the switch and laptop, or by connecting directly to a controller in the system and then connecting to the management switch.

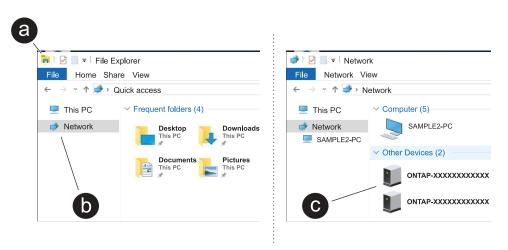
Option 1: Completing system setup and configuration if network discovery is enabled

If you have network discovery enabled on your laptop, you can complete system setup and configuration using automatic cluster discovery.

1. Use the following animation to set one or more drive shelf IDs:

If your system has NS224 drive shelves, the shelves are pre-set to shelf ID 00 and 01. If you want to change the shelf IDs, you must create a tool to insert into the hole where button is located.

Animation - Set drive shelf IDs


- Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.
- 3. Make sure that your laptop has network discovery enabled.

See your laptop's online help for more information.

4. Use the following animation to connect your laptop to the Management switch.

Animation - Connect your laptop to the Management switch

5. Select an ONTAP icon listed to discover:

- a. Open File Explorer.
- b. Click **Network** in the left pane and right-click and select **refresh**.
- c. Double-click either ONTAP icon and accept any certificates displayed on your screen.

XXXXX is the system serial number for the target node.

System Manager opens.

6. Use System Manager guided setup to configure your system using the data you collected in the *NetApp ONTAP Configuration Guide*.

ONTAP Configuration Guide

7. Set up your account and download Active IQ Config Advisor:

a. Log in to your existing account or create an account.

NetApp Support Registration

b. Register your system.

NetApp Product Registration

c. Download Active IQ Config Advisor.

NetApp Downloads: Config Advisor

- 8. Verify the health of your system by running Config Advisor.
- 9. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Option 2: Completing system setup and configuration if network discovery is not enabled

If network discovery is not enabled on your laptop, you must complete the configuration and setup using this task.

- 1. Cable and configure your laptop or console:
 - a. Set the console port on the laptop or console to 115,200 baud with N-8-1.
 - (i)

See your laptop or console's online help for how to configure the console port.

- b. Connect the console cable to the laptop or console using the console cable that came with your system, and then connect the laptop to the management switch on the management subnet .
- c. Assign a TCP/IP address to the laptop or console, using one that is on the management subnet.
- 2. Use the following animation to set one or more drive shelf IDs:

Animation - Set drive shelf IDs

If your system has NS224 drive shelves, the shelves are pre-set to shelf ID 00 and 01. If you want to change the shelf IDs, you must create a tool to insert into the hole where button is located.

Animation - Set drive shelf IDs

3. Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.

FAS8300 and FAS8700 shown.

Animation - Power on the controllers

Initial booting may take up to eight minutes.

4. Assign an initial node management IP address to one of the nodes.

If the management network has DHCP	Then	
Configured	Record the IP address assigned to the new controllers.	
Not configured	equivalent	console session using PuTTY, a terminal server, or the state for your environment. Check your laptop or console's online help if you do not know how to configure PuTTY. management IP address when prompted by the script.

- 5. Using System Manager on your laptop or console, configure your cluster:
 - a. Point your browser to the node management IP address.
 - (i)

The format for the address is https://x.x.x.x.

b. Configure the system using the data you collected in the NetApp ONTAP Configuration guide.

ONTAP Configuration Guide

- 6. Set up your account and download Active IQ Config Advisor:
 - a. Log in to your existing account or create an account.

NetApp Support Registration

b. Register your system.

NetApp Product Registration

c. Download Active IQ Config Advisor.

NetApp Downloads: Config Advisor

- 7. Verify the health of your system by running Config Advisor.
- 8. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Maintain

Maintain ASA A400 hardware

Maintain the hardware of your ASA A400 storage system to ensure long-term reliability and optimal performance. Perform regular maintenance tasks such as replacing faulty components, as this helps prevent downtime and data loss.

The maintenance procedures assume that the ASA A400 storage system has already been deployed as a storage node in the ONTAP environment.

System components

For the ASA A400 storage system, you can perform maintenance procedures on the following components.

Boot media - automated recovery

The boot media stores a primary and secondary set of ONTAP image files that the storage system uses to boot. During automated recovery, the system retrieves the boot image from the partner node and automatically runs the appropriate boot menu option to install the image on your replacement boot media. The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

Boot media - manual recovery

The boot media stores a primary and secondary set of ONTAP image files that the storage system uses to boot. During manual recovery, you boot the storage system from a USB drive and manually restore the file system image and configuration. If your storage system is running ONTAP 9.17.1 and later, use the automated boot recovery procedure.

Chassis

The chassis is the physical enclosure housing all the controller components such as the controller/CPU unit, power supply, and I/O.

Controller

A controller consists of a board, firmware, and software. It controls the drives and implements the ONTAP functions.

DIMM

You must replace a DIMM (dual in-line memory module) when a memory mismatch is present, or you have a failed DIMM.

Fan

The fan cools the controller.

NVDIMM

The NVDIMM (non-volatile dual in-line memory module) manages the data transfer from the volatile memory to the non-volatile storage, and maintains data integrity in the event of a power loss or system shutdown.

NVDIMM battery

A NVDIMM battery is responsible for maintaining power to the NVDIMM module.

PCIe card and risers

A PCIe (peripheral component interconnect express) card is an expansion card that plugs into the PCIe slot on the motherboard or into risers plugged into the motherboard.

Power supply

A power supply provides a redundant power source in a controller shelf.

Real-time clock battery

A real time clock battery preserves system date and time information if the power is off.

Boot media - automated recovery

Boot media automated recovery workflow - ASA A400

The automated recovery of the boot image involves the system automatically identifying and selecting the appropriate boot menu option. It uses the boot image on partner node to reinstall ONTAP on the replacement boot media in your ASA A400 system.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

To get started, review the replacement requirements, shut down the controller, replace the boot media, allow the system to restore the image, and verify system functionality.

Review the boot media requirements

Review the requirements for boot media replacement.

Shut down the controller

Shut down the controller in your storage system when when you need to replace the boot media.

Replace the boot media

Remove the failed boot media from the controller module and install the replacement boot media.

Restore the image on the boot media

Restore the ONTAP image from the partner controller.

Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Requirements for automated boot media recovery - ASA A400

Before replacing the boot media in your ASA A400, ensure you meet the necessary requirements for a successful replacement. This includes verifying that you have the correct replacement boot media, confirming that the e0S (e0M wrench) port on the impaired controller is not faulty, and determining whether Onboard Key Manager (OKM) or External Key Manager (EKM) is enabled.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

- You must replace the failed component with a replacement FRU component of the same capacity that you received from NetApp.
- Verify that the e0M (wrench) port on the impaired controller is connected and not faulty.

The e0M port is used to communicate between the two controllers during the automated boot recovery

process.

- For OKM, you need the cluster-wide passphrase and also the backup data.
- For EKM, you need copies of the following files from the partner node:
 - /cfcard/kmip/servers.cfg file.
 - /cfcard/kmip/certs/client.crt file.
 - · /cfcard/kmip/certs/client.key file.
 - · /cfcard/kmip/certs/CA.pem file.
- It is critical to apply the commands to the correct controller when you are replacing the impaired boot media:
 - The impaired controller is the controller on which you are performing maintenance.
 - The *healthy controller* is the HA partner of the impaired controller.

What's next

After you've reviewed the boot media requirements, you shut down the controller.

Shut down the controller for automated boot media recovery - ASA A400

Shut down the impaired controller in your ASA A400 storage system to prevent data loss and maintain system stability during the automated boot media recovery process.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

Disable automatic giveback:

a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt Do you want to disable auto-giveback?
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

What's next

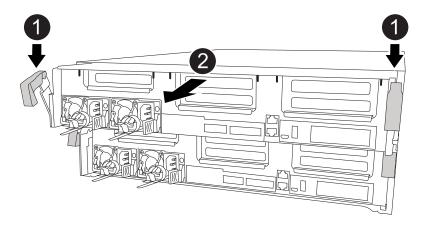
After you shut down the impaired controller, you replace the boot media.

Replace the boot media for automated boot recovery - ASA A400

The boot media in your ASA A400 system stores essential firmware and configuration data. The replacement process involves removing and opening the controller module, removing the impaired boot media, installing the replacement boot media in the controller module, and then reinstalling the controller module.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

The boot media is located inside the controller module under the air duct, and is accessed by removing the controller module from the system.

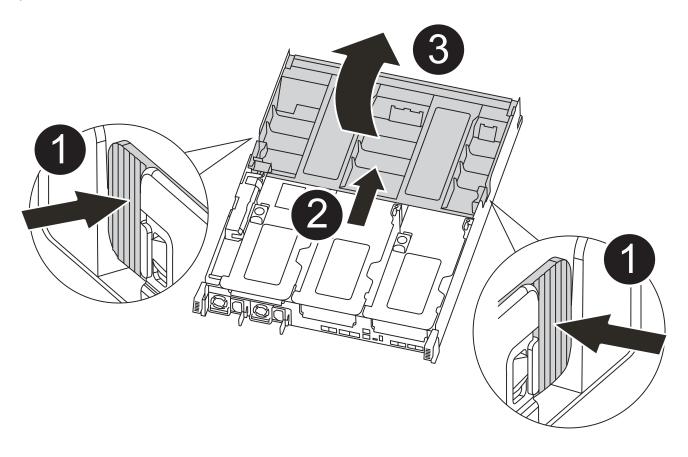

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

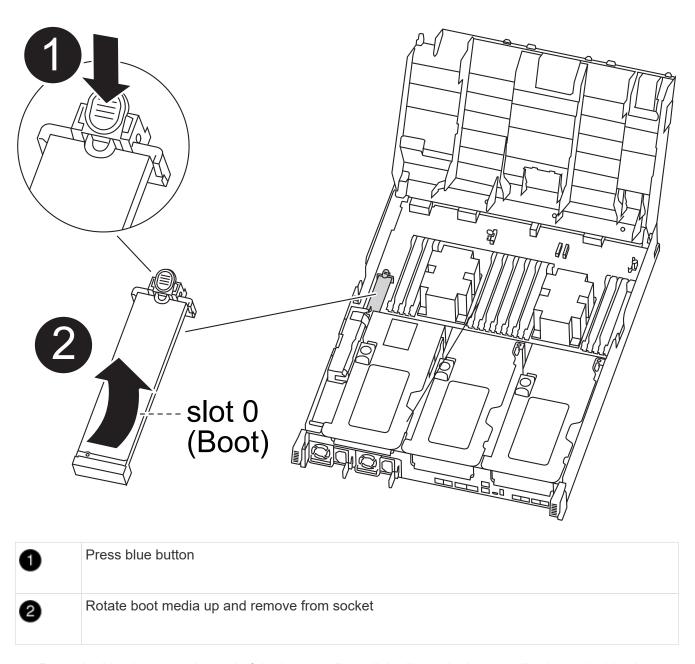
- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.



0	Locking latches
2	Controller moves slightly out of chassis

6. Slide the controller module out of the chassis.


Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 7. Place the controller module on a stable, flat surface.
- 8. Open the air duct:

0	Locking tabs
2	Slide air duct toward back of controller
3	Rotate air duct up

- a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module.
- b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position.
- 9. Locate and remove the boot media from the controller module:

a. Press the blue button at the end of the boot media until the lip on the boot media clears the blue button.

- b. Rotate the boot media up and gently pull the boot media out of the socket.
- 10. Align the edges of the replacement boot media with the boot media socket, and then gently push it into the socket.
- 11. Check the boot media to make sure that it is seated squarely and completely in the socket.

If necessary, remove the boot media and reseat it into the socket.

- 12. Lock the boot media in place:
 - a. Rotate the boot media down toward the motherboard.
 - b. Placing a finger at the end of the boot media by the blue button, push down on the boot media end to engage the blue locking button.
 - c. While pushing down on the boot media, lift the blue locking button to lock the boot media in place.
- 13. Close the air duct.

What's next

After physically replacing the impaired boot media, restore the ONTAP image from the partner node.

Automated boot media recovery from the partner node - ASA A400

After installing the new boot media device in your ASA A400 system, you can start the automated boot media recovery process to restore the configuration from the partner node. During the recovery process, the system checks whether encryption is enabled and determines the type of key encryption in use. If key encryption is enabled, the system guides you through the appropriate steps to restore it.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

Before you begin

- For OKM, you need the cluster-wide passphrase and also the backup data.
- For EKM, you need copies of the following files from the partner node:
 - /cfcard/kmip/servers.cfg file.
 - /cfcard/kmip/certs/client.crt file.
 - · /cfcard/kmip/certs/client.key file.
 - /cfcard/kmip/certs/CA.pem file.

Steps

1. From the LOADER prompt, enter the command:

```
boot recovery -partner
```

The screen displays the following message:

Starting boot media recovery (BMR) process. Press Ctrl-C to abort ...

2. Monitor the boot media install recovery process.

The process completes and displays the Installation complete message.

3. The system checks for encryption and encryption type and displays one of two messages. Depending on what message is displayed, take one of the following actions:

Occasionally, the process may not be able to identify if key manager is configured on the system. It will display an error message, ask if key manager is configured for the system, and then ask what type of key manager is configured. The process will resume after you resolve the issue.

Show example of configuration error finding prompts

Error when fetching key manager config from partner \${partner_ip}:
\${status}

Has key manager been configured on this system

Is the key manager onboard

If you see this message	Do this
key manager is not configured. Exiting.	Encryption is not installed on the system. Complete the following steps:
	a. Log into the node when the login prompt is displayed and give back the storage:
	<pre>storage failover giveback -ofnode impaired_node_name</pre>
	b. Go to step 5 to enable automatic giveback if it was disabled.
key manager is configured.	Go to step 4 to restore the appropriate key manager.
	The node accesses the boot menu and runs:
	Option 10 for systems with Onboard Key Manager (OKM).
	Option 11 for systems with External Key Manager (EKM).

4. Select the appropriate key manager restoration process.

Onboard Key Manager (OKM)

If OKM is detected, the system displays the following message and begins running BootMenu Option 10.

```
key manager is configured.
Entering Bootmenu Option 10...

This option must be used only in disaster recovery procedures. Are you sure? (y or n):
```

- a. Enter Y at the prompt to confirm you want to start the OKM recovery process.
- b. Enter the following when prompted:
 - i. The passphrase
 - ii. The passphrase again when prompted to confirm
 - iii. Backup data for onboard key manager

Show example of passphrase and backup data prompts

```
Enter the passphrase for onboard key management:
----BEGIN PASSPHRASE----
<passphrase_value>
----END PASSPHRASE----
Enter the passphrase again to confirm:
----BEGIN PASSPHRASE----
<passphrase_value>
----END PASSPHRASE----
Enter the backup data:
----BEGIN BACKUP-----
<passphrase_value>
-----END BACKUP-----
```

c. Continue to monitor the recovery process as it restores the appropriate files from the partner node.

When the recovery process is complete, the node will reboot. The following messages indicate a successful recovery:

Trying to recover keymanager secrets....

Setting recovery material for the onboard key manager
Recovery secrets set successfully

Trying to delete any existing km_onboard.keydb file.

Successfully recovered keymanager secrets.

- d. When the node reboots, verify the boot media recovery was successful by confirming that the system is back online and operational.
- e. Return the impaired controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired_node_name
```

f. After the partner node is fully up and serving data, synchronize the OKM keys across the cluster.

```
security key-manager onboard sync
```

External Key Manager (EKM)

If EKM is detected, the system displays the following message and begins running BootMenu Option 11.

```
key manager is configured. Entering Bootmenu Option 11...
```

a. The next step depends on which version of ONTAP your system is running:

If your system is running	Do this
ONTAP 9.16.0	a. Press Ctlr-C to exit BootMenu Option 11.
	b. Press Ctlr-C to exit the EKM configuration process and return to the boot menu.
	c. Select BootMenu Option 8.
	d. Reboot the node.
	If AUTOBOOT is set, the node reboots and uses the configuration files from the partner node.
	If AUTOBOOT is not set, enter the appropriate boot command. The node reboots and uses the configuration files from the partner node.
	e. Reboot the node so that EKM protects the boot media partition.
	f. Proceed to step c.

If your system is running	Do this
ONTAP 9.16.1 and later	Proceed to the next step.

b. Enter the following EKM configuration setting when prompted:

Action	Example
Enter the client certificate contents from the /cfcard/kmip/certs/client.crt file.	Show example of client certificate contents BEGIN CERTIFICATE <certificate_value>END CERTIFICATE</certificate_value>
Enter the client key file contents from the /cfcard/kmip/certs/client.key file.	Show example of client key file contents BEGIN RSA PRIVATE KEY <key_value>END RSA PRIVATE KEY</key_value>
Enter the KMIP server CA(s) file contents from the /cfcard/kmip/certs/CA.pem file.	Show example of KMIP server file contents BEGIN CERTIFICATE <kmip_certificate_ca_value>END CERTIFICATE</kmip_certificate_ca_value>

Enter the server configuration file contents from | Show example of server configuration file the /cfcard/kmip/servers.cfg file.

contents

xxx.xxx.xxx:5696.host= XXX.XXX.XXX xxx.xxx.xxx:5696.port= xxx.xxx.xxx:5696.trust ed file=/cfcard/kmip/certs /CA.pem xxx.xxx.xxx:5696.proto col=KMIP1 4 1xxx.xxx.xxx.xxx:5696.time out=25 xxx.xxx.xxx:5696.nbio= xxx.xxx.xxx.xxx:5696.cert file=/cfcard/kmip/certs/cl ient.crt xxx.xxx.xxx:5696.key_f ile=/cfcard/kmip/certs/cli ent.key xxx.xxx.xxx:5696.ciphe rs="TLSv1.2:kRSA:!CAMELLIA :!IDEA:!RC2:!RC4:!SEED:!eN ULL: !aNULL" xxx.xxx.xxx:5696.verif y=true xxx.xxx.xxx:5696.netap p keystore uuid=<id value>

Action

If prompted, enter the ONTAP Cluster UUID from the partner.

You can check the cluster UUID from the partner node using the cluster identify show command.

Example

Show example of ONTAP Cluster UUID

Notice:

bootarg.mgwd.cluster_uuid
is not set or is empty.
Do you know the ONTAP
Cluster UUID? {y/n} y
Enter the ONTAP Cluster
UUID: <cluster_uuid_value>

System is ready to utilize external key manager(s).

If prompted, enter the temporary network interface and settings for the node.

You need to enter:

- 1. The IP address for the port
- 2. The netmask for the port
- 3. The IP address of the default gateway

Show example of a temporary network setting

In order to recover key information, a temporary network interface needs to be configured.

Select the network port you want to use (for example, 'e0a') e0M

Enter the IP address for
port : xxx.xxx.xxx.xxx
Enter the netmask for port
: xxx.xxx.xxx.xxx
Enter IP address of
default gateway:
xxx.xxx.xxx
Trying to recover keys
from key servers....
[discover_versions]
[status=SUCCESS reason=
message=]

- c. Depending on whether the key is successfully restored, take one of the following actions:
 - If you see kmip2_client: Successfully imported the keys from external key server: xxx.xxx.xxx.xxx:5696 in the output, the EKM configuration has been successfully restored.

The process attempts to restore the appropriate files from the partner node and reboots the node. Go to step d.

• If the key is not successfully restored, the system will halt and indicate that it could not restore the key. The error and warning messages are displayed. You must rerun the recovery process:

```
boot recovery -partner
```

Show example of key recovery error and warning messages

- d. When the node reboots, verify that the boot media recovery was successful by confirming that the system is back online and operational.
- e. Return the controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired node name
```

5. If automatic giveback was disabled, reenable it:

```
storage failover modify -node local -auto-giveback true
```

6. If AutoSupport is enabled, restore automatic case creation:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

What's next

After you've restored the ONTAP image and the node is up and serving data, you return the failed part to NetApp.

Return the failed boot media to NetApp - ASA A400

If a component in your ASA A400 system fails, return the failed part to NetApp. See the Part Return and Replacements page for further information.

Boot media - manual recovery

Boot media manual recovery workflow - ASA A400

Get started with replacing the boot media in your ASA A400 storage system by reviewing the replacement requirements, checking encryption status, shutting down the controller, replacing the boot media, booting the recovery image, restoring encryption, and verifying the system functionality.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Review the boot media requirements

Review the requirements for replacing the boot media.

Check encryption key support and status

Determine whether the system has security key manager enabled or encrypted disks.

Shut down the controller

Shut down the controller when when you need to replace the boot media.

Replace the boot media

Remove the failed boot media from the System Management module and install the replacement boot media, and then transfer an ONTAP image using a USB flash drive.

Boot the recovery image

Boot the ONTAP image from the USB drive, restore the file system, and verify the environmental variables.

Restore the onboard key manager configuration or the external key manager from the ONATP boot menu.

Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Requirements for manual boot media recovery - ASA A400

Before replacing the boot media in your ASA A400 system, ensure you meet the necessary requirements for a successful replacement. This includes making sure you have a USB flash drive with the appropriate amount of storage and verifying that you have the correct replacement boot device.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

USB flash drive

- Ensure you have a USB flash drive formatted to FAT32.
- The USB must have sufficient storage capacity to hold the image xxx.tgz file.

File preparation

Copy the <code>image_xxx.tgz</code> file to the USB flash drive. This file will be used when you transfer the ONTAP image using the USB flash drive.

Component replacement

Replace the failed component with the replacement component provided by NetApp.

Controller identification

It is critical to apply the commands to the correct controller when you are replacing the impaired boot media:

- The impaired controller is the controller on which you are performing maintenance.
- The *healthy controller* is the HA partner of the impaired controller.

What's next?

After you've reviewed the requirements to replace the boot media, you need to check encryption key support and status on the boot media.

Check encryption key support and status - ASA A400

To ensure data security on your storage system, you need to verify the encryption key support and status on your boot media. Check if your ONTAP version supports NetApp Volume Encryption (NVE), and before you shut down the controller check if the key manager is active.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Step 1: Check if your version of ONTAP supports NetApp Volume Encryption

Check whether your ONTAP version supports NetApp Volume Encryption (NVE). This information is crucial for downloading the correct ONTAP image.

Steps

1. Determine if your ONTAP version supports encryption by running the following command:

version -v

If the output includes 10no-DARE, NVE is not supported on your cluster version.

- 2. Depending on whether NVE is supported on your system, take one of the following actions:
 - If NVE is supported, download the ONTAP image with NetApp Volume Encryption.
 - If NVE is not supported, download the ONTAP image without NetApp Volume Encryption.

Step 2: Determine if it is safe to shut down the controller

To safely shut down a controller, first identify whether the External Key Manager (EKM) or the Onboard Key Manager (OKM) is active. Then, verify the key manager in use, display the appropriate key information, and take action based on the status of the authentication keys.

Steps

1. Determine which key manager is enabled on your system:

ONTAP version	Run this command
ONTAP 9.14.1 or later	security key-manager keystore show
	• If EKM is enabled, EKM is listed in the command output.
	• If OKM is enabled, OKM is listed in the command output.
	• If no key manager is enabled, No key manager keystores configured is listed in the command output.
ONTAP 9.13.1 or earlier	security key-manager show-key-store
	• If EKM is enabled, external is listed in the command output.
	• If OKM is enabled, onboard is listed in the command output.
	• If no key manager is enabled, No key managers configured is listed in the command output.

2. Depending on whether a key manger is configured on your system, select one of the following options.

No key manager configured

You can safely shut down the impaired controller. Go to shutdown the impaired controller.

External or Onboard key manager configured

a. Enter the following query command to display the status of the authentication keys in your key manager.

```
security key-manager key query
```

b. Check the output for the value in the Restored column for your key manager.

This column indicates whether the authentication keys for your key manager (either EKM or OKM) have been successfully restored.

3. Depending on whether your system is using the External Key Manager or Onboard Key Manager, select one of the following options.

External Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	You can safely shut down the impaired controller. Go to shutdown the impaired controller.
Anything other than true	 a. Restore the external key management authentication keys to all nodes in the cluster using the following command: security key-manager external restore If the command fails, contact NetApp Support. b. Verify that the Restored column displays true for all authentication keys by entering the security key-manager key query command. If all the authentication keys are true, you can safely shut down the impaired controller. Go to shutdown the impaired controller.

Onboard Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	Manually back up the OKM information.
	a. Go to the advanced mode by entering set -priv advanced and then enter Y when prompted.
	b. Enter the following command to display the key management information:
	security key-manager onboard show-backup
	c. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	d. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Output value in Restored column	Follow these steps
Anything other than true	a. Enter the onboard security key-manager sync command:
	security key-manager onboard sync
	b. Enter the 32 character, alphanumeric onboard key management passphrase when prompted.
	If the passphrase cannot be provided, contact NetApp Support.
	c. Verify the Restored column displays true for all authentication keys:
	security key-manager key query
	d. Verify that the Key Manager type displays onboard, and then manually back up the OKM information.
	e. Enter the command to display the key management backup information:
	security key-manager onboard show-backup
	f. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	g. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Shut down the controller for manual boot media recovery - ASA A400

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller. Shut down or take over the impaired controller using the appropriate procedure for your configuration.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Option 1: Most configurations

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

Steps

a. Take the impaired controller to the LOADER prompt:

If the impaired controller displays	Then
The LOADER prompt	Go to Remove controller module.
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

b. From the LOADER prompt, enter: printenv to capture all boot environmental variables. Save the output to your log file.

This command may not work if the boot device is corrupted or non-functional.

Option 2: Controller is in a MetroCluster configuration

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration

 State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Option 3: Controller is in a two-node Metrocluster

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

 You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes

that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

```
controller_A_1::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes RAID
Status
------
...
aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2
raid_dp, mirrored, normal...
```

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

```
mcclA::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
  Start Time: 7/29/2016 20:54:41
  End Time: 7/29/2016 20:54:42
  Errors: -
```

8. On the impaired controller module, disconnect the power supplies.

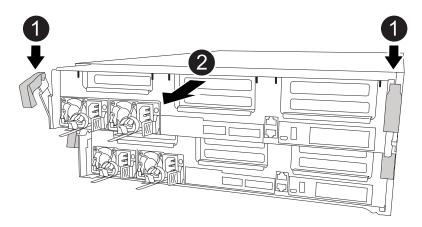
Replace the boot media and prepare for manual boot recovery - ASA A400

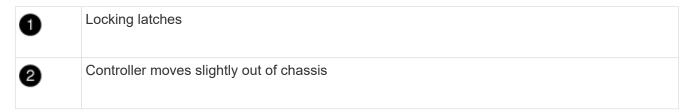
To replace the boot media, you must remove the impaired controller module, install the replacement boot media, and transfer the boot image to a USB flash drive.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Step 1: Remove the controller module

To access components inside the controller module, you must remove the controller module from the chassis.


Steps


- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

6. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

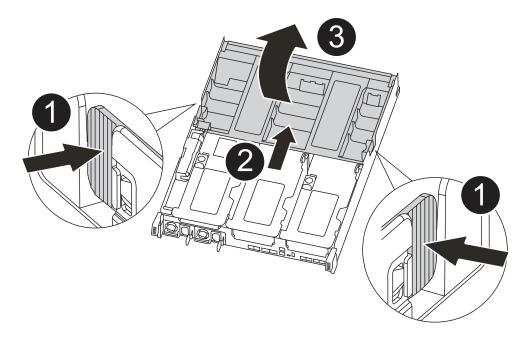
7. Place the controller module on a stable, flat surface.

Step 2: Replace the boot media

You must locate the boot media in the controller module (see the FRU map on the controller module), and then follow the directions to replace it.

Before you begin

Although the contents of the boot media is encrypted, it is a best practice to erase the contents of the boot media before replacing it. For more information, see the Statement of Volatility for your system on the NetApp Support Site.


You must log into the NetApp Support Site to display the Statement of Volatility for your system.

You can use the following animation, illustration, or the written steps to replace the boot media.

Animation - Replace the boot media

Steps

1. Open the air duct:

0	Locking tabs
2	Slide air duct toward back of controller
3	Rotate air duct up

- a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module.
- b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position.
- 2. Locate and remove the boot media from the controller module:

0	Press blue button
2	Rotate boot media up and remove from socket

- a. Press the blue button at the end of the boot media until the lip on the boot media clears the blue button.
- b. Rotate the boot media up and gently pull the boot media out of the socket.
- 3. Align the edges of the replacement boot media with the boot media socket, and then gently push it into the socket.
- 4. Check the boot media to make sure that it is seated squarely and completely in the socket.

If necessary, remove the boot media and reseat it into the socket.

- 5. Lock the boot media in place:
 - a. Rotate the boot media down toward the motherboard.
 - b. Placing a finger at the end of the boot media by the blue button, push down on the boot media end to engage the blue locking button.
 - c. While pushing down on the boot media, lift the blue locking button to lock the boot media in place.
- 6. Close the air duct.

Step 3: Transfer the boot image to the boot media

The replacement boot media that you installed does not have a boot image, so you need to transfer a boot image using a USB flash drive.

Before you begin

- · You must have a USB flash drive, formatted to MBR/FAT32, with at least 4GB capacity
- A copy of the same image version of ONTAP as what the impaired controller was running. You can
 download the appropriate image from the Downloads section on the NetApp Support Site
 - If NVE is enabled, download the image with NetApp Volume Encryption, as indicated in the download button.
 - If NVE is not enabled, download the image without NetApp Volume Encryption, as indicated in the download button.
- If your system is an HA pair, you must have a network connection.
- If your system is a stand-alone system you do not need a network connection, but you must perform an additional reboot when restoring the var file system.

Steps

- 1. Download and copy the appropriate service image from the NetApp Support Site to the USB flash drive.
 - a. Download the service image to your work space on your laptop.
 - b. Unzip the service image.

If you are extracting the contents using Windows, do not use WinZip to extract the netboot image. Use another extraction tool, such as 7-Zip or WinRAR.

There are two folders in the unzipped service image file:

- boot
- efi
- c. Copy the efi folder to the top directory on the USB flash drive.

If the service image has no efi folder, see EFI folder missing from Service Image download file used for boot device recovery for FAS and AFF models[^] .

The USB flash drive should have the efi folder and the same Service Image (BIOS) version of what the impaired controller is running.

- d. Remove the USB flash drive from your laptop.
- 2. If you have not already done so, close the air duct.
- 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
- 4. Reinstall the cable management device and recable the system, as needed.

When recabling, remember to reinstall the media converters (SFPs or QSFPs) if they were removed.

- 5. Plug the power cable into the power supply and reinstall the power cable retainer.
- 6. Insert the USB flash drive into the USB slot on the controller module.

Make sure that you install the USB flash drive in the slot labeled for USB devices, and not in the USB console port.

7. Complete the installation of the controller module:

- a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source.
- b. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- c. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- d. If you have not already done so, reinstall the cable management device.
- 8. Interrupt the boot process by pressing Ctrl-C to stop at the LOADER prompt.

If you miss this message, press Ctrl-C, select the option to boot to Maintenance mode, and then halt the controller to boot to LOADER.

- 9. If the controller is in a stretch or fabric-attached MetroCluster, you must restore the FC adapter configuration:
 - a. Boot to Maintenance mode: boot ontap maint
 - b. Set the MetroCluster ports as initiators: ucadmin modify -m fc -t initiator adapter name
 - c. Halt to return to Maintenance mode: halt

The changes will be implemented when the system is booted.

Manual boot media recovery from a USB drive - ASA A400

After installing the new boot media device in your system, you can boot the recovery image from a USB drive and restore the configuration from the partner node.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Steps

- 1. From the LOADER prompt, boot the recovery image from the USB flash drive: boot_recovery
 - The image is downloaded from the USB flash drive.
- 2. When prompted, either enter the name of the image or accept the default image displayed inside the brackets on your screen.
- 3. Restore the var file system:

Option 1: ONTAP 9.16.0 or earlier

- a. On the impaired controller, press Y when you see Do you want to restore the backup configuration now?
- b. If prompted on the impaired controller, press Y to overwrite /etc/ssh/ssh host ecdsa key.
- c. On the healthy partner controller, set the impaired controller to advanced privilege level: set -privilege advanced.
- d. On the healthy partner controller, run the restore backup command: system node restore-backup -node local -target-address impaired node IP address.

NOTE: If you see any message other than a successful restore, contact NetApp Support.

- e. On the healthy partner controller, return the impaired controller to admin level: set -privilege admin.
- f. On the impaired controller, press Y when you see Was the restore backup procedure successful?.
- g. On the impaired controller, press Y when you see ...would you like to use this restored copy now?.
- h. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- i. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.

Option 2: ONTAP 9.16.1 or later

a. On the impaired controller, press Y when prompted to restore the backup configuration.

After restore procedure is successful, this message will be seen on the console-syncflash partner: Restore from partner complete.

- b. On the impaired controller, press Y when prompted to confirm if the restore backup was successful.
- c. On the impaired controller, press Y when prompted to use the restored configuration.
- d. On the impaired controller, press Y when prompted to reboot the node.
- e. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- f. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.
- 4. Connect the console cable to the partner controller.
- 5. Give back the controller using the storage failover giveback -fromnode local command.
- 6. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command.
- 7. If AutoSupport is enabled, restore/unsuppress automatic case creation by using the system node autosupport invoke -node * -type all -message MAINT=END command.

NOTE: If the process fails, contact NetApp Support.

Restore OKM, NSE, and NVE - ASA A400

Restore encryption on the replacement boot media.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

You must complete steps specific to systems that have Onboard Key Manager (OKM), NetApp Storage Encryption (NSE) or NetApp Volume Encryption (NVE) enabled using the settings that you captured at the beginning of the boot media replace procedure.

Depending on which a key manger is configured on your system, select one of the following options to restore it from the boot menu.

- Option 1: Restore the Onboard Key Manager configuration
- Option 2: Restore the External Key Manager configuration

Option 1: Restore the Onboard Key Manager configuration

Restore the Onboard Key Manager (OKM) configuration from the ONTAP boot menu.

Before you begin

- Make sure you have following information while restoring the OKM configuration:
 - · Cluster-wide passphrase entered while enabling onboard key management.
 - Backup information for the Onboard Key Manager.
- Perform the How to verify onboard key management backup and cluster-wide passphrase procedure before proceeding.

Steps

- 1. Connect the console cable to the target controller.
- 2. From the ONTAP boot menu select the appropriate option from the boot menu.

ONTAP version	Select this option
ONTAP 9.8 or later	Select option 10.
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	(10) Set Onboard Key Manager recovery
	secrets.
	(11) Configure node for external key
	management.
	Selection (1-11)? 10

ONTAP version	Select this option
ONTAP 9.7 and earlier	Select the hidden option recover_onboard_keymanager
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	Selection (1-19)?
	recover_onboard_keymanager

3. Confirm that you want to continue the recovery process.

Show example prompt

This option must be used only in disaster recovery procedures. Are you sure? (y or n):

4. Enter the cluster-wide passphrase twice.

While entering the passphrase the console will not show any input.

Show example prompt

Enter the passphrase for onboard key management:

Enter the passphrase again to confirm:

- 5. Enter the backup information.
 - a. Paste the entire content from the BEGIN BACKUP line through the END BACKUP line.

Enter the backup data:

-----END BACKUP-----

b. Press the enter key twice at the end of the input.

The recovery process completes.

Do not proceed if the displayed output is anything other than Successfully recovered keymanager secrets.

Perform troubleshooting to correct the error.

6. Select option 1 from the boot menu to continue booting into ONTAP.

```
**************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
******************
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6)
   Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

7. Confirm that the controller's console displays the following message.

```
Waiting for giveback...(Press Ctrl-C to abort wait)
```

8. From the partner node, giveback the partner controller by entering the following command.

```
storage failover giveback -fromnode local -only-cfo-aggregates true.
```

9. After booting with only the CFO aggregate, run the following command.

```
security key-manager onboard sync
```

10. Enter the cluster-wide passphrase for the Onboard Key Manager.

Enter the cluster-wide passphrase for the Onboard Key Manager:

All offline encrypted volumes will be brought online and the corresponding volume encryption keys (VEKs) will be restored automatically within 10 minutes. If any offline encrypted volumes are not brought online automatically, they can be brought online manually using the "volume online -vserver <vserver> -volume <volume name>" command.

If the sync is successful the cluster prompt is returned with no additional messages. If the sync fails an error message appears before returning to the cluster prompt. Do not continue until the the error is corrected and the sync runs successfully.

11. Ensure that all keys are synced by entering the following command.

security key-manager key query -restored false.

There are no entries matching your query.

No results should appear when filtering for false in the restored parameter.

12. Giveback the node from the partner by entering the following command.

```
storage failover giveback -fromnode local
```

13. Restore automatic giveback, if you disabled it, by entering the following command.

```
storage failover modify -node local -auto-giveback true
```

14. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Option 2: Restore the External Key Manager configuration

Restore the External Key Manager configuration from the ONTAP boot menu.

Before you begin

You need the following information for restoring the External Key Manager (EKM) configuration.

- A copy of the /cfcard/kmip/servers.cfg file from another cluster node or the following information:
 - The KMIP server address.
 - The KMIP port.
- A copy of the /cfcard/kmip/certs/client.crt file from another cluster node or the client certificate.

- A copy of the /cfcard/kmip/certs/client.key file from another cluster node or the client key.
- A copy of the /cfcard/kmip/certs/CA.pem file from another cluster node or the KMIP server CA(s).

Steps

- 1. Connect the console cable to the target controller.
- 2. Select option 11 from the ONTAP boot menu.

Show example boot menu

```
    Normal Boot.
    Boot without /etc/rc.
    Change password.
    Clean configuration and initialize all disks.
    Maintenance mode boot.
    Update flash from backup config.
    Install new software first.
    Reboot node.
    Configure Advanced Drive Partitioning.
    Set Onboard Key Manager recovery secrets.
    Configure node for external key management.
    Selection (1-11)? 11
```

3. When prompted, confirm you have gathered the required information.

Show example prompt

```
Do you have a copy of the /cfcard/kmip/certs/client.crt file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/client.key file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/CA.pem file? {y/n}
Do you have a copy of the /cfcard/kmip/servers.cfg file? {y/n}
```

4. When prompted, enter the client and server information.

Show prompt

```
Enter the client certificate (client.crt) file contents:
Enter the client key (client.key) file contents:
Enter the KMIP server CA(s) (CA.pem) file contents:
Enter the server configuration (servers.cfg) file contents:
```

Show example

```
Enter the client certificate (client.crt) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the client key (client.key) file contents:
----BEGIN RSA PRIVATE KEY----
<key value>
----END RSA PRIVATE KEY----
Enter the KMIP server CA(s) (CA.pem) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the IP address for the KMIP server: 10.10.10.10
Enter the port for the KMIP server [5696]:
System is ready to utilize external key manager(s).
Trying to recover keys from key servers....
kmip init: configuring ports
Running command '/sbin/ifconfig eOM'
kmip init: cmd: ReleaseExtraBSDPort e0M
```

After you enter the client and server information, the recovery process completes.

Show example

```
System is ready to utilize external key manager(s).

Trying to recover keys from key servers....

Performing initialization of OpenSSL

Successfully recovered keymanager secrets.
```

5. Select option 1 from the boot menu to continue booting into ONTAP.

```
*****************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
*****************
*****
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

6. Restore automatic giveback if you disabled it.

```
storage failover modify -node local -auto-giveback true
```

7. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Return the failed boot media to NetApp - ASA A400

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Chassis

Overview of chassis replacement - ASA A400

To replace the chassis, you must move the fans and controller modules from the impaired chassis to the new chassis of the same model as the impaired chassis.

All other components in the system must be functioning properly; if not, you must contact technical support.

- You can use this procedure with all versions of ONTAP supported by your system.
- This procedure is disruptive. For a two-node cluster, you will have a complete service outage and a partial outage in a multinode cluster.

Shut down the controllers - ASA A400

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

Option 1: Shut down the controllers when replacing a chassis

This procedure is for systems with two node configurations. For more information about graceful shutdown when servicing a cluster, see Gracefully shutdown and power up your storage system Resolution Guide - NetApp Knowledge Base.

Before you begin

- Make sure you have the necessary permissions and credentials:
 - · Local administrator credentials for ONTAP.
 - · BMC accessability for each controller.
- Make sure you have the necessary tools and equipment for the replacement.
- As a best practice before shutdown, you should:
 - Perform additional system health checks.
 - Upgrade ONTAP to a recommended release for the system.
 - Resolve any Active IQ Wellness Alerts and Risks.
 Make note of any faults presently on the system, such as LEDs on the system components.

Steps

- 1. Log into the cluster through SSH or log in from any node in the cluster using a local console cable and a laptop/console.
- 2. Stop all clients/host from accessing data on the NetApp system.
- 3. Suspend external backup jobs.
- 4. If AutoSupport is enabled, suppress case creation and indicate how long you expect the system to be offline:

```
system node autosupport invoke -node * -type all -message "MAINT=2h Replace chassis"
```

5. Identify the SP/BMC address of all cluster nodes:

```
system service-processor show -node * -fields address
```

6. Exit the cluster shell:

exit

7. Log into SP/BMC over SSH using the IP address of any of the nodes listed in the output from the previous step to monitor progress.

If you are using a console/laptop, log into the controller using the same cluster administrator credentials.

8. Halt the two nodes located in the impaired chassis:

```
system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown
```


For clusters using SnapMirror synchronous operating in StrictSync mode: system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown true -ignore-quorum-warnings true -inhibit-takeover true -ignore-strict -sync-warnings true

9. Enter **y** for each controller in the cluster when you see:

Warning: Are you sure you want to halt node <node name>? {y|n}:

10. Wait for each controller to halt and display the LOADER prompt.

Option 2: Shut down a controller in a two-node MetroCluster configuration

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

 You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

```
mcclA::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
Start Time: 7/29/2016 20:54:41
    End Time: 7/29/2016 20:54:42
    Errors: -
```

8. On the impaired controller module, disconnect the power supplies.

Replace hardware - ASA A400

Move the fans, hard drives, and controller module from the impaired chassis to the new chassis, and swap out the impaired chassis with the new chassis of the same model as the impaired chassis.

Step 1: Remove the controller modules

To replace the chassis, you must remove the controller modules from the old chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 4. Remove and set aside the cable management devices from the left and right sides of the controller module.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

6. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

7. Set the controller module aside in a safe place, and repeat these steps for the other controller module in the chassis.

Step 2: Move the fans

To move the fan modules to the replacement chassis when replacing the chassis, you must perform a specific sequence of tasks.

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the bezel (if necessary) with two hands, by grasping the openings on each side of the bezel, and then pulling it toward you until the bezel releases from the ball studs on the chassis frame.
- 3. Press down the release latch on the fan module cam handle, and then rotate the cam handle downward.

The fan module moves a little bit away from the chassis.

4. Pull the fan module straight out from the chassis, making sure that you support it with your free hand so that it does not swing out of the chassis.

The fan modules are short. Always support the bottom of the fan module with your free hand so that it does not suddenly drop free from the chassis and injure you.

- 5. Set the fan module aside.
- 6. Repeat the preceding steps for any remaining fan modules.

- 7. Insert the fan module into the replacement chassis by aligning it with the opening, and then sliding it into the chassis.
- 8. Push firmly on the fan module cam handle so that it is seated all the way into the chassis.

The cam handle raises slightly when the fan module is completely seated.

- 9. Swing the cam handle up to its closed position, making sure that the cam handle release latch clicks into the locked position.
- 10. Repeat these steps for the remaining fan modules.

Step 3: Replace a chassis from within the equipment rack or system cabinet

You must remove the existing chassis from the equipment rack or system cabinet before you can install the replacement chassis.

- 1. Remove the screws from the chassis mount points.
- 2. With two people, slide the old chassis off the rack rails in a system cabinet or equipment rack, and then set it aside.
- 3. If you are not already grounded, properly ground yourself.
- 4. Using two people, install the replacement chassis into the equipment rack or system cabinet by guiding the chassis onto the rack rails in a system cabinet or equipment rack.
- 5. Slide the chassis all the way into the equipment rack or system cabinet.
- 6. Secure the front of the chassis to the equipment rack or system cabinet, using the screws you removed from the old chassis.
- 7. If you have not already done so, install the bezel.

Step 4: Install the controller modules

After you install the controller modules into the new chassis, you need to boot it.

For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis.

1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

- 2. Recable the console to the controller module, and then reconnect the management port.
- 3. Complete the installation of the controller module:
 - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source.
 - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

- f. At the LOADER prompt, enter bye to reinitialize the PCle cards and other components.
- g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

4. Repeat the preceding steps to install the second controller into the new chassis.

Complete chassis replacement - ASA A400

You must verify the HA state of the chassis and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Verify and set the HA state of the chassis

You must verify the HA state of the chassis, and, if necessary, update the state to match your system configuration.

1. In Maintenance mode, from either controller module, display the HA state of the local controller module and chassis: ha-config show

The HA state should be the same for all components.

- 2. If the displayed system state for the chassis does not match your system configuration:
 - a. Set the HA state for the chassis: ha-config modify chassis HA-state

The value for *HA-state* can be one of the following:

- ha
- mcc
- mcc-2n
- mccip
- non-ha
- b. Confirm that the setting has changed: ha-config show
- 3. If you have not already done so, recable the rest of your system.
- 4. Reinstall the bezel on the front of the system.

Step 2: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 3: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Controller

Overview of controller replacement - ASA A400

You must review the prerequisites for the replacement procedure and select the correct one for your version of the ONTAP operating system.

- · All drive shelves must be working properly.
- If your system is in a MetroCluster configuration, you must review the section Choosing the correct recovery procedure to determine whether you should use this procedure.

If this is the procedure you should use, note that the controller replacement procedure for a controller in a four or eight node MetroCluster configuration is the same as that in an HA pair. No MetroCluster-specific steps are required because the failure is restricted to an HA pair and storage failover commands can be used to provide nondisruptive operation during the replacement.

- You must replace the failed component with a replacement FRU component you received from your provider.
- You must be replacing a controller module with a controller module of the same model type. You cannot upgrade your system by just replacing the controller module.
- You cannot change any drives or drive shelves as part of this procedure.
- In this procedure, the boot device is moved from the impaired controller to the *replacement* controller so that the *replacement* controller will boot up in the same version of ONTAP as the old controller module.
- It is important that you apply the commands in these steps on the correct systems:
 - The *impaired* controller is the controller that is being replaced.
 - The replacement node is the new controller that is replacing the impaired controller.
 - The *healthy* controller is the surviving controller.
- You must always capture the controller's console output to a text file.

This provides you a record of the procedure so that you can troubleshoot any issues that you might encounter during the replacement process.

Shut down the impaired controller - ASA A400

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

Option 1: Most systems

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Option 2: Controller is in a two-node MetroCluster

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

```
controller_A_1::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes
RAID Status
------
...
aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2
raid_dp, mirrored, normal...
```

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

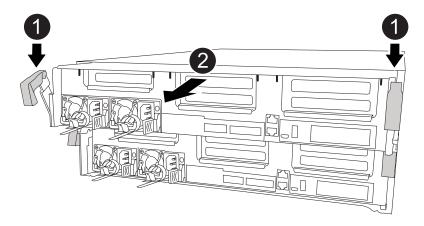
```
mcc1A::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
Start Time: 7/29/2016 20:54:41
   End Time: 7/29/2016 20:54:42
   Errors: -
```

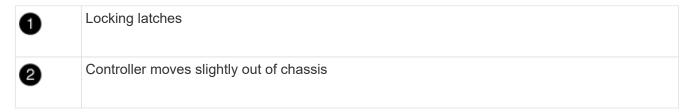
8. On the impaired controller module, disconnect the power supplies.

Replace the controller - ASA A400

To replace the controller module hardware, you must remove the impaired controller, move FRU components to the replacement controller module, install the replacement controller module in the chassis, and then boot the system to Maintenance mode.

Step 1: Remove the controller module

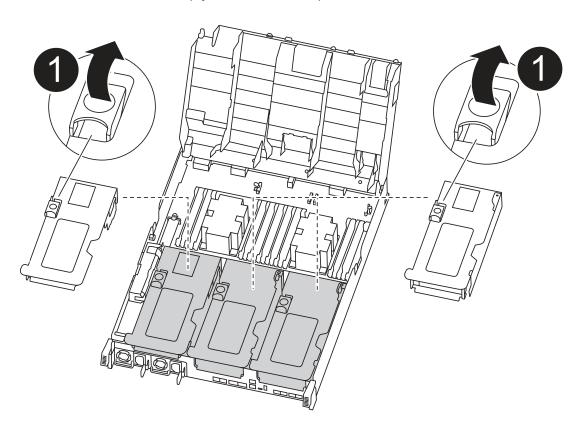

To access components inside the controller module, you must remove the controller module from the chassis.


- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.



6. Slide the controller module out of the chassis.

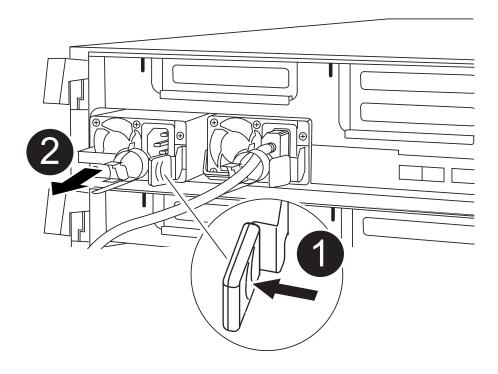
Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 7. Place the controller module on a stable, flat surface.
- 8. On the replacement controller module, open the air duct and remove the empty risers from the controller module using the animation, illustration, or the written steps:

Animation - Remove the empty risers from the replacement controller module

Riser latches

- a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module.
- b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position.
- c. Rotate the riser locking latch on the left side of riser 1 up and toward air duct, lift the riser up, and then set it aside.
- d. Repeat the previous step for the remaining risers.


Step 2: Move the power supplies

You must move the power supply from the impaired controller module to the replacement controller module when you replace a controller module.

You can use the following animation, illustration, or the written steps to move the power supplies to the replacement controller module.

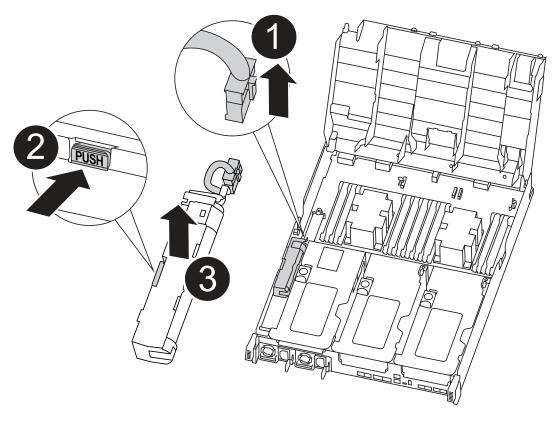
Animation - Move the power supplies

1. Remove the power supply:

- a. Rotate the cam handle so that it can be used to pull the power supply out of the chassis.
- b. Press the blue locking tab to release the power supply from the chassis.
- c. Using both hands, pull the power supply out of the chassis, and then set it aside.
 - 1. Move the power supply to the new controller module, and then install it.
 - 2. Using both hands, support and align the edges of the power supply with the opening in the controller module, and then gently push the power supply into the controller module until the locking tab clicks into place.

The power supplies will only properly engage with the internal connector and lock in place one way.

To avoid damaging the internal connector, do not use excessive force when sliding the power supply into the system.


3. Repeat the preceding steps for any remaining power supplies.

Step 3: Move the NVDIMM battery

To move the NVDIMM battery from the impaired controller module to the replacement controller module, you must perform a specific sequence of steps.

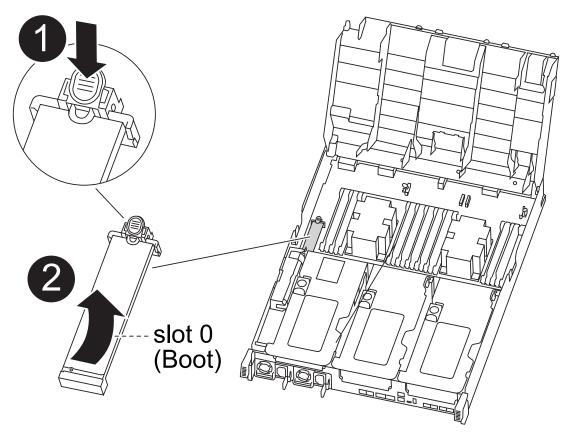
You can use the following animation, illustration, or the written steps to move the NVDIMM battery from the impaired controller module to the replacement controller module.

Animation - Move the NVDIMM battery

0	NVDIMM battery plug
2	NVDIMM battery locking tab
8	NVDIMM battery

1. Open the air duct:

- a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module.
- b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position.
- 2. Locate the NVDIMM battery in the controller module.
- 3. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket.
- 4. Grasp the battery and press the blue locking tab marked PUSH, and then lift the battery out of the holder and controller module.
- 5. Move the battery to the replacement controller module.
- 6. Align the battery module with the opening for the battery, and then gently push the battery into slot until it locks into place.


Do not plug the battery cable back into the motherboard until instructed to do so.

Step 4: Move the boot media

You must locate the boot media, and then follow the directions to remove it from the impaired controller module and insert it into the replacement controller module.

You can use the following animation, illustration, or the written steps to move the boot media from the impaired controller module to the replacement controller module.

Animation - Move the boot media

0	Boot media locking tab
2	Boot media

- 1. Locate and remove the boot media from the controller module:
 - a. Press the blue button at the end of the boot media until the lip on the boot media clears the blue button.
 - b. Rotate the boot media up and gently pull the boot media out of the socket.
- 2. Move the boot media to the new controller module, align the edges of the boot media with the socket housing, and then gently push it into the socket.
- 3. Check the boot media to make sure that it is seated squarely and completely in the socket.

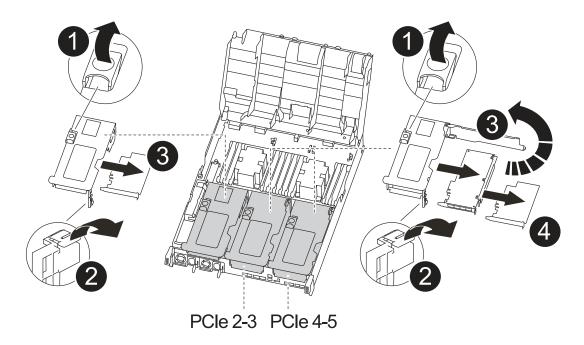
If necessary, remove the boot media and reseat it into the socket.

4. Lock the boot media in place:

- a. Rotate the boot media down toward the motherboard.
- b. Press the blue locking button so that it is in the open position.
- c. Placing your fingers at the end of the boot media by the blue button, firmly push down on the boot media end to engage the blue locking button.

Step 5: Move the PCle risers and mezzanine card

As part of the controller replacement process, you must move the PCIe risers and mezzanine card from the impaired controller module to the replacement controller module.


You can use the following animations, illustrations, or the written steps to move the PCIe risers and mezzanine card from the impaired controller module to the replacement controller module.

Moving PCle riser 1 and 2 (left and middle risers):

Animation - Move PCI risers 1 and 2

Moving the mezzanine card and riser 3 (right riser):

Animation - Move the mezzanine card and riser 3

0	Riser locking latch
2	PCI card locking latch
3	PCI locking plate
4	PCI card

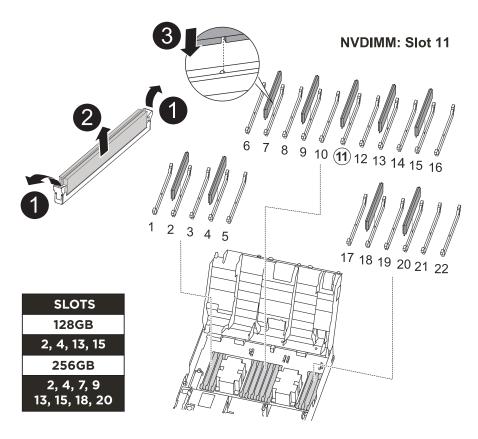
- 1. Move PCIe risers one and two from the impaired controller module to the replacement controller module:
 - a. Remove any SFP or QSFP modules that might be in the PCle cards.
 - b. Rotate the riser locking latch on the left side of the riser up and toward air duct.

The riser raises up slightly from the controller module.

- c. Lift the riser up, and then move it to the replacement controller module.
- d. Align the riser with the pins to the side of the riser socket, lower the riser down on the pins, push the riser squarely into the socket on the motherboard, and then rotate the latch down flush with the sheet metal on the riser.
- e. Repeat this step for riser number 2.
- 2. Remove riser number 3, remove the mezzanine card, and install both into the replacement controller module:
 - a. Remove any SFP or QSFP modules that might be in the PCIe cards.
 - b. Rotate the riser locking latch on the left side of the riser up and toward air duct.

The riser raises up slightly from the controller module.

- c. Lift the riser up, and then set it aside on a stable, flat surface.
- d. Loosen the thumbscrews on the mezzanine card, and gently lift the card directly out of the socket, and then move it to the replacement controller module.
- e. Install the mezzanine in the replacement controller and secure it with the thumbscrews.
- f. Install the third riser in the replacement controller module.


Step 6: Move the DIMMs

You need to locate the DIMMs, and then move them from the impaired controller module to the replacement controller module.

You must have the new controller module ready so that you can move the DIMMs directly from the impaired controller module to the corresponding slots in the replacement controller module.

You can use the following animation, illustration, or the written steps to move the DIMMs from the impaired controller module to the replacement controller module.

Animation - Move the DIMMs

0	DIMM locking tabs
2	DIMM
8	DIMM socket

- 1. Locate the DIMMs on your controller module.
- 2. Note the orientation of the DIMM in the socket so that you can insert the DIMM in the replacement controller module in the proper orientation.
- 3. Verify that the NVDIMM battery is not plugged into the new controller module.
- 4. Move the DIMMs from the impaired controller module to the replacement controller module:

Make sure that you install the each DIMM into the same slot it occupied in the impaired controller module.

a. Eject the DIMM from its slot by slowly pushing apart the DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot.

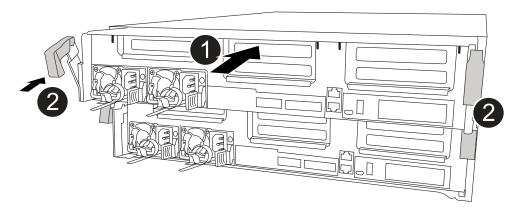
Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

- b. Locate the corresponding DIMM slot on the replacement controller module.
- c. Make sure that the DIMM ejector tabs on the DIMM socket are in the open position, and then insert the

DIMM squarely into the socket.

The DIMMs fit tightly in the socket, but should go in easily. If not, realign the DIMM with the socket and reinsert it.

- d. Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the socket.
- e. Repeat these substeps for the remaining DIMMs.
- 5. Plug the NVDIMM battery into the motherboard.


Make sure that the plug locks down onto the controller module.


Step 7: Install the controller module

After all of the components have been moved from the impaired controller module to the replacement controller module, you must install the replacement controller module into the chassis, and then boot it to Maintenance mode.

- 1. If you have not already done so, close the air duct.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
 - (<u>i</u>)

Do not completely insert the controller module in the chassis until instructed to do so.

3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

4. Complete the installation of the controller module:

- a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source.
- b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

- f. At the LOADER prompt, enter bye to reinitialize the PCle cards and other components.
- g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

Restore and verify the system configuration - ASA A400

After completing the hardware replacement and booting to Maintenance mode, you verify the low-level system configuration of the replacement controller and reconfigure system settings as necessary.

Step 1: Set and verify system time after replacing the controller

You should check the time and date on the replacement controller module against the healthy controller module in an HA pair, or against a reliable time server in a stand-alone configuration. If the time and date do not match, you must reset them on the replacement controller module to prevent possible outages on clients due to time differences.

About this task

It is important that you apply the commands in the steps on the correct systems:

- The *replacement* node is the new node that replaced the impaired node as part of this procedure.
- The *healthy* node is the HA partner of the *replacement* node.

Steps

- 1. If the replacement node is not at the LOADER prompt, halt the system to the LOADER prompt.
- 2. On the healthy node, check the system time: cluster date show

The date and time are based on the configured timezone.

- At the LOADER prompt, check the date and time on the replacement node: show date
 The date and time are given in GMT.
- 4. If necessary, set the date in GMT on the replacement node: set date mm/dd/yyyy
- 5. If necessary, set the time in GMT on the replacement node: set time hh:mm:ss
- 6. At the LOADER prompt, confirm the date and time on the replacement node: show date

The date and time are given in GMT.

Step 2: Verify and set the HA state of the controller module

You must verify the HA state of the controller module and, if necessary, update the state to match your system configuration.

1. In Maintenance mode from the new controller module, verify that all components display the same HA state: ha-config show

The HA state should be the same for all components.

2. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state

The value for HA-state can be one of the following:

- ° ha
- ° mcc
- ° mcc-2n
- ° mccip
- ° non-ha
- 3. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state
- 4. Confirm that the setting has changed: ha-config show

Recable the system and reassign disks - ASA A400

Continue the replacement procedure by recabling the storage and confirming disk reassignment.

Step 1: Recable the system

Verify the controller module's storage and network connections.

Steps

- 1. Verify that the cabling is correct by using Active IQ Config Advisor.
 - a. Download and install Config Advisor.
 - b. Enter the information for the target system, and then click Collect Data.

- c. Click the Cabling tab, and then examine the output. Make sure that all disk shelves are displayed and all disks appear in the output, correcting any cabling issues you find.
- d. Check other cabling by clicking the appropriate tab, and then examining the output from Config Advisor.

Step 2: Reassign disks

If the storage system is in an HA pair, the system ID of the new controller module is automatically assigned to the disks when the giveback occurs at the end of the procedure. You must confirm the system ID change when you boot the *replacement* controller and then verify that the change was implemented.

This procedure applies only to systems running ONTAP in an HA pair.

- 1. If the *replacement* controller is in Maintenance mode (showing the *> prompt, exit Maintenance mode and go to the LOADER prompt: halt
- 2. From the LOADER prompt on the *replacement* controller, boot the controller, entering y if you are prompted to override the system ID due to a system ID mismatch:boot ontap
- 3. Wait until the Waiting for giveback... message is displayed on the *replacement* controller console and then, from the healthy controller, verify that the new partner system ID has been automatically assigned: storage failover show

In the command output, you should see a message that the system ID has changed on the impaired controller, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706.

nodel> `storage failover show` Takeover			
Node	Partner	Possible	State Description
node1 partner (Old:	node2	false	System ID changed on
151759706), In node2 (HA mailboxes)	takeover node1	-	151759755, New: Waiting for giveback

- 4. From the healthy controller, verify that any coredumps are saved:
 - a. Change to the advanced privilege level: set -privilege advanced

You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>).

- b. Save any coredumps: system node run -node local-node-name partner savecore
- c. Wait for the 'savecore' command to complete before issuing the giveback.

You can enter the following command to monitor the progress of the savecore command: system node run -node local-node-name partner savecore -s

- d. Return to the admin privilege level: set -privilege admin
- 5. If your storage system has Storage or Volume Encryption configured, you must restore Storage or Volume Encryption functionality by using one of the following procedures, depending on whether you are using onboard or external key management:
 - Restore onboard key management encryption keys
 - · Restore external key management encryption keys
- 6. Give back the controller:
 - a. From the healthy controller, give back the replaced controller's storage: storage failover giveback -ofnode replacement node name

The replacement controller takes back its storage and completes booting.

If you are prompted to override the system ID due to a system ID mismatch, you should enter y.

If the giveback is vetoed, you can consider overriding the vetoes.

Find the High-Availability Configuration content for your version of ONTAP 9

b. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show

The output from the storage failover show command should not include the System ID changed on partner message.

7. Verify that the disks were assigned correctly: storage disk show -ownership

The disks belonging to the *replacement* controller should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 1873775277:

8. If the system is in a MetroCluster configuration, monitor the status of the controller: metrocluster node show

The MetroCluster configuration takes a few minutes after the replacement to return to a normal state, at

which time each controller will show a configured state, with DR Mirroring enabled and a mode of normal. The metrocluster node show -fields node-systemid command output displays the old system ID until the MetroCluster configuration returns to a normal state.

9. If the controller is in a MetroCluster configuration, depending on the MetroCluster state, verify that the DR home ID field shows the original owner of the disk if the original owner is a controller on the disaster site.

This is required if both of the following are true:

- The MetroCluster configuration is in a switchover state.
- The *replacement* controller is the current owner of the disks on the disaster site.

Disk ownership changes during HA takeover and MetroCluster switchover in a four-node MetroCluster configuration

10. If your system is in a MetroCluster configuration, verify that each controller is configured: metrocluster node show - fields configuration-state

```
node1 siteA::> metrocluster node show -fields configuration-state
dr-group-id
                     cluster node
                                           configuration-state
_____
1 node1 siteA
                     node1mcc-001 configured
1 node1 siteA
                    node1mcc-002
                                         configured
1 node1_siteB
                   node1mcc-003
node1mcc-004
                                         configured
1 node1 siteB
                                          configured
4 entries were displayed.
```

- 11. Verify that the expected volumes are present for each controller: vol show -node node-name
- 12. If you disabled automatic takeover on reboot, enable it from the healthy controller: storage failover modify -node replacement-node-name -onreboot true

Complete system restoration - ASA A400

To restore your system to full operation, you must restore the NetApp Storage Encryption configuration (if necessary), and install licenses for the new controller, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Install licenses for the replacement controller in ONTAP

You must install new licenses for the *replacement* node if the impaired node was using ONTAP features that require a standard (node-locked) license. For features with standard licenses, each node in the cluster should have its own key for the feature.

About this task

Until you install license keys, features requiring standard licenses continue to be available to the *replacement* node. However, if the impaired node was the only node in the cluster with a license for the feature, no

configuration changes to the feature are allowed.

Also, using unlicensed features on the node might put you out of compliance with your license agreement, so you should install the replacement license key or keys on the *replacement* node as soon as possible.

Before you begin

The licenses keys must be in the 28-character format.

You have a 90-day grace period in which to install the license keys. After the grace period, all old licenses are invalidated. After a valid license key is installed, you have 24 hours to install all of the keys before the grace period ends.

If your system was initially running ONTAP 9.10.1 or later, use the procedure documented in Post Motherboard Replacement Process to update Licensing on a AFF/FAS system. If you are unsure of the initial ONTAP release for your system, see NetApp Hardware Universe for more information.

Steps

1. If you need new license keys, obtain replacement license keys on the NetApp Support Site in the My Support section under Software licenses.

The new license keys that you require are automatically generated and sent to the email address on file. If you fail to receive the email with the license keys within 30 days, you should contact technical support.

- 2. Install each license key: system license add -license-code license-key, license-key...
- 3. Remove the old licenses, if desired:
 - a. Check for unused licenses: license clean-up -unused -simulate
 - b. If the list looks correct, remove the unused licenses: license clean-up -unused

Step 2: Verify LIFs and registering the serial number

Before returning the *replacement* node to service, you should verify that the LIFs are on their home ports, and register the serial number of the *replacement* node if AutoSupport is enabled, and reset automatic giveback.

Steps

1. Verify that the logical interfaces are reporting to their home server and ports: network interface show -is-home false

If any LIFs are listed as false, revert them to their home ports: network interface revert -vserver * -lif *

- 2. Register the system serial number with NetApp Support.
 - If AutoSupport is enabled, send an AutoSupport message to register the serial number.
 - If AutoSupport is not enabled, call NetApp Support to register the serial number.
- 3. Check the health of your cluster. See the How to perform a cluster health check with a script in ONTAP KB article for more information.
- 4. If an AutoSupport maintenance window was triggered, end it by using the system node autosupport invoke -node * -type all -message MAINT=END command.

5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 3: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 4: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace DIMM - ASA A400

You must replace a DIMM in the controller module when your system registers an increasing number of correctable error correction codes (ECC); failure to do so causes a system panic.

All other components in the system must be functioning properly; if not, you must contact technical support.

You must replace the failed component with a replacement FRU component you received from your provider.

Step 1: Shut down the impaired controller

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

Option 1: Most configurations

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode
	<pre>impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.</pre>

Option 2: Controller is in a two-node MetroCluster

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

```
controller_A_1::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes
RAID Status
------
...
aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2
raid_dp, mirrored, normal...
```

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

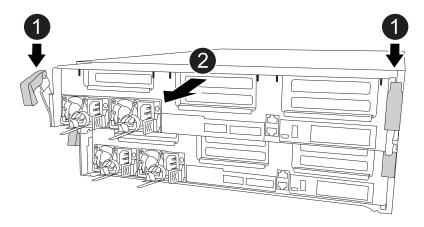
If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

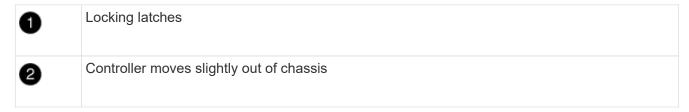
7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

```
mcc1A::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
Start Time: 7/29/2016 20:54:41
   End Time: 7/29/2016 20:54:42
   Errors: -
```

8. On the impaired controller module, disconnect the power supplies.

Step 2: Remove the controller module


To access components inside the controller module, you must remove the controller module from the chassis.


- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

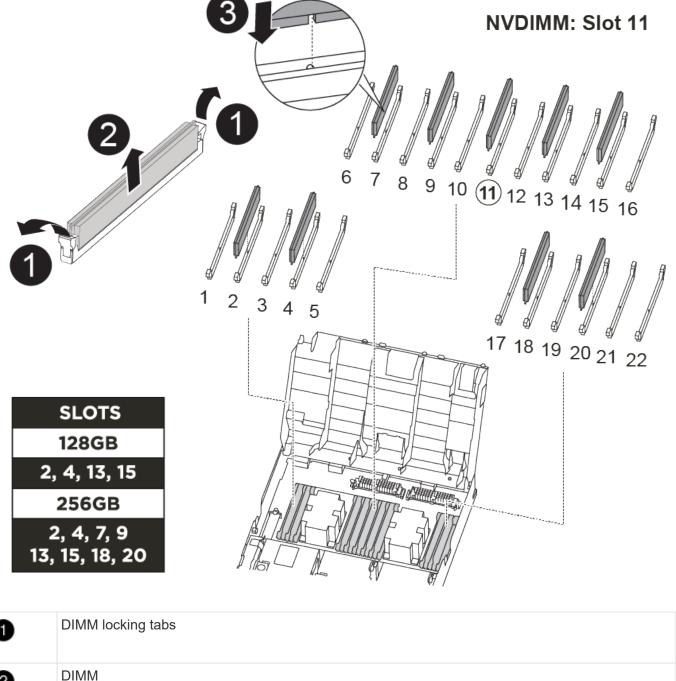
- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

6. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

7. Place the controller module on a stable, flat surface.


Step 3: Replace system DIMMs

Replacing a system DIMM involves identifying the target DIMM through the associated error message, locating the target DIMM using the FRU map on the air duct, and then replacing the DIMM.

You can use the following animation, illustration, or the written steps to replace a system DIMM.

The animation and illustration show empty slots for sockets without DIMMs. These empty sockets are populated with blanks.

0	DIMM locking tabs
2	DIMM
3	DIMM socket

The DIMMs are located in sockets 2, 4, 13, and 15. The NVDIMM is located in slot 11.

- 1. Open the air duct:
 - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module.
 - b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely

open position.

- 2. Locate the DIMMs on your controller module.
- 3. Note the orientation of the DIMM in the socket so that you can insert the replacement DIMM in the proper orientation.
- 4. Eject the DIMM from its socket by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the socket.

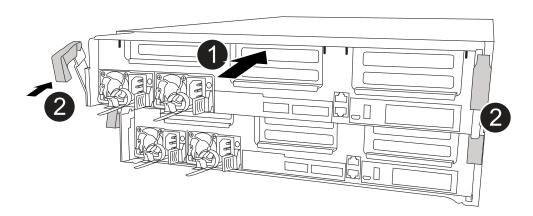
Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

5. Remove the replacement DIMM from the antistatic shipping bag, hold the DIMM by the corners, and align it to the slot.

The notch among the pins on the DIMM should line up with the tab in the socket.

6. Make sure that the DIMM ejector tabs on the connector are in the open position, and then insert the DIMM squarely into the slot.

The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.



Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.

- 7. Push carefully, but firmly, on the top edge of the DIMM until the ejector tabs snap into place over the notches at the ends of the DIMM.
- 8. Close the air duct.

Step 4: Install the controller module

After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode.

0	Controller module
2	Controller locking latches

- 1. If you have not already done so, close the air duct.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
 - (i)

Do not completely insert the controller module in the chassis until instructed to do so.

3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 4. Complete the installation of the controller module:
 - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source.
 - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise.
 - (i)

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

- f. At the LOADER prompt, enter bye to reinitialize the PCle cards and other components.
- g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

Step 5: Restore the controller module to operation

You must recable the system, give back the controller module, and then reenable automatic giveback.

1. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- Return the controller to normal operation by giving back its storage: storage failover giveback
 -ofnode impaired_node_name
- 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto

Step 6: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

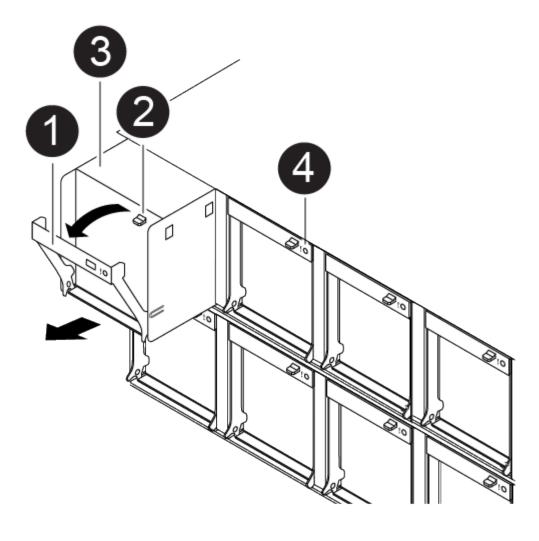
If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 7: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Hot-swap a fan module - ASA A400


To swap out a fan module without interrupting service, you must perform a specific sequence of tasks.

You must replace the fan module within two minutes of removing it from the chassis. System airflow is disrupted and the controller module or modules shut down after two minutes to avoid overheating.

You can use the following animation, illustration, or the written steps to hot-swap a fan module.

Animation - Replace a fan

0	Fan handle
2	Locking tab
3	Fan
4	Status LED

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the bezel (if necessary) with two hands, by grasping the openings on each side of the bezel, and then pulling it toward you until the bezel releases from the ball studs on the chassis frame.
- 3. Identify the fan module that you must replace by checking the console error messages and looking at the Attention LED on each fan module.
- 4. Press down the release latch on the fan module cam handle, and then rotate the cam handle downward.

The fan module moves a little bit away from the chassis.

5. Pull the fan module straight out from the chassis, making sure that you support it with your free hand so that it does not swing out of the chassis.

The fan modules are short. Always support the bottom of the fan module with your free hand so that it does not suddenly drop free from the chassis and injure you.

- 6. Set the fan module aside.
- 7. Insert the replacement fan module into the chassis by aligning it with the opening, and then sliding it into the chassis.
- 8. Push firmly on the fan module cam handle so that it is seated all the way into the chassis.

The cam handle raises slightly when the fan module is completely seated.

9. Swing the cam handle up to its closed position, making sure that the cam handle release latch clicks into the locked position.

The Attention LED should not be lit after the fan is seated and has spun up to operational speed.

- 10. Align the bezel with the ball studs, and then gently push the bezel onto the ball studs.
- 11. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the NVDIMM battery - ASA A400

To replace the NVDIMM battery, you must remove the controller module, remove the battery, replace the battery, and then reinstall the controller module.

All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration.

Option 1: Most configurations

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Option 2: Controller is in a two-node MetroCluster

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

```
controller_A_1::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes
RAID Status
------
...
aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2
raid_dp, mirrored, normal...
```

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

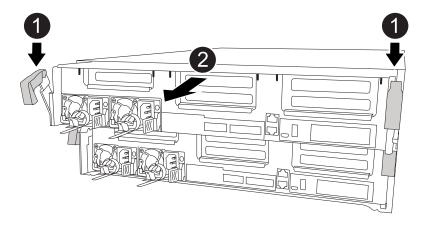
If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

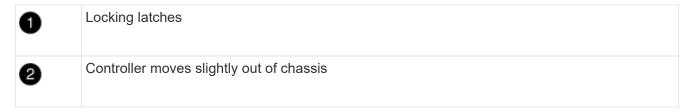
7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

```
mcc1A::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
Start Time: 7/29/2016 20:54:41
   End Time: 7/29/2016 20:54:42
   Errors: -
```

8. On the impaired controller module, disconnect the power supplies.

Step 2: Remove the controller module


To access components inside the controller module, you must remove the controller module from the chassis.


- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

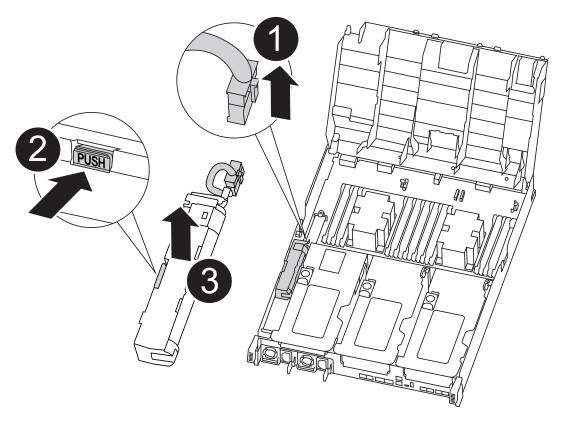
- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

6. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

7. Place the controller module on a stable, flat surface.

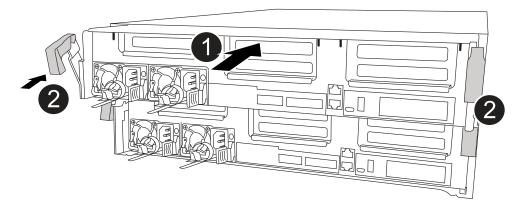

Step 3: Replace the NVDIMM battery

To replace the NVDIMM battery, you must remove the failed battery from the controller module and install the replacement battery into the controller module. See the FRU map inside the controller module to locate the NVDIMM battery.

The NVDIMM LED blinks while destaging contents when you halt the system. After the destage is complete, the LED turns off.

You can use the following animation, illustration, or the written steps to replace the NVDIMM battery.

Animation - Replace the NVDIMM battery


0	Battery plug
2	Locking tab
3	NVDIMM battery

1. Open the air duct:

- a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module.
- b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position.
- 2. Locate the NVDIMM battery in the controller module.
- 3. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket.
- 4. Grasp the battery and press the blue locking tab marked PUSH, and then lift the battery out of the holder and controller module.
- 5. Remove the replacement battery from its package.
- 6. Align the battery module with the opening for the battery, and then gently push the battery into slot until it locks into place.
- 7. Plug the battery plug back into the controller module, and then close the air duct.

Step 4: Install the controller module

After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode.

- 1. If you have not already done so, close the air duct.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 4. Complete the installation of the controller module:
 - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source.
 - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to

interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

- f. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components.
- g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

Step 5: Restore the controller module to operation

You must recable the system, give back the controller module, and then reenable automatic giveback.

1. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 2. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 6: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 7: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace NVDIMM - ASA A400

You must replace the NVDIMM in the controller module when your system registers that the flash lifetime is almost at an end or that the identified NVDIMM is not healthy in general; failure to do so causes a system panic.

All other components in the system must be functioning properly; if not, you must contact technical support.

You must replace the failed component with a replacement FRU component you received from your provider.

Step 1: Shut down the impaired controller

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

Option 1: Most configurations

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Option 2: Controller is in a two-node MetroCluster

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

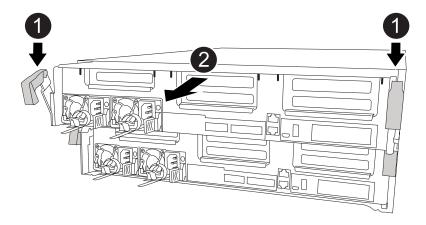
If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

```
mcc1A::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
Start Time: 7/29/2016 20:54:41
   End Time: 7/29/2016 20:54:42
   Errors: -
```

8. On the impaired controller module, disconnect the power supplies.

Step 2: Remove the controller module


To access components inside the controller module, you must remove the controller module from the chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

0	Locking latches
2	Controller moves slightly out of chassis

6. Slide the controller module out of the chassis.

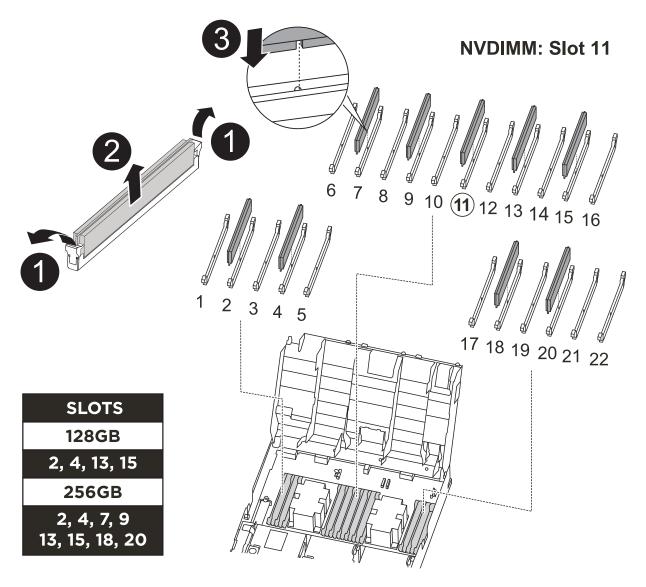
Make sure that you support the bottom of the controller module as you slide it out of the chassis.

7. Place the controller module on a stable, flat surface.

Step 3: Replace the NVDIMM

To replace the NVDIMM, you must locate it in the controller module using the FRU map on top of the air duct or the FRU Map on the top of the slot 1 riser.

- The NVDIMM LED blinks while destaging contents when you halt the system. After the destage is complete, the LED turns off.
- Although the contents of the NVDIMM is encrypted, it is a best practice to erase the contents of the NVDIMM before replacing it. For more information, see the Statement of Volatility on the NetApp Support


You must log into the NetApp Support Site to display the *Statement of Volatility* for your system.

You can use the following animation, illustration, or the written steps to replace the NVDIMM.

The animation shows empty slots for sockets without DIMMs. These empty sockets are populated with blanks.

Animation - Replace the NVDIMM

0	DIMM locking tabs
2	DIMM

DIMM socket

1. Open the air duct and then locate the NVDIMM in slot 11 on your controller module.

The NVDIMM looks significantly different than system DIMMs.

2. Eject the NVDIMM from its slot by slowly pushing apart the two NVDIMM ejector tabs on either side of the NVDIMM, and then slide the NVDIMM out of the socket and set it aside.

Carefully hold the NVDIMM by the edges to avoid pressure on the components on the NVDIMM circuit board.

Remove the replacement NVDIMM from the antistatic shipping bag, hold the NVDIMM by the corners, and then align it to the slot.

The notch among the pins on the NVDIMM should line up with the tab in the socket.

- 4. Locate the slot where you are installing the NVDIMM.
- 5. Insert the NVDIMM squarely into the slot.

The NVDIMM fits tightly in the slot, but should go in easily. If not, realign the NVDIMM with the slot and reinsert it.

Visually inspect the NVDIMM to verify that it is evenly aligned and fully inserted into the slot.

- 6. Push carefully, but firmly, on the top edge of the NVDIMM until the ejector tabs snap into place over the notches at the ends of the NVDIMM.
- 7. Close the air duct.

Step 4: Install the controller module

After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode.

- 1. If you have not already done so, close the air duct.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 4. Complete the installation of the controller module:
 - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source.

b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

- f. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components.
- g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

Step 5: Restore the controller module to operation

You must recable the system, give back the controller module, and then reenable automatic giveback.

1. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- Return the controller to normal operation by giving back its storage: storage failover giveback
 -ofnode impaired_node_name
- 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 6: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 7: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace a PCIe or mezzanine card - ASA A400

To replace a PCIe or mezzanine card, you must disconnect the cables and any SFP and QSFP modules from the cards, replace the failed PCIe or mezzanine card, and then recable the cards.

- · You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration.

Option 1: Most configurations

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of
hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.
	The man due parameter singe you to the Eombert prompt.

Option 2: Controller is in a two-node MetroCluster

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft

vetoes that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

```
controller_A_1::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes
RAID Status
------
...
aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2
raid_dp, mirrored, normal...
```

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

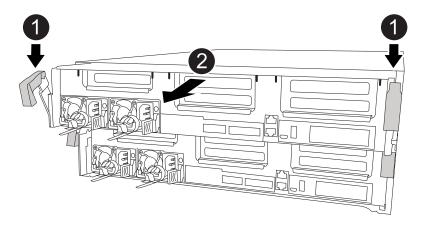
If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

```
mcc1A::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
  Start Time: 7/29/2016 20:54:41
    End Time: 7/29/2016 20:54:42
    Errors: -
```

8. On the impaired controller module, disconnect the power supplies.

Step 2: Remove the controller module


To access components inside the controller module, you must remove the controller module from the chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

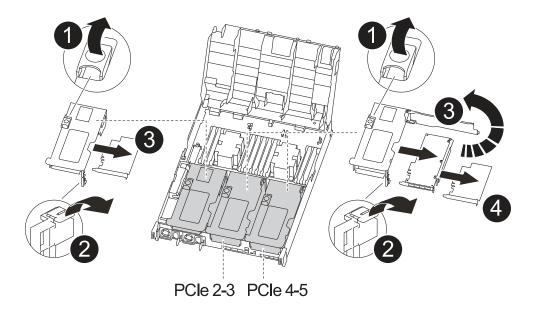
- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

0	Locking latches
2	Controller moves slightly out of chassis

6. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.


7. Place the controller module on a stable, flat surface.

Step 3: Replace a PCIe card

To replace a PCIe card, you must locate the failed PCIe card, remove the riser that contains the card from the controller module, replace the card, and then reinstall the PCIe riser in the controller module.

You can use the following animation, illustration, or the written steps to replace a PCIe card.

Animation - Replace a PCle card

0	Riser locking latch
2	PCI card locking latch
3	PCI locking plate
4	PCI card

- 1. Remove the riser containing the card to be replaced:
 - a. Open the air duct by pressing the locking tabs on the sides of the air duct, slide it toward the back of the controller module, and then rotate it to its completely open position.
 - b. Remove any SFP or QSFP modules that might be in the PCIe cards.
 - c. Rotate the riser locking latch on the left side of the riser up and toward air duct.

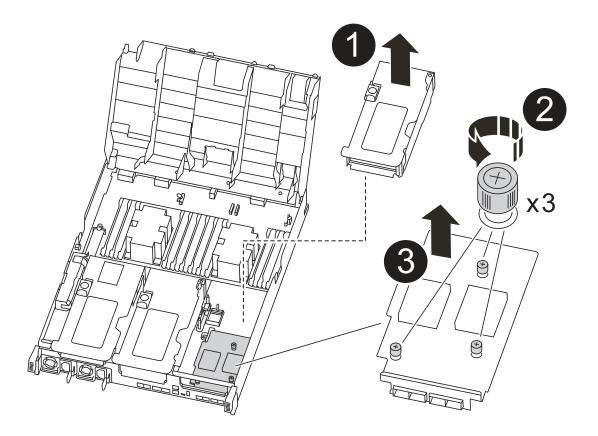
The riser raises up slightly from the controller module.

- d. Lift the riser up straight up and set it aside on a stable flat surface,
- 2. Remove the PCIe card from the riser:
 - a. Turn the riser so that you can access the PCIe card.
 - b. Press the locking bracket on the side of the PCle riser, and then rotate it to the open position.
 - c. For risers 2 and 3 only, swing the side panel up.
 - d. Remove the PCIe card from the riser by gently pushing up on the bracket and lift the card straight out of the socket.
- 3. Install the replacement PCle card in the riser by aligning the card with the socket, press the card into the socket and then close the side panel on the riser, if present.

Be sure that you properly align the card in the slot and exert even pressure on the card when seating it in the socket. The PCIe card must be fully and evenly seated in the slot.

If you are installing a card in the bottom slot and cannot see the card socket well, remove the top card so that you can see the card socket, install the card, and then reinstall the card you removed from the top slot.

4. Reinstall the riser:


- a. Align the riser with the pins to the side of the riser socket, lower the riser down on the pins.
- b. Push the riser squarely into the socket on the motherboard.
- c. Rotate the latch down flush with the sheet metal on the riser.

Step 4: Replace the mezzanine card

The mezzanine card is located under riser number 3 (slots 4 and 5). You must remove that riser to access the mezzanine card, replace the mezzanine card, and then reinstall riser number 3. See the FRU map on the controller module for more information.

You can use the following animation, illustration, or the written steps to replace the mezzanine card.

Animation - Replace the mezzanine card

2	Riser thumbscrew
3	Riser card

- 1. Remove riser number 3 (slots 4 and 5):
 - a. Open the air duct by pressing the locking tabs on the sides of the air duct, slide it toward the back of the controller module, and then rotate it to its completely open position.
 - b. Remove any SFP or QSFP modules that might be in the PCle cards.
 - c. Rotate the riser locking latch on the left side of the riser up and toward air duct.

The riser raises up slightly from the controller module.

- d. Lift the riser up, and then set it aside on a stable, flat surface.
- 2. Replace the mezzanine card:
 - a. Remove any QSFP or SFP modules from the card.
 - b. Loosen the thumbscrews on the mezzanine card, and gently lift the card directly out of the socket and set it aside.
 - c. Align the replacement mezzanine card over the socket and the guide pins and gently push the card into the socket.
 - d. Tighten the thumbscrews on the mezzanine card.
- 3. Reinstall the riser:
 - a. Align the riser with the pins to the side of the riser socket, lower the riser down on the pins.
 - b. Push the riser squarely into the socket on the motherboard.
 - c. Rotate the latch down flush with the sheet metal on the riser.

Step 5: Install the controller module

After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode.

- 1. If you have not already done so, close the air duct.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 4. Complete the installation of the controller module:
 - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source.

b. Using the locking latches, firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position.
- d. If you have not already done so, reinstall the cable management device.
- e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

- f. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components and let the controller reboot.
- 5. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 6. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 6: Restore the controller module to operation

To restore the controller, you must recable the system, give back the controller module, and then reenable automatic giveback.

1. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 2. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 7: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

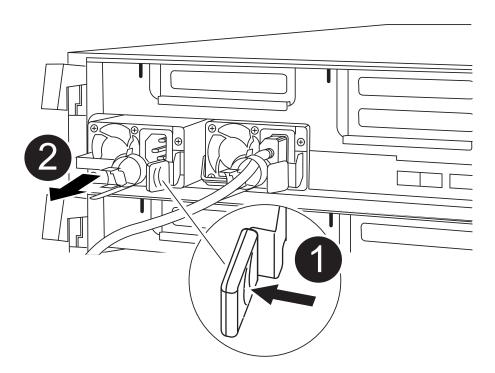
6. Reestablish any SnapMirror or SnapVault configurations.

Step 8: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replacing a power supply - ASA A400

Replacing a power supply (PSU) involves disconnecting the target PSU from the power source, unplugging the power cable, removing the old PSU and installing the replacement PSU, and then reconnecting the replacement PSU to the power source.


- The power supplies are redundant and hot-swappable.
- This procedure is written for replacing one power supply at a time.

It is a best practice to replace the power supply within two minutes of removing it from the chassis. The system continues to function, but ONTAP sends messages to the console about the degraded power supply until the power supply is replaced.

Do not mix PSUs with different efficiency ratings. Always replace like for like.

You can use the following illustration with the written steps to replace the power supply.

1. If you are not already grounded, properly ground yourself.

- 2. Identify the power supply you want to replace, based on console error messages or through the LEDs on the power supplies.
- Disconnect the power supply:
 - a. Open the power cable retainer, and then unplug the power cable from the power supply.
 - b. Unplug the power cable from the power source.
- 4. Remove the power supply:
 - a. Rotate the cam handle so that it can be used to pull the power supply out of the chassis.
 - b. Press the blue locking tab to release the power supply from the chassis.
 - c. Using both hands, pull the power supply out of the chassis, and then set it aside.
- 5. Using both hands, support and align the edges of the power supply with the opening in the controller module, and then gently push the power supply into the controller module until the locking tab clicks into place.

The power supplies will only properly engage with the internal connector and lock in place one way.

To avoid damaging the internal connector, do not use excessive force when sliding the power supply into the system.

- 6. Rotate the cam handle so that it is flush against the power supply.
- 7. Reconnect the power supply cabling:
 - a. Reconnect the power cable to the power supply and the power source.
 - b. Secure the power cable to the power supply using the power cable retainer.

Once power is restored to the power supply, the status LED should be green.

8. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the real-time clock battery - ASA A400

You replace the real-time clock (RTC) battery in the controller module so that your system's services and applications that depend on accurate time synchronization continue to function.

- You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration.

Option 1: Most configurations

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode
	<pre>impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.</pre>

Option 2: Controller is in a two-node MetroCluster

To shut down the impaired controller, you must determine the status of the controller and, if necessary, switch over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• You must leave the power supplies turned on at the end of this procedure to provide power to the healthy controller.

Steps

- 1. Check the MetroCluster status to determine whether the impaired controller has automatically switched over to the healthy controller: metrocluster show
- 2. Depending on whether an automatic switchover has occurred, proceed according to the following table:

If the impaired controller	Then
Has automatically switched over	Proceed to the next step.
Has not automatically switched over	Perform a planned switchover operation from the healthy controller: metrocluster switchover
Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed	Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support.

3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster.

```
controller_A_1::> metrocluster heal -phase aggregates
[Job 130] Job succeeded: Heal Aggregates is successful.
```

If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

4. Verify that the operation has been completed by using the metrocluster operation show command.

```
controller_A_1::> metrocluster operation show
   Operation: heal-aggregates
        State: successful
Start Time: 7/25/2016 18:45:55
   End Time: 7/25/2016 18:45:56
   Errors: -
```

5. Check the state of the aggregates by using the storage aggregate show command.

```
controller_A_1::> storage aggregate show
Aggregate Size Available Used% State #Vols Nodes
RAID Status
------
...
aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2
raid_dp, mirrored, normal...
```

6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command.

```
mcc1A::> metrocluster heal -phase root-aggregates
[Job 137] Job succeeded: Heal Root Aggregates is successful
```

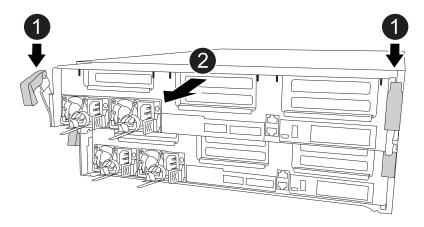
If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation.

7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster:

```
mcc1A::> metrocluster operation show
  Operation: heal-root-aggregates
        State: successful
Start Time: 7/29/2016 20:54:41
   End Time: 7/29/2016 20:54:42
   Errors: -
```

8. On the impaired controller module, disconnect the power supplies.

Step 2: Remove the controller module


To access components inside the controller module, you must remove the controller module from the chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected.

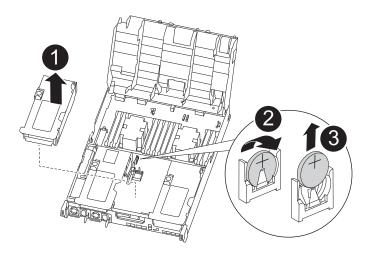
Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

6. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.


7. Place the controller module on a stable, flat surface.

Step 3: Replace the RTC battery

You need to locate the RTC battery inside the controller module, and then follow the specific sequence of steps. See the FRU map inside the controller module for the location of the RTC battery.

You can use the following animation, illustration, or the written steps to replace the RTC battery.

Animation- Replace the RTC battery

0	Middle riser
2	Remove RTC battery
3	Seat RTC battery

- 1. If you are not already grounded, properly ground yourself.
- 2. Open the air duct:
 - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module.
 - b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position.
- 3. Locate, remove, and then replace the RTC battery:
 - a. Using the FRU map, locate the RTC battery on the controller module.
 - b. Gently push the battery away from the holder, rotate it away from the holder, and then lift it out of the holder.

Note the polarity of the battery as you remove it from the holder. The battery is marked with a plus sign and must be positioned in the holder correctly. A plus sign near the holder tells you how the battery should be positioned.

- c. Remove the replacement battery from the antistatic shipping bag.
- d. Note the polarity of the RTC battery, and then insert it into the holder by tilting the battery at an angle and pushing down.
- 4. Visually inspect the battery to make sure that it is completely installed into the holder and that the polarity is correct.
- 5. Close the air duct.

Step 4: Reinstall the controller module and setting time/date after RTC battery replacement

After you replace a component within the controller module, you must reinstall the controller module in the system chassis, reset the time and date on the controller, and then boot it.

- 1. If you have not already done so, close the air duct or controller module cover.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 4. If the power supplies were unplugged, plug them back in and reinstall the power cable retainers.
- 5. Complete the installation of the controller module:
 - a. Using the locking latches, firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- b. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position.
- c. If you have not already done so, reinstall the cable management device.
- d. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C.

If your system stops at the boot menu, select the option to boot to LOADER.

- 6. Reset the time and date on the controller:
 - a. Check the date and time on the healthy controller with the show date command.
 - b. At the LOADER prompt on the target controller, check the time and date.
 - C. If necessary, modify the date with the set date mm/dd/yyyy command.
 - d. If necessary, set the time, in GMT, using the set time hh:mm:ss command.
 - e. Confirm the date and time on the target controller.
- 7. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components and let the controller reboot.
- 8. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired_node_name
- 9. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Switch back aggregates in a two-node MetroCluster configuration

This task only applies to two-node MetroCluster configurations.

Steps

1. Verify that all nodes are in the enabled state: metrocluster node show

- 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show
- 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show
- 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster.
- 5. Verify that the switchback operation has completed: metrocluster show

The switchback operation is still running when a cluster is in the waiting-for-switchback state:

The switchback operation is complete when the clusters are in the normal state.:

If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command.

6. Reestablish any SnapMirror or SnapVault configurations.

Step 6: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

ASA A800 systems

Install and setup

Start here: Choose your installation and setup experience

For most configurations (including ASA configurations), you can choose from different content formats.

Quick steps

A printable PDF of step-by-step instructions with live links to additional content.

Video steps

Video step-by-step instructions.

Detailed steps

Online step-by-step instructions with live links to additional content.

If your system is in a MetroCluster IP configuration, see the Install MetroCluster IP Configuration instructions.

Quick steps - ASA A800

This page gives graphic instructions for a typical installation of your system from racking and cabling, through initial system bring-up. Use the AFF A800 Installation and Setup Instructions if you are familiar with installing NetApp systems.

The ASA A800 uses the same installation procedure as the AFF A800 system.

Video steps - ASA A800

The following video shows how to install and cable your new system.

"Animation - Installation and Setup of an AFF A800

The ASA A800 uses the same installation procedure as the AFF A800 system.

Detailed steps - ASA A800

This page gives detailed step-by-step instructions for installing an ASA A800 system.

Step 1: Prepare for installation

To install your system, you need to create an account and register the system. You also need to inventory the appropriate number and type of cables for your system and collect specific network information.

You need to have access to the NetApp Hardware Universe (HWU) for information about site requirements as well as additional information on your configured system. You might also want to have access to the Release Notes for your version of ONTAP for more information about this system.

What you need

You need to provide the following at your site:

- · Rack space for the storage system
- Phillips #2 screwdriver
- Additional networking cables to connect your system to your network switch and laptop or console with a Web browser
 - 1. Unpack the contents of all boxes.
 - 2. Record the system serial number from the controllers.

Steps

- 1. Set up your account:
 - a. Log in to your existing account or create an account.
 - b. Register (NetApp Product Registration) your system.
- 2. Download and install NetApp Downloads: Config Advisor on your laptop.
- 3. Inventory and make a note of the number and types of cables you received.

The following table identifies the types of cables you might receive. If you receive a cable not listed in the table, see the NetApp Hardware Universe to locate the cable and identify its use.

Connector type	Part number and length	Type of cable	For
100 GbE cable	X66211A-05 (112-00595), 0.5m		HA interconnectCluster interconnect network
	X66211-1 (112-00573), 1m X66211-2 (112-00574), 2m		Storage, Data
	X66211-5 (112-00576), 5m		

Connector type	Part number and length	Type of cable	For
10 GbE cable	X6566B-3-R6 (112-00300), 3m; X6566B-5-R6 (112-00301),		• Data
	5m		
25 GbE cable	X66240A-2 (112-00598), 2m;		• Data
	X66240A-5 (112-00600), 5m		
RJ-45 (order dependent)	Not applicable		Management
Fibre Channel	X66250-2 (112-00342) 2m;		Network
	X66250-5 (112-00344) 5m;		
	X66250-15 (112-00346) 15m;		
	X66250-30 (112-00347) 30m		
Micro-USB console cable	Not applicable		Console connection during software setup
Power cables	Not applicable	ւրի	Connecting the PSUs to power source

4. Download and complete the Cluster Configuration Worksheet.

Step 2: Install the hardware

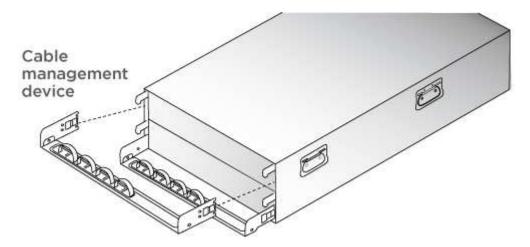
You need to install your system in a 4-post rack or NetApp system cabinet, as applicable.

Steps

1. Install the rail kits, as needed.

Installing SuperRail into a four-post rack

2. Install and secure your system using the instructions included with the rail kit.



You need to be aware of the safety concerns associated with the weight of the system.

3. Attach cable management devices (as shown).

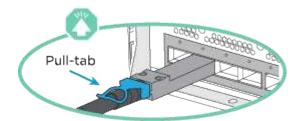
4. Place the bezel on the front of the system.

Step 3: Cable controllers

There is required cabling for your platform's cluster using the two-node switchless cluster method or the cluster interconnect network method. There is optional cabling to the Fibre Channel or iSCSI host networks or direct-attached storage. This cabling is not exclusive; you can have cable to a host network and storage.

Required cabling: Cable controllers to a cluster

Cable the controllers to a cluster by using the two-node switchless cluster method or by using the cluster interconnect network.


Option 1: Cable a two-node switchless cluster

Management network ports on the controllers are connected to switches. The HA interconnect and cluster interconnect ports are cabled on both controllers.

Before you begin

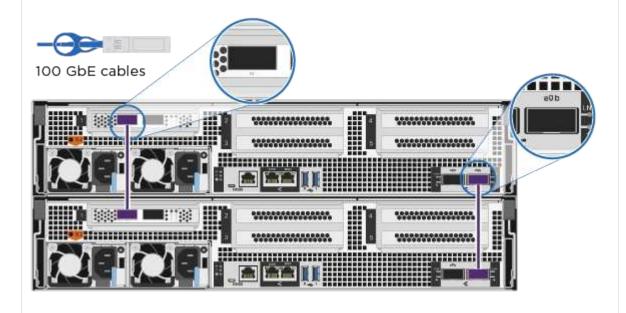
Contact your network administrator for information about connecting the system to the switches.

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

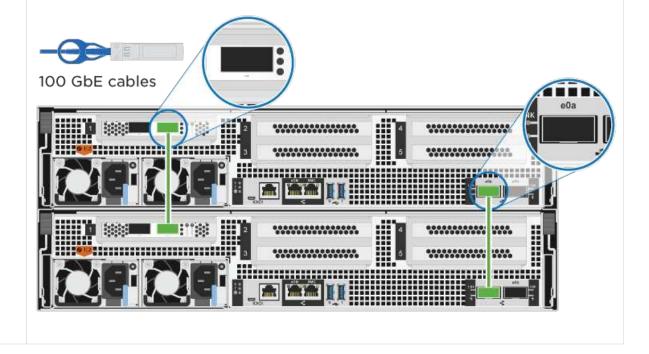
As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

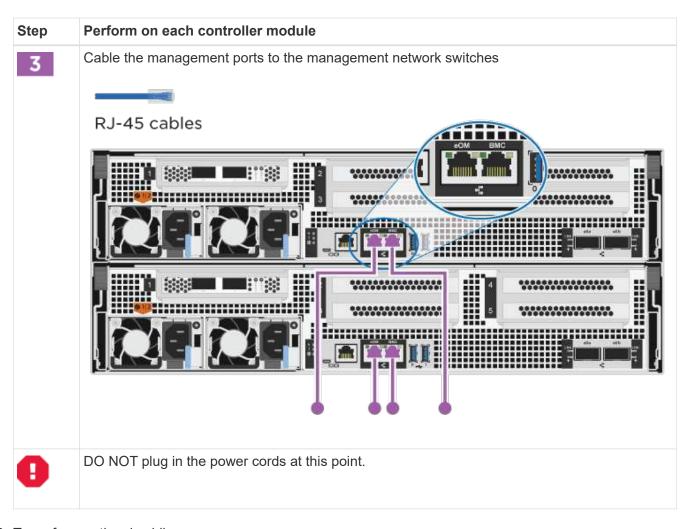
Steps

1. Use the animation or the tabulated steps to complete the cabling between the controllers and the switches:


Animation - Cable a two-node switchless cluster

Step Perform on each controller module

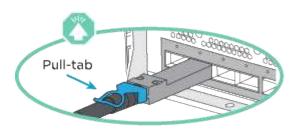

Cable the HA interconnect ports:


- e0b to e0b
- e1b to e1b

Cable the cluster interconnect ports:

- e0a to e0a
- e1a to e1a

- 2. To perform optional cabling, see:
 - Option 1: Cable to a Fibre Channel host network
 - Option 2: Cable to a 10GbE host network
 - · Option 3: Cable the controllers to a single drive shelf
 - Option 4: Cable the controllers to two drive shelves
- 3. To complete setting up your system, see Step 4: Complete system setup and configuration.

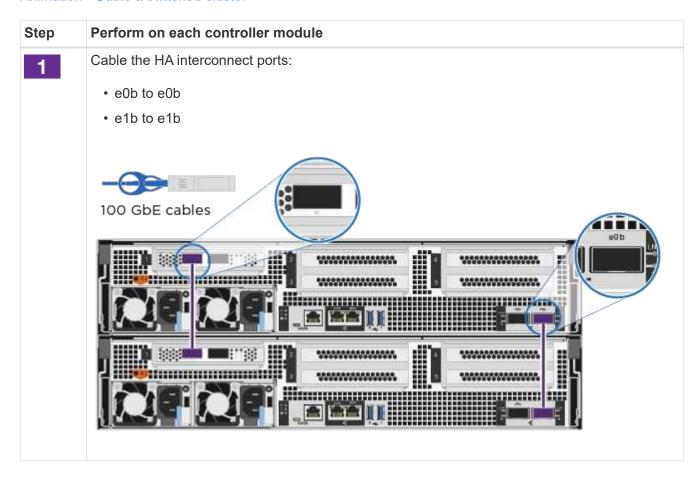

Option 2: Cable a switched cluster

Cluster interconnect and management network ports on the controllers are connected to switches while the HA interconnect ports are cabled on both controllers.

Before you begin

Contact your network administrator for information about connecting the system to the switches.

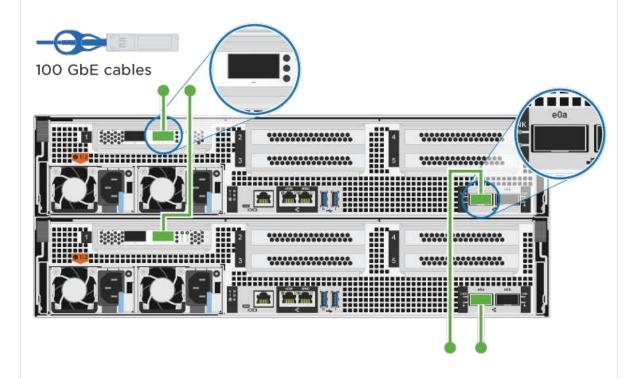
Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

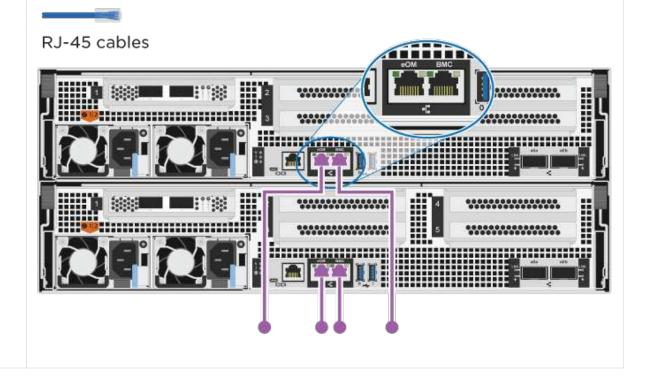


As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Steps

1. Use the animation or the tabulated steps to complete the cabling between the controllers and the switches:


Animation - Cable a switched cluster


Step Perform on each controller module

Cable the cluster interconnect ports to the 100 GbE cluster interconnect switches.

- e0a
- e1a

Cable the management ports to the management network switches

Step Perform on each controller module DO NOT plug in the power cords at this point.

- 2. To perform optional cabling, see:
 - Option 1: Cable to a Fibre Channel host network
 - Option 2: Cable to a 10GbE host network
 - Option 3: Cable the controllers to a single drive shelf
 - Option 4: Cable the controllers to two drive shelves
- 3. To complete setting up your system, see Step 4: Complete system setup and configuration.

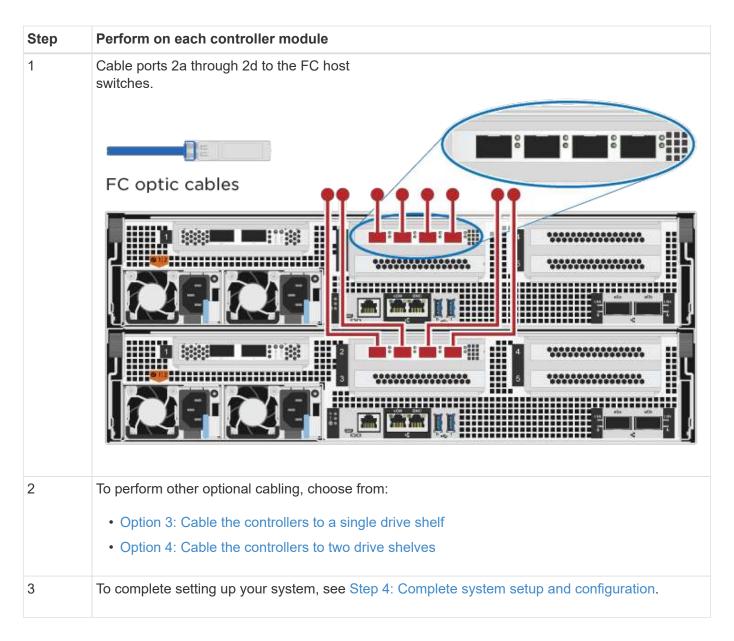
Optional cabling: Cable configuration-dependent options

You have configuration-dependent optional cabling to the Fibre Channel or iSCSI host networks or directattached storage. This cabling is not exclusive; you can have cabling to a host network and storage.


Option 1: Cable to a Fibre Channel host network

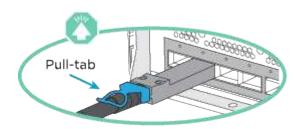
Fibre Channel ports on the controllers are connected to Fibre Channel host network switches.

Before you begin


Contact your network administrator for information about connecting the system to the switches.

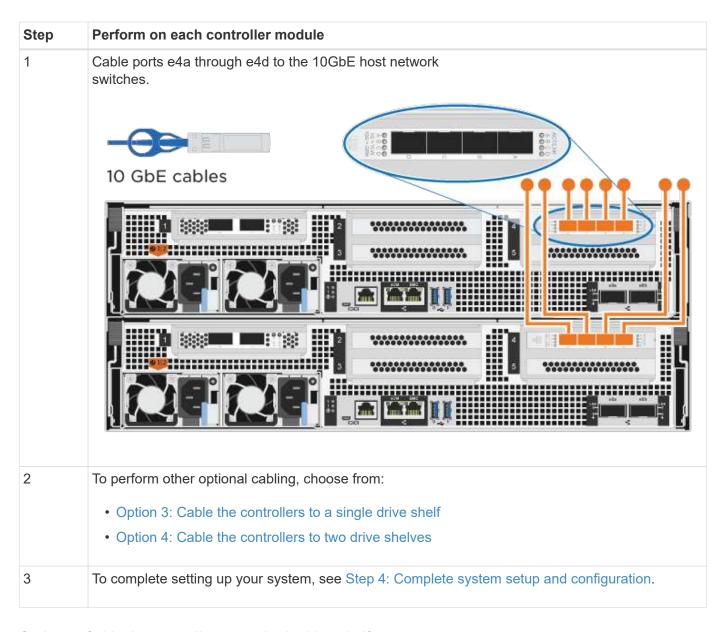
Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.


Option 2: Cable to a 10GbE host network

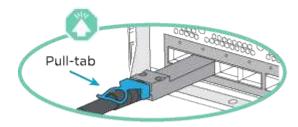
10GbE ports on the controllers are connected to 10GbE host network switches.

Before you begin


Contact your network administrator for information about connecting the system to the switches.

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

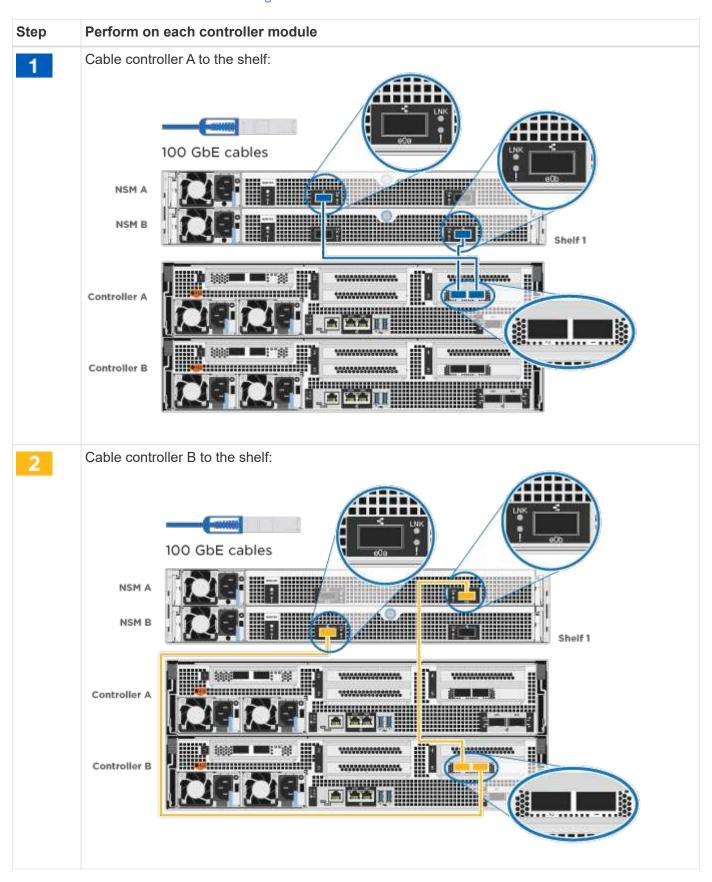
As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.



Option 3: Cable the controllers to a single drive shelf

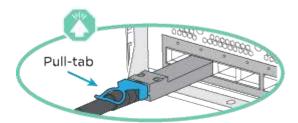
You must cable each controller to the NSM modules on the NS224 drive shelf.

Before you begin


Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.

As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Use the animation or the tabulated steps to cable your controllers to a single shelf:

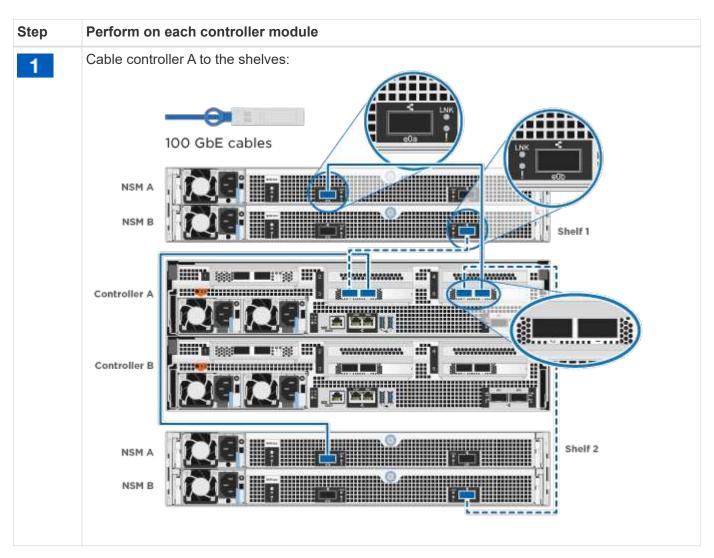

To complete setting up your system, see Step 4: Complete system setup and configuration.

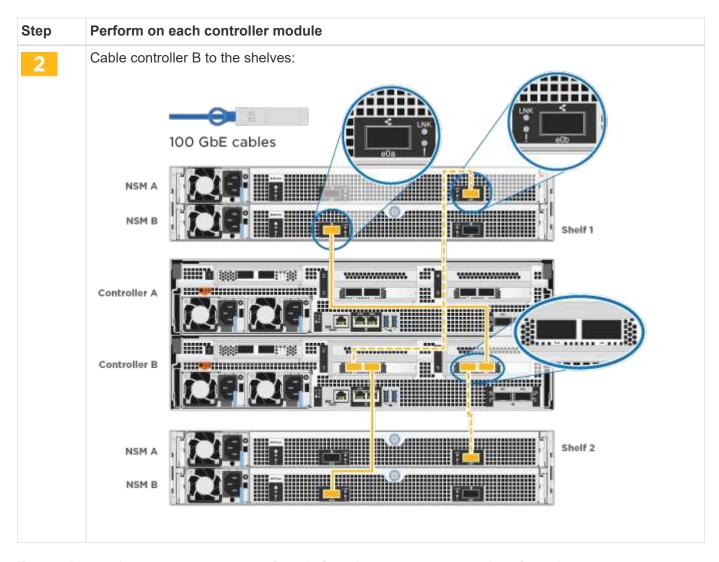
Option 4: Cable the controllers to two drive shelves

You must cable each controller to the NSM modules on both NS224 drive shelves.

Before you begin

Be sure to check the illustration arrow for the proper cable connector pull-tab orientation.





As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

Use the animation or the tabulated steps to cable your controllers to two drive shelves:

Animation - Cable the controllers to two drive shelves

To complete setting up your system, see Step 4: Complete system setup and configuration.

Step 4: Complete system setup and configuration

Complete the system setup and configuration using cluster discovery with only a connection to the switch and laptop, or by connecting directly to a controller in the system and then connecting to the management switch.

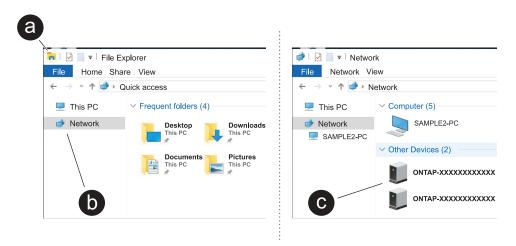
Option 1: Complete system setup and configuration if network discovery is enabled

If you have network discovery enabled on your laptop, you can complete system setup and configuration using automatic cluster discovery.

Steps

1. Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.

The system begins to boot. Initial booting may take up to eight minutes.


2. Make sure that your laptop has network discovery enabled.

See your laptop's online help for more information.

3. Use the animation to connect your laptop to the Management switch:

Animation - Connect your laptop to the Management switch

4. Select an ONTAP icon listed to discover:

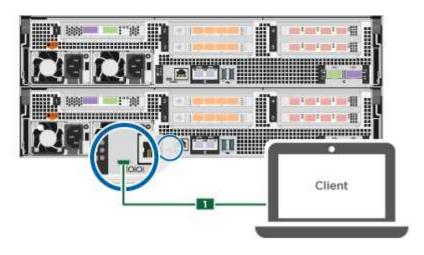
- a. Open File Explorer.
- b. Click **Network** in the left pane and right-click and select **refresh**.
- c. Double-click either ONTAP icon and accept any certificates displayed on your screen.

XXXXX is the system serial number for the target node.

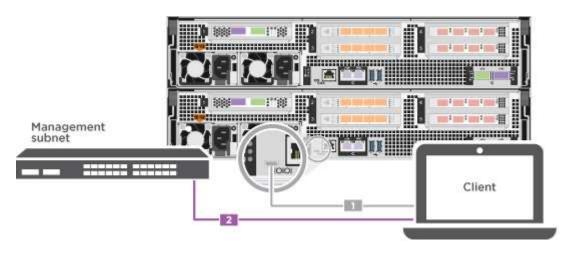
System Manager opens.

- Use System Manager guided setup to configure your system using the data you collected in the ONTAP Configuration Guide.
- 6. Verify the health of your system by running Config Advisor.
- 7. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Option 2: Complete system setup and configuration if network discovery is not enabled


If network discovery is not enabled on your laptop, you must complete the configuration and setup using this task.

Steps


- 1. Cable and configure your laptop or console:
 - a. Set the console port on the laptop or console to 115,200 baud with N-8-1.
 - (i)

See your laptop or console's online help for how to configure the console port.

b. Connect the console cable to the laptop or console, and connect the console port on the controller using the console cable that came with your system.

c. Connect the laptop or console to the switch on the management subnet.

- d. Assign a TCP/IP address to the laptop or console, using one that is on the management subnet.
- 2. Plug the power cords into the controller power supplies, and then connect them to power sources on different circuits.

The system begins to boot. Initial booting may take up to eight minutes.

3. Assign an initial node management IP address to one of the nodes.

If the management network has DHCP	Then	
Configured	Record the IP address assigned to the new controllers.	
Not configured	 a. Open a console session using PuTTY, a terminal server, or the equivalent for your environment. Check your laptop or console's online help if you do 	
		not know how to configure PuTTY.
	b. Enter the management IP address when prompted by	

4. Using System Manager on your laptop or console, configure your cluster:

a. Point your browser to the node management IP address.

The format for the address is https://x.x.x.x.

- b. Configure the system using the data you collected in the ONTAP Configuration Guide.
- 5. Verify the health of your system by running Config Advisor.
- 6. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Maintain

Maintain ASA A800 hardware

Maintain the hardware of your ASA A800 storage system to ensure long-term reliability and optimal performance. Perform regular maintenance tasks such as replacing faulty components, as this helps prevent downtime and data loss.

The maintenance procedures assume that the ASA A800 storage system has already been deployed as a storage node in the ONTAP environment.

System components

For the ASA A800 storage system, you can perform maintenance procedures on the following components.

Boot media - automated	
recovery	

The boot media stores a primary and secondary set of ONTAP image files that the storage system uses to boot. During automated recovery, the system retrieves the boot image from the partner node and automatically runs the appropriate boot menu option to install the image on your replacement boot media. The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

Boot media - manual recovery

The boot media stores a primary and secondary set of ONTAP image files that the storage system uses to boot. During manual recovery, you boot the storage system from a USB drive and manually restore the file system image and configuration. If your storage system is running ONTAP 9.17.1 and later, use the automated boot recovery procedure.

Chassis

The chassis is the physical enclosure housing all the controller components such as the controller/CPU unit, power supply, and I/O.

Controller

A controller consists of a board, firmware, and software. It controls the drives and implements the ONTAP functions.

DIMM

You must replace a DIMM (dual in-line memory module) when a memory mismatch is present, or you have a failed DIMM.

Drive

A drive is a device that provides the physical storage media for data.

Fan The fan cools the controller.

NVDIMM The NVDIMM (non-volatile dual in-line memory module) manages the data

transfer from the volatile memory to the non-volatile storage, and maintains

data integrity in the event of a power loss or system shutdown.

NVDIMM battery A NVDIMM battery is responsible for maintaining power to the NVDIMM

module.

PCIe card and risers A PCIe (peripheral component interconnect express) card is an expansion

card that plugs into the PCIe slot on the motherboard or into risers plugged

into the motherboard.

Power supply A power supply provides a redundant power source in a controller shelf.

Real-time clock battery A real time clock battery preserves system date and time information if the

power is off.

Boot media - automated recovery

Boot media automated recovery workflow - ASA A800

The automated recovery of the boot image involves the system automatically identifying and selecting the appropriate boot menu option. It uses the boot image on partner node to reinstall ONTAP on the replacement boot media in your ASA A800 system.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

To get started, review the replacement requirements, shut down the controller, replace the boot media, allow the system to restore the image, and verify system functionality.

Review the boot media requirements

Review the requirements for boot media replacement.

Shut down the controller

Shut down the controller in your storage system when when you need to replace the boot media.

Replace the boot media

Remove the failed boot media from the controller module and install the replacement boot media.

Restore the image on the boot media

Restore the ONTAP image from the partner controller.

Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Requirements for automated boot media recovery - ASA A800

Before replacing the boot media in your ASA A800, ensure you meet the necessary requirements for a successful replacement. This includes verifying that you have the correct replacement boot media, confirming that the e0S (e0M wrench) port on the impaired controller is not faulty, and determining whether Onboard Key Manager (OKM) or External Key Manager (EKM) is enabled.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

- You must replace the failed component with a replacement FRU component of the same capacity that you
 received from NetApp.
- Verify that the e0M (wrench) port on the impaired controller is connected and not faulty.

The e0M port is used to communicate between the two controllers during the automated boot recovery process.

- For OKM, you need the cluster-wide passphrase and also the backup data.
- For EKM, you need copies of the following files from the partner node:
 - /cfcard/kmip/servers.cfg file.
 - /cfcard/kmip/certs/client.crt file.
 - /cfcard/kmip/certs/client.key file.
 - /cfcard/kmip/certs/CA.pem file.
- It is critical to apply the commands to the correct controller when you are replacing the impaired boot media:
 - The impaired controller is the controller on which you are performing maintenance.
 - The *healthy controller* is the HA partner of the impaired controller.

What's next

After you've reviewed the boot media requirements, you shut down the controller.

Shut down the controller for automated boot media recovery - ASA A800

Shut down the impaired controller in your ASA A800 storage system to prevent data loss and maintain system stability during the automated boot media recovery process.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

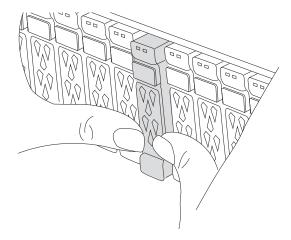
- b. Enter y when you see the prompt Do you want to disable auto-giveback?
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

What's next

After you shut down the impaired controller, you replace the boot media.

Replace the boot media for automated boot recovery - ASA A800

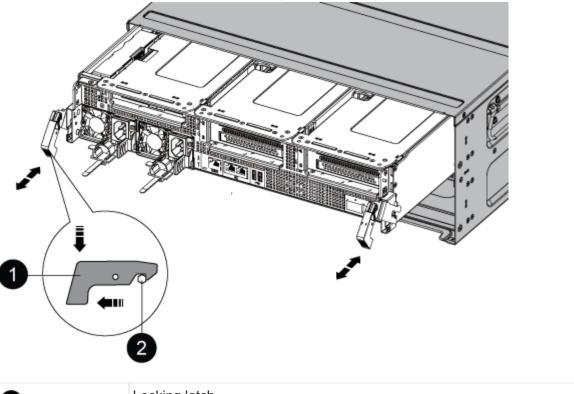

The boot media in your ASA A800 system stores essential firmware and configuration data. The replacement process involves removing and opening the controller module,

removing the impaired boot media, installing the replacement boot media in the controller module, and then reinstalling the controller module.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

The boot media is located inside the controller module under the air duct, and is accessed by removing the controller module from the system.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.

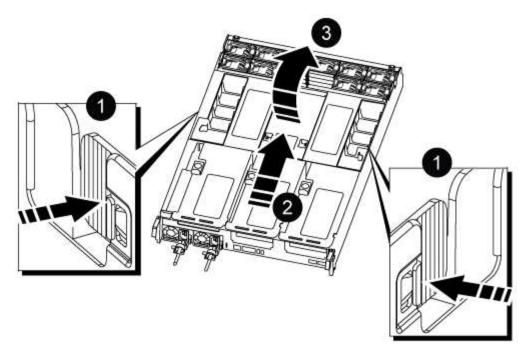


- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

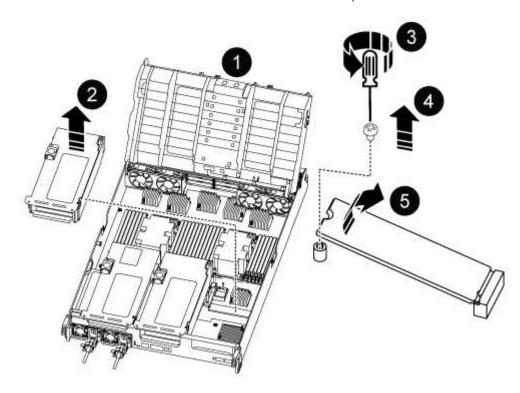
- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.



0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis.


Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 9. Place the controller module on a stable, flat surface, and then open the air duct:
 - a. Press in the locking tabs on the sides of the air duct toward the middle of the controller module.
 - b. Slide the air duct toward the fan modules, and then rotate it upward to its completely open position.

0	Air duct locking tabs
2	Slide air duct towards fan modules
3	Rotate air duct towards fan modules

10. Locate the boot media in the controller module and replace it:

0	Air duct
2	Riser 3
3	Phillips #1 screwdriver
4	Boot media screw
6	Boot media

- a. Using a #1 Phillips head screwdriver, remove the screw holding down the boot media and set the screw aside in a safe place.
- b. Grasping the sides of the boot media, gently rotate the boot media up, and then pull the boot media straight out of the socket and set it aside.
- 11. Install the replacement boot media into the controller module:
 - a. Align the edges of the boot media with the socket housing, and then gently push it squarely into the socket.
 - b. Rotate the boot media down toward the motherboard.
 - c. Secure the boot media to the motherboard using the boot media screw.

Do not over-tighten the screw or you might damage the boot media.

- 12. Reinstall the riser into the controller module.
- 13. Close the air duct:
 - a. Rotate the air duct downward.
 - b. Slide the air duct toward the risers until it clicks into place.
- 14. Install the controller module:
 - a. Align the end of the controller module with the opening in the chassis, and then gently push the controller module half-way into the way into the system.
 - b. Recable the controller module, firmly push the cam handle to finish seating the controller module, push the cam handle to the closed position, and then tighten the thumbscrew.

The controller module begins to boot and stops at the LOADER prompt.

What's next

After physically replacing the impaired boot media, restore the ONTAP image from the partner node.

Automated boot media recovery from the partner node - ASA A800

After installing the new boot media device in your ASA A800 system, you can start the automated boot media recovery process to restore the configuration from the partner node. During the recovery process, the system checks whether encryption is enabled and

determines the type of key encryption in use. If key encryption is enabled, the system guides you through the appropriate steps to restore it.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

Before you begin

- For OKM, you need the cluster-wide passphrase and also the backup data.
- For EKM, you need copies of the following files from the partner node:
 - · /cfcard/kmip/servers.cfg file.
 - · /cfcard/kmip/certs/client.crt file.
 - /cfcard/kmip/certs/client.key file.
 - /cfcard/kmip/certs/CA.pem file.

Steps

1. From the LOADER prompt, enter the command:

```
boot recovery -partner
```

The screen displays the following message:

```
Starting boot media recovery (BMR) process. Press Ctrl-C to abort...
```

Monitor the boot media install recovery process.

The process completes and displays the Installation complete message.

3. The system checks for encryption and encryption type and displays one of two messages. Depending on what message is displayed, take one of the following actions:

Occasionally, the process may not be able to identify if key manager is configured on the system. It will display an error message, ask if key manager is configured for the system, and then ask what type of key manager is configured. The process will resume after you resolve the issue.

Show example of configuration error finding prompts

```
Error when fetching key manager config from partner ${partner_ip}: ${status}

Has key manager been configured on this system

Is the key manager onboard
```

If you see this message	Do this
key manager is not configured. Exiting.	Encryption is not installed on the system. Complete the following steps:
	a. Log into the node when the login prompt is displayed and give back the storage:
	<pre>storage failover giveback -ofnode impaired_node_name</pre>
	b. Go to step 5 to enable automatic giveback if it was disabled.
key manager is	Go to step 4 to restore the appropriate key manager.
configured.	The node accesses the boot menu and runs:
	Option 10 for systems with Onboard Key Manager (OKM).
	Option 11 for systems with External Key Manager (EKM).

4. Select the appropriate key manager restoration process.

Onboard Key Manager (OKM)

If OKM is detected, the system displays the following message and begins running BootMenu Option 10.

```
key manager is configured.
Entering Bootmenu Option 10...

This option must be used only in disaster recovery procedures. Are you sure? (y or n):
```

- a. Enter Y at the prompt to confirm you want to start the OKM recovery process.
- b. Enter the following when prompted:
 - i. The passphrase
 - ii. The passphrase again when prompted to confirm
 - iii. Backup data for onboard key manager

Show example of passphrase and backup data prompts

```
Enter the passphrase for onboard key management:
----BEGIN PASSPHRASE----
<passphrase_value>
----END PASSPHRASE----
Enter the passphrase again to confirm:
----BEGIN PASSPHRASE----
<passphrase_value>
----END PASSPHRASE----
Enter the backup data:
----BEGIN BACKUP-----
<passphrase_value>
-----END BACKUP-----
```

c. Continue to monitor the recovery process as it restores the appropriate files from the partner node.

When the recovery process is complete, the node will reboot. The following messages indicate a successful recovery:

Trying to recover keymanager secrets....

Setting recovery material for the onboard key manager Recovery secrets set successfully

Trying to delete any existing km_onboard.keydb file.

Successfully recovered keymanager secrets.

- d. When the node reboots, verify the boot media recovery was successful by confirming that the system is back online and operational.
- e. Return the impaired controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired_node_name
```

f. After the partner node is fully up and serving data, synchronize the OKM keys across the cluster.

```
security key-manager onboard sync
```

External Key Manager (EKM)

If EKM is detected, the system displays the following message and begins running BootMenu Option 11.

```
key manager is configured.
Entering Bootmenu Option 11...
```

a. The next step depends on which version of ONTAP your system is running:

If your system is running	Do this
ONTAP 9.16.0	a. Press Ctlr-C to exit BootMenu Option 11.
	b. Press Ctlr-C to exit the EKM configuration process and return to the boot menu.
	c. Select BootMenu Option 8.
	d. Reboot the node.
	If AUTOBOOT is set, the node reboots and uses the configuration files from the partner node.
	If AUTOBOOT is not set, enter the appropriate boot command. The node reboots and uses the configuration files from the partner node.
	e. Reboot the node so that EKM protects the boot media partition.
	f. Proceed to step c.

If your system is running	Do this	
ONTAP 9.16.1 and later	Proceed to the next step.	

b. Enter the following EKM configuration setting when prompted:

Action	Example
Enter the client certificate contents from the /cfcard/kmip/certs/client.crt file.	Show example of client certificate contents BEGIN CERTIFICATE <certificate_value>END CERTIFICATE</certificate_value>
Enter the client key file contents from the /cfcard/kmip/certs/client.key file.	Show example of client key file contents BEGIN RSA PRIVATE KEY <key_value>END RSA PRIVATE KEY</key_value>
Enter the KMIP server CA(s) file contents from the /cfcard/kmip/certs/CA.pem file.	Show example of KMIP server file contents BEGIN CERTIFICATE <kmip_certificate_ca_value>END CERTIFICATE</kmip_certificate_ca_value>

Λ	ct	ior	•	
А	CI	ior	1	

Enter the server configuration file contents from the /cfcard/kmip/servers.cfg file.

Example

Show example of server configuration file contents

xxx.xxx.xxx:5696.host= XXX.XXX.XXX xxx.xxx.xxx:5696.port= xxx.xxx.xxx.xxx:5696.trust ed file=/cfcard/kmip/certs /CA.pem xxx.xxx.xxx:5696.proto col=KMIP1 4 1xxx.xxx.xxx.xxx:5696.time out=25 xxx.xxx.xxx:5696.nbio= xxx.xxx.xxx.xxx:5696.cert file=/cfcard/kmip/certs/cl ient.crt xxx.xxx.xxx:5696.key_f ile=/cfcard/kmip/certs/cli ent.key xxx.xxx.xxx:5696.ciphe rs="TLSv1.2:kRSA:!CAMELLIA :!IDEA:!RC2:!RC4:!SEED:!eN ULL: !aNULL" xxx.xxx.xxx.5696.verif y=true xxx.xxx.xxx:5696.netap p keystore uuid=<id value>

Action

If prompted, enter the ONTAP Cluster UUID from the partner.

You can check the cluster UUID from the partner node using the cluster identify show command.

Example

Show example of ONTAP Cluster UUID

Notice:

bootarg.mgwd.cluster_uuid
is not set or is empty.
Do you know the ONTAP
Cluster UUID? {y/n} y
Enter the ONTAP Cluster
UUID: <cluster_uuid_value>

System is ready to utilize external key manager(s).

If prompted, enter the temporary network interface and settings for the node.

You need to enter:

- 1. The IP address for the port
- 2. The netmask for the port
- 3. The IP address of the default gateway

Show example of a temporary network setting

In order to recover key information, a temporary network interface needs to be configured.

Select the network port you want to use (for example, 'e0a') e0M

Enter the IP address for
port : xxx.xxx.xxx.xxx
Enter the netmask for port
: xxx.xxx.xxx.xxx
Enter IP address of
default gateway:
xxx.xxx.xxx
Trying to recover keys
from key servers....
[discover_versions]
[status=SUCCESS reason=
message=]

- c. Depending on whether the key is successfully restored, take one of the following actions:
 - If you see kmip2_client: Successfully imported the keys from external key server: xxx.xxx.xxx.xxx:5696 in the output, the EKM configuration has been successfully restored.

The process attempts to restore the appropriate files from the partner node and reboots the node. Go to step d.

• If the key is not successfully restored, the system will halt and indicate that it could not restore the key. The error and warning messages are displayed. You must rerun the recovery process:

```
boot recovery -partner
```

Show example of key recovery error and warning messages

- d. When the node reboots, verify that the boot media recovery was successful by confirming that the system is back online and operational.
- e. Return the controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired node name
```

5. If automatic giveback was disabled, reenable it:

```
storage failover modify -node local -auto-giveback true
```

6. If AutoSupport is enabled, restore automatic case creation:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

What's next

After you've restored the ONTAP image and the node is up and serving data, you return the failed part to NetApp.

Return the failed boot media to NetApp - ASA A800

If a component in your ASAF A800 system fails, return the failed part to NetApp. See the Part Return and Replacements page for further information.

Boot media - manual recovery

Boot media manual recovery workflow - ASA A800

Get started with replacing the boot media in your ASA A800 storage system by reviewing the replacement requirements, checking encryption status, shutting down the controller, replacing the boot media, booting the recovery image, restoring encryption, and verifying the system functionality.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Review the boot media requirements

Review the requirements for replacing the boot media.

Check encryption key support and status

Determine whether the system has security key manager enabled or encrypted disks.

Shut down the controller

Shut down the controller when when you need to replace the boot media.

Replace the boot media

Remove the failed boot media from the System Management module and install the replacement boot media, and then transfer an ONTAP image using a USB flash drive.

Boot the recovery image

Boot the ONTAP image from the USB drive, restore the file system, and verify the environmental variables.

Restore the onboard key manager configuration or the external key manager from the ONATP boot menu.

Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Requirements for manual boot media recovery - ASA A800

Before replacing the boot media in your ASA A800 system, ensure you meet the necessary requirements for a successful replacement. This includes making sure you have a USB flash drive with the appropriate amount of storage and verifying that you have the correct replacement boot device.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

USB flash drive

- Ensure you have a USB flash drive formatted to FAT32.
- The USB must have sufficient storage capacity to hold the image xxx.tgz file.

File preparation

Copy the <code>image_xxx.tgz</code> file to the USB flash drive. This file will be used when you transfer the ONTAP image using the USB flash drive.

Component replacement

Replace the failed component with the replacement component provided by NetApp.

Controller identification

It is critical to apply the commands to the correct controller when you are replacing the impaired boot media:

- The *impaired controller* is the controller on which you are performing maintenance.
- The *healthy controller* is the HA partner of the impaired controller.

What's next?

After you've reviewed the requirements to replace the boot media, you need to check encryption key support and status on the boot media.

Check encryption key support and status - ASA A800

To ensure data security on your storage system, you need to verify the encryption key support and status on your boot media. Check if your ONTAP version supports NetApp Volume Encryption (NVE), and before you shut down the controller check if the key manager is active.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Step 1: Check if your version of ONTAP supports NetApp Volume Encryption

Check whether your ONTAP version supports NetApp Volume Encryption (NVE). This information is crucial for downloading the correct ONTAP image.

Steps

1. Determine if your ONTAP version supports encryption by running the following command:

version -v

If the output includes 10no-DARE, NVE is not supported on your cluster version.

- 2. Depending on whether NVE is supported on your system, take one of the following actions:
 - If NVE is supported, download the ONTAP image with NetApp Volume Encryption.
 - If NVE is not supported, download the ONTAP image without NetApp Volume Encryption.

Step 2: Determine if it is safe to shut down the controller

To safely shut down a controller, first identify whether the External Key Manager (EKM) or the Onboard Key Manager (OKM) is active. Then, verify the key manager in use, display the appropriate key information, and take action based on the status of the authentication keys.

Steps

1. Determine which key manager is enabled on your system:

ONTAP version	Run this command
ONTAP 9.14.1 or later	security key-manager keystore show
	• If EKM is enabled, EKM is listed in the command output.
	• If OKM is enabled, OKM is listed in the command output.
	• If no key manager is enabled, No key manager keystores configured is listed in the command output.
ONTAP 9.13.1 or earlier	security key-manager show-key-store
	• If EKM is enabled, external is listed in the command output.
	• If OKM is enabled, onboard is listed in the command output.
	• If no key manager is enabled, No key managers configured is listed in the command output.

2. Depending on whether a key manger is configured on your system, select one of the following options.

No key manager configured

You can safely shut down the impaired controller. Go to shutdown the impaired controller.

External or Onboard key manager configured

a. Enter the following query command to display the status of the authentication keys in your key manager.

```
security key-manager key query
```

b. Check the output for the value in the Restored column for your key manager.

This column indicates whether the authentication keys for your key manager (either EKM or OKM) have been successfully restored.

3. Depending on whether your system is using the External Key Manager or Onboard Key Manager, select one of the following options.

External Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	You can safely shut down the impaired controller. Go to shutdown the impaired controller.
Anything other than true	 a. Restore the external key management authentication keys to all nodes in the cluster using the following command: security key-manager external restore If the command fails, contact NetApp Support. b. Verify that the Restored column displays true for all authentication keys by entering the security key-manager key query command. If all the authentication keys are true, you can safely shut down the impaired controller. Go to shutdown the impaired controller.

Onboard Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	Manually back up the OKM information.
	a. Go to the advanced mode by entering set -priv advanced and then enter Y when prompted.
	b. Enter the following command to display the key management information:
	security key-manager onboard show-backup
	c. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	d. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Output value in Restored column	Follow these steps
Anything other than true	a. Enter the onboard security key-manager sync command:
	security key-manager onboard sync
	b. Enter the 32 character, alphanumeric onboard key management passphrase when prompted.
	If the passphrase cannot be provided, contact NetApp Support.
	c. Verify the Restored column displays true for all authentication keys:
	security key-manager key query
	d. Verify that the Key Manager type displays onboard, and then manually back up the OKM information.
	e. Enter the command to display the key management backup information:
	security key-manager onboard show-backup
	f. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	g. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Shut down the controller for manual boot media recovery - ASA A800

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller. Shut down or take over the impaired controller using the appropriate procedure for your configuration.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Option 1: Most systems

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

Steps

a. Take the impaired controller to the LOADER prompt:

If the impaired controller displays	Then
The LOADER prompt	Go to Remove controller module.
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

b. From the LOADER prompt, enter: printenv to capture all boot environmental variables. Save the output to your log file.

This command may not work if the boot device is corrupted or non-functional.

Option 2: System is in a MetroCluster

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration

 State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

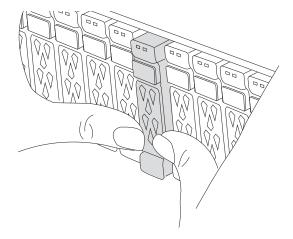
The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press
	Ctrl-C, and then respond y.

Replace the boot media and prepare for manual boot recovery - ASA A800

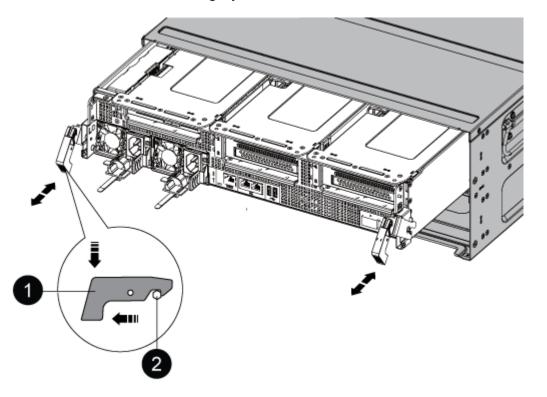

To replace the boot media, you must remove the impaired controller module, install the replacement boot media, and transfer the boot image to a USB flash drive.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Step 1: Remove the controller module

You must remove the controller module from the chassis when you replace the controller module or replace a component inside the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.

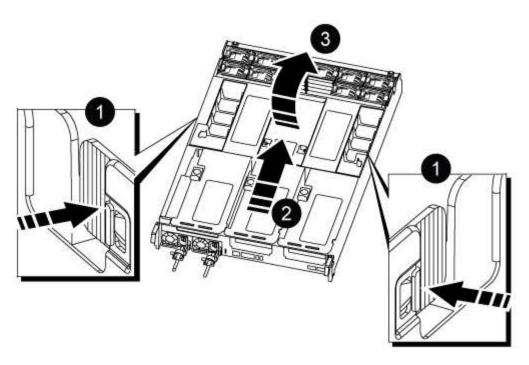

- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- 5. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management

device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

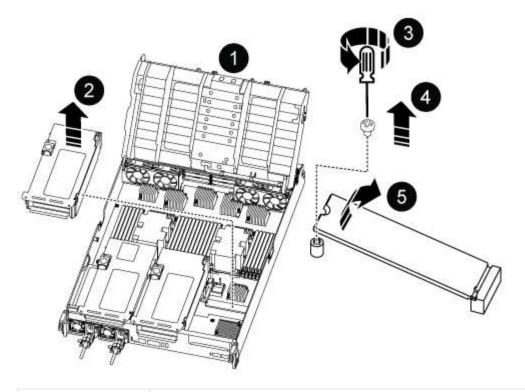


0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 9. Place the controller module on a stable, flat surface, and then open the air duct:
 - a. Press in the locking tabs on the sides of the air duct toward the middle of the controller module.
 - b. Slide the air duct toward the fan modules, and then rotate it upward to its completely open position.


0	Air duct locking tabs
2	Slide air duct towards fan modules
3	Rotate air duct towards fan modules

Step 2: Replace the boot media

You locate the failed boot media in the controller module by removing Riser 3 on the controller module before you can replace the boot media.

You need a Phillips head screwdriver to remove the screw that holds the boot media in place.

1. Locate the boot media:

0	Air duct
2	Riser 3
3	Phillips #1 screwdriver
4	Boot media screw
6	Boot media

2. Remove the boot media from the controller module:

- a. Using a #1 Phillips head screwdriver, remove the screw holding down the boot media and set the screw aside in a safe place.
- b. Grasping the sides of the boot media, gently rotate the boot media up, and then pull the boot media straight out of the socket and set it aside.
- 3. Install the replacement boot media into the controller module:
 - a. Align the edges of the boot media with the socket housing, and then gently push it squarely into the socket.
 - b. Rotate the boot media down toward the motherboard.
 - c. Secure the boot media to the motherboard using the boot media screw.

Do not over-tighten the screw or you might damage the boot media.

4. Reinstall the riser into the controller module.

- 5. Close the air duct:
 - a. Rotate the air duct downward.
 - b. Slide the air duct toward the risers until it clicks into place.

Step 3: Transfer the boot image to the boot media

The replacement boot media that you installed is without a boot image so you need to transfer a boot image using a USB flash drive.

Before you begin

- You must have a USB flash drive, formatted to FAT32, with at least 4GB capacity.
- A copy of the same image version of ONTAP as what the impaired controller was running. You can
 download the appropriate image from the Downloads section on the NetApp Support Site
 - If NVE is enabled, download the image with NetApp Volume Encryption, as indicated in the download button.
 - If NVE is not enabled, download the image without NetApp Volume Encryption, as indicated in the download button.
- If your system is an HA pair, you must have a network connection.
- If your system is a stand-alone system you do not need a network connection, but you must perform an additional reboot when restoring the var file system.

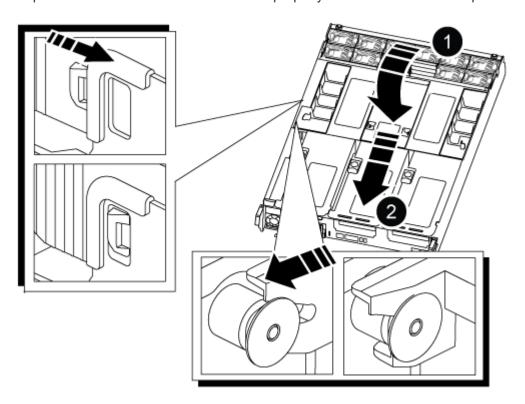
Steps

- 1. Download and copy the appropriate service image from the NetApp Support Site to the USB flash drive.
 - a. Download the service image to your work space on your laptop.
 - b. Unzip the service image.

If you are extracting the contents using Windows, do not use WinZip to extract the netboot image. Use another extraction tool, such as 7-Zip or WinRAR.

There are two folders in the unzipped service image file:

- boot
- efi
- c. Copy the efi folder to the top directory on the USB flash drive.



If the service image has no efi folder, see EFI folder missing from Service Image download file used for boot device recovery for FAS and AFF models[^].

The USB flash drive should have the efi folder and the same Service Image (BIOS) version of what the impaired controller is running.

- a. Remove the USB flash drive from your laptop.
- 2. If you have not already done so, close the air duct:
 - a. Swing the air duct all the way down to the controller module.
 - b. Slide the air duct toward the risers until the locking tabs click into place.

c. Inspect the air duct to make sure that it is properly seated and locked into place.

0	Air duct
2	Risers

- 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
- 4. Reinstall the cable management device and recable the system, as needed.

When recabling, remember to reinstall the media converters (SFPs or QSFPs) if they were removed.

5. Insert the USB flash drive into the USB slot on the controller module.

Make sure that you install the USB flash drive in the slot labeled for USB devices, and not in the USB console port.

- 6. Gently push the controller module all the way into the system until the controller module locking hooks begin to rise, firmly push on the locking hooks to finish seating the controller module, and then swing the locking hooks into the locked position over the pins on the controller module.
- 7. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

8. Interrupt the boot process by pressing Ctrl-C to stop at the LOADER prompt.

If you miss this message, press Ctrl-C, select the option to boot to Maintenance mode, and then halt the

Manual boot media recovery from a USB drive - ASA A800

After installing the new boot media device in your system, you can boot the recovery image from a USB drive and restore the configuration from the partner node.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Steps

- From the LOADER prompt, boot the recovery image from the USB flash drive: boot_recovery
 The image is downloaded from the USB flash drive.
- 2. When prompted, either enter the name of the image or accept the default image displayed inside the brackets on your screen.
- 3. Restore the var file system:

Option 1: ONTAP 9.16.0 or earlier

- a. On the impaired controller, press Y when you see Do you want to restore the backup configuration now?
- b. If prompted on the impaired controller, press Y to overwrite /etc/ssh/ssh host ecdsa key.
- c. On the healthy partner controller, set the impaired controller to advanced privilege level: set -privilege advanced.
- d. On the healthy partner controller, run the restore backup command: system node restore-backup -node local -target-address impaired node IP address.

NOTE: If you see any message other than a successful restore, contact NetApp Support.

- e. On the healthy partner controller, return the impaired controller to admin level: set -privilege admin.
- f. On the impaired controller, press Y when you see Was the restore backup procedure successful?.
- g. On the impaired controller, press Y when you see ...would you like to use this restored copy now?.
- h. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- i. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.

Option 2: ONTAP 9.16.1 or later

a. On the impaired controller, press Y when prompted to restore the backup configuration.

After restore procedure is successful, this message will be seen on the console-syncflash partner: Restore from partner complete.

- b. On the impaired controller, press Y when prompted to confirm if the restore backup was successful.
- c. On the impaired controller, press Y when prompted to use the restored configuration.
- d. On the impaired controller, press Y when prompted to reboot the node.
- e. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- f. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.
- 4. Connect the console cable to the partner controller.
- 5. Give back the controller using the storage failover giveback -fromnode local command.
- 6. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command.
- 7. If AutoSupport is enabled, restore/unsuppress automatic case creation by using the system node autosupport invoke -node * -type all -message MAINT=END command.

NOTE: If the process fails, contact NetApp Support.

Restore OKM, NSE, and NVE - ASA A800

Restore encryption on the replacement boot media.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

You must complete steps specific to systems that have Onboard Key Manager (OKM), NetApp Storage Encryption (NSE) or NetApp Volume Encryption (NVE) enabled using the settings that you captured at the beginning of the boot media replace procedure.

Depending on which a key manger is configured on your system, select one of the following options to restore it from the boot menu.

- Option 1: Restore the Onboard Key Manager configuration
- Option 2: Restore the External Key Manager configuration

Option 1: Restore the Onboard Key Manager configuration

Restore the Onboard Key Manager (OKM) configuration from the ONTAP boot menu.

Before you begin

- Make sure you have following information while restoring the OKM configuration:
 - · Cluster-wide passphrase entered while enabling onboard key management.
 - Backup information for the Onboard Key Manager.
- Perform the How to verify onboard key management backup and cluster-wide passphrase procedure before proceeding.

Steps

- 1. Connect the console cable to the target controller.
- 2. From the ONTAP boot menu select the appropriate option from the boot menu.

ONTAP version	Select this option
ONTAP 9.8 or later	Select option 10.
	Show example boot menu
	Please choose one of the following: (1) Normal Boot. (2) Boot without /etc/rc. (3) Change password. (4) Clean configuration and initialize all disks. (5) Maintenance mode boot. (6) Update flash from backup config. (7) Install new software first. (8) Reboot node. (9) Configure Advanced Drive Partitioning. (10) Set Onboard Key Manager recovery secrets. (11) Configure node for external key management.
	Selection (1-11)? 10

ONTAP version	Select this option
ONTAP 9.7 and earlier	Select the hidden option recover_onboard_keymanager
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	Selection (1-19)?
	recover_onboard_keymanager

3. Confirm that you want to continue the recovery process.

Show example prompt

This option must be used only in disaster recovery procedures. Are you sure? (y or n):

4. Enter the cluster-wide passphrase twice.

While entering the passphrase the console will not show any input.

Show example prompt

```
Enter the passphrase for onboard key management:

Enter the passphrase again to confirm:
```

- 5. Enter the backup information.
 - a. Paste the entire content from the BEGIN BACKUP line through the END BACKUP line.

Enter the backup data:

-----END BACKUP-----

b. Press the enter key twice at the end of the input.

The recovery process completes.

Do not proceed if the displayed output is anything other than Successfully recovered keymanager secrets.

Perform troubleshooting to correct the error.

6. Select option 1 from the boot menu to continue booting into ONTAP.

```
**************
* Select option "(1) Normal Boot." to complete the recovery process.
******************
(1)
   Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6)
   Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

7. Confirm that the controller's console displays the following message.

```
Waiting for giveback...(Press Ctrl-C to abort wait)
```

8. From the partner node, giveback the partner controller by entering the following command.

```
storage failover giveback -fromnode local -only-cfo-aggregates true.
```

9. After booting with only the CFO aggregate, run the following command.

```
security key-manager onboard sync
```

10. Enter the cluster-wide passphrase for the Onboard Key Manager.

Enter the cluster-wide passphrase for the Onboard Key Manager:

All offline encrypted volumes will be brought online and the corresponding volume encryption keys (VEKs) will be restored automatically within 10 minutes. If any offline encrypted volumes are not brought online automatically, they can be brought online manually using the "volume online -vserver <vserver> -volume <volume name>" command.

If the sync is successful the cluster prompt is returned with no additional messages. If the sync fails an error message appears before returning to the cluster prompt. Do not continue until the the error is corrected and the sync runs successfully.

11. Ensure that all keys are synced by entering the following command.

security key-manager key query -restored false.

There are no entries matching your query.

No results should appear when filtering for false in the restored parameter.

12. Giveback the node from the partner by entering the following command.

```
storage failover giveback -fromnode local
```

13. Restore automatic giveback, if you disabled it, by entering the following command.

```
storage failover modify -node local -auto-giveback true
```

14. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Option 2: Restore the External Key Manager configuration

Restore the External Key Manager configuration from the ONTAP boot menu.

Before you begin

You need the following information for restoring the External Key Manager (EKM) configuration.

- A copy of the /cfcard/kmip/servers.cfg file from another cluster node or the following information:
 - The KMIP server address.
 - The KMIP port.
- A copy of the /cfcard/kmip/certs/client.crt file from another cluster node or the client certificate.

- A copy of the /cfcard/kmip/certs/client.key file from another cluster node or the client key.
- A copy of the /cfcard/kmip/certs/CA.pem file from another cluster node or the KMIP server CA(s).

Steps

- 1. Connect the console cable to the target controller.
- 2. Select option 11 from the ONTAP boot menu.

Show example boot menu

```
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 11
```

3. When prompted, confirm you have gathered the required information.

Show example prompt

```
Do you have a copy of the /cfcard/kmip/certs/client.crt file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/client.key file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/CA.pem file? {y/n}
Do you have a copy of the /cfcard/kmip/servers.cfg file? {y/n}
```

4. When prompted, enter the client and server information.

Show prompt

```
Enter the client certificate (client.crt) file contents:
Enter the client key (client.key) file contents:
Enter the KMIP server CA(s) (CA.pem) file contents:
Enter the server configuration (servers.cfg) file contents:
```

Show example

```
Enter the client certificate (client.crt) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the client key (client.key) file contents:
----BEGIN RSA PRIVATE KEY----
<key value>
----END RSA PRIVATE KEY----
Enter the KMIP server CA(s) (CA.pem) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the IP address for the KMIP server: 10.10.10.10
Enter the port for the KMIP server [5696]:
System is ready to utilize external key manager(s).
Trying to recover keys from key servers....
kmip init: configuring ports
Running command '/sbin/ifconfig eOM'
kmip init: cmd: ReleaseExtraBSDPort e0M
```

After you enter the client and server information, the recovery process completes.

Show example

```
System is ready to utilize external key manager(s).

Trying to recover keys from key servers....

Performing initialization of OpenSSL

Successfully recovered keymanager secrets.
```

5. Select option 1 from the boot menu to continue booting into ONTAP.

```
*****************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
*****************
*****
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

6. Restore automatic giveback if you disabled it.

```
storage failover modify -node local -auto-giveback true
```

7. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Return the failed boot media to NetApp - ASA A800

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Chassis

Replace the chassis - ASA A800

To replace the chassis, you must move the bezel, controller modules, and NVMe drives from the impaired chassis to the replacement chassis, and then remove the impaired chassis from the equipment rack or system cabinet and install the replacement chassis in its place.

All other components in the system must be functioning properly; if not, you must contact technical support.

- You can use this procedure with all versions of ONTAP supported by your system.
- This procedure is written with the assumption that you are moving the bezel, NVMe drives, and controller modules to the new chassis, and that the replacement chassis is a new component from NetApp.
- This procedure is disruptive. For a two-node cluster, you will have a complete service outage and a partial outage in a multi-node cluster.

Shut down the controllers - ASA A800

This procedure is for systems with two node configurations. For more information about graceful shutdown when servicing a cluster, see Gracefully shutdown and power up your storage system Resolution Guide - NetApp Knowledge Base.

Before you begin

- Make sure you have the necessary permissions and credentials:
 - Local administrator credentials for ONTAP.
 - BMC accessability for each controller.
- Make sure you have the necessary tools and equipment for the replacement.
- · As a best practice before shutdown, you should:
 - · Perform additional system health checks.
 - Upgrade ONTAP to a recommended release for the system.
 - Resolve any Active IQ Wellness Alerts and Risks.
 Make note of any faults presently on the system, such as LEDs on the system components.

Steps

- 1. Log into the cluster through SSH or log in from any node in the cluster using a local console cable and a laptop/console.
- 2. Stop all clients/host from accessing data on the NetApp system.
- 3. Suspend external backup jobs.
- 4. If AutoSupport is enabled, suppress case creation and indicate how long you expect the system to be offline:

```
system node autosupport invoke -node * -type all -message "MAINT=2h Replace
chassis"
```

5. Identify the SP/BMC address of all cluster nodes:

```
system service-processor show -node * -fields address
```

6. Exit the cluster shell:

exit

7. Log into SP/BMC over SSH using the IP address of any of the nodes listed in the output from the previous step to monitor progress.

If you are using a console/laptop, log into the controller using the same cluster administrator credentials.

8. Halt the two nodes located in the impaired chassis:

system node halt -node <node1>, <node2> -skip-lif-migration-before-shutdown true -ignore-quorum-warnings true -inhibit-takeover true

For clusters using SnapMirror synchronous operating in StrictSync mode: system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown true -ignore-quorum-warnings true -inhibit-takeover true -ignore-strict -sync-warnings true

9. Enter **y** for each controller in the cluster when you see:

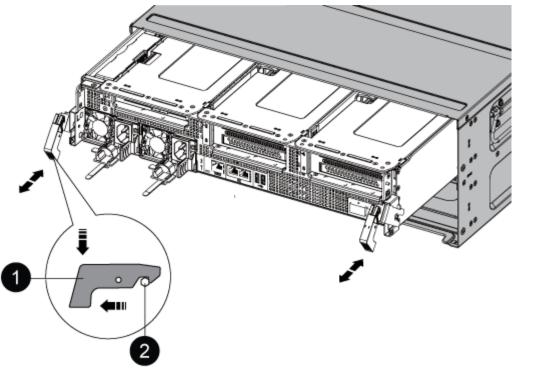
Warning: Are you sure you want to halt node <node name>? {y|n}:

10. Wait for each controller to halt and display the LOADER prompt.

Replace chassis - ASA A800

Move the power supplies, hard drives, and controller module from the impaired chassis to the new chassis, and swap out the impaired chassis with the new chassis of the same model as the impaired chassis.

Step 1: Remove the controller modules


To replace the chassis, you must remove the controller modules from the old chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Release the power cable retainers, and then unplug the cables from the power supplies.
- 3. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 4. Remove the cable management device from the controller module and set it aside.
- 5. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

0	Locking latch
2	Locking pin

6. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

7. Set the controller module aside in a safe place, and repeat these steps for the other controller module in the chassis.

Step 2: Move drives to the new chassis

You need to move the drives from each bay opening in the old chassis to the same bay opening in the new chassis.

- 1. Gently remove the bezel from the front of the system.
- 2. Remove the drives:
 - a. Press the release button at the top of the carrier face below the LEDs.
 - b. Pull the cam handle to its fully open position to unseat the drive from the midplane, and then gently slide the drive out of the chassis.

The drive should disengage from the chassis, allowing it to slide free of the chassis.

When removing a drive, always use two hands to support its weight.

Drives are fragile. Handle them as little as possible to prevent damage to them.

- 3. Align the drive from the old chassis with the same bay opening in the new chassis.
- 4. Gently push the drive into the chassis as far as it will go.

The cam handle engages and begins to rotate upward.

5. Firmly push the drive the rest of the way into the chassis, and then lock the cam handle by pushing it up and against the drive holder.

Be sure to close the cam handle slowly so that it aligns correctly with the front of the drive carrier. It clicks when it is secure.

6. Repeat the process for the remaining drives in the system.

Step 3: Replace a chassis from within the equipment rack or system cabinet

You must remove the existing chassis from the equipment rack or system cabinet before you can install the replacement chassis.

- 1. Remove the screws from the chassis mount points.
- 2. With two people, slide the old chassis off the rack rails in a system cabinet or equipment rack, and then set it aside.
- 3. If you are not already grounded, properly ground yourself.
- 4. Using two people, install the replacement chassis into the equipment rack or system cabinet by guiding the chassis onto the rack rails in a system cabinet or equipment rack.
- 5. Slide the chassis all the way into the equipment rack or system cabinet.
- Secure the front of the chassis to the equipment rack or system cabinet, using the screws you removed from the old chassis.
- 7. If you have not already done so, install the bezel.

Step 4: Install the controller modules

After you install the controller modules into the new chassis, you need to boot it.

For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis.

1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

- 2. Recable the console to the controller module, and then reconnect the management port.
- 3. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- c. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- e. Interrupt the normal boot process by pressing Ctrl-C.
- 4. Repeat the preceding steps to install the second controller into the new chassis.

Complete chassis replacement - ASA A800

You must verify the HA state of the chassis and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Verify and set the HA state of the chassis

You must verify the HA state of the chassis, and, if necessary, update the state to match your system configuration.

1. In Maintenance mode, from either controller module, display the HA state of the local controller module and chassis: ha-config show

The HA state should be the same for all components.

- 2. If the displayed system state for the chassis does not match your system configuration:
 - a. Set the HA state for the chassis: ha-config modify chassis HA-state

The value for HA-state can be one of the following:

- ha
- mcc
- mccip
- non-ha
- b. Confirm that the setting has changed: ha-config show
- 3. If you have not already done so, recable the rest of your system.
- 4. Reinstall the bezel on the front of the system.

Step 2: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Controller

Overview of controller replacement - ASA A800

You must review the prerequisites for the replacement procedure and select the correct one for your version of the ONTAP operating system.

- · All drive shelves must be working properly.
- The healthy controller must be able to take over the controller that is being replaced (referred to in this procedure as the "impaired controller").
- If your system is in a MetroCluster configuration, you must review the section Choosing the correct recovery procedure to determine whether you should use this procedure.
- You must replace the failed component with a replacement FRU component you received from your provider.
- You must be replacing a controller module with a controller module of the same model type. You cannot upgrade your system by just replacing the controller module.
- You cannot change any drives or drive shelves as part of this procedure.
- In this procedure, the boot device is moved from the impaired controller to the *replacement* controller so that the *replacement* controller will boot up in the same version of ONTAP as the old controller module.
- It is important that you apply the commands in these steps on the correct systems:
 - The *impaired* controller is the controller that is being replaced.
 - The *replacement* controller is the new controller that is replacing the impaired controller.
 - The *healthy* controller is the surviving controller.
- You must always capture the controller's console output to a text file.

This provides you a record of the procedure so that you can troubleshoot any issues that you might encounter during the replacement process.

Do not downgrade the BIOS version of the *replacement* controller to match the partner controller or the old controller module.

Shut down the impaired controller - ASA A800

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

system node autosupport invoke -node * -type all -message MAINT=<# of hours>h

The following AutoSupport message suppresses automatic case creation for two hours:

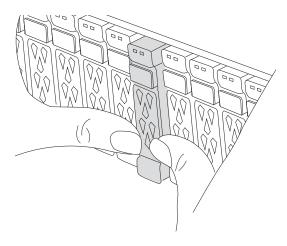
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond \boldsymbol{y} when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

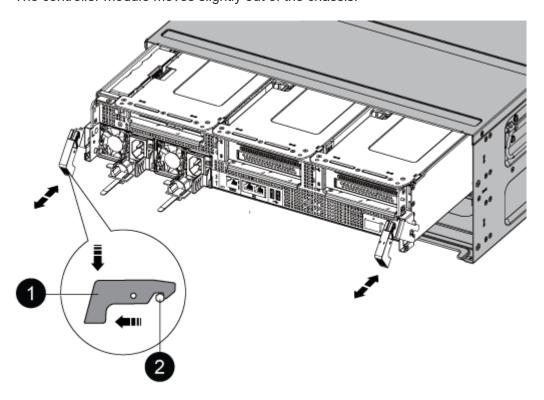

Replace the controller - ASA A800

To replace the controller, you must remove the impaired controller, move FRU components to the replacement controller module, install the replacement controller module in the chassis, and then boot the system to Maintenance mode.

Step 1: Remove the controller module

You must remove the controller module from the chassis when you replace the controller module or replace a component inside the controller module.

1. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.

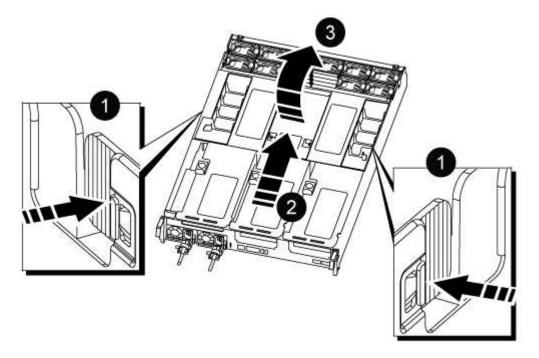


- 2. Go to the rear of the chassis. If you are not already grounded, properly ground yourself.
- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- 5. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.



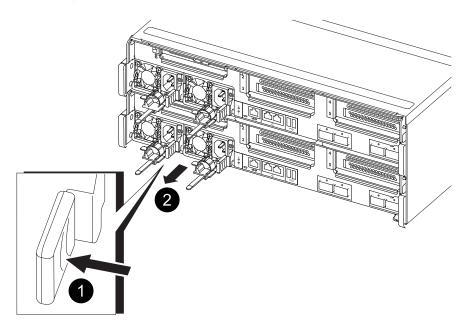
0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis and place it on a stable, flat surface.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 9. Place the controller module on a stable, flat surface.
- 10. Open the controller module air duct:
 - a. Press in the locking tabs on the sides of the air duct toward the middle of the controller module.
 - b. Slide the air duct toward the fan modules, and then rotate it upward to its completely open position.

0	Air duct locking tabs
2	Slide air duct towards fan modules
3	Rotate air duct towards fan modules


Step 2: Move the power supplies

You must move the power supplies from the impaired controller module to the replacement controller module when you replace a controller module.

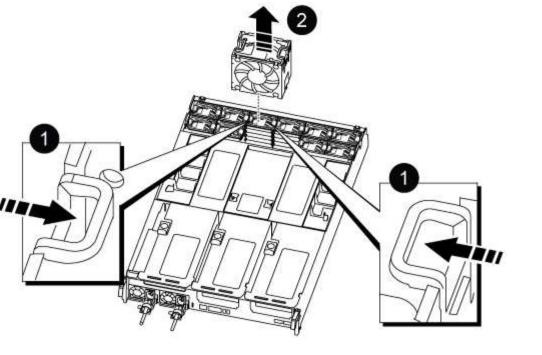
1. Rotate the cam handle such that it can be used to pull power supply out of the controller module while pressing the locking tab.

The power supply is short. Always use two hands to support it when removing it from the controller module so that it does not suddenly swing free from the controller module and injure you.

0	Blue power supply locking tab
2	Power supply

- 2. Move the power supply to the new controller module, and then install it.
- 3. Using both hands, support and align the edges of the power supply with the opening in the controller module, and then gently push the power supply into the controller module until the locking tab clicks into place.

The power supplies will only properly engage with the internal connector and lock in place one way.

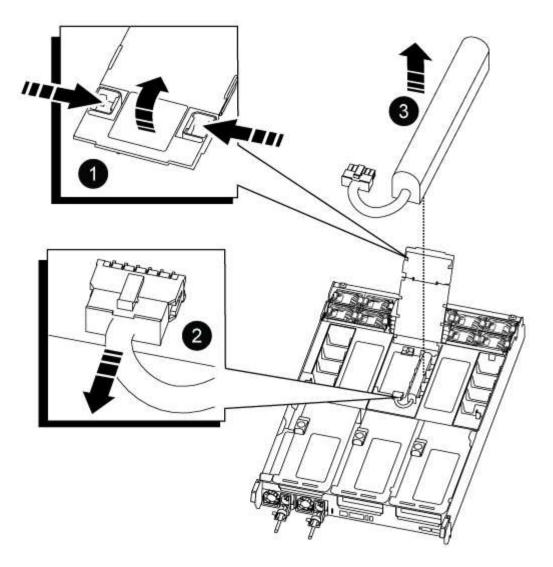


To avoid damaging the internal connector, do not use excessive force when sliding the power supply into the system.

Step 3: Move the fans

You must move the fans from the impaired controller module to the replacement module when replacing a failed controller module.

1. Remove the fan module by pinching the locking tabs on the side of the fan module, and then lifting the fan module straight out of the controller module.


0	Fan locking tabs
2	Fan module

- 2. Move the fan module to the replacement controller module, and then install the fan module by aligning its edges with the opening in the controller module, and then sliding the fan module into the controller module until the locking latches click into place.
- 3. Repeat these steps for the remaining fan modules.

Step 4: Move the NVDIMM battery

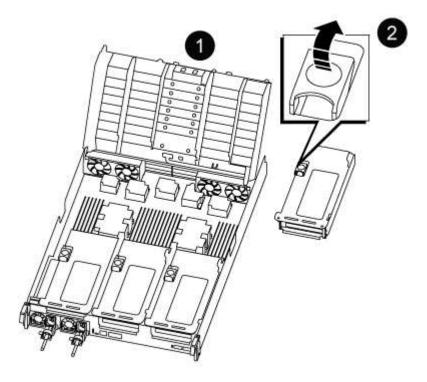
When replacing the controller module, you must move the NVRAM battery from the impaired controller module to the replacement controller module

1. Open the air duct cover and locate the NVDIMM battery in the riser.

0	Air duct riser
2	NVDIMM battery plug
3	NVDIMM battery pack

Attention: The NVDIMM battery control board LED blinks while destaging contents to the flash memory when you halt the system. After the destage is complete, the LED turns off.

- 2. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket.
- 3. Grasp the battery and lift the battery out of the air duct and controller module.
- 4. Move the battery pack to the replacement controller module and then install it in the NVDIMM air duct:
 - a. Insert the battery pack into the slot and press firmly down on the battery pack to make sure that it is locked into place.
 - b. Plug the battery plug into the riser socket and make sure that the plug locks into place.


Step 5: Remove the PCIe risers

As part of the controller replacement process, you must remove the PCIe modules from the impaired controller module. You must install them into the same location in the replacement controller module once the NVDIMMS and DIMMs have moved to the replacement controller module.

- 1. Remove the PCle riser from the controller module:
 - a. Remove any SFP or QSFP modules that might be in the PCle cards.
 - b. Rotate the riser locking latch on the left side of the riser up and toward the fan modules.

The riser raises up slightly from the controller module.

c. Lift the riser up, shift it toward the fans so that the sheet metal lip on the riser clears the edge of the controller module, lift the riser out of the controller module, and then place it on a stable, flat surface.

0	Air duct
2	Riser 1 (left riser), Riser 2 (middle riser), and 3 (right riser) locking latches

- 2. Repeat the preceding step for the remaining risers in the impaired controller module.
- Repeat the above steps with the empty risers in the replacement controller and put them away.

Step 6: Move system DIMMs

To move the DIMMs, locate and move them from the impaired controller into the replacement controller and follow the specific sequence of steps.

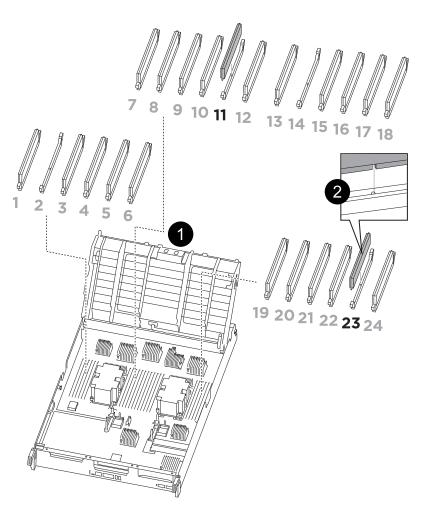
1. Note the orientation of the DIMM in the socket so that you can insert the DIMM in the replacement controller module in the proper orientation.

2. Eject the DIMM from its slot by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot.

Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

- 3. Locate the slot where you are installing the DIMM.
- 4. Insert the DIMM squarely into the slot.

The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.


Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.

- 5. Push carefully, but firmly, on the top edge of the DIMM until the ejector tabs snap into place over the notches at the ends of the DIMM.
- 6. Repeat these steps for the remaining DIMMs.

Step 7: Move the NVDIMMs

To move the NVDIMMs, locate and move them from the impaired controller into the replacement controller and follow the specific sequence of steps.

1. Locate the NVDIMMs on your controller module.

- NVDIMM: SLOTS 11 & 23

0	Air duct
2	NVDIMMs

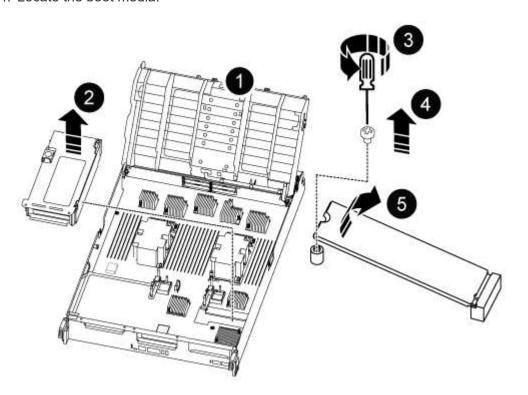
- 2. Note the orientation of the NVDIMM in the socket so that you can insert the NVDIMM in the replacement controller module in the proper orientation.
- 3. Eject the NVDIMM from its slot by slowly pushing apart the two NVDIMM ejector tabs on either side of the NVDIMM, and then slide the NVDIMM out of the socket and set it aside.

Carefully hold the NVDIMM by the edges to avoid pressure on the components on the NVDIMM circuit board.

- 4. Locate the slot where you are installing the NVDIMM.
- 5. Insert the NVDIMM squarely into the slot.

The NVDIMM fits tightly in the slot, but should go in easily. If not, realign the NVDIMM with the slot and reinsert it.

Visually inspect the NVDIMM to verify that it is evenly aligned and fully inserted into the slot.


- 6. Push carefully, but firmly, on the top edge of the NVDIMM until the ejector tabs snap into place over the notches at the ends of the NVDIMM.
- 7. Repeat the preceding steps to move the other NVDIMM.

Step 8: Move the boot media

You must move the boot media device from the impaired controller and install it in the replacement controller.

The boot media is located under Riser 3.

1. Locate the boot media:

0	Air duct
2	Riser 3
3	Phillips #1 screwdriver
4	Boot media screw
6	Boot media

- 2. Remove the boot media from the controller module:
 - a. Using a #1 Phillips head screwdriver, remove the screw holding down the boot media and set the screw aside in a safe place.

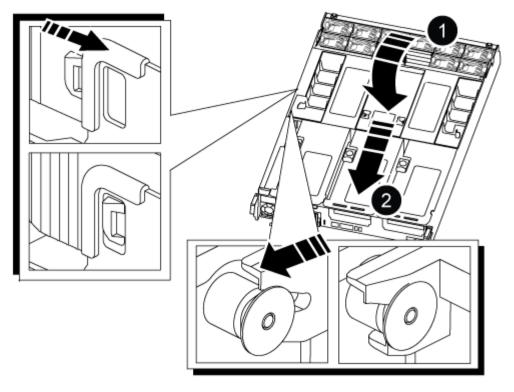
- b. Grasping the sides of the boot media, gently rotate the boot media up, and then pull the boot media straight out of the socket and set it aside.
- Move the boot media to the new controller module and install it:
 - a. Align the edges of the boot media with the socket housing, and then gently push it squarely into the socket.
 - b. Rotate the boot media down toward the motherboard.
 - c. Secure the boot media to the motherboard using the boot media screw.

Do not over-tighten the screw or you might damage the boot media.

Step 9: Install the PCle risers

You install the PCIe risers in the replacement controller module after moving the DIMMs, NVDIMMs, and boot media.

- 1. Install the riser into the replacement controller module:
 - a. Align the lip of the riser with the underside of the controller module sheet metal.
 - b. Guide the riser along the pins in the controller module, and then lower the riser into the controller module.
 - c. Swing the locking latch down and click it into the locked position.


When locked, the locking latch is flush with the top of the riser and the riser sits squarely in the controller module.

- d. Reinsert any SFP or QSFP modules that were removed from the PCIe cards.
- 2. Repeat the preceding step for the remaining PCle risers.

Step 10: Install the controller module

After all of the components have been moved from the impaired controller module to the replacement controller module, you must install the replacement controller module into the chassis and then boot it to Maintenance mode.

- 1. If you have not already done so, close the air duct:
 - a. Swing the air duct all the way down to the controller module.
 - b. Slide the air duct toward the risers until the locking tabs click into place.
 - c. Inspect the air duct to make sure that it is properly seated and locked into place.

0	Locking tabs
2	Slide plunger

- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
 - \bigcirc

Do not completely insert the controller module in the chassis until instructed to do so.

3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 4. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- 5. Plug the system cables and transceiver modules into the controller module and reinstall the cable management device.

6. Plug the power cables into the power supplies and reinstall the power cable retainers.

The controller module begins to boot as soon as it is connected to power. Be prepared to interrupt the boot process.

If your system has DC power supplies, make sure the thumbscrews on the power supply cable are tight.

Restore and verify the system configuration - ASA A800

After completing the hardware replacement and booting to Maintenance mode, you verify the low-level system configuration of the replacement controller and reconfigure system settings as necessary.

Step 1: Set and verify system time

You should check the time and date on the replacement controller module against the healthy controller module in an HA pair, or against a reliable time server in a stand-alone configuration. If the time and date do not match, you must reset them on the replacement controller module to prevent possible outages on clients due to time differences.

About this task

It is important that you apply the commands in the steps on the correct systems:

- The *replacement* node is the new node that replaced the impaired node as part of this procedure.
- The *healthy* node is the HA partner of the *replacement* node.

Steps

- 1. If the *replacement* node is not at the LOADER prompt, halt the system to the LOADER prompt.
- On the healthy node, check the system time: cluster date show

The date and time are based on the configured timezone.

3. At the LOADER prompt, check the date and time on the replacement node: show date

The date and time are given in GMT.

- If necessary, set the date in GMT on the replacement node: set date mm/dd/yyyy
- 5. If necessary, set the time in GMT on the replacement node: set time hh:mm:ss
- 6. At the LOADER prompt, confirm the date and time on the replacement node: show date

The date and time are given in GMT.

Step 2: Verify and set the HA state of the chassis

You must verify the HA state of the controller module and, if necessary, update the state to match your system configuration.

1. In Maintenance mode from the new controller module, verify that all components display the same HA

state: ha-config show

The HA state should be the same for all components.

2. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state

The value for HA-state can be one of the following:

- ° ha
- ° mcc
- ° mccip
- ° non-ha
- 3. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state
- 4. Confirm that the setting has changed: ha-config show

Recable the system and reassign disks - ASA A800

Continue the replacement procedure by recabling the storage and confirming disk reassignment.

Step 1: Recable the system

Verify the controller module's storage and network connections.

Steps

- 1. Verify that the cabling is correct by using Active IQ Config Advisor.
 - a. Download and install Config Advisor.
 - b. Enter the information for the target system, and then click Collect Data.
 - c. Click the Cabling tab, and then examine the output. Make sure that all disk shelves are displayed and all disks appear in the output, correcting any cabling issues you find.
 - d. Check other cabling by clicking the appropriate tab, and then examining the output from Config Advisor.

Step 2: Reassign disks

If the storage system is in an HA pair, the system ID of the new controller module is automatically assigned to the disks when the giveback occurs at the end of the procedure. You must confirm the system ID change when you boot the *replacement* controller and then verify that the change was implemented.

This procedure applies only to systems running ONTAP in an HA pair.

- 1. If the *replacement* controller is in Maintenance mode (showing the *> prompt, exit Maintenance mode and go to the LOADER prompt: halt
- 2. From the LOADER prompt on the *replacement* controller, boot the controller, entering y if you are prompted to override the system ID due to a system ID mismatch:boot ontap
- 3. Wait until the Waiting for giveback... message is displayed on the replacement controller console and

then, from the healthy controller, verify that the new partner system ID has been automatically assigned: storage failover show

In the command output, you should see a message that the system ID has changed on the impaired controller, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706.

nodel> `storage failover show`				
Node	Partner	Takeover Possible	State Description	
node1	node2	false	System ID changed on	
partner (Old:				
			151759755, New:	
151759706), In takeover				
node2	node1	_	Waiting for giveback	
(HA mailboxes)				

- 4. From the healthy controller, verify that any coredumps are saved:
 - a. Change to the advanced privilege level: set -privilege advanced

You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>).

- b. Save any coredumps: system node run -node local-node-name partner savecore
- c. Wait for the `savecore` command to complete before issuing the giveback.

You can enter the following command to monitor the progress of the savecore command: system node run -node *local-node-name* partner savecore -s

- d. Return to the admin privilege level: set -privilege admin
- 5. If your storage system has Storage or Volume Encryption configured, you must restore Storage or Volume Encryption functionality by using one of the following procedures, depending on whether you are using onboard or external key management:
 - · Restore onboard key management encryption keys
 - Restore external key management encryption keys
- 6. Give back the controller:
 - a. From the healthy controller, give back the replaced controller's storage: storage failover giveback -ofnode replacement_node_name

The *replacement* controller takes back its storage and completes booting.

If you are prompted to override the system ID due to a system ID mismatch, you should enter y.

If the giveback is vetoed, you can consider overriding the vetoes.

Find the High-Availability Configuration content for your version of ONTAP 9

b. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show

The output from the storage failover show command should not include the System ID changed on partner message.

7. Verify that the disks were assigned correctly: storage disk show -ownership

The disks belonging to the *replacement* controller should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 1873775277:

8. If the system is in a MetroCluster configuration, monitor the status of the controller: metrocluster node show

The MetroCluster configuration takes a few minutes after the replacement to return to a normal state, at which time each controller will show a configured state, with DR Mirroring enabled and a mode of normal. The metrocluster node show -fields node-systemid command output displays the old system ID until the MetroCluster configuration returns to a normal state.

9. If the controller is in a MetroCluster configuration, depending on the MetroCluster state, verify that the DR home ID field shows the original owner of the disk if the original owner is a controller on the disaster site.

This is required if both of the following are true:

- The MetroCluster configuration is in a switchover state.
- The replacement controller is the current owner of the disks on the disaster site.

Disk ownership changes during HA takeover and MetroCluster switchover in a four-node MetroCluster configuration

10. If your system is in a MetroCluster configuration, verify that each controller is configured: metrocluster node show - fields configuration-state

- 11. Verify that the expected volumes are present for each controller: vol show -node node-name
- 12. If you disabled automatic takeover on reboot, enable it from the healthy controller: storage failover modify -node replacement-node-name -onreboot true

Complete system restoration - ASA A800

To restore your system to full operation, you must restore the NetApp Storage Encryption configuration (if necessary), and install licenses for the new controller, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Step 1: Install licenses for the replacement controller in ONTAP

You must install new licenses for the *replacement* node if the impaired node was using ONTAP features that require a standard (node-locked) license. For features with standard licenses, each node in the cluster should have its own key for the feature.

About this task

Until you install license keys, features requiring standard licenses continue to be available to the *replacement* node. However, if the impaired node was the only node in the cluster with a license for the feature, no configuration changes to the feature are allowed.

Also, using unlicensed features on the node might put you out of compliance with your license agreement, so you should install the replacement license key or keys on the *replacement* node as soon as possible.

Before you begin

The licenses keys must be in the 28-character format.

You have a 90-day grace period in which to install the license keys. After the grace period, all old licenses are invalidated. After a valid license key is installed, you have 24 hours to install all of the keys before the grace period ends.

If your system was initially running ONTAP 9.10.1 or later, use the procedure documented in Post Motherboard Replacement Process to update Licensing on a AFF/FAS system. If you are unsure of the initial ONTAP release for your system, see NetApp Hardware Universe for more information.

Steps

1. If you need new license keys, obtain replacement license keys on the NetApp Support Site in the My Support section under Software licenses.

The new license keys that you require are automatically generated and sent to the email address on file. If you fail to receive the email with the license keys within 30 days, you should contact technical support.

- 2. Install each license key: system license add -license-code license-key, license-key...
- 3. Remove the old licenses, if desired:
 - a. Check for unused licenses: license clean-up -unused -simulate
 - b. If the list looks correct, remove the unused licenses: license clean-up -unused

Step 2: Verify LIFs and registering the serial number

Before returning the *replacement* node to service, you should verify that the LIFs are on their home ports, and register the serial number of the *replacement* node if AutoSupport is enabled, and reset automatic giveback.

Steps

1. Verify that the logical interfaces are reporting to their home server and ports: network interface show -is-home false

If any LIFs are listed as false, revert them to their home ports: network interface revert -vserver
* -lif *

- 2. Register the system serial number with NetApp Support.
 - If AutoSupport is enabled, send an AutoSupport message to register the serial number.
 - If AutoSupport is not enabled, call NetApp Support to register the serial number.
- 3. Check the health of your cluster. See the How to perform a cluster health check with a script in ONTAP KB article for more information.
- 4. If an AutoSupport maintenance window was triggered, end it by using the system node autosupport invoke -node * -type all -message MAINT=END command.
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 3: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace DIMM - ASA A800

You must replace a DIMM in the controller when your storage system encounters errors such as, excessive CECC (Correctable Error Correction Codes) errors that are based on Health Monitor alerts or uncorrectable ECC errors, typically caused by a single DIMM failure preventing the storage system from booting ONTAP.

All other components in the system must be functioning properly; if not, you must contact technical support.

You must replace the failed component with a replacement FRU component you received from your provider.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

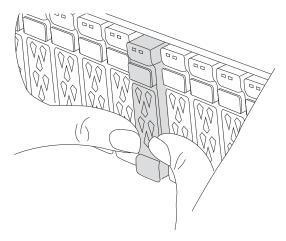
```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

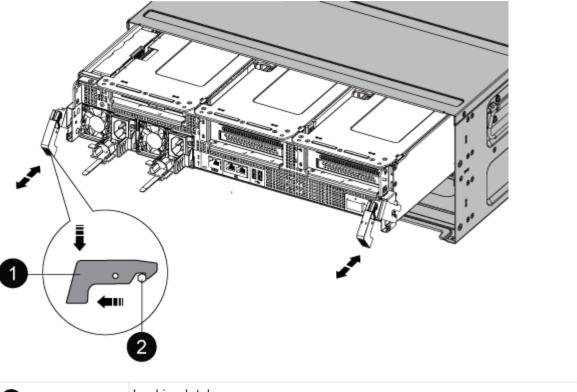

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace the controller module or replace a component inside the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.

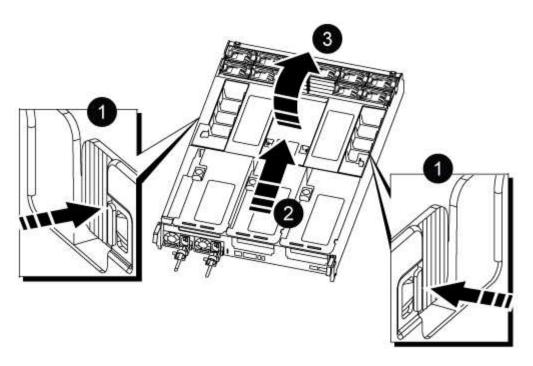


- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- 5. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

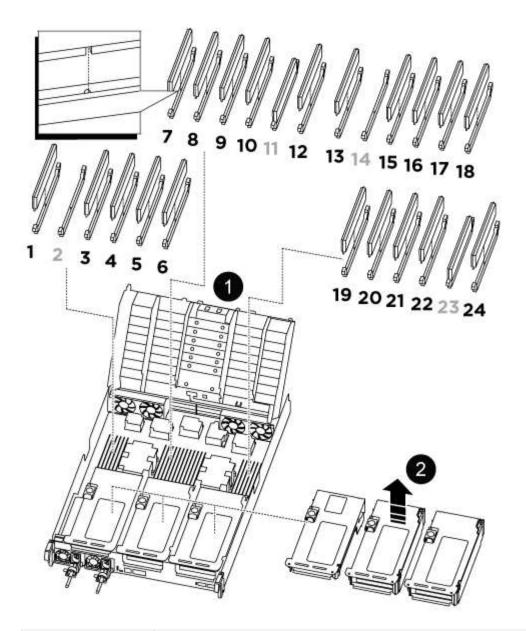


0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 9. Place the controller module on a stable, flat surface, and then open the air duct:
 - a. Press in the locking tabs on the sides of the air duct toward the middle of the controller module.
 - b. Slide the air duct toward the fan modules, and then rotate it upward to its completely open position.



0	Air duct locking tabs
2	Slide air duct towards fan modules
3	Rotate air duct towards fan modules

Step 3: Replace a DIMM

To replace a DIMM, you must locate it in the controller module using the DIMM map label on top of the air duct and then replace it following the specific sequence of steps.

1. When removing a DIMM, unlock the locking latch on the applicable riser, and then remove the riser.

0	Air duct cover
2	Riser 1 and DIMM bank 1, and 3-6
Riser 2 and DIMM bank 7-10, 12-13, and 15-18	Riser 3 and DIMM 19 -22 and 24

Note: Slot 2 and 14 are left empty. Do not attempt to install DIMMs into these slots.

- 2. Note the orientation of the DIMM in the socket so that you can insert the replacement DIMM in the proper orientation.
- 3. Eject the DIMM from its slot by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot.

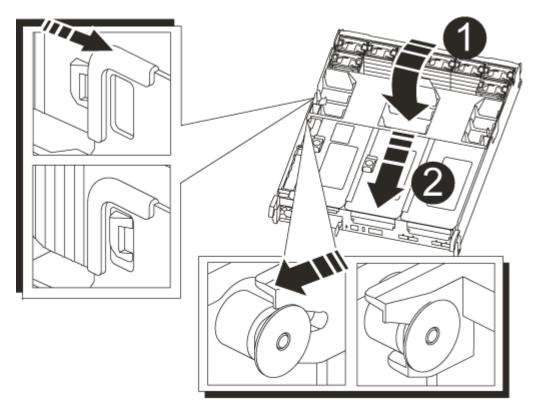
Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

4. Remove the replacement DIMM from the antistatic shipping bag, hold the DIMM by the corners, and align it to the slot.

The notch among the pins on the DIMM should line up with the tab in the socket.

5. Insert the DIMM squarely into the slot.

The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.


Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.

- 6. Push carefully, but firmly, on the top edge of the DIMM until the ejector tabs snap into place over the notches at the ends of the DIMM.
- 7. Reinstall any risers that you removed from the controller module.
- 8. Close the air duct.

Step 4: Reinstall the controller module and booting the system

After you replace a FRU in the controller module, you must reinstall the controller module and reboot it.

- 1. If you have not already done so, close the air duct:
 - a. Swing the air duct all the way down to the controller module.
 - b. Slide the air duct toward the risers until the locking tabs click into place.
 - c. Inspect the air duct to make sure that it is properly seated and locked into place.

0	Locking tabs
2	Slide plunger

2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 4. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- c. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

d. If you have not already done so, reinstall the cable management device.

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace SSD Drive or HDD Drive - ASA A800

You can replace a failed drive nondisruptively while I/O is in progress. The procedure for replacing an SSD is meant for non-spinning drives and the procedure for replacing an HDD is meant for spinning drives.

When a drive fails, the platform logs a warning message to the system console indicating which drive has failed. In addition, both the fault LED on the operator display panel and the fault LED on the failed drive are illuminated.

Before you begin

• Follow best practice and install the current version of the Disk Qualification Package (DQP) before

replacing a drive.

• Identify the failed drive by running the storage disk show -broken command from the system console.

The failed drive appears in the list of failed drives. If it does not, you should wait, and then run the command again.

Depending on the type and capacity, it can take up to several hours for the drive to appear in the list of failed drives.

• Determine whether SED authentication is enabled.

How you replace the drive depends on how the drive is being used. If SED authentication is enabled, you must use the SED replacement instructions in the ONTAP 9 NetApp Encryption Power Guide. These Instructions describe additional steps you must perform before and after replacing an SED.

- Make sure the replacement drive is supported by your platform. See the NetApp Hardware Universe.
- Make sure all other components in the system are functioning properly; if not, you must contact technical support.

About this task

- Drive firmware is automatically updated (nondisruptively) on new drives that have non current firmware versions.
- When replacing a drive, you must wait one minute between the removal of the failed drive and the insertion of the replacement drive to allow the storage system to recognize the existence of the new drive.

Option 1: Replace SSD

Steps

- 1. If you want to manually assign drive ownership for the replacement drive, you need to disable automatic drive assignment, if it is enabled.
 - a. Verify whether automatic drive assignment is enabled: storage disk option show

You can enter the command on either controller module.

If automatic drive assignment is enabled, the output shows on in the "Auto Assign" column (for each controller module).

b. If automatic drive assignment is enabled, disable it: storage disk option modify -node node name -autoassign off

You must disable automatic drive assignment on both controller modules.

- 2. Properly ground yourself.
- 3. Physically identify the failed drive.

When a drive fails, the system logs a warning message to the system console indicating which drive failed. Additionally, the attention (amber) LED on the drive shelf operator display panel and the failed drive illuminate.

The activity (green) LED on a failed drive can be illuminated (solid), which indicates that the drive has power, but should not be blinking, which indicates I/O activity. A failed drive has no I/O activity.

- 4. Remove the failed drive:
 - a. Press the release button on the drive face to open the cam handle.
 - b. Slide the drive out of the shelf using the cam handle and supporting the drive with your other hand.
- 5. Wait a minimum of 70 seconds before inserting the replacement drive.

This allows the system to recognize that a drive was removed.

- 6. Insert the replacement drive:
 - a. With the cam handle in the open position, use both hands to insert the replacement drive.
 - b. Push until the drive stops.
 - c. Close the cam handle so that the drive is fully seated into the midplane and the handle clicks into place.

Be sure to close the cam handle slowly so that it aligns correctly with the face of the drive.

7. Verify that the drive's activity (green) LED is illuminated.

When the drive's activity LED is solid, it means that the drive has power. When the drive's activity LED is blinking, it means that the drive has power and I/O is in progress. If the drive firmware is automatically updating, the LED blinks.

- 8. If you are replacing another drive, repeat steps 3 through 7.
- 9. If you disabled automatic drive assignment in Step 1, then, manually assign drive ownership and then reenable automatic drive assignment if needed.
 - a. Display all unowned drives:

```
storage disk show -container-type unassigned
```

You can enter the command on either controller module.

b. Assign each drive:

```
storage disk assign -disk disk_name -owner node_name
```

You can enter the command on either controller module.

You can use the wildcard character to assign more than one drive at once.

c. Reenable automatic drive assignment if needed:

```
storage disk option modify -node node name -autoassign on
```

You must reenable automatic drive assignment on both controller modules.

10. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Contact NetApp Support if you need the RMA number or additional help with the replacement procedure.

Option 2: Replace HDD

1. If you want to manually assign drive ownership for the replacement drive, you need to disable automatic drive assignment replacement drive, if it is enabled

You manually assign drive ownership and then reenable automatic drive assignment later in this procedure.

a. Verify whether automatic drive assignment is enabled: storage disk option show

You can enter the command on either controller module.

If automatic drive assignment is enabled, the output shows on in the "Auto Assign" column (for each controller module).

b. If automatic drive assignment is enabled, disable it: storage disk option modify -node node name -autoassign off

You must disable automatic drive assignment on both controller modules.

- 2. Properly ground yourself.
- 3. Gently remove the bezel from the front of the platform.
- 4. Identify the failed disk drive from the system console warning message and the illuminated fault LED on the disk drive

5. Press the release button on the disk drive face.

Depending on the storage system, the disk drives have the release button located at the top or on the left of the disk drive face.

For example, the following illustration shows a disk drive with the release button located on the top of the disk drive face:

The cam handle on the disk drive springs open partially and the disk drive releases from the midplane.

- 6. Pull the cam handle to its fully open position to unseat the disk drive from the midplane.
- 7. Slide out the disk drive slightly and allow the disk to safely spin down, which can take less than one minute, and then, using both hands, remove the disk drive from the disk shelf.
- 8. With the cam handle in the open position, insert the replacement disk drive into the drive bay, firmly pushing until the disk drive stops.

Wait a minimum of 10 seconds before inserting a new disk drive. This allows the system to recognize that a disk drive was removed.

If your platform drive bays are not fully loaded with drives, it is important to place the replacement drive into the same drive bay from which you removed the failed drive.

Use two hands when inserting the disk drive, but do not place hands on the disk drive boards that are exposed on the underside of the disk carrier.

9. Close the cam handle so that the disk drive is fully seated into the midplane and the handle clicks into place.

Be sure to close the cam handle slowly so that it aligns correctly with the face of the disk drive..

- 10. If you are replacing another disk drive, repeat Steps 4 through 9.
- 11. Reinstall the bezel.
- 12. If you disabled automatice drive assignment in Step 1, then, manually assign drive ownership and then reenable automatic drive assignment if needed.
 - a. Display all unowned drives: storage disk show -container-type unassigned

You can enter the command on either controller module.

 $b. \ Assign \ each \ drive: \verb|storage| \ disk \ assign \ -disk \ disk \ _name \ -owner \ owner \ _name$

You can enter the command on either controller module.

You can use the wildcard character to assign more than one drive at once.

c. Reenable automatic drive assignment if needed: storage disk option modify -node node_name -autoassign on

You must reenable automatic drive assignment on both controller modules.

13. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure.

Replace a fan - ASA A800

To replace a fan, remove the failed fan module and replace it with a new fan module.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

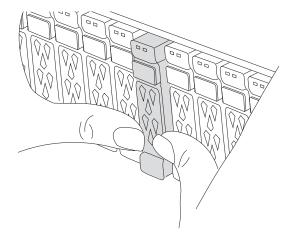
The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt Do you want to disable auto-giveback?
- 3. Take the impaired controller to the LOADER prompt:

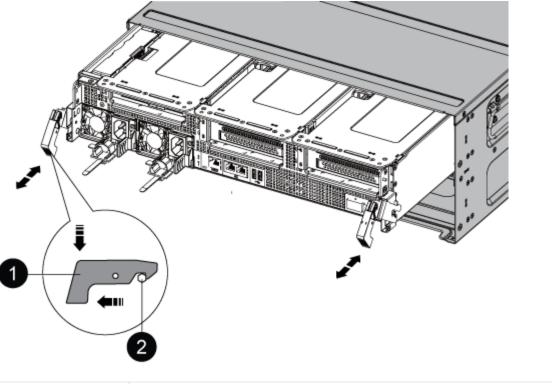

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.

If the impaired controller is displaying	Then
Waiting for giveback	Press Ctrl-C, and then respond ${\bf y}$ when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace a fan module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.



- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- 5. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables from the controller module, keeping track of where the cables were connected.

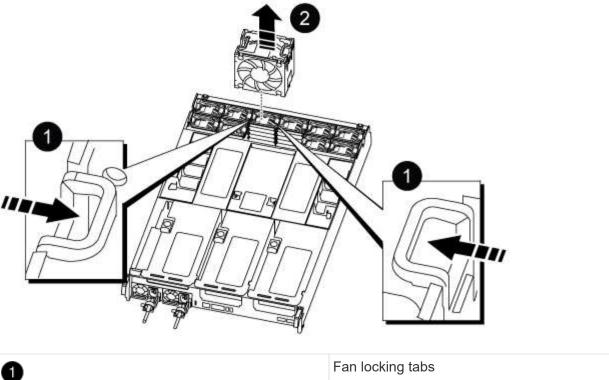
Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis.


Make sure that you support the bottom of the controller module as you slide it out of the chassis.

9. Set the controller module aside in a safe place.

Step 3: Replace a fan

To replace a fan, remove the failed fan module and replace it with a new fan module.

- 1. Identify the fan module that you must replace by checking the console error messages or by locating the lit LED for the fan module on the motherboard.
- 2. Remove the fan module by pinching the locking tabs on the side of the fan module, and then lifting the fan module straight out of the controller module.

0	Fan locking tabs
2	Fan module

3. Align the edges of the replacement fan module with the opening in the controller module, and then slide the replacement fan module into the controller module until the locking latches click into place.

Step 4: Reinstall the controller module

After you replace a component within the controller module, you must reinstall the controller module in the system chassis and boot it.

1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

- 2. Recable the system, as needed.
- 3. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- c. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect

the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- 4. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 5. If automatic giveback was disabled, reenable it: storage failover modify -controller local -auto-giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace an NVDIMM - ASA A800

You must replace the NVDIMM in the controller module when your system registers that the flash lifetime is almost at an end or that the identified NVDIMM is not healthy in general; failure to do so causes a system panic.

All other components in the system must be functioning properly; if not, you must contact technical support.

You must replace the failed component with a replacement FRU component you received from your provider.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

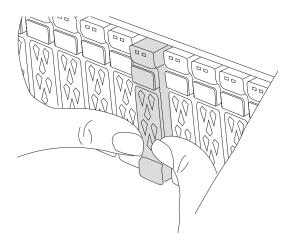
```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```


- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace the controller module or replace a component inside the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.

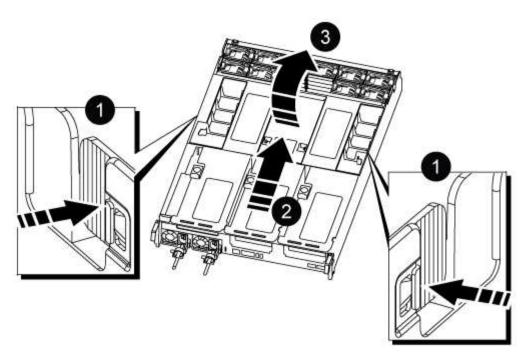
- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- 5. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where

the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

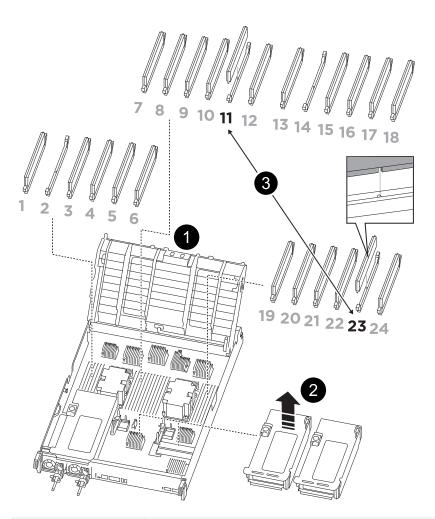


0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 9. Place the controller module on a stable, flat surface, and then open the air duct:
 - a. Press in the locking tabs on the sides of the air duct toward the middle of the controller module.
 - b. Slide the air duct toward the fan modules, and then rotate it upward to its completely open position.



0	Air duct locking tabs
2	Slide air duct towards fan modules
3	Rotate air duct towards fan modules

Step 3: Replace the NVDIMM

To replace the NVDIMM, you must locate it in the controller module using the NVDIMM map label on top of the air duct, and then replace it following the specific sequence of steps.

1. If you are removing or moving an NVDIMM, unlock the locking latch on the riser, and then remove the applicable riser.

0	Air duct cover
2	Riser 2
3	NVDIMM in slots 11 and 23

- 2. Note the orientation of the NVDIMM in the socket so that you can insert the NVDIMM in the replacement controller module in the proper orientation.
- 3. Eject the NVDIMM from its slot by slowly pushing apart the two NVDIMM ejector tabs on either side of the NVDIMM, and then slide the NVDIMM out of the socket and set it aside.

Carefully hold the NVDIMM by the edges to avoid pressure on the components on the NVDIMM circuit board.

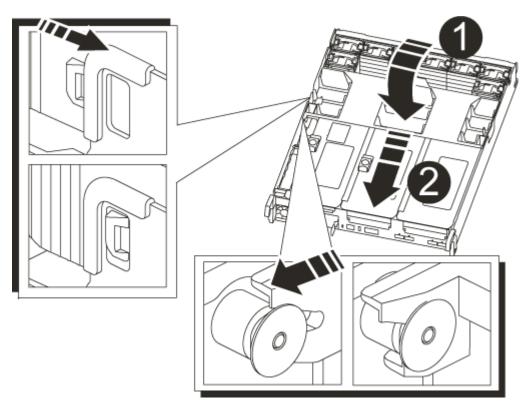
4. Remove the replacement NVDIMM from the antistatic shipping bag, hold the NVDIMM by the corners, and then align it to the slot.

The notch among the pins on the NVDIMM should line up with the tab in the socket.

5. Locate the slot where you are installing the NVDIMM.

6. Insert the NVDIMM squarely into the slot.

The NVDIMM fits tightly in the slot, but should go in easily. If not, realign the NVDIMM with the slot and reinsert it.


Visually inspect the NVDIMM to verify that it is evenly aligned and fully inserted into the slot.

- 7. Push carefully, but firmly, on the top edge of the NVDIMM until the ejector tabs snap into place over the notches at the ends of the NVDIMM.
- 8. Reinstall any risers that you removed from the controller module.
- 9. Close the air duct.

Step 4: Reinstall the controller module and booting the system

After you replace a FRU in the controller module, you must reinstall the controller module and reboot it.

- 1. If you have not already done so, close the air duct:
 - a. Swing the air duct all the way down to the controller module.
 - b. Slide the air duct toward the risers until the locking tabs click into place.
 - c. Inspect the air duct to make sure that it is properly seated and locked into place.

0	Locking tabs
2	Slide plunger

2. Align the end of the controller module with the opening in the chassis, and then gently push the controller

module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 4. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- c. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

d. If you have not already done so, reinstall the cable management device.

Step 4: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the NVDIMM battery - ASA A800

To replace the NVDIMM battery, you must remove the controller module, remove the battery, replace the battery, and then reinstall the controller module.

All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a
healthy controller shows false for eligibility and health, you must correct the issue before shutting down the
impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

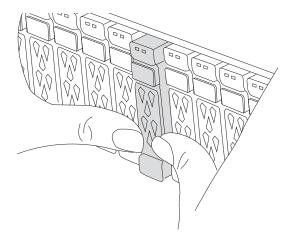
```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

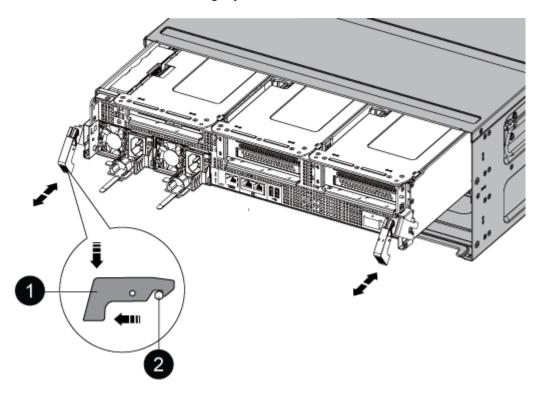

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond \boldsymbol{y} when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace the controller module or replace a component inside the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.



- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- 5. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where the cables were connected. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables from the controller module, keeping track of where the cables were connected.

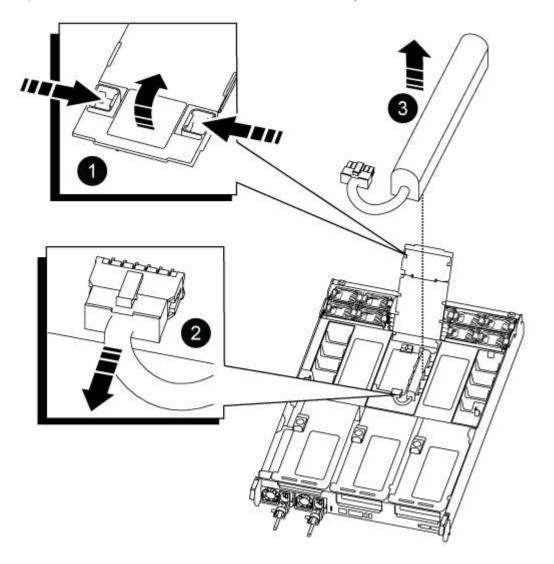
Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.

0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis.


Make sure that you support the bottom of the controller module as you slide it out of the chassis.

9. Set the controller module aside in a safe place.

Step 3: Replace the NVDIMM battery

To replace the NVDIMM battery, you must remove the failed battery from the controller module and install the replacement battery into the controller module.

1. Open the air duct cover and locate the NVDIMM battery in the riser.

0	Air duct riser

2	NVDIMM battery plug
3	NVDIMM battery pack

Attention: The NVDIMM battery control board LED blinks while destaging contents to the flash memory when you halt the system. After the destage is complete, the LED turns off.

- 1. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket.
- 2. Grasp the battery and lift the battery out of the air duct and controller module, and then set it aside.
- 3. Remove the replacement battery from its package.
- 4. Install the replacement battery pack in the NVDIMM air duct:
 - a. Insert the battery pack into the slot and press firmly down on the battery pack to make sure that it is locked into place.
 - b. Plug the battery plug into the riser socket and make sure that the plug locks into place.
- 5. Close the NVDIMM air duct.

Make sure that the plug locks into the socket.

Step 4: Reinstall the controller module and booting the system

After you replace a FRU in the controller module, you must reinstall the controller module and reboot it.

1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

2. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 3. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- c. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot

process.

d. If you have not already done so, reinstall the cable management device.

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace PCIe card - ASA A800

To replace a PCIe card, you must disconnect the cables from the cards, remove the SFP and QSFP modules from the cards before removing the riser, reinstall the riser, and then reinstall the SFP and QSFP modules before cabling the cards.

- You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a
healthy controller shows false for eligibility and health, you must correct the issue before shutting down the
impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

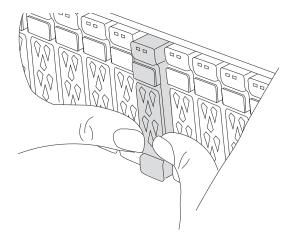
```
\verb|system| node autosupport invoke -node * -type all -message MAINT=< \# of hours> h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

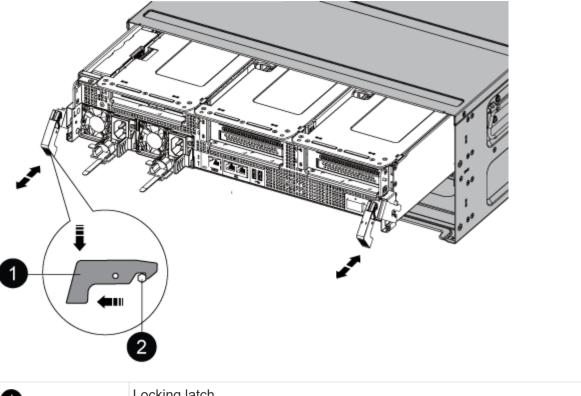

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace the controller module or replace a component inside the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.

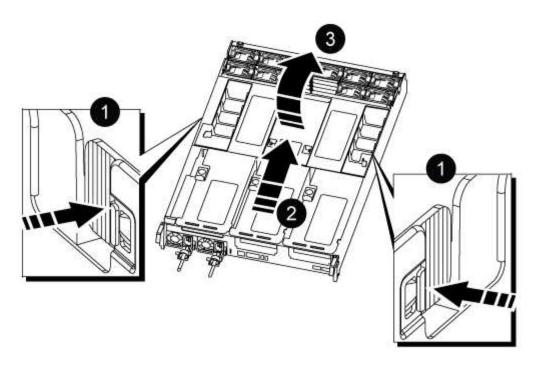


- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.



0	Locking latch
2	Locking pin

8. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 9. Place the controller module on a stable, flat surface, and then open the air duct:
 - a. Press in the locking tabs on the sides of the air duct toward the middle of the controller module.
 - b. Slide the air duct toward the fan modules, and then rotate it upward to its completely open position.

0	Air duct locking tabs
2	Slide air duct towards fan modules
3	Rotate air duct towards fan modules

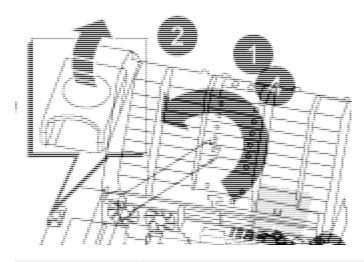
Step 3: Replace a PCle card

To replace a PCle card, you must remove the cabling and any QSFPs and SFPs from the ports on the PCle cards in the target riser, remove the riser from the controller module, remove and replace the PCle card, reinstall the riser and any QSFPs and SFPs onto the ports, and cable the ports.

- 1. Determine if the card you are replacing is from Riser 1 or if it is from Riser 2 or 3.
 - ∘ If you are replacing the 100GbE PCle card in Riser 1, use Steps 2 3 and Steps 6 7.
 - If you are replacing a PCle card from Riser 2 or 3, use Steps 4 through 7.
- 2. Remove Riser 1 from the controller module:
 - a. Remove the QSFP modules that might be in the PCle card.
 - b. Rotate the riser locking latch on the left side of the riser up and toward the fan modules.

The riser raises up slightly from the controller module.

c. Lift the riser up, shift it toward the fans so that the sheet metal lip on the riser clears the edge of the controller module, lift the riser out of the controller module, and then place it on a stable, flat surface.


0	Air duct
2	Riser locking latch
3	Card locking bracket
4	Riser 1 (left riser) with 100GbE PCle card in slot 1.

3. Remove the PCIe card from Riser 1:

- a. Turn the riser so that you can access the PCIe card.
- b. Press the locking bracket on the side of the PCIe riser, and then rotate it to the open position.
- c. Remove the PCIe card from the riser.
- 4. Remove the PCle riser from the controller module:
 - a. Remove any SFP or QSFP modules that might be in the PCIe cards.
 - b. Rotate the riser locking latch on the left side of the riser up and toward the fan modules.

The riser raises up slightly from the controller module.

c. Lift the riser up, shift it toward the fans so that the sheet metal lip on the riser clears the edge of the controller module, lift the riser out of the controller module, and then place it on a stable, flat surface.

0	Air duct
2	Riser 2 (middle riser) or 3 (right riser) locking latch
3	Card locking bracket
4	Side panel on riser 2 or 3
6	PCIe cards in riser 2 or 3

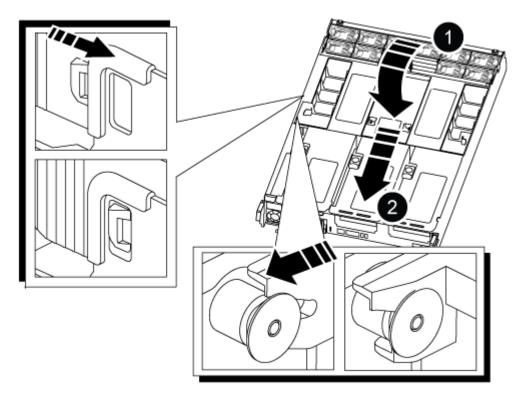
5. Remove the PCIe card from the riser:

- a. Turn the riser so that you can access the PCle cards.
- b. Press the locking bracket on the side of the PCle riser, and then rotate it to the open position.
- c. Swing the side panel off the riser.
- d. Remove the PCIe card from the riser.
- 6. Install the PCle card into the same slot in the riser:
 - a. Align the card with the card socket in the riser, and then slide it squarely into the socket in the riser.

Make sure that the card is completely and squarely seated into the riser socket.

- b. For Riser 2 or 3, close the side panel.
- c. Swing the locking latch into place until it clicks into the locked position.
- 7. Install the riser into the controller module:
 - a. Align the lip of the riser with the underside of the controller module sheet metal.
 - b. Guide the riser along the pins in the controller module, and then lower the riser into the controller module.
 - c. Swing the locking latch down and click it into the locked position.

When locked, the locking latch is flush with the top of the riser and the riser sits squarely in the


controller module.

d. Reinsert any SFP modules that were removed from the PCle cards.

Step 4: Reinstall the controller module

After you replace a component within the controller module, you must reinstall the controller module in the system chassis and boot it.

- 1. If you have not already done so, close the air duct:
 - a. Swing the air duct all the way down to the controller module.
 - b. Slide the air duct toward the risers until the locking tabs click into place.
 - c. Inspect the air duct to make sure that it is properly seated and locked into place.

0	Locking tabs
2	Slide plunger

2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 4. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- 5. Plug the system cables and transceiver modules into the controller module and reinstall the cable management device.
- 6. Plug the power cables into the power supplies and reinstall the power cable retainers.

The controller module begins to boot as soon as it is connected to power. Be prepared to interrupt the boot process.

If your system has DC power supplies, make sure the thumbscrews on the power supply cable are tight.

- 7. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 8. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace power supply - ASA A800

Replacing a power supply (PSU) involves disconnecting the target PSU from the power source, unplugging the power cable, removing the old PSU and installing the replacement PSU, and then reconnecting it to the power source.

The power supplies are redundant and hot-swappable.

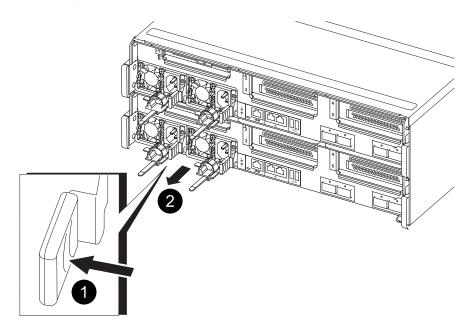
About this task

This procedure is written for replacing one PSU at a time.

It is a best practice to replace the PSU within two minutes of removing it from the chassis. The system continues to function, but ONTAP sends messages to the console about the degraded PSU until the PSU is replaced.

Do not mix PSUs with different efficiency ratings or different input types. Always replace like for like.

Use the appropriate procedure for your type of PSU: AC or DC.


Option 1: Replace an AC PSU

To replace an AC PSU, complete the following steps.

- 1. If you are not already grounded, properly ground yourself.
- 2. Identify the PSU you want to replace, based on console error messages or through the red Fault LED on the PSU.
- 3. Disconnect the PSU:
 - a. Open the power cable retainer, and then unplug the power cable from the PSU.
 - b. Unplug the power cable from the power source.
- 4. Remove the PSU by rotating the handle up, press the locking tab, and then pull PSU out of the controller module.

The PSU is short. Always use two hands to support it when removing it from the controller module so that it does not suddenly swing free from the controller module and injure you.

0	Blue PSU locking tab
2	Power supply

- 5. Install the replacement PSU in the controller module:
 - a. Using both hands, support and align the edges of the replacement PSU with the opening in the controller module.
 - b. Gently push the PSU into the controller module until the locking tab clicks into place.

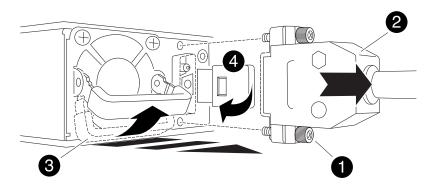
The power supplies will only properly engage with the internal connector and lock in place one way.

To avoid damaging the internal connector, do not use excessive force when sliding the PSU into the system.

- 6. Reconnect the PSU cabling:
 - a. Reconnect the power cable to the PSU and the power source.
 - b. Secure the power cable to the PSU using the power cable retainer.

Once power is restored to the PSU, the status LED should be green.

7. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.


Option 2: Replace a DC PSU

To replace a DC PSU, complete the following steps.

- 1. If you are not already grounded, properly ground yourself.
- 2. Identify the PSU you want to replace, based on console error messages or through the red Fault LED on the PSU.
- 3. Disconnect the PSU:
 - a. Unscrew the D-SUB DC cable connector using the thumb screws on the plug.
 - b. Unplug the cable from the PSU and set it aside.
- 4. Remove the PSU by rotating the handle up, press the locking tab, and then pull the PSU out of the controller module.

The PSU is short. Always use two hands to support it when removing it from the controller module so that it does not suddenly swing free from the controller module and injure you.

0	Thumb screws
2	D-SUB DC power PSU cable connector
3	Power supply handle

Blue PSU locking tab

- 5. Install the replacement PSU in the controller module:
 - a. Using both hands, support and align the edges of the replacement PSU with the opening in the controller module.
 - b. Gently push the PSU into the controller module until the locking tab clicks into place.

The power supplies will only properly engage with the internal connector and lock in place one way.

To avoid damaging the internal connector, do not use excessive force when sliding the PSU into the system.

- 6. Reconnect the D-SUB DC power cable:
 - a. Plug the power cable connector into the PSU.
 - b. Secure the power cable to the PSU with the thumbscrews.

Once power is restored to the PSU, the status LED should be green.

7. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the real-time clock battery - ASA A800

You replace the real-time clock (RTC) battery in the controller module so that your system's services and applications that depend on accurate time synchronization continue to function.

- You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

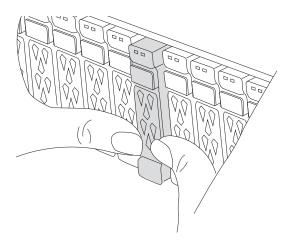
 $\verb|system| node | \verb|autosupport| invoke - \verb|node| * - \verb|type| | \verb|all - message| MAINT = < \# | of | hours > h |$

The following AutoSupport message suppresses automatic case creation for two hours:

cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

storage failover modify -node local -auto-giveback false

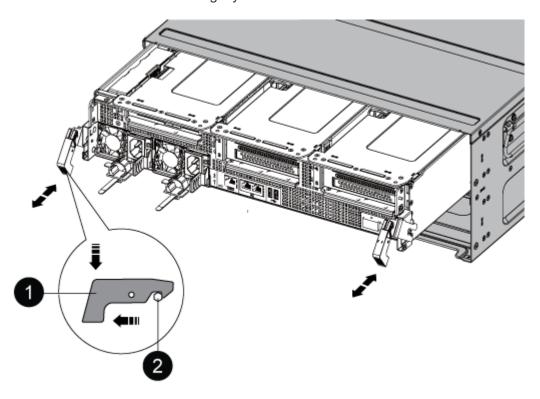

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

Step 2: Remove the controller module

You must remove the controller module from the chassis when you replace the controller module or replace a component inside the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Ensure that all drives in the chassis are firmly seated against the midplane by using your thumbs to push each drive until you feel a positive stop.

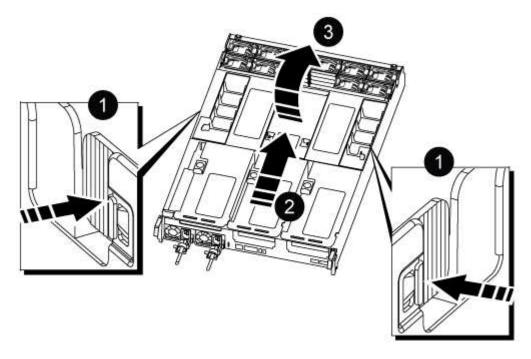


- 3. Unplug the controller module power supplies from the source.
- 4. Release the power cable retainers, and then unplug the cables from the power supplies.
- 5. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFP and QSFP modules (if needed) from the controller module, keeping track of where the cables were connected.

Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized.

- 6. Remove the cable management device from the controller module and set it aside.
- 7. Press down on both of the locking latches, and then rotate both latches downward at the same time.

The controller module moves slightly out of the chassis.



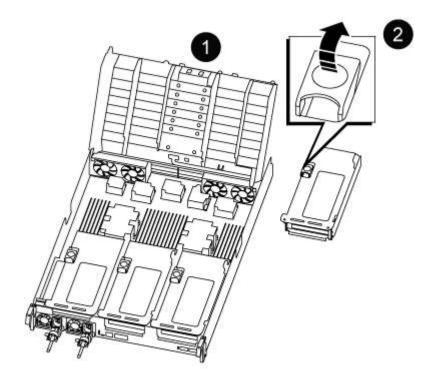
0	Locking latch
2	Locking pin

1. Slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

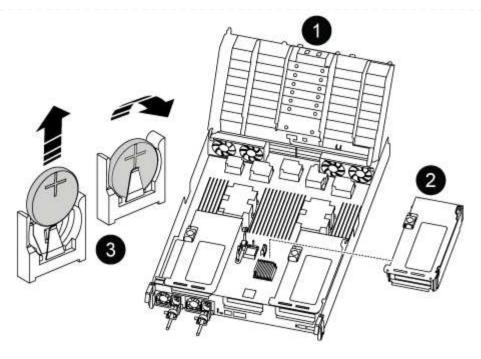
- 2. Place the controller module on a stable, flat surface, and then open the air duct:
 - a. Press in the locking tabs on the sides of the air duct toward the middle of the controller module.
 - b. Slide the air duct toward the fan modules, and then rotate it upward to its completely open position.

0	Air duct locking tabs
2	Slide air duct towards fan modules
3	Rotate air duct towards fan modules


Step 3: Replace the RTC battery

Original controller

- 1. Remove PCIe riser 2 (middle riser) from the controller module:
 - a. Remove any SFP or QSFP modules that might be in the PCle cards.
 - b. Rotate the riser locking latch on the left side of the riser up and toward the fan modules.


The riser raises up slightly from the controller module.

c. Lift the riser up, shift it toward the fans so that the sheet metal lip on the riser clears the edge of the controller module, lift the riser out of the controller module, and then place it on a stable, flat surface.

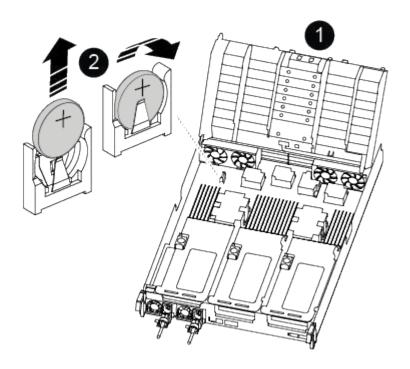
0	Air duct
0	Riser 2 (middle riser) locking latch

2. Locate the RTC battery under Riser 2.

0	Air duct
2	Riser 2
3	RTC battery and housing

3. Gently push the battery away from the holder, rotate it away from the holder, and then lift it out of the holder.

Note the polarity of the battery as you remove it from the holder. The battery is marked with a plus sign and must be positioned in the holder correctly. A plus sign near the holder tells you how the battery should be positioned.


- 4. Remove the replacement battery from the antistatic shipping bag.
- 5. Note the polarity of the RTC battery, and then insert it into the holder by tilting the battery at an angle and pushing down.
- 6. Visually inspect the battery to make sure that it is completely installed into the holder and that the polarity is correct.
- 7. Install the riser into the controller module:
 - a. Align the lip of the riser with the underside of the controller module sheet metal.
 - b. Guide the riser along the pins in the controller module, and then lower the riser into the controller module.
 - c. Swing the locking latch down and click it into the locked position.

When locked, the locking latch is flush with the top of the riser and the riser sits squarely in the controller module.

d. Reinsert any SFP modules that were removed from the PCle cards.

VER2 controller

1. Locate the RTC battery near the DIMMs.

0	Air duct
2	RTC battery and housing

2. Gently push the battery away from the holder, rotate it away from the holder, and then lift it out of the holder.

Note the polarity of the battery as you remove it from the holder. The battery is marked with a plus sign and must be positioned in the holder correctly. A plus sign near the holder tells you how the battery should be positioned.

- 3. Remove the replacement battery from the antistatic shipping bag.
- 4. Note the polarity of the RTC battery, and then insert it into the holder by tilting the battery at an angle and pushing down.
- 5. Visually inspect the battery to make sure that it is completely installed into the holder and that the polarity is correct.

Step 4: Reinstall the controller module

After you replace a component within the controller module, you must reinstall the controller module in the system chassis, reset the time and date on the controller, and then boot it.

1. If you have not already done so, close the air duct or controller module cover.

2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 4. Complete the reinstallation of the controller module:
 - a. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- c. Plug the power cords into the power supplies, reinstall the power cable locking collar, and then connect the power supplies to the power source.

The controller module begins to boot as soon as power is restored. Be prepared to interrupt the boot process.

- d. If you have not already done so, reinstall the cable management device.
- e. Halt the controller at the LOADER prompt.
- 5. Reset the time and date on the controller:
 - a. Check the date and time on the healthy controller with the show date command.
 - b. At the LOADER prompt on the target controller, check the time and date.
 - c. If necessary, modify the date with the set date mm/dd/yyyy command.
 - d. If necessary, set the time, in GMT, using the set time hh:mm:ss command.
 - e. Confirm the date and time on the target controller.
- 6. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components and let the controller reboot.
- 7. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name
- 8. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

ASA A900 systems

Install and setup

Start here: Choose your installation and setup experience

You can choose from different content formats to guide you through installing and setting up your new storage system.

Quick steps

A printable PDF of step-by-step instructions with live links to additional content.

Video steps

Video step-by-step instructions.

· Detailed steps

Online step-by-step instructions with live links to additional content.

Quick steps - ASA A900

The quick guide provides graphic instructions for a typical installation of your system, from racking and cabling, through initial system bring-up. Use this content if you are familiar with installing NetApp systems.

Use the xref:./asa900/AFF A900 Installation and Setup Instructions

The ASA A900 uses the same installation procedure as the AFF A900 system.

Video steps - ASA A900

The following video shows how to install and cable your new system.

Animation - AFF A900 Installation and setup instructions

The ASA A900 uses the same installation procedure as the AFF A900 system.

Detailed steps - ASA 900

This page provides detailed step-by-step instructions for installing a typical NetApp system. Use this article if you want more detailed installation instructions.

Step 1: Prepare for installation

To install your system, you need to create an account on the NetApp Support Site, register your system, and get license keys. You also need to inventory the appropriate number and type of cables for your system and collect specific network information.

You need to have access to the NetApp Hardware Universe for information about site requirements as well as

additional information on your configured system.

What you need

You might also want to have access to the ONTAP 9 Release Notes for your version of ONTAP for more information about this system.

You need to provide the following at your site:

- Rack space for the storage system
- Phillips #2 screwdriver
- Additional networking cables to connect your system to your network switch and laptop or console with a Web browser

Steps

- 1. Unpack the contents of all boxes.
- 2. Record the system serial number from the controllers.

3. Inventory and make a note of the number and types of cables you received.

The following table identifies the types of cables you might receive. If you receive a cable not listed in the table, see the Hardware Universe to locate the cable and identify its use.

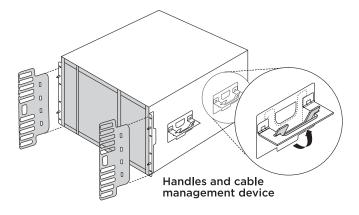
NetApp Hardware Universe

Type of cable	Part number and length	Connector type	For
25 GbE data Cable	X66240A-05 (112-00639), 0.5m		Network cable
	X66240A-2 (112-00598), 2m		
	X66240A-5 (112-00600), 5m		
32 Gb FC (SFP+ Op)	X66250-2 (112-00342), 2m X66250-5 (112-00344), 5m		FC optical network cable
	X66250-15 (112-00346), 15m		
40 GbE network cable	X66100-1 (112-00542), 1m		Ethernet data, cluster network
TICKWOTK GUDIO	X66100-3 (112-00543), 3m		Hetwork
	X66100-5 (112-00544), 5m		

Type of cable	Part number and length	Connector type	For
100 GbE cable	X66211B-1 (112-00573), 1m		Network,
Cable	X66211B-2 (112-00574), 2m		NVME storage,
	X66211B-5 (112-00576), 5m		Ethernet data,
			cluster network
Optical cables	X66031A (112-00436), 1m		FC optical network
Cables	X66032A (112-00437), 2m		
	X66033A (112-00438), 3m		
Cat 6, RJ-45 (order	Part numbers X6585-R6 (112-00291), 3m		Management network and Ethernet data
dependent)	X6562-R6 (112-00196), 5m		Zanomot data
	70302-10 (112-00190), Jili		
Micro-USB console cable	Not applicable		Console connection during software setup on non-Windows or Mac laptop/console
Power cables	Not applicable	ւալ	Powering up the system

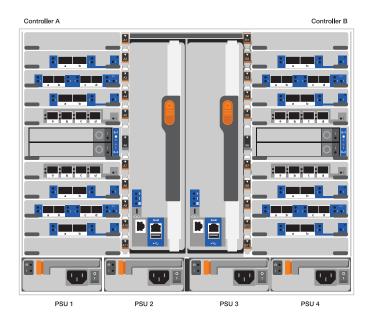
4. Review the ONTAP Configuration Guide and collect the required information listed in that guide.

Step 2: Install the hardware


You need to install your system in a 4-post rack or NetApp system cabinet, as applicable.

- 1. Install the rail kits, as needed.
- 2. Install and secure your system using the instructions included with the rail kit.
 - You need to be aware

You need to be aware of the safety concerns associated with the weight of the system.



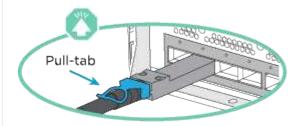
3. Attach cable management devices (as shown).

4. Place the bezel on the front of the system.

The following diagram shows a representation of what a typical system looks like and where the major components are located at the rear of the system:

Step 3: Cable controllers to your network

You can cable the controllers to your network by using the two-node switchless cluster method or by using the cluster interconnect network.

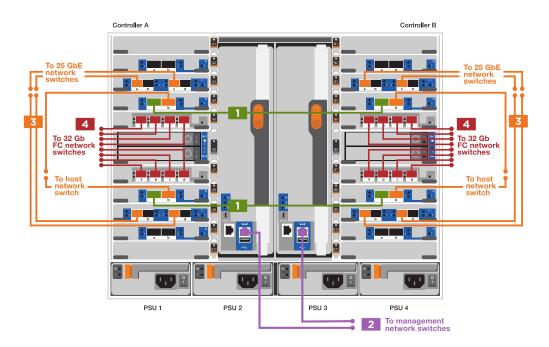

Option 1: Two-node switchless cluster

Management network, data network, and management ports on the controllers are connected to switches. The cluster interconnect ports are cabled on both controllers.

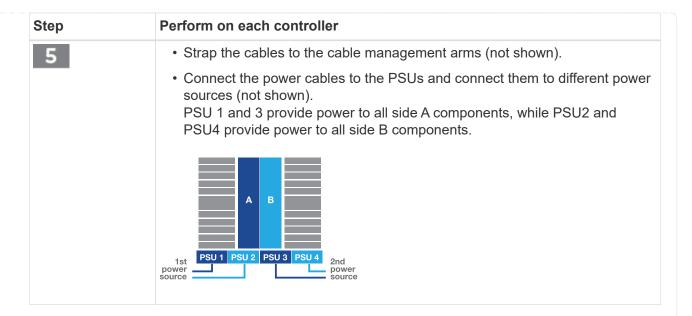
Before you begin

You must have contacted your network administrator for information about connecting the system to the switches.

Be sure to check the direction of the cable pull-tabs when inserting the cables in the ports. Cable pull-tabs are up for all networking module ports.



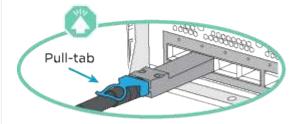
(i)


As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

1. Use the animation or illustration to complete the cabling between the controllers and to the switches:

Animation - Cable a two-node switchless cluster

Step	Perform on each controller
1	Cable cluster interconnect ports:
	Slot A4 and B4 (e4a)
	Slot A8 and B8 (e8a)
2	Cable controller management (wrench) ports.
3	Cable 25 GbE network switches:
	Ports in slot A3 and B3 (e3a and e3c)
	and slot A9 and B9 (e9a and e9c) to the 25 GbE network switches.
	40GbE host network switches:
	Cable host-side b ports in slot A4 and
	B4 (e4b) and slot A8 and B8 (e8b) to the host switch.
4	Cable 32 Gb FC connections:
	Cable ports in slot A5 and B5 (5a, 5b, 5c, and 5d) and slot A7 and B7
	(7a, 7b, 7c, and 7d) to the
	32 Gb FC network switches.

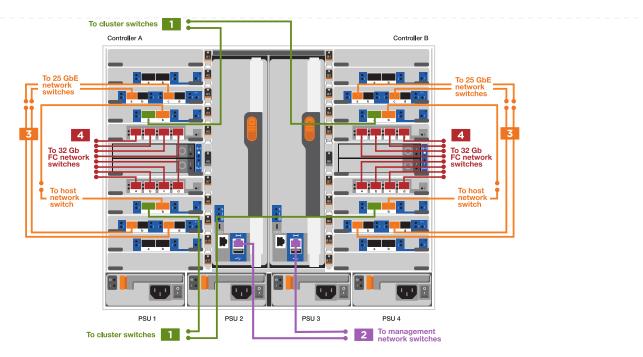

Option 2: Switched cluster

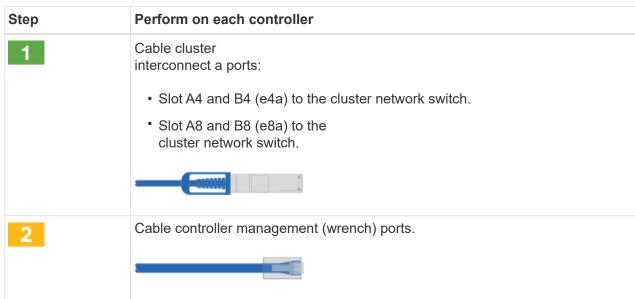
Management network, data network, and management ports on the controllers are connected to switches. The cluster interconnect and HA ports are cabled on to the cluster/HA switch.

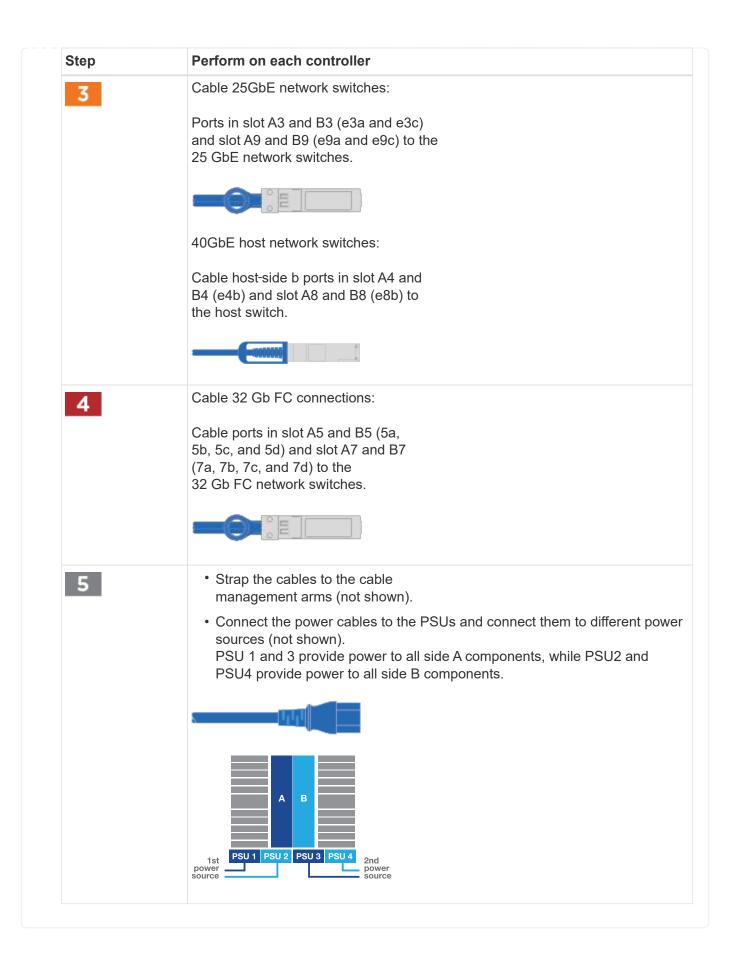
Before you begin

You must have contacted your network administrator for information about connecting the system to the switches.

Be sure to check the direction of the cable pull-tabs when inserting the cables in the ports. Cable pull-tabs are up for all networking module ports.



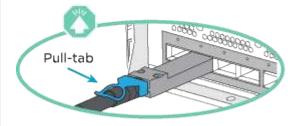


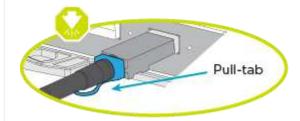

As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it over and try again.

1. Use the animation or illustration to complete the cabling between the controllers and to the switches:

Animation - Cable a switched cluster

Step 4: Cable controllers to drive shelves

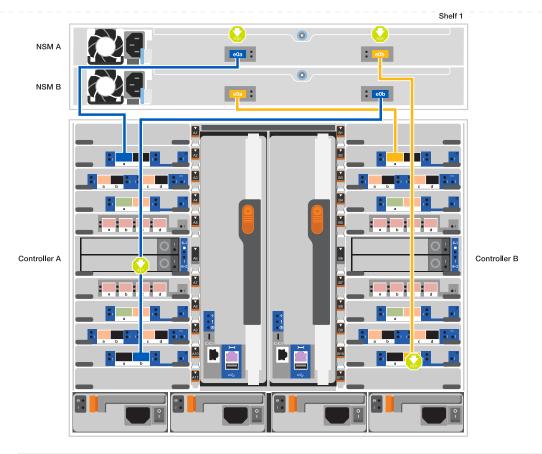

Cable either a single NS224 drive shelf or two NS224 drive shelves to your controllers.


Option 1: Cable the controllers to a single NS224 drive shelf

You must cable each controller to the NSM modules on the NS224 drive shelf.

Before you begin

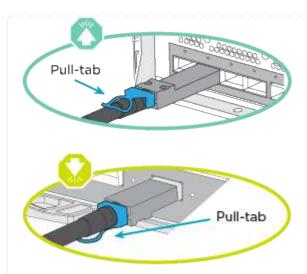
• Be sure to check the illustration arrow for the proper cable connector pull-tab orientation. The cable pull-tab for the storage modules are up, while the pull tabs on the shelves are down.



As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.

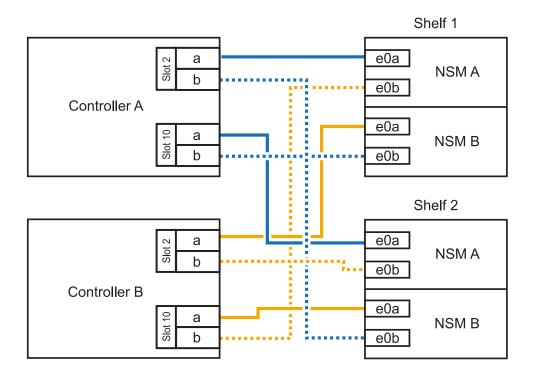
1. Use the following animation or drawings to cable your controllers to a single NS224 drive shelf.

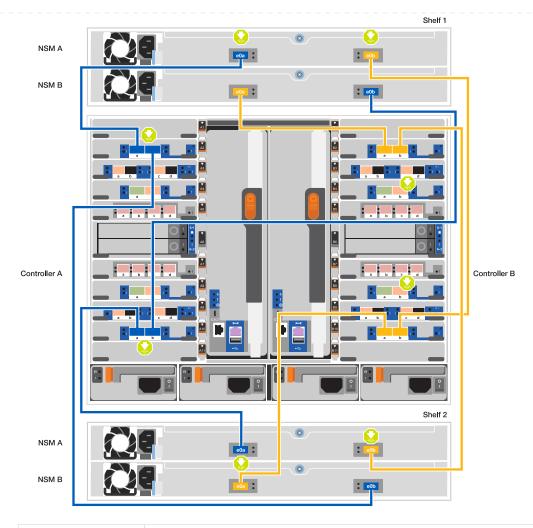
Animation - Cable a single NS224 shelf

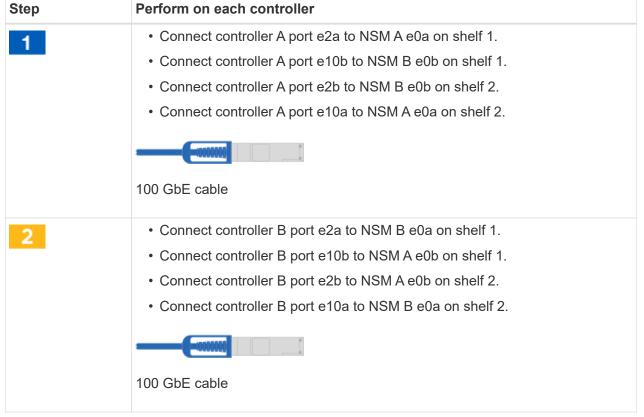

Step	Perform on each controller
1	 Connect controller A port e2a to port e0a on NSM A on the shelf. Connect controller A port e10b to port e0b on NSM B on the shelf. 100 GbE cable
2	 Connect controller B port e2a to port e0a on NSM B on the shelf. Connect controller B port e10b to port e0b on NSM A on the shelf. 100 GbE cable

Option 2: Cable the controllers to two NS224 drive shelves

You must cable each controller to the NSM modules on the NS224 drive shelves.


Before you begin


• Be sure to check the illustration arrow for the proper cable connector pull-tab orientation. The cable pull-tab for the storage modules are up, while the pull tabs on the shelves are down.

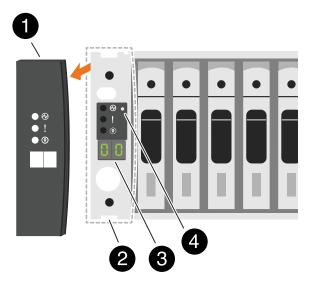


- As you insert the connector, you should feel it click into place; if you do not feel it click, remove it, turn it around and try again.
- 1. Use the following animation or diagram to cable your controllers to two NS224 drive shelves.

Animation - Cable two NS224 shelves

Step 5: Complete system setup and configuration

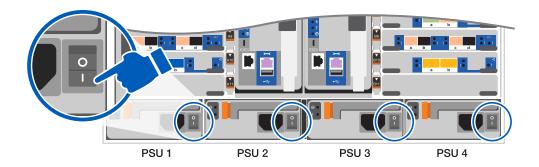
You can complete the system setup and configuration using cluster discovery with only a connection to the switch and laptop, or by connecting directly to a controller in the system and then connecting to the management switch.


Option 1: If network discovery is enabled

If you have network discovery enabled on your laptop, you can complete system setup and configuration using automatic cluster discovery.

1. Use the following animation or drawing to set one or more drive shelf IDs:

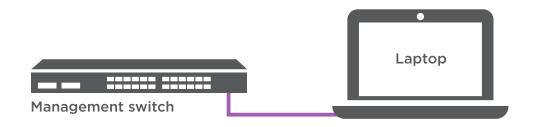
The NS224 shelves are pre-set to shelf ID 00 and 01. If you want to change the shelf IDs, you must create a tool to insert into the hole where button is located. see Change a shelf ID - NS224 shelves for detailed instructions.


Animation - Set NVMe drive shelf IDs

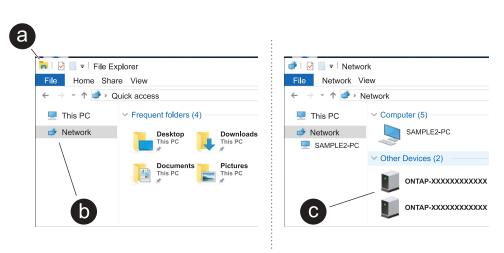
0	Shelf end cap
2	Shelf faceplate
3	Shelf ID LED
4	Shelf ID setting button

2. Turn on the power switches on the power supplies to both nodes.

Animation - Turn on the power to the controllers



- initial booting may take up to eight minutes.
- 3. Make sure that your laptop has network discovery enabled.


See your laptop's online help for more information.

4. Use the following animation to connect your laptop to the Management switch.

Animation - Connect your laptop to the Management switch

5. Select an ONTAP icon listed to discover:

- a. Open File Explorer.
- b. Click **Network** in the left pane and right-click and select **refresh**.
- c. Double-click either ONTAP icon and accept any certificates displayed on your screen.

XXXXX is the system serial number for the target node.

System Manager opens.

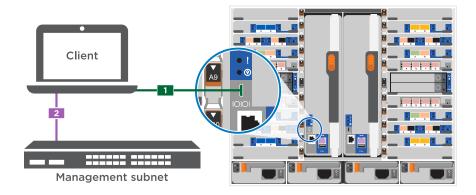
- 6. Use System Manager guided setup to configure your system using the data you collected in the ONTAP Configuration Guide.
- 7. Set up your account and download Active IQ Config Advisor:
 - a. Log in to your existing account or create an account.

NetApp Support Registration

b. Register your system.

NetApp Product Registration

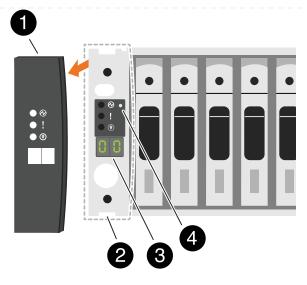
c. Download Active IQ Config Advisor.


NetApp Downloads: Config Advisor

- 8. Verify the health of your system by running Config Advisor.
- 9. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Option 2: If network discovery is not enabled

If you are not using a Windows or Mac-based laptop or console or if auto discovery is not enabled, you must complete the configuration and setup using this task.


- 1. Cable and configure your laptop or console:
 - a. Set the console port on the laptop or console to 115,200 baud with N-8-1.
 - See your laptop or console's online help for how to configure the console port.
 - b. Connect the console cable to the laptop or console using the console cable that came with your system, and then connect the laptop to the management switch on the management subnet.

- c. Assign a TCP/IP address to the laptop or console, using one that is on the management subnet.
- 2. Use the following animation to set one or more drive shelf IDs:

The NS224 shelves are pre-set to shelf ID 00 and 01. If you want to change the shelf IDs, you must create a tool to insert into the hole where button is located. see Change a shelf ID - NS224 shelves for detailed instructions.

Animation - Set NVMe drive shelf IDs

0	Shelf end cap
2	Shelf faceplate
3	Shelf ID LED
4	Shelf ID setting button

3. Turn on the power switches on the power supplies to both nodes.

Animation - Turn on the power to the controllers

image:[Callout number 1] drw_a900_power-on_IEOPS-941.svg[width=500px]

Initial booting may take up to eight minutes.

4. Assign an initial node management IP address to one of the nodes.

If the management network has DHCP	Then
Configured	Record the IP address assigned to the new controllers.

If the management network has DHCP	Then	
Not configured	Open a console session using PuTTY, a terminal server, or the equiversion for your environment.	
	i	Check your laptop or console's online help if you do not know how to configure PuTTY.
	b. Enter the n	nanagement IP address when prompted by the script.

- 5. Using System Manager on your laptop or console, configure your cluster:
 - a. Point your browser to the node management IP address.

The format for the address is https://x.x.x.x.

- b. Configure the system using the data you collected in the ONTAP Configuration Guide
- 6. Set up your account and download Active IQ Config Advisor:
 - a. Log in to your existing account or create an account.

NetApp Support Registration

b. Register your system.

NetApp Product Registration

c. Download Active IQ Config Advisor.

NetApp Downloads: Config Advisor

- 7. Verify the health of your system by running Config Advisor.
- 8. After you have completed the initial configuration, go to ONTAP 9 documentation for information about configuring additional features in ONTAP.

Maintain

Maintain ASA A900 hardware

Maintain the hardware of your ASA A900 storage system to ensure long-term reliability and optimal performance. Perform regular maintenance tasks such as replacing faulty components, as this helps prevent downtime and data loss.

The maintenance procedures assume that the ASA A900 storage system has already been deployed as a storage node in the ONTAP environment.

System components

For the ASA A900 storage system, you can perform maintenance procedures on the following components.

Boot media - automated recovery

The boot media stores a primary and secondary set of ONTAP image files that the storage system uses to boot. During automated recovery, the system retrieves the boot image from the partner node and automatically runs the appropriate boot menu option to install the image on your replacement boot media. The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

Boot media - manual recovery

The boot media stores a primary and secondary set of ONTAP image files that the storage system uses to boot. During manual recovery, you boot the storage system from a USB drive and manually restore the file system image and configuration. If your storage system is running ONTAP 9.17.1 and later, use the automated boot recovery procedure.

Chassis

The chassis is the physical enclosure housing all the controller components such as the controller/CPU unit, power supply, and I/O.

Controller

A controller consists of a board, firmware, and software. It controls the drives and implements the ONTAP functions.

DIMM

You must replace a DIMM (dual in-line memory module) when a memory mismatch is present, or you have a failed DIMM.

DCPM

The DCPM (destage controller power module) contains the NVRAM11 battery.

Fan

The fan cools the controller.

I/O module

The I/O module (Input/Output module) is a hardware component that acts as an intermediary between the controller and various devices or systems that need to exchange data with the controller.

LED USB

The LED USB module provides connectivity to console ports and system status.

NVRAM

The NVRAM module (Non-Volatile Random Access Memory) allows the controller to retain data across power cycles or system reboots, while the NVRAM DIMM maintains NVRAM settings.

Power supply

A power supply provides a redundant power source in a controller.

Real-time clock battery

A real time clock battery preserves system date and time information if the power is off.

Boot media - automated recovery

Boot media automated recovery workflow - ASA A900

The automated recovery of the boot image involves the system automatically identifying and selecting the appropriate boot menu option. It uses the boot image on partner node to reinstall ONTAP on the replacement boot media in your ASA A900 storage system.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

To get started, review the replacement requirements, shut down the controller, replace the boot media, allow the system to restore the image, and verify system functionality.

Review the boot media requirements

Review the requirements for boot media replacement.

Shut down the controller

Shut down the controller in your storage system when when you need to replace the boot media.

Replace the boot media

Remove the failed boot media from the controller module and install the replacement boot media.

Restore the image on the boot media

Restore the ONTAP image from the partner controller.

Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit.

Requirements for automated boot media recovery - ASA A900

Before replacing the boot media in your ASA A900, ensure you meet the necessary requirements for a successful replacement. This includes verifying that you have the correct replacement boot media, confirming that the e0S (e0M wrench) port on the impaired controller is not faulty, and determining whether Onboard Key Manager (OKM) or External Key Manager (EKM) is enabled.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

- You must replace the failed component with a replacement FRU component of the same capacity that you received from NetApp.
- Verify that the e0M (wrench) port on the impaired controller is connected and not faulty.

The e0M port is used to communicate between the two controllers during the automated boot recovery process.

- For OKM, you need the cluster-wide passphrase and also the backup data.
- For EKM, you need copies of the following files from the partner node:
 - /cfcard/kmip/servers.cfg file.
 - · /cfcard/kmip/certs/client.crt file.
 - · /cfcard/kmip/certs/client.key file.
 - · /cfcard/kmip/certs/CA.pem file.
- It is critical to apply the commands to the correct controller when you are replacing the impaired boot media:
 - The *impaired controller* is the controller on which you are performing maintenance.
 - The *healthy controller* is the HA partner of the impaired controller.

What's next

After you've reviewed the boot media requirements, you shut down the controller.

Shut down the controller for automated boot media recovery - ASA A900

Shut down the impaired controller in your ASA A900 storage system to prevent data loss and ensure system stability when replacing the boot media.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message MAINT=2h
```

- Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

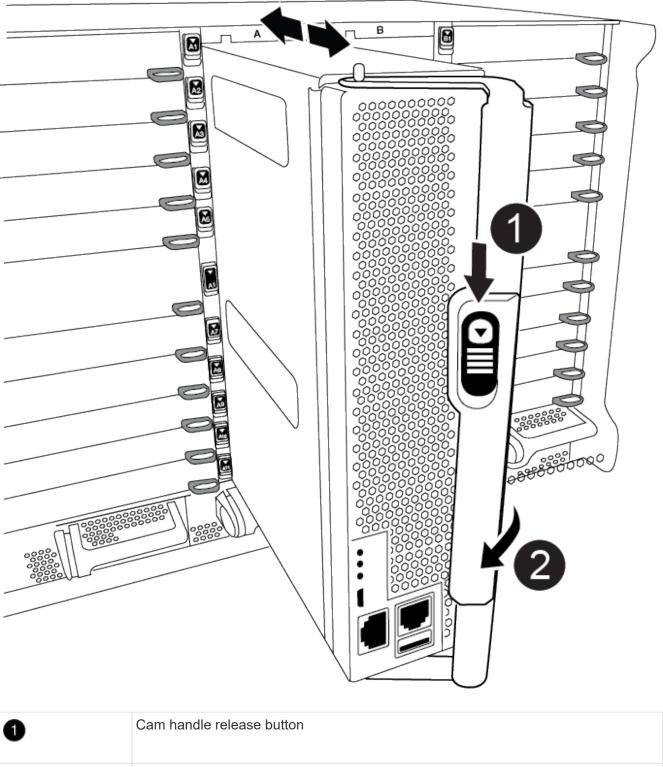
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name -halt true The -halt true parameter brings you to the LOADER prompt.

What's next

After you shut down the impaired controller, you replace the boot media.

Replace the boot media for automated boot recovery - ASA A900

The boot media in your ASA A900 system stores essential firmware and configuration data. The replacement process involves removing and opening the controller module, removing the impaired boot media, installing the replacement boot media in the controller module, and then reinstalling the controller module.

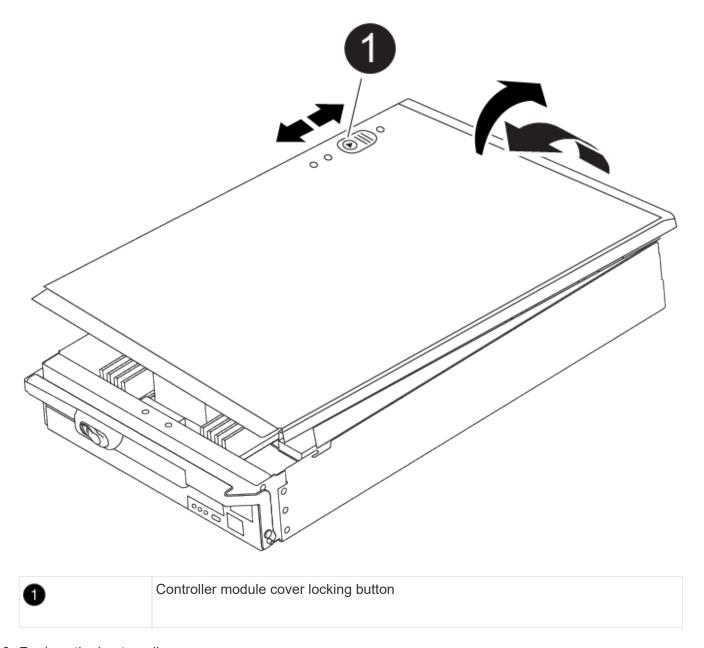

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

The boot media is located inside the controller module under the air duct, and is accessed by removing the controller module from the system.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the cables from the impaired controller module, and keep track of where the cables were connected.
- 3. Slide the terra cotta button on the cam handle downward until it unlocks.

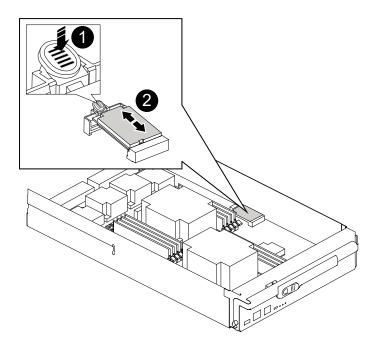
Animation - Remove the controller



0	Cam handle release button
2	Cam handle

4. Rotate the cam handle so that it completely disengages the controller module from the chassis, and then slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.


5. Place the controller module lid-side up on a stable, flat surface, press the blue button on the cover, slide the cover to the back of the controller module, and then swing the cover up and lift it off of the controller module.

6. Replace the boot media:

a. Lift the black air duct at the back of the controller module and then locate the boot media using the following illustration or the FRU map on the controller module:

Animation - Replace boot media

0	Press release tab
2	Boot media

b. Press the blue button on the boot media housing to release the boot media from its housing, and then gently pull it straight out of the boot media socket.

Do not twist or pull the boot media straight up, because this could damage the socket or the boot media.

- c. Align the edges of the replacement boot media with the boot media socket, and then gently push it into the socket.
- d. Check the boot media to make sure that it is seated squarely and completely in the socket.

If necessary, remove the boot media and reseat it into the socket.

- e. Push the boot media down to engage the locking button on the boot media housing.
- 7. Reinstall the controller module lid by aligning the pins on the lid with the slots on the motherboard carrier, and then slide the lid into place.
- 8. Reinstall the controller module:
 - a. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
 - b. Recable the controller module, as needed.
 - c. Push the controller module all the way into the system, making sure that the cam handle clears the USB flash drive, firmly push the cam handle to finish seating the controller module, and then push the cam handle to the closed position.

The controller begins to boot as soon as it is completely installed into the chassis.

If you miss this message, press Ctrl-C, select the option to boot to Maintenance mode, and then halt the controller to boot to LOADER.

- 9. If the controller is in a stretch or fabric-attached MetroCluster, you must restore the FC adapter configuration:
 - a. Boot to Maintenance mode: boot_ontap maint
 - b. Set the MetroCluster ports as initiators: ucadmin modify -m fc -t iniitator adapter name
 - C. Halt to return to Maintenance mode: halt

What's next

After physically replacing the impaired boot media, restore the ONTAP image from the partner node.

Automated boot media recovery from the partner node - ASA A900

After installing the new boot media device in your ASA A900 system, you can start the automated boot media recovery process to restore the configuration from the partner node.

During the recovery process, the system checks whether encryption is enabled and determines the type of key encryption in use. If key encryption is enabled, the system guides you through the appropriate steps to restore it.

The automated boot media recovery process is supported only in ONTAP 9.17.1 and later. If your storage system is running an earlier version of ONTAP, use the manual boot recovery procedure.

Before you begin

- For OKM, you need the cluster-wide passphrase and also the backup data.
- For EKM, you need copies of the following files from the partner node:
 - · /cfcard/kmip/servers.cfg file.
 - /cfcard/kmip/certs/client.crt file.
 - · /cfcard/kmip/certs/client.key file.
 - · /cfcard/kmip/certs/CA.pem file.

Steps

1. From the LOADER prompt, enter the command:

```
boot recovery -partner
```

The screen displays the following message:

```
Starting boot media recovery (BMR) process. Press Ctrl-C to abort...
```

2. Monitor the boot media install recovery process.

The process completes and displays the Installation complete message.

3. The system checks for encryption and encryption type and displays one of two messages. Depending on what message is displayed, take one of the following actions:

Occasionally, the process may not be able to identify if key manager is configured on the system. It will display an error message, ask if key manager is configured for the system, and then ask what type of key manager is configured. The process will resume after you resolve the issue.

Show example of configuration error finding prompts

Error when fetching key manager config from partner \${partner_ip}:
\${status}

Has key manager been configured on this system

Is the key manager onboard

If you see this message	Do this
key manager is not configured. Exiting.	Encryption is not installed on the system. Complete the following steps:
	a. Log into the node when the login prompt is displayed and give back the storage:
	storage failover giveback -ofnode impaired_node_name
	b. Go to step 5 to enable automatic giveback if it was disabled.
key manager is	Go to step 4 to restore the appropriate key manager.
configured.	The node accesses the boot menu and runs:
	Option 10 for systems with Onboard Key Manager (OKM).
	Option 11 for systems with External Key Manager (EKM).

4. Select the appropriate key manager restoration process.

Onboard Key Manager (OKM)

If OKM is detected, the system displays the following message and begins running BootMenu Option 10.

```
key manager is configured.
Entering Bootmenu Option 10...

This option must be used only in disaster recovery procedures. Are you sure? (y or n):
```

- a. Enter Y at the prompt to confirm you want to start the OKM recovery process.
- b. Enter the following when prompted:
 - i. The passphrase
 - ii. The passphrase again when prompted to confirm
 - iii. Backup data for onboard key manager

Show example of passphrase and backup data prompts

```
Enter the passphrase for onboard key management:
----BEGIN PASSPHRASE----
<passphrase_value>
----END PASSPHRASE----
Enter the passphrase again to confirm:
----BEGIN PASSPHRASE----
<passphrase_value>
----END PASSPHRASE----
Enter the backup data:
----BEGIN BACKUP-----
<passphrase_value>
-----END BACKUP-----
```

c. Continue to monitor the recovery process as it restores the appropriate files from the partner node.

When the recovery process is complete, the node will reboot. The following messages indicate a successful recovery:

Trying to recover keymanager secrets....

Setting recovery material for the onboard key manager Recovery secrets set successfully

Trying to delete any existing km_onboard.keydb file.

Successfully recovered keymanager secrets.

- d. When the node reboots, verify the boot media recovery was successful by confirming that the system is back online and operational.
- e. Return the impaired controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired_node_name
```

f. After the partner node is fully up and serving data, synchronize the OKM keys across the cluster.

```
security key-manager onboard sync
```

External Key Manager (EKM)

If EKM is detected, the system displays the following message and begins running BootMenu Option 11.

```
key manager is configured.
Entering Bootmenu Option 11...
```

a. The next step depends on which version of ONTAP your system is running:

If your system is running	Do this
ONTAP 9.16.0	a. Press Ctlr-C to exit BootMenu Option 11.
	b. Press Ctlr-C to exit the EKM configuration process and return to the boot menu.
	c. Select BootMenu Option 8.
	d. Reboot the node.
	If AUTOBOOT is set, the node reboots and uses the configuration files from the partner node.
	If AUTOBOOT is not set, enter the appropriate boot command. The node reboots and uses the configuration files from the partner node.
	e. Reboot the node so that EKM protects the boot media partition.
	f. Proceed to step c.

If your system is running	Do this
ONTAP 9.16.1 and later	Proceed to the next step.

b. Enter the following EKM configuration setting when prompted:

Action	Example
Enter the client certificate contents from the /cfcard/kmip/certs/client.crt file.	Show example of client certificate contents BEGIN CERTIFICATE <certificate_value>END CERTIFICATE</certificate_value>
Enter the client key file contents from the /cfcard/kmip/certs/client.key file.	Show example of client key file contents BEGIN RSA PRIVATE KEY <key_value>END RSA PRIVATE KEY</key_value>
Enter the KMIP server CA(s) file contents from the /cfcard/kmip/certs/CA.pem file.	Show example of KMIP server file contents BEGIN CERTIFICATE <kmip_certificate_ca_value>END CERTIFICATE</kmip_certificate_ca_value>

-	- 1			
^	\sim	rı	\sim	n
$\boldsymbol{-}$	L	LI	u	

Enter the server configuration file contents from the /cfcard/kmip/servers.cfg file.

Example

Show example of server configuration file contents

xxx.xxx.xxx:5696.host= XXX.XXX.XXX xxx.xxx.xxx:5696.port= xxx.xxx.xxx:5696.trust ed file=/cfcard/kmip/certs /CA.pem xxx.xxx.xxx:5696.proto col=KMIP1 4 1xxx.xxx.xxx.xxx:5696.time out=25 xxx.xxx.xxx:5696.nbio= xxx.xxx.xxx.xxx:5696.cert file=/cfcard/kmip/certs/cl ient.crt xxx.xxx.xxx:5696.key_f ile=/cfcard/kmip/certs/cli ent.key xxx.xxx.xxx:5696.ciphe rs="TLSv1.2:kRSA:!CAMELLIA :!IDEA:!RC2:!RC4:!SEED:!eN ULL: !aNULL" xxx.xxx.xxx.5696.verif y=true xxx.xxx.xxx:5696.netap p keystore uuid=<id value>

Action

If prompted, enter the ONTAP Cluster UUID from the partner.

You can check the cluster UUID from the partner node using the cluster identify show command.

Example

Show example of ONTAP Cluster UUID

Notice:

bootarg.mgwd.cluster_uuid
is not set or is empty.
Do you know the ONTAP
Cluster UUID? {y/n} y
Enter the ONTAP Cluster
UUID: <cluster_uuid_value>

System is ready to utilize external key manager(s).

If prompted, enter the temporary network interface and settings for the node.

You need to enter:

- 1. The IP address for the port
- 2. The netmask for the port
- 3. The IP address of the default gateway

Show example of a temporary network setting

In order to recover key information, a temporary network interface needs to be configured.

Select the network port you want to use (for example, 'e0a') e0M

Enter the IP address for
port : xxx.xxx.xxx.xxx
Enter the netmask for port
: xxx.xxx.xxx.xxx
Enter IP address of
default gateway:
xxx.xxx.xxx
Trying to recover keys
from key servers....
[discover_versions]
[status=SUCCESS reason=
message=]

- c. Depending on whether the key is successfully restored, take one of the following actions:
 - If you see kmip2_client: Successfully imported the keys from external key server: xxx.xxx.xxx.xxx:5696 in the output, the EKM configuration has been successfully restored.

The process attempts to restore the appropriate files from the partner node and reboots the node. Go to step d.

• If the key is not successfully restored, the system will halt and indicate that it could not restore the key. The error and warning messages are displayed. You must rerun the recovery process:

```
boot recovery -partner
```

Show example of key recovery error and warning messages

- d. When the node reboots, verify that the boot media recovery was successful by confirming that the system is back online and operational.
- e. Return the controller to normal operation by giving back its storage:

```
storage failover giveback -ofnode impaired node name
```

5. If automatic giveback was disabled, reenable it:

```
storage failover modify -node local -auto-giveback true
```

6. If AutoSupport is enabled, restore automatic case creation:

```
system node autosupport invoke -node * -type all -message MAINT=END
```

What's next

After you've restored the ONTAP image and the node is up and serving data, you return the failed part to NetApp.

Return the failed part to NetApp - ASA A900

If a component in your ASA A900 system fails, return the failed part to NetApp. See the Part Return and Replacements page for further information.

Boot media - manual recovery

Replace the boot media - ASA A900

The boot media stores a primary and secondary set of system (boot image) files that the system uses when it boots. Depending on your network configuration, you can perform either a nondisruptive or disruptive replacement.

You must have a USB flash drive, formatted to FAT32, with the appropriate amount of storage to hold the image xxx.tgz file.

You also must copy the image xxx.tgz file to the USB flash drive for later use in this procedure.

- The nondisruptive and disruptive methods for replacing a boot media both require you to restore the var file system:
 - For nondisruptive replacement, the HA pair does not require connection to a network to restore the var file system. The HA pair in a single chassis has an internal e0S connection, which is used to transfer var config between them.
 - For disruptive replacement, you do not need a network connection to restore the var file system, but the process requires two reboots.
- You must replace the failed component with a replacement FRU component you received from NetApp.
- It is important that you apply the commands in these steps on the correct controller:
 - The impaired controller is the controller on which you are performing maintenance.
 - The *healthy* controller is the HA partner of the impaired controller.

Check encryption key support and status - ASA A900

To ensure data security on your storage system, you need to verify the encryption key support and status on your boot media. Check if your ONTAP version supports NetApp Volume Encryption (NVE), and before you shut down the controller check if the key manager is active.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Step 1: Check if your version of ONTAP supports NetApp Volume Encryption

Check whether your ONTAP version supports NetApp Volume Encryption (NVE). This information is crucial for downloading the correct ONTAP image.

Steps

1. Determine if your ONTAP version supports encryption by running the following command:

version -v

If the output includes 10no-DARE, NVE is not supported on your cluster version.

- 2. Depending on whether NVE is supported on your system, take one of the following actions:
 - If NVE is supported, download the ONTAP image with NetApp Volume Encryption.
 - If NVE is not supported, download the ONTAP image without NetApp Volume Encryption.

Step 2: Determine if it is safe to shut down the controller

To safely shut down a controller, first identify whether the External Key Manager (EKM) or the Onboard Key Manager (OKM) is active. Then, verify the key manager in use, display the appropriate key information, and take action based on the status of the authentication keys.

Steps

1. Determine which key manager is enabled on your system:

ONTAP version	Run this command
ONTAP 9.14.1 or later	security key-manager keystore show
	 If EKM is enabled, EKM is listed in the command output.
	• If OKM is enabled, OKM is listed in the command output.
	• If no key manager is enabled, No key manager keystores configured is listed in the command output.
ONTAP 9.13.1 or earlier	security key-manager show-key-store
	• If EKM is enabled, external is listed in the command output.
	• If OKM is enabled, onboard is listed in the command output.
	• If no key manager is enabled, No key managers configured is listed in the command output.

2. Depending on whether a key manger is configured on your system, select one of the following options.

No key manager configured

You can safely shut down the impaired controller. Go to shutdown the impaired controller.

External or Onboard key manager configured

a. Enter the following query command to display the status of the authentication keys in your key manager.

```
security key-manager key query
```

b. Check the output for the value in the Restored column for your key manager.

This column indicates whether the authentication keys for your key manager (either EKM or OKM) have been successfully restored.

3. Depending on whether your system is using the External Key Manager or Onboard Key Manager, select one of the following options.

External Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	You can safely shut down the impaired controller. Go to shutdown the impaired controller.
Anything other than true	 a. Restore the external key management authentication keys to all nodes in the cluster using the following command: security key-manager external restore If the command fails, contact NetApp Support. b. Verify that the Restored column displays true for all authentication keys by entering the security key-manager key query command. If all the authentication keys are true, you can safely shut down the impaired controller. Go to shutdown the impaired controller.

Onboard Key Manager

Depending on the output value displayed in the Restored column, follow the appropriate steps.

Output value in Restored column	Follow these steps
true	Manually back up the OKM information.
	a. Go to the advanced mode by entering set -priv advanced and then enter Y when prompted.
	b. Enter the following command to display the key management information:
	security key-manager onboard show-backup
	c. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	d. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Output value in Restored column	Follow these steps
Anything other than true	a. Enter the onboard security key-manager sync command:
	security key-manager onboard sync
	b. Enter the 32 character, alphanumeric onboard key management passphrase when prompted.
	If the passphrase cannot be provided, contact NetApp Support.
	c. Verify the Restored column displays true for all authentication keys:
	security key-manager key query
	d. Verify that the Key Manager type displays onboard, and then manually back up the OKM information.
	e. Enter the command to display the key management backup information:
	security key-manager onboard show-backup
	f. Copy the contents of the backup information to a separate file or your log file.
	You'll need it in disaster scenarios where you might need to manually recover OKM.
	g. You can safely shut down the impaired controller. Go to shutdown the impaired controller.

Shut down the controller for manual boot media recovery - ASA A900

Shut down or take over the impaired controller using the appropriate procedure for your configuration.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Most configurations

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true
	The -halt true parameter brings you to the LOADER prompt.

Controller is in a MetroCluster

After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired controller.

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

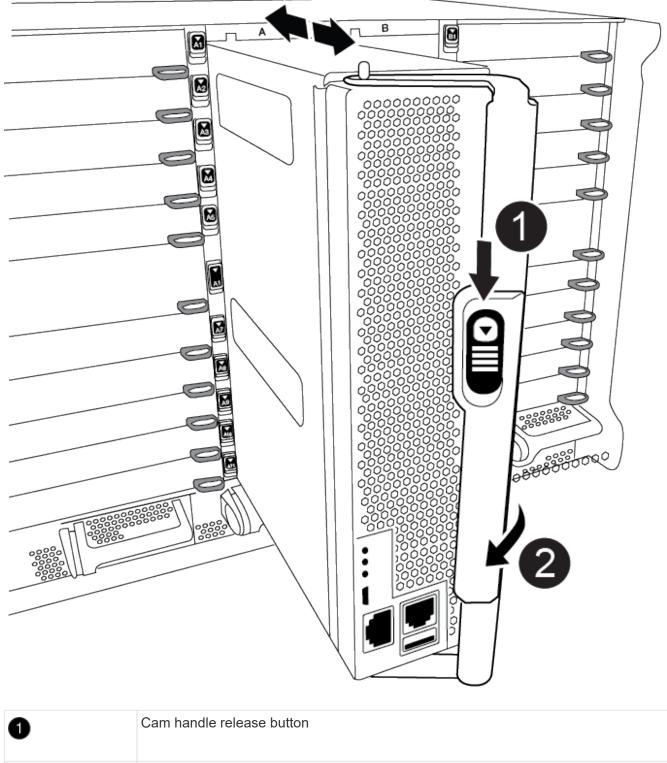
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Replace the boot media and prepare for manual boot recovery - ASA A900

You must unplug the controller module, remove and open the controller module, locate and replace the boot media in the controller, and then transfer the image to the replacement boot media.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

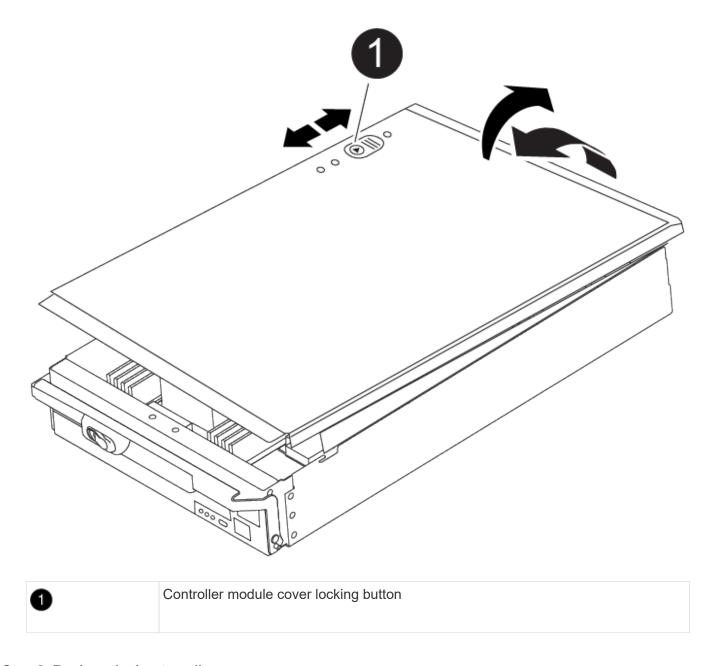

Step 1: Remove the controller module

To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the cables from the impaired controller module, and keep track of where the cables were connected.
- 3. Slide the terra cotta button on the cam handle downward until it unlocks.

Animation - Remove the controller

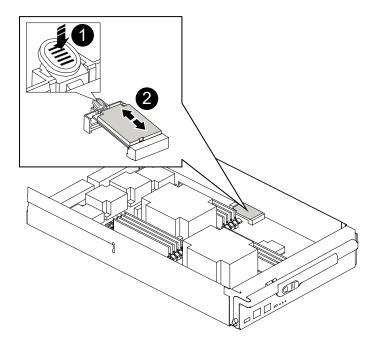


0	Cam handle release button
2	Cam handle

4. Rotate the cam handle so that it completely disengages the controller module from the chassis, and then slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

5. Place the controller module lid-side up on a stable, flat surface, press the blue button on the cover, slide the cover to the back of the controller module, and then swing the cover up and lift it off of the controller module.


Step 2: Replace the boot media

You must locate the boot media in the controller and follow the directions to replace it.

Steps

1. Lift the black air duct at the back of the controller module and then locate the boot media using the following illustration or the FRU map on the controller module:

Animation - Replace boot media

0	Press release tab
2	Boot media

2. Press the blue button on the boot media housing to release the boot media from its housing, and then gently pull it straight out of the boot media socket.

Do not twist or pull the boot media straight up, because this could damage the socket or the boot media.

- 3. Align the edges of the replacement boot media with the boot media socket, and then gently push it into the socket.
- 4. Check the boot media to make sure that it is seated squarely and completely in the socket.

If necessary, remove the boot media and reseat it into the socket.

- 5. Push the boot media down to engage the locking button on the boot media housing.
- 6. Reinstall the controller module lid by aligning the pins on the lid with the slots on the motherboard carrier, and then slide the lid into place.

Step 3: Transfer the boot image to the boot media

You can install the system image to the replacement boot media using a USB flash drive with the image installed on it. However, you must restore the var file system during this procedure.

Before you begin

- You must have a USB flash drive, formatted to FAT32, with at least 4GB capacity.
- Download a copy of the same image version of ONTAP as what the impaired controller was running. You can download the appropriate image from the Downloads section on the NetApp Support Site. Use the

version -v command to display if your version of ONTAP supports NVE. If the command output displays <10no- DARE>, your version of ONTAP does not support NVE.

- If NVE is supported by your version of ONTAP, download the image with NetApp Volume Encryption, as indicated in the download button.
- If NVE is not supported, download the image without NetApp Volume Encryption, as indicated in the download button.
- If your system is a stand-alone system you do not need a network connection, but you must perform an additional reboot when restoring the var file system.

Steps

- 1. If you have not done so, download and copy the appropriate service image from the NetApp Support Site to the USB flash drive.
 - a. Download the service image from the Downloads link on the page, to your work space on your laptop.
 - b. Unzip the service image.

If you are extracting the contents using Windows, do not use WinZip to extract the netboot image. Use another extraction tool, such as 7-Zip or WinRAR.

The USB flash drive should have the appropriate ONTAP image of what the impaired controller is running.

- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.
- 3. Recable the controller module, as needed.
- 4. Insert the USB flash drive into the USB slot on the controller module.

Make sure that you install the USB flash drive in the slot labeled for USB devices, and not in the USB console port.

5. Push the controller module all the way into the system, making sure that the cam handle clears the USB flash drive, firmly push the cam handle to finish seating the controller module, and then push the cam handle to the closed position.

The controller begins to boot as soon as it is completely installed into the chassis.

6. Interrupt the boot process to stop at the LOADER prompt by pressing Ctrl-C when you see Starting AUTOBOOT press Ctrl-C to abort....

If you miss this message, press Ctrl-C, select the option to boot to Maintenance mode, and then halt the controller to boot to LOADER.

- 7. If the controller is in a stretch or fabric-attached MetroCluster, you must restore the FC adapter configuration:
 - a. Boot to Maintenance mode: boot ontap maint
 - b. Set the MetroCluster ports as initiators: ucadmin modify -m fc -t initiator adapter name
 - c. Halt to return to Maintenance mode: halt

The changes will be implemented when the system is booted.

Manual boot media recovery from a USB drive - ASA A900

After installing the new boot media device in your system, you can boot the recovery image from a USB drive and restore the configuration from the partner node.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

Steps

- From the LOADER prompt, boot the recovery image from the USB flash drive: boot_recovery
 The image is downloaded from the USB flash drive.
- 2. When prompted, either enter the name of the image or accept the default image displayed inside the brackets on your screen.
- 3. Restore the var file system:

Option 1: ONTAP 9.16.0 or earlier

- a. On the impaired controller, press Y when you see Do you want to restore the backup configuration now?
- b. If prompted on the impaired controller, press Y to overwrite /etc/ssh/ssh host ecdsa key.
- c. On the healthy partner controller, set the impaired controller to advanced privilege level: set -privilege advanced.
- d. On the healthy partner controller, run the restore backup command: system node restore-backup -node local -target-address impaired node IP address.

NOTE: If you see any message other than a successful restore, contact NetApp Support.

- e. On the healthy partner controller, return the impaired controller to admin level: set -privilege admin.
- f. On the impaired controller, press Y when you see Was the restore backup procedure successful?.
- g. On the impaired controller, press Y when you see ...would you like to use this restored copy now?.
- h. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- i. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.

Option 2: ONTAP 9.16.1 or later

a. On the impaired controller, press Y when prompted to restore the backup configuration.

After restore procedure is successful, this message will be seen on the console-syncflash partner: Restore from partner complete.

- b. On the impaired controller, press Y when prompted to confirm if the restore backup was successful.
- c. On the impaired controller, press Y when prompted to use the restored configuration.
- d. On the impaired controller, press Y when prompted to reboot the node.
- e. On the impaired controller, press Y when prompted to reboot the impaired controller and press ctrl-c for the Boot Menu.
- f. If the system does not use encryption, select *Option 1 Normal Boot.*, otherwise go to Restore encryption.
- 4. Connect the console cable to the partner controller.
- Give back the controller using the storage failover giveback -fromnode local command.
- 6. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command.
- 7. If AutoSupport is enabled, restore/unsuppress automatic case creation by using the system node autosupport invoke -node * -type all -message MAINT=END command.

NOTE: If the process fails, contact NetApp Support.

Restore encryption - ASA A900

Restore encryption on the replacement boot media.

If your storage system is running ONTAP 9.17.1 or later, use the automated boot recovery procedure. If your system is running an earlier version of ONTAP, you must use the manual boot recovery procedure.

You must complete steps specific to systems that have Onboard Key Manager (OKM), NetApp Storage Encryption (NSE) or NetApp Volume Encryption (NVE) enabled using the settings that you captured at the beginning of the boot media replace procedure.

Depending on which a key manger is configured on your system, select one of the following options to restore it from the boot menu.

- Option 1: Restore the Onboard Key Manager configuration
- Option 2: Restore the External Key Manager configuration

Option 1: Restore the Onboard Key Manager configuration

Restore the Onboard Key Manager (OKM) configuration from the ONTAP boot menu.

Before you begin

- Make sure you have following information while restoring the OKM configuration:
 - · Cluster-wide passphrase entered while enabling onboard key management.
 - Backup information for the Onboard Key Manager.
- Perform the How to verify onboard key management backup and cluster-wide passphrase procedure before proceeding.

Steps

- 1. Connect the console cable to the target controller.
- 2. From the ONTAP boot menu select the appropriate option from the boot menu.

ONTAP version	Select this option
ONTAP 9.8 or later	Select option 10.
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	(10) Set Onboard Key Manager recovery
	secrets.
	(11) Configure node for external key
	management.
	Selection (1-11)? 10

ONTAP version	Select this option
ONTAP 9.7 and earlier	Select the hidden option recover_onboard_keymanager
	Show example boot menu
	Please choose one of the following:
	(1) Normal Boot.
	(2) Boot without /etc/rc.
	(3) Change password.
	(4) Clean configuration and initialize
	all disks.
	(5) Maintenance mode boot.
	(6) Update flash from backup config.
	(7) Install new software first.
	(8) Reboot node.
	(9) Configure Advanced Drive
	Partitioning.
	Selection (1-19)?
	recover_onboard_keymanager

3. Confirm that you want to continue the recovery process.

Show example prompt

This option must be used only in disaster recovery procedures. Are you sure? (y or n):

4. Enter the cluster-wide passphrase twice.

While entering the passphrase the console will not show any input.

Show example prompt

```
Enter the passphrase for onboard key management:

Enter the passphrase again to confirm:
```

- 5. Enter the backup information.
 - a. Paste the entire content from the BEGIN BACKUP line through the END BACKUP line.

Enter the backup data:

-----END BACKUP-----

b. Press the enter key twice at the end of the input.

The recovery process completes.

Do not proceed if the displayed output is anything other than Successfully recovered keymanager secrets.

Perform troubleshooting to correct the error.

6. Select option 1 from the boot menu to continue booting into ONTAP.

```
**************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
******************
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6)
   Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

7. Confirm that the controller's console displays the following message.

```
Waiting for giveback...(Press Ctrl-C to abort wait)
```

8. From the partner node, giveback the partner controller by entering the following command.

```
storage failover giveback -fromnode local -only-cfo-aggregates true.
```

9. After booting with only the CFO aggregate, run the following command.

```
security key-manager onboard sync
```

10. Enter the cluster-wide passphrase for the Onboard Key Manager.

Enter the cluster-wide passphrase for the Onboard Key Manager:

All offline encrypted volumes will be brought online and the corresponding volume encryption keys (VEKs) will be restored automatically within 10 minutes. If any offline encrypted volumes are not brought online automatically, they can be brought online manually using the "volume online -vserver <vserver> -volume <volume_name>" command.

If the sync is successful the cluster prompt is returned with no additional messages. If the sync fails an error message appears before returning to the cluster prompt. Do not continue until the the error is corrected and the sync runs successfully.

11. Ensure that all keys are synced by entering the following command.

security key-manager key query -restored false.

There are no entries matching your query.

No results should appear when filtering for false in the restored parameter.

12. Giveback the node from the partner by entering the following command.

```
storage failover giveback -fromnode local
```

13. Restore automatic giveback, if you disabled it, by entering the following command.

```
storage failover modify -node local -auto-giveback true
```

14. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Option 2: Restore the External Key Manager configuration

Restore the External Key Manager configuration from the ONTAP boot menu.

Before you begin

You need the following information for restoring the External Key Manager (EKM) configuration.

- A copy of the /cfcard/kmip/servers.cfg file from another cluster node or the following information:
 - The KMIP server address.
 - The KMIP port.
- A copy of the /cfcard/kmip/certs/client.crt file from another cluster node or the client certificate.

- A copy of the /cfcard/kmip/certs/client.key file from another cluster node or the client key.
- A copy of the /cfcard/kmip/certs/CA.pem file from another cluster node or the KMIP server CA(s).

Steps

- 1. Connect the console cable to the target controller.
- 2. Select option 11 from the ONTAP boot menu.

Show example boot menu

```
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 11
```

3. When prompted, confirm you have gathered the required information.

Show example prompt

```
Do you have a copy of the /cfcard/kmip/certs/client.crt file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/client.key file? {y/n}
Do you have a copy of the /cfcard/kmip/certs/CA.pem file? {y/n}
Do you have a copy of the /cfcard/kmip/servers.cfg file? {y/n}
```

4. When prompted, enter the client and server information.

Show prompt

```
Enter the client certificate (client.crt) file contents:
Enter the client key (client.key) file contents:
Enter the KMIP server CA(s) (CA.pem) file contents:
Enter the server configuration (servers.cfg) file contents:
```

Show example

```
Enter the client certificate (client.crt) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the client key (client.key) file contents:
----BEGIN RSA PRIVATE KEY----
<key value>
----END RSA PRIVATE KEY----
Enter the KMIP server CA(s) (CA.pem) file contents:
----BEGIN CERTIFICATE----
<certificate value>
----END CERTIFICATE----
Enter the IP address for the KMIP server: 10.10.10.10
Enter the port for the KMIP server [5696]:
System is ready to utilize external key manager(s).
Trying to recover keys from key servers....
kmip init: configuring ports
Running command '/sbin/ifconfig eOM'
kmip init: cmd: ReleaseExtraBSDPort e0M
```

After you enter the client and server information, the recovery process completes.

Show example

```
System is ready to utilize external key manager(s).

Trying to recover keys from key servers....

Performing initialization of OpenSSL

Successfully recovered keymanager secrets.
```

5. Select option 1 from the boot menu to continue booting into ONTAP.

```
******************
*****
* Select option "(1) Normal Boot." to complete the recovery process.
*****************
*****
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 1
```

6. Restore automatic giveback if you disabled it.

```
storage failover modify -node local -auto-giveback true
```

7. If AutoSupport is enabled, restore automatic case creation by entering the following command.

```
system node autosupport invoke -node * -type all -message MAINT=END
```

Return the failed part to NetApp - ASA A900

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Chassis

Replace the chassis - ASA A900

To replace the chassis, you must remove the power supplies, fans, controller modules, I/O modules, DCPM modules, and USB LED module from the impaired chassis, remove the impaired chassis from the equipment rack or system cabinet, install the replacement chassis in its place, and then install the components into the replacement chassis.

All other components in the system must be functioning properly; if not, you must contact technical support.

- You can use this procedure with all versions of ONTAP supported by your system.
- This procedure is disruptive. For a two-node cluster, you will have a complete service outage and a partial outage in a multi-node cluster.

Shutdown the controllers - ASA A900

This procedure is for systems with two node configurations. For more information about graceful shutdown when servicing a cluster, see Gracefully shutdown and power up your storage system Resolution Guide - NetApp Knowledge Base.

Before you begin

- Make sure you have the necessary permissions and credentials:
 - · Local administrator credentials for ONTAP.
 - BMC accessability for each controller.
- Make sure you have the necessary tools and equipment for the replacement.
- · As a best practice before shutdown, you should:
 - Perform additional system health checks.
 - Upgrade ONTAP to a recommended release for the system.
 - Resolve any Active IQ Wellness Alerts and Risks.
 Make note of any faults presently on the system, such as LEDs on the system components.

Steps

- 1. Log into the cluster through SSH or log in from any node in the cluster using a local console cable and a laptop/console.
- 2. Stop all clients/host from accessing data on the NetApp system.
- 3. Suspend external backup jobs.
- 4. If AutoSupport is enabled, suppress case creation and indicate how long you expect the system to be offline:

```
\verb|system| node autosupport invoke - node * - type all - message "MAINT=2h Replace chassis"|
```

5. Identify the SP/BMC address of all cluster nodes:

```
system service-processor show -node * -fields address
```

6. Exit the cluster shell:

exit

7. Log into SP/BMC over SSH using the IP address of any of the nodes listed in the output from the previous step to monitor progress.

If you are using a console/laptop, log into the controller using the same cluster administrator credentials.

8. Halt the two nodes located in the impaired chassis:

```
system node halt -node <node1>, <node2> -skip-lif-migration-before-shutdown
```

true -ignore-quorum-warnings true -inhibit-takeover true

For clusters using SnapMirror synchronous operating in StrictSync mode: system node halt -node <node1>,<node2> -skip-lif-migration-before-shutdown true -ignore-quorum-warnings true -inhibit-takeover true -ignore-strict -sync-warnings true

9. Enter **y** for each controller in the cluster when you see:

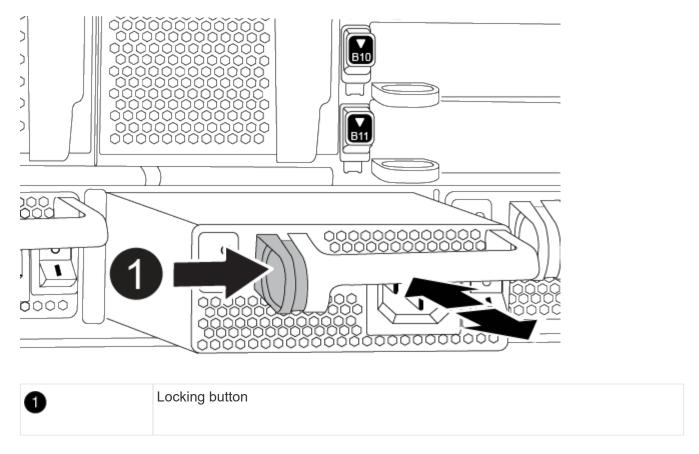
Warning: Are you sure you want to halt node <node name>? {y|n}:

10. Wait for each controller to halt and display the LOADER prompt.

Move and replace hardware - ASA A900

To replace the chassis, you must remove the components from the impaired chassis and install them in the replacement chassis.

Step 1: Remove the power supplies


Removing the power supplies when replacing a chassis involves turning off, disconnecting, and then removing the four power supplies from the rear of the impaired chassis.

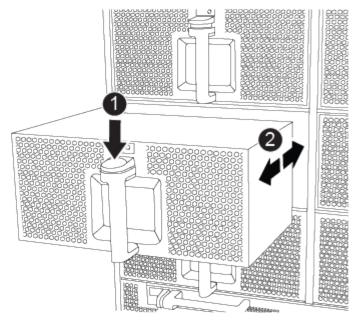
- 1. If you are not already grounded, properly ground yourself.
- 2. Turn off the power supply and disconnect the power cables:
 - a. Turn off the power switch on the power supply.
 - b. Open the power cable retainer, and then unplug the power cable from the power supply.
 - c. Unplug the power cable from the power source.
- 3. Press and hold the terra cotta locking button on the power supply handle, and then pull the power supply out of the chassis.

When removing a power supply, always use two hands to support its weight.

Animation - Remove/install PSU

4. Repeat the preceding steps for any remaining power supplies.

Step 2: Remove the fans

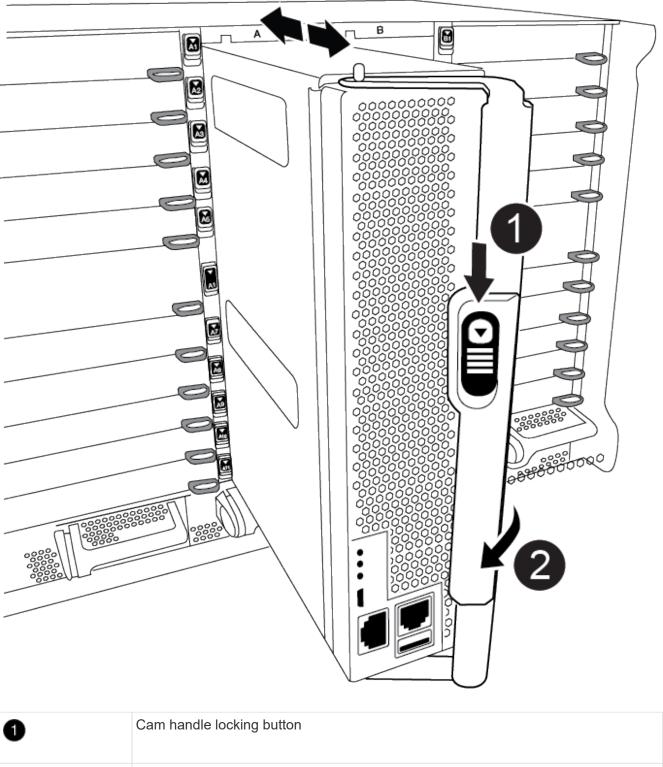

You must remove the six fan modules, located on in the front of the chassis, when replacing the chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the bezel (if necessary) with two hands, by grasping the openings on each side of the bezel, and then pulling it toward you until the bezel releases from the ball studs on the chassis frame.
- 3. Press the terra cotta locking button on the fan module and pull the fan module straight out of the chassis, making sure that you support it with your free hand.

The fan modules are short. Always support the bottom of the fan module with your free hand so that it does not suddenly drop free from the chassis and injure you.

Animation - Remove/install fan

0	Terra cotta locking button
2	Slide fan in/out of chassis


- 4. Set the fan module aside.
- 5. Repeat the preceding steps for any remaining fan modules.

Step 3: Remove the controller module

To replace the chassis, you must remove the controller module or modules from the impaired chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the cables from the impaired controller module, and keep track of where the cables were connected.
- 3. Slide the terra cotta locking button on the cam handle downward until it unlocks.

Animation - Remove the controller

0	Cam handle locking button
2	Cam handle

4. Rotate the cam handle so that it completely disengages the controller module from the chassis, and then slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

- 5. Set the controller module aside in a safe place and keep track of which chassis slot it came from, so that it can be installed into the same slot in the replacement chassis..
- 6. Repeat these steps if you have another controller module in the chassis.

Step 4: Remove the I/O modules

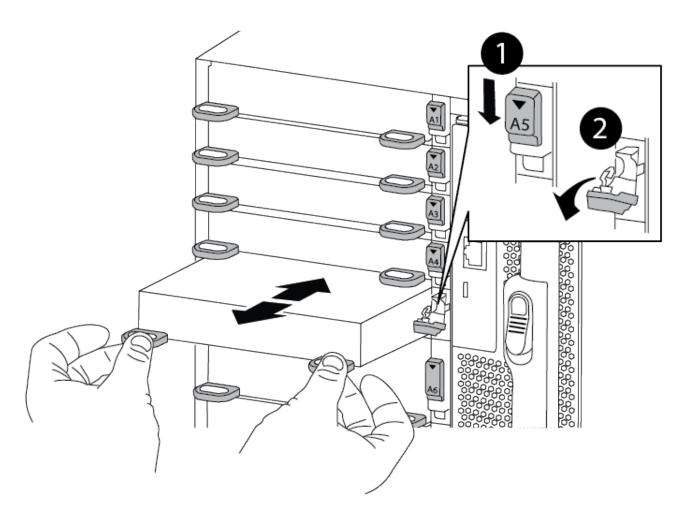
To remove I/O modules from the impaired chassis, including the NVRAM modules, follow the specific sequence of steps.

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug any cabling associated with the target I/O module.

Make sure that you label the cables so that you know where they came from.

- 3. Remove the target I/O module from the chassis:
 - a. Depress the lettered and numbered cam locking button.

The cam locking button moves away from the chassis.


b. Rotate the cam latch down until it is in a horizontal position.

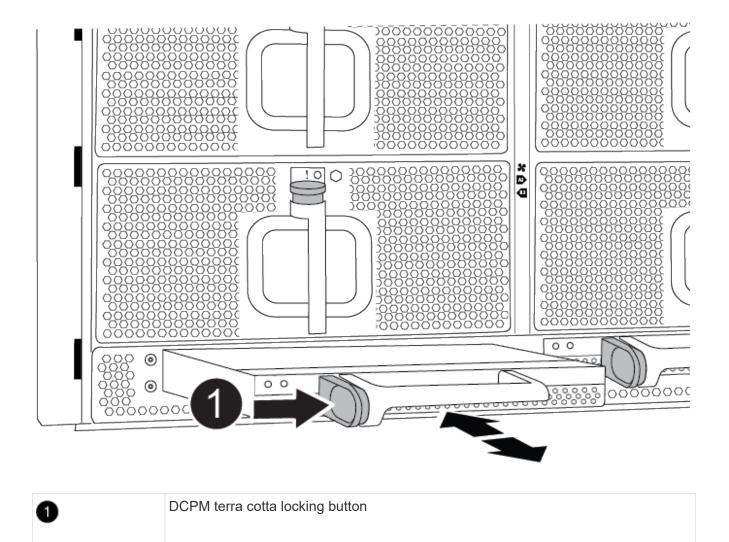
The I/O module disengages from the chassis and moves about 1/2 inch out of the I/O slot.

c. Remove the I/O module from the chassis by pulling on the pull tabs on the sides of the module face.

Make sure that you keep track of which slot the I/O module was in.

Animation - Remove/install I/O module

0	Lettered and numbered I/O cam latch
2	I/O cam latch completely unlocked

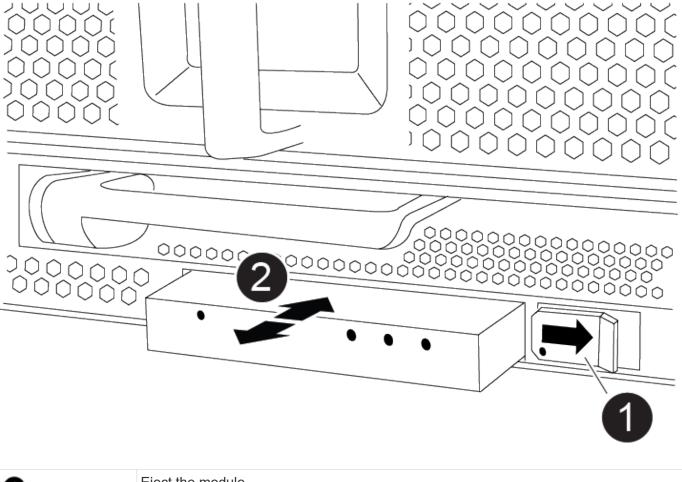

- 4. Set the I/O module aside.
- 5. Repeat the preceding step for the remaining I/O modules in the impaired chassis.

Step 5: Remove the de-stage controller power module

Remove the two de-stage controller power modules from the front of the impaired chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. Press the terra cotta locking button on the module handle, and then slide the DCPM out of the chassis.

Animation - Remove/install DCPM



3. Set the DCPM aside in a safe place and repeat this step for the remaining DCPM.

Step 6: Remove the USB LED module

Remove the USB LED modules.

Animation - Remove/install USB

0	Eject the module.
2	Slide out of chassis.

- 1. Locate the USB LED module on the front of the impaired chassis, directly under the DCPM bays.
- 2. Press the black locking button on the right side of the module to release the module from the chassis, and then slide it out of the impaired chassis.
- 3. Set the module aside in a safe place.

Step 7: Remove chassis

You must remove the existing chassis from the equipment rack or system cabinet before you can install the replacement chassis.

1. Remove the screws from the chassis mount points.

If the system is in a system cabinet, you might need to remove the rear tie-down bracket.

- 2. With the help of two or three people, slide the impaired chassis off the rack rails in a system cabinet or *L* brackets in an equipment rack, and then set it aside.
- 3. If you are not already grounded, properly ground yourself.

- 4. Using two or three people, install the replacement chassis into the equipment rack or system cabinet by guiding the chassis onto the rack rails in a system cabinet or *L* brackets in an equipment rack.
- 5. Slide the chassis all the way into the equipment rack or system cabinet.
- 6. Secure the front of the chassis to the equipment rack or system cabinet, using the screws you removed from the impaired chassis.
- 7. Secure the rear of the chassis to the equipment rack or system cabinet.
- 8. If you are using the cable management brackets, remove them from the impaired chassis, and then install them on the replacement chassis.

Step 8: Install the de-stage controller power module

When the replacement chassis is installed into the rack or system cabinet, you must reinstall the de-stage controller power modules into it.

- 1. If you are not already grounded, properly ground yourself.
- 2. Align the end of the DCPM with the chassis opening, and then gently slide it into the chassis until it clicks into place.

The module and slot are keyed. Do not force the module into the opening. If the module does not go in easily, realign the module and slide it into the chassis.

3. Repeat this step for the remaining DCPM.

Step 9: Install fans into the chassis

To install the fan modules when replacing the chassis, you must perform a specific sequence of tasks.

- 1. If you are not already grounded, properly ground yourself.
- 2. Align the edges of the replacement fan module with the opening in the chassis, and then slide it into the chassis until it snaps into place.

When inserted into a live system, the amber Attention LED flashes four times when the fan module is successfully inserted into the chassis.

- 3. Repeat these steps for the remaining fan modules.
- 4. Align the bezel with the ball studs, and then gently push the bezel onto the ball studs.

Step 10: Install I/O modules

To install I/O modules, including the NVRAM modules from the impaired chassis, follow the specific sequence of steps.

You must have the chassis installed so that you can install the I/O modules into the corresponding slots in the replacement chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. After the replacement chassis is installed in the rack or cabinet, install the I/O modules into their corresponding slots in the replacement chassis by gently sliding the I/O module into the slot until the lettered and numbered I/O cam latch begins to engage, and then push the I/O cam latch all the way up to lock the module in place.

- Recable the I/O module, as needed.
- 4. Repeat the preceding step for the remaining I/O modules that you set aside.

If the impaired chassis has blank I/O panels, move them to the replacement chassis at this time.

Step 11: Install the power supplies

Installing the power supplies when replacing a chassis involves installing the power supplies into the replacement chassis, and connecting to the power source.

- 1. If you are not already grounded, properly ground yourself.
- 2. Make sure the power supplies rockers are in the off position.
- 3. Using both hands, support and align the edges of the power supply with the opening in the system chassis, and then gently push the power supply into the chassis until it locks into place.

The power supplies are keyed and can only be installed one way.

Do not use excessive force when sliding the power supply into the system. You can damage the connector.

- 4. Reconnect the power cable and secure it to the power supply using the power cable locking mechanism.

Only connect the power cable to the power supply. Do not connect the power cable to a power source at this time.

5. Repeat the preceding steps for any remaining power supplies.

Step 12: Install the USB LED modules

Install the USB LED modules in the replacement chassis.

- 1. Locate the USB LED module slot on the front of the replacement chassis, directly under the DCPM bays.
- 2. Align the edges of the module with the USB LED bay, and gently push the module all the way into the chassis until it clicks into place.

Step 13: Install the controller

After you install the controller module and any other components into the replacement chassis, boot it.

- 1. If you are not already grounded, properly ground yourself.
- 2. Connect the power supplies to different power sources, and then turn them on.
- 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

- 4. Recable the console to the controller module, and then reconnect the management port.
- 5. With the cam handle in the open position, slide the controller module into the chassis and firmly push the

controller module in until it meets the midplane and is fully seated, and then close the cam handle until it clicks into the locked position.

Do not use excessive force when sliding the controller module into the chassis; you might damage the connectors.

The controller module begins to boot as soon as it is fully seated in the chassis.

- 6. Repeat the preceding steps to install the second controller into the replacement chassis.
- Boot each controller.

Restore and verify the configuration - ASA A900

To complete the chassis replacement, you must complete specific tasks.

Step 1: Verify and set the HA state of the chassis

You must verify the HA state of the chassis, and, if necessary, update the state to match your system configuration.

1. In Maintenance mode, from either controller module, display the HA state of the local controller module and chassis: ha-config show

The HA state should be the same for all components.

- 2. If the displayed system state for the chassis does not match your system configuration:
 - a. Set the HA state for the chassis: ha-config modify chassis ha-state

The value for HA-state can be one of the following:

- ha
- non-ha
- 3. Confirm that the setting has changed: ha-config show
- 4. If you have not already done so, recable the rest of your system.

Step 2: Bring up the system

- 1. If you have not done so, plug the power cables back into the PSUs.
- 2. Turn on the PSUs by toggling the rocker switched to **ON**, and wait for the controllers to power up completely.
- 3. Check the front and the back of the chassis and controllers for any fault lights after power up.
- 4. Connect to the SP or BMC IP address of the nodes via SSH. This will be the same address used to shut down the nodes.
- Perform additional health checks as described in How_to_perform_a_cluster_health_check_with_a_script_in_ONTAP
- 6. Turn AutoSupport back on (end the maintenance window message):

 system node autosupport invoke -node * -type all -message MAINT=end

As a best practice, you should do the following:

- Resolve any Active IQ Wellness Alerts and Risks (Active IQ will take time to process post-power up AutoSupports - expect a delay in results)
- Run Active IQ Config Advisor
- Check system health using How_to_perform_a_cluster_health_check_with_a_script_in_ONTAP

Step 3: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Controller

Replace the controller module - ASA A900

To replace the impaired controller module, you must shut down the impaired controller, move the internal components to the replacement controller module, install the replacement controller module, and reboot the replacement controller.

Before you begin

You must review the prerequisites for the replacement procedure and select the correct one for your version of the ONTAP operating system.

- · All drive shelves must be working properly.
- If your system has a V_StorageAttach license, you must refer to the additional required steps before performing this procedure.
- If your system is in an HA pair, the healthy controller must be able to take over the controller that is being replaced (referred to in this procedure as the "impaired controller").
- If your system is in a MetroCluster configuration, you must review the section Choosing the correct recovery procedure to determine whether you should use this procedure.

If this is the procedure you should use, note that the controller replacement procedure for a controller in a four or eight node MetroCluster configuration is the same as that in an HA pair. No MetroCluster-specific steps are required because the failure is restricted to an HA pair and storage failover commands can be used to provide nondisruptive operation during the replacement.

- You must replace the failed component with a replacement FRU component you received from your provider.
- You must be replacing a controller module with a controller module of the same model type. You cannot upgrade your system by just replacing the controller module.
- You cannot change any drives or drive shelves as part of this procedure.
- In this procedure, the boot device is moved from the impaired controller to the replacement controller so that the replacement controller will boot up in the same version of ONTAP as the old controller module.
- It is important that you apply the commands in these steps on the correct systems:
 - The impaired controller is the controller that is being replaced.

- The replacement controller is the new controller that is replacing the impaired controller.
- The healthy controller is the surviving controller.
- You must always capture the controller's console output to a text file.

This provides you a record of the procedure so that you can troubleshoot any issues that you might encounter during the replacement process.

Shut down the impaired controller - ASA A900

Shut down or take over the impaired controller using one of the following options.

Option 1: Most systems

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true
	The -halt true parameter brings you to the LOADER prompt.

Option 2: Controller is in a MetroCluster

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

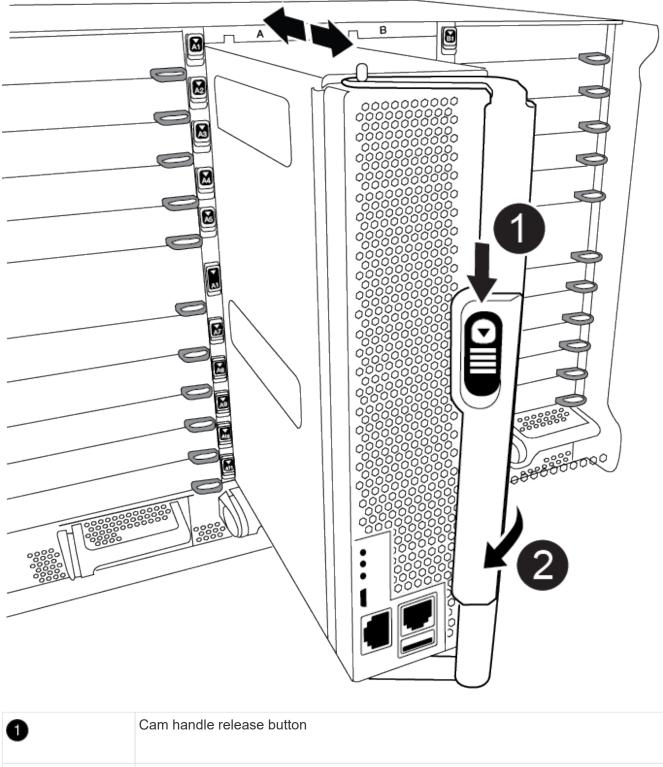
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Replace the controller module hardware - ASA A900

To replace the controller module hardware, you must remove the impaired controller, move FRU components to the replacement controller module, install the replacement controller module in the chassis, and then boot the system to Maintenance mode.

The following animation shows the whole process of moving components from the impaired to the replacement controller.

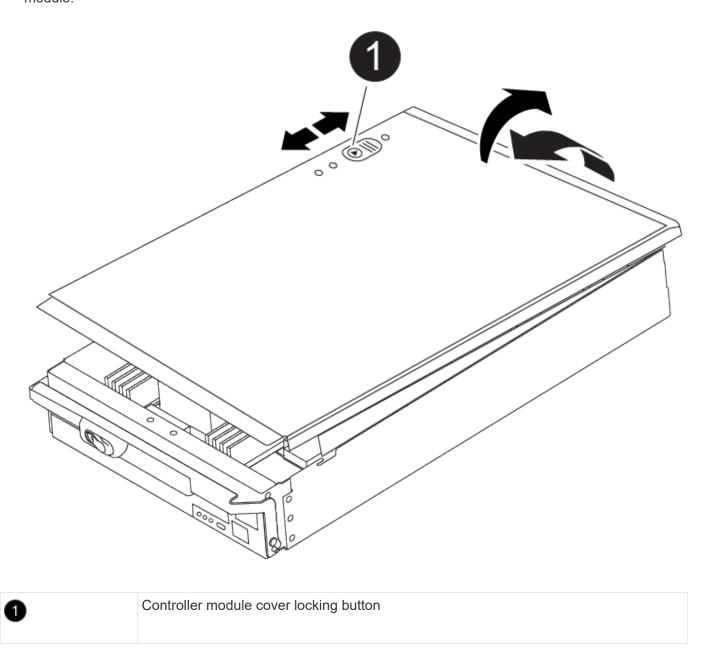

Animation - Move components to replacement controller

Step 1: Remove the controller module

To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the cables from the impaired controller module, and keep track of where the cables were connected.
- 3. Slide the terra cotta button on the cam handle downward until it unlocks.

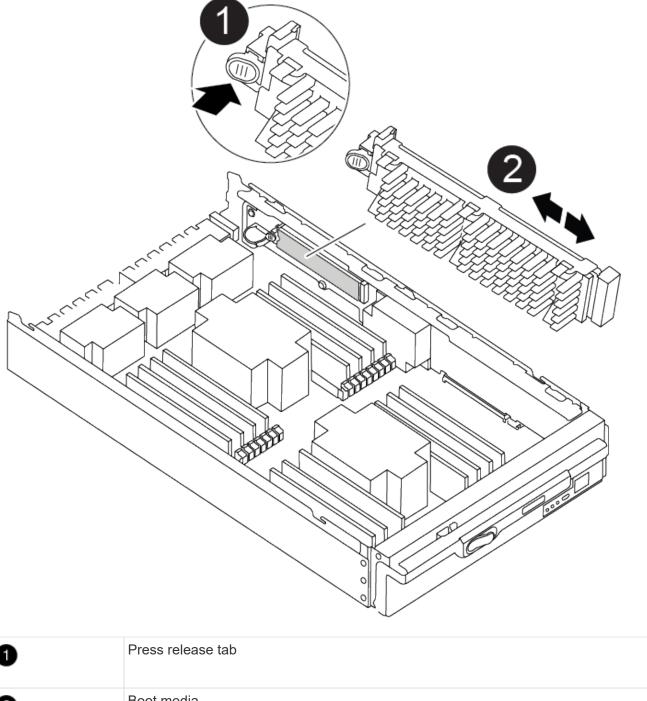
Animation - Remove the controller



0	Cam handle release button
2	Cam handle

4. Rotate the cam handle so that it completely disengages the controller module from the chassis, and then slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.


5. Place the controller module lid-side up on a stable, flat surface, press the blue button on the cover, slide the cover to the back of the controller module, and then swing the cover up and lift it off of the controller module.

Step 2: Move the boot media

You must locate the boot media and follow the directions to remove it from the old controller and insert it in the new controller.

1. Locate the boot media using the following illustration or the FRU map on the controller module:

0	Press release tab
2	Boot media

2. Press the blue button on the boot media housing to release the boot media from its housing, and then gently pull it straight out of the boot media socket.

Do not twist or pull the boot media straight up, because this could damage the socket or the boot media.

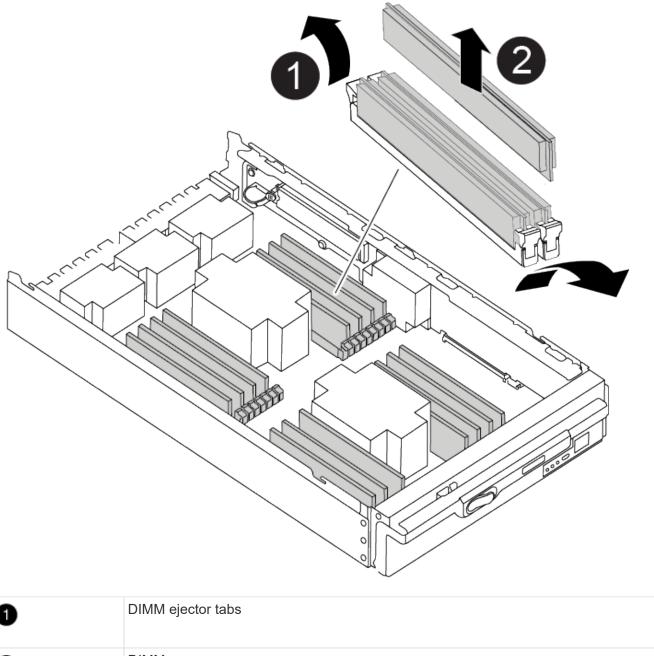
- 3. Move the boot media to the new controller module, align the edges of the boot media with the socket housing, and then gently push it into the socket.
- 4. Check the boot media to make sure that it is seated squarely and completely in the socket.

If necessary, remove the boot media and reseat it into the socket.

5. Push the boot media down to engage the locking button on the boot media housing.

Step 3: Move the system DIMMs

To move the DIMMs, locate and move them from the old controller into the replacement controller and follow the specific sequence of steps.



The VER2 controller has fewer DIMM sockets. There is no reduction in the number of DIMMs supported or change in the DIMM socket numbering. When moving the DIMMs to the new controller module, install the DIMMs into the same socket number/location as the impaired controller module. See the FRU map diagram on the VER2 controller module for DIMM socket locations.

- 1. If you are not already grounded, properly ground yourself.
- 2. Locate the DIMMs on your controller module.
- 3. Note the orientation of the DIMM in the socket so that you can insert the DIMM in the replacement controller module in the proper orientation.
- 4. Eject the DIMM from its slot by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot.

Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

0	DIMM ejector tabs
2	DIMM

- 5. Locate the slot where you are installing the DIMM.
- 6. Make sure that the DIMM ejector tabs on the connector are in the open position, and then insert the DIMM squarely into the slot.

The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.

Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.

7. Insert the DIMM squarely into the slot.

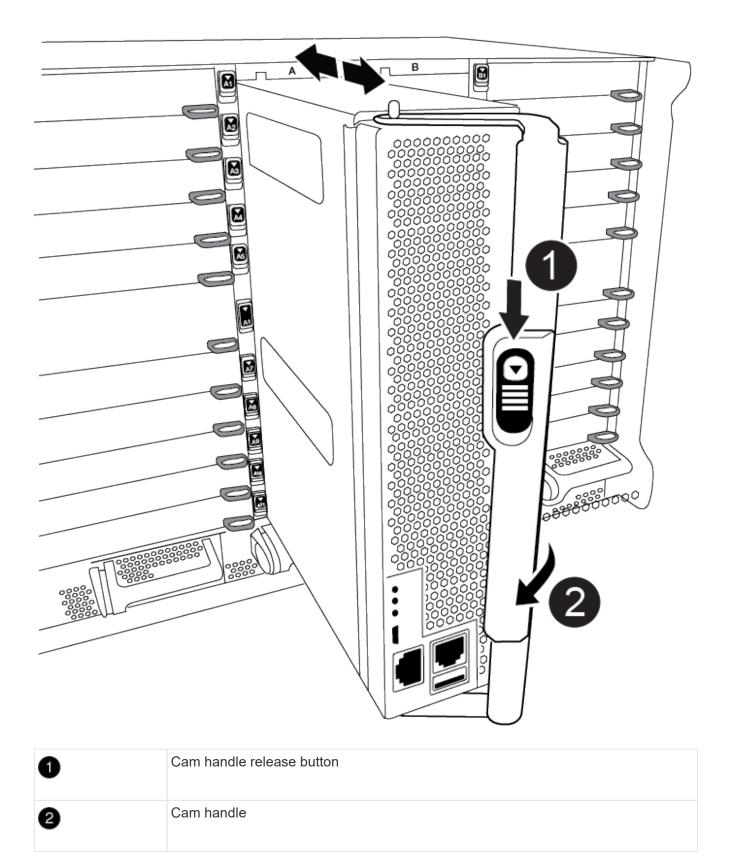
The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.

Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.

- 8. Push carefully, but firmly, on the top edge of the DIMM until the ejector tabs snap into place over the notches at the ends of the DIMM.
- 9. Repeat these steps for the remaining DIMMs.

Step 4: Install the controller

After you install the components into the replacement controller module, you must install the replacement controller module into the system chassis and boot the operating system.


For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis.

The system might update system firmware when it boots. Do not abort this process. The procedure requires you to interrupt the boot process, which you can typically do at any time after prompted to do so. However, if the system updates the system firmware when it boots, you must wait until after the update is complete before interrupting the boot process.

- 1. If you are not already grounded, properly ground yourself.
- 2. If you have not already done so, replace the cover on the controller module.
- 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Animation - Install controller

- Do not completely insert the controller module in the chassis until instructed to do so.
- 4. Cable the management and console ports only, so that you can access the system to perform the tasks in

the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 5. Complete the reinstallation of the controller module:
 - a. If you have not already done so, reinstall the cable management device.
 - b. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- c. Rotate the controller module cam handle to the locked position.
- d. Interrupt the boot process by pressing Ctrl-C when you see Press Ctrl-C for Boot Menu.
- e. Select the option to boot to LOADER.

Restore and verify the system configuration - ASA A900

After completing the hardware replacement, you verify the low-level system configuration of the replacement controller, and reconfigure system settings as necessary.

Step 1: Set and verify the system time

You should check the time and date on the replacement controller module against the healthy controller module in an HA pair, or against a reliable time server in a stand-alone configuration. If the time and date do not match, you must reset them on the replacement controller module to prevent possible outages on clients due to time differences.

About this task

It is important that you apply the commands in the steps on the correct systems:

- The replacement node is the new node that replaced the impaired node as part of this procedure.
- The *healthy* node is the HA partner of the *replacement* node.

Steps

- 1. If the replacement node is not at the LOADER prompt, halt the system to the LOADER prompt.
- 2. On the healthy node, check the system time: cluster date show

The date and time are based on the configured timezone.

3. At the LOADER prompt, check the date and time on the replacement node: show date

The date and time are given in GMT.

- If necessary, set the date in GMT on the replacement node: set date mm/dd/yyyy
- 5. If necessary, set the time in GMT on the replacement node: set time hh:mm:ss

6. At the LOADER prompt, confirm the date and time on the replacement node: show date

The date and time are given in GMT.

Step 2: Verify and set the controller's HA state

You must verify the HA state of the controller module and, if necessary, update the state to match your system configuration.

1. In Maintenance mode from the replacement controller module, verify that all components display the same HA state: ha-config show

If your system is in	The HA state for all components should be
An HA pair	ha
A MetroCluster FC configuration with four or more nodes	mcc
A MetroCluster IP configuration	mccip

- 2. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state
- 3. If the displayed system state of the chassis does not match your system configuration, set the HA state for the chassis: ha-config modify chassis ha-state

Recable the system - ASA A900

Continue the replacement procedure by recabling the storage and network conigurations.

Step 1: Recable the system

You must recable the controller module's storage and network connections.

Steps

- 1. Recable the system.
- 2. Verify that the cabling is correct by using Active IQ Config Advisor.
 - a. Download and install Config Advisor.
 - b. Enter the information for the target system, and then click Collect Data.
 - c. Click the Cabling tab, and then examine the output. Make sure that all disk shelves are displayed and all disks appear in the output, correcting any cabling issues you find.
 - d. Check other cabling by clicking the appropriate tab, and then examining the output from Config Advisor.

The system ID and disk assignment information reside in the NVRAM module, which is in a module separate from the controller module and not impacted by the controller module replacement.

Step 2: Reassign disks

If the storage system is in an HA pair, the system ID of the new controller module is automatically assigned to the disks when the giveback occurs at the end of the procedure. You must confirm the system ID change when you boot the *replacement* controller and then verify that the change was implemented.

This procedure applies only to systems running ONTAP in an HA pair.

- 1. If the *replacement* controller is in Maintenance mode (showing the *> prompt), exit Maintenance mode and go to the LOADER prompt: halt
- 2. From the LOADER prompt on the *replacement* controller, boot the controller, entering y if you are prompted to override the system ID due to a system ID mismatch:boot ontap
- 3. Wait until the Waiting for giveback... message is displayed on the *replacement* controller console and then, from the healthy controller, verify that the new partner system ID has been automatically assigned: storage failover show

In the command output, you should see a message that the system ID has changed on the impaired controller, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706.

nodel> `storage failover show` Takeover			
Node	Partner	Possible	State Description
node1 partner (Old:	node2	false	System ID changed on
151759706), In	takeover		151759755, New:
node2 (HA mailboxes)	node1	-	Waiting for giveback

- 4. From the healthy controller, verify that any coredumps are saved:
 - a. Change to the advanced privilege level: set -privilege advanced

You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>).

- b. Save any coredumps: system node run -node local-node-name partner savecore
- c. Wait for the savecore command to complete before issuing the giveback.

You can enter the following command to monitor the progress of the savecore command: system node run -node local-node-name partner savecore -s

- d. Return to the admin privilege level: set -privilege admin
- 5. If your storage system has Storage or Volume Encryption configured, you must restore Storage or Volume Encryption functionality by using one of the following procedures, depending on whether you are using onboard or external key management:

- Restore onboard key management encryption keys
- Restore external key management encryption keys
- 6. Give back the controller:
 - a. From the healthy controller, give back the replaced controller's storage: storage failover giveback -ofnode replacement node name

The *replacement* controller takes back its storage and completes booting.

If you are prompted to override the system ID due to a system ID mismatch, you should enter y.

If the giveback is vetoed, you can consider overriding the vetoes.

For more information, see the Manual giveback commands topic to override the veto.

b. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show

The output from the storage failover show command should not include the System ID changed on partner message.

7. Verify that the disks were assigned correctly: storage disk show -ownership

The disks belonging to the *replacement* controller should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 1873775277:

8. If the system is in a MetroCluster configuration, monitor the status of the controller: metrocluster node show

The MetroCluster configuration takes a few minutes after the replacement to return to a normal state, at which time each controller will show a configured state, with DR Mirroring enabled and a mode of normal. The 'metrocluster node show -fields node-systemid' command output displays the old system ID until the MetroCluster configuration returns to a normal state.

9. If the controller is in a MetroCluster configuration, depending on the MetroCluster state, verify that the DR

home ID field shows the original owner of the disk if the original owner is a controller on the disaster site.

This is required if both of the following are true:

- The MetroCluster configuration is in a switchover state.
- The *replacement* controller is the current owner of the disks on the disaster site.

For more information, see Disk ownership changes during HA takeover and MetroCluster switchover in a four-node MetroCluster configuration topic.

10. If your system is in a MetroCluster configuration, verify that each controller is configured: metrocluster node show - fields configuration-state

```
nodel siteA::> metrocluster node show -fields configuration-state
dr-group-id
                    cluster node
                                        configuration-state
_____
             node1mcc-001
1 nodel siteA
                                       configured
1 node1 siteA
                   node1mcc-002
                                       configured
1 node1_siteB
                   node1mcc-003
                                       configured
                  node1mcc-004
1 node1 siteB
                                        configured
4 entries were displayed.
```

- 11. Verify that the expected volumes are present for each controller: vol show -node node-name
- 12. If you disabled automatic takeover on reboot, enable it from the healthy controller: storage failover modify -node replacement-node-name -onreboot true

Complete system restoration - ASA A900

To complete the replacement procedure and restore your system to full operation, you must recable the storage, restore the NetApp Storage Encryption configuration (if necessary), and install licenses for the new controller. You must complete a series of tasks before restoring your system to full operation.

Step 1: Install licenses for the new controller

You must install new licenses for the *replacement* node if the impaired node was using ONTAP features that require a standard (node-locked) license. For features with standard licenses, each node in the cluster should have its own key for the feature.

Before you begin

If your system was initially running ONTAP 9.10.1 or later, use the procedure documented in Post Motherboard Replacement Process to update Licensing on ONTAP platforms. If you are unsure of the initial ONTAP release for your system, see NetApp Hardware Universe for more information.

About this task

• Until you install license keys, features requiring standard licenses continue to be available to the *replacement* node. However, if the impaired node was the only node in the cluster with a license for the feature, no configuration changes to the feature are allowed.

Also, using unlicensed features on the node might put you out of compliance with your license agreement, so you should install the replacement license key or keys on the *replacement* node as soon as possible.

- The licenses keys must be in the 28-character format.
- You have a 90-day grace period in which to install the license keys. After the grace period, all old licenses
 are invalidated. After a valid license key is installed, you have 24 hours to install all of the keys before the
 grace period ends.
- If the node is in a MetroCluster configuration and all nodes at a site have been replaced, license keys must be installed on the *replacement* node or nodes prior to switchback.

Steps

1. If you need new license keys, obtain replacement license keys on the NetApp Support site in the My Support section under Software licenses.

The new license keys that you require are automatically generated and sent to the email address on file. If you fail to receive the email with the license keys within 30 days, you should contact technical support.

- 2. Install each license key: system license add -license-code license-key, license-key...
- 3. Remove the old licenses, if desired:
 - a. Check for unused licenses: license clean-up -unused -simulate
 - b. If the list looks correct, remove the unused licenses: license clean-up -unused

Step 2: Verify LIFs and register the serial number

Before returning the *replacement* node to service, you should verify that the LIFs are on their home ports, and register the serial number of the *replacement* node if AutoSupport is enabled, and reset automatic giveback.

Steps

1. Verify that the logical interfaces are reporting to their home server and ports: network interface show -is-home false

If any LIFs are listed as false, revert them to their home ports: network interface revert -vserver
* -lif *

- 2. Register the system serial number with NetApp Support.
 - If AutoSupport is enabled, send an AutoSupport message to register the serial number.
 - If AutoSupport is not enabled, call NetApp Support to register the serial number.
- 3. Check the health of your cluster. See the How to perform a cluster health check with a script in ONTAP KB article for more information.
- 4. If an AutoSupport maintenance window was triggered, end it by using the system node autosupport invoke -node * -type all -message MAINT=END command.
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 3: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace a DIMM - ASA A900

You must replace a DIMM in the controller when your storage system encounters errors such as, excessive CECC (Correctable Error Correction Codes) errors that are based on Health Monitor alerts or uncorrectable ECC errors, typically caused by a single DIMM failure preventing the storage system from booting ONTAP.

Before you begin

All other components in the system must be functioning properly; if not, you must contact technical support.

You must replace the failed component with a replacement FRU component you received from your provider.

Step 1: Shut down the impaired controller

Shut down or take over the impaired controller using one of the following options.

Option 1: Most systems

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true
	The -halt true parameter brings you to the LOADER prompt.

Option 2: Controller is in a MetroCluster

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

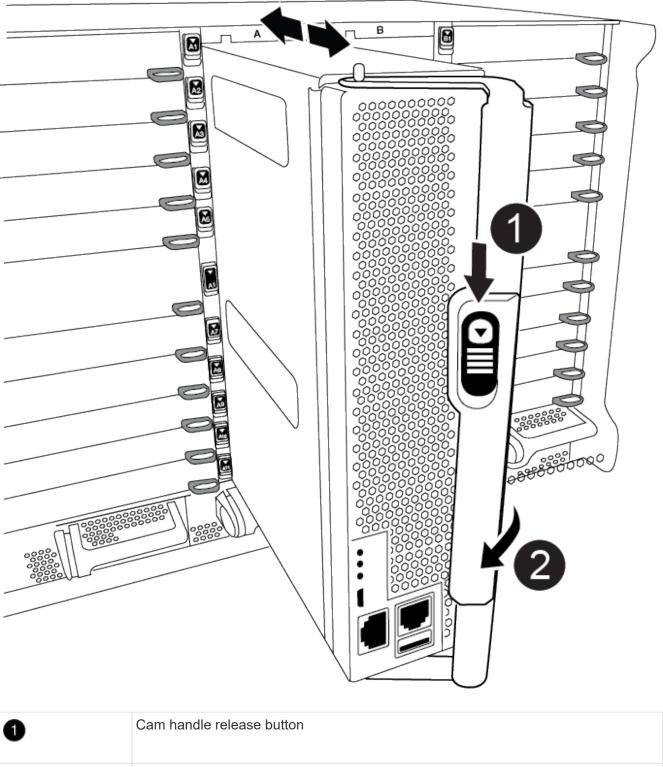
Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

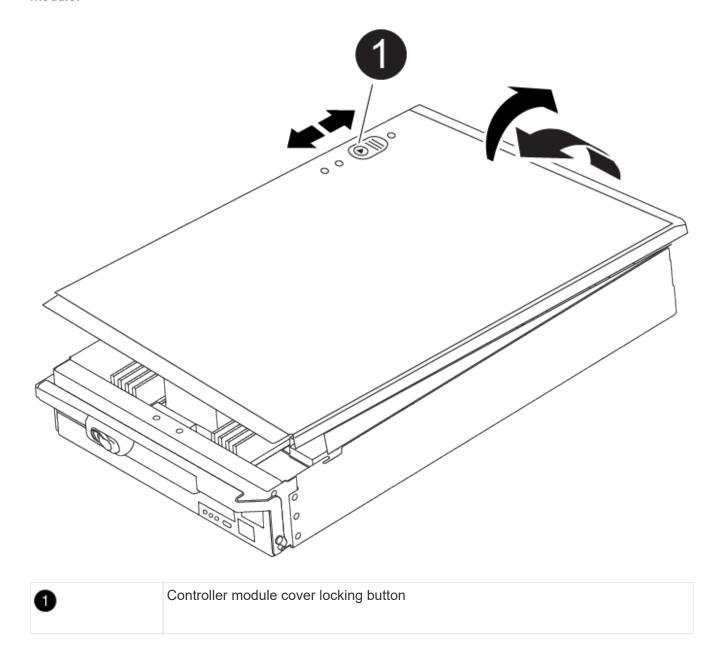

If the impaired controller is displaying	Then
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name
	When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond ${\bf y}.$

Step 2: Remove the controller module

To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the cables from the impaired controller module, and keep track of where the cables were connected.
- 3. Slide the terra cotta button on the cam handle downward until it unlocks.

Animation - Remove the controller

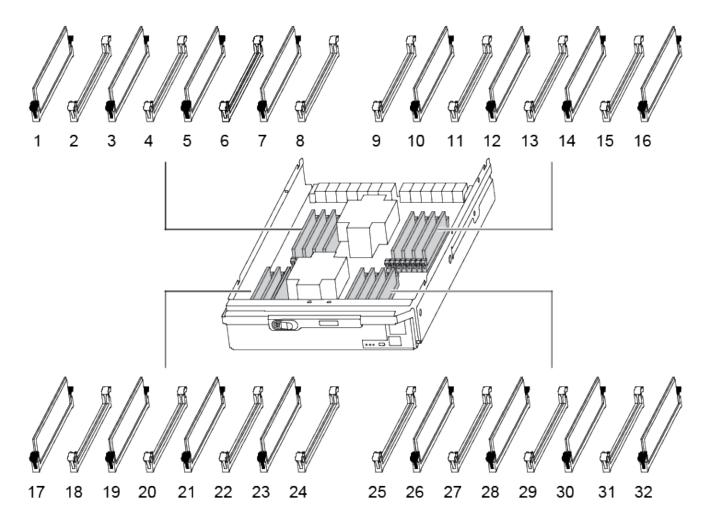


0	Cam handle release button
2	Cam handle

4. Rotate the cam handle so that it completely disengages the controller module from the chassis, and then slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

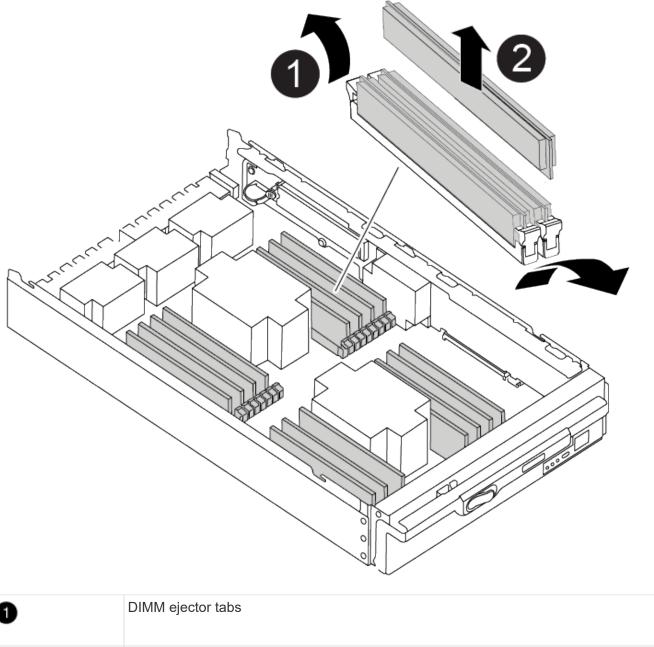
5. Place the controller module lid-side up on a stable, flat surface, press the blue button on the cover, slide the cover to the back of the controller module, and then swing the cover up and lift it off of the controller module.


Step 3: Replace the DIMMs

To replace the DIMMs, locate them inside the controller and follow the specific sequence of steps.

The VER2 controller has fewer DIMM sockets. There is no reduction in the number of DIMMs supported or change in the DIMM socket numbering. When moving the DIMMs to the new controller module, install the DIMMs into the same socket number/location as the impaired controller module. See the FRU map diagram on the VER2 controller module for DIMM socket locations.

- 1. If you are not already grounded, properly ground yourself.
- 2. Locate the DIMMs on your controller module.



3. Eject the DIMM from its slot by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot.

Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board.

Animation - Replace DIMM

0	DIMM ejector tabs
2	DIMM

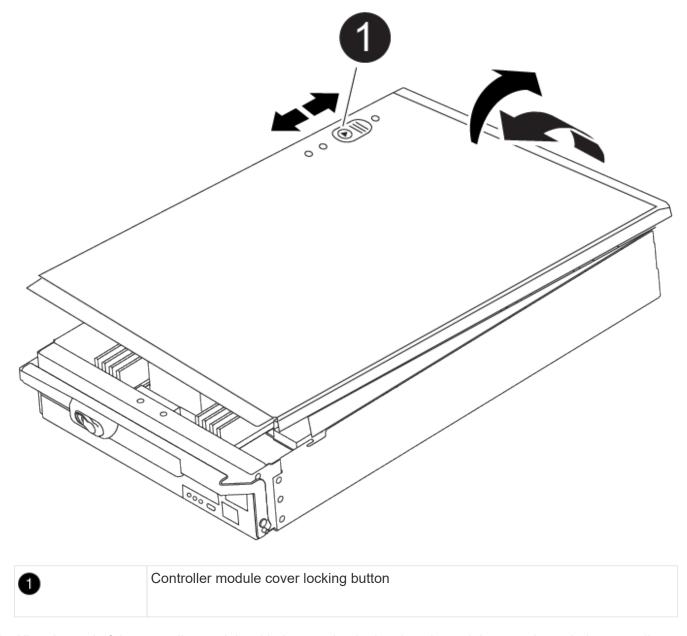
4. Remove the replacement DIMM from the antistatic shipping bag, hold the DIMM by the corners, and align it to the slot.

The notch among the pins on the DIMM should line up with the tab in the socket.

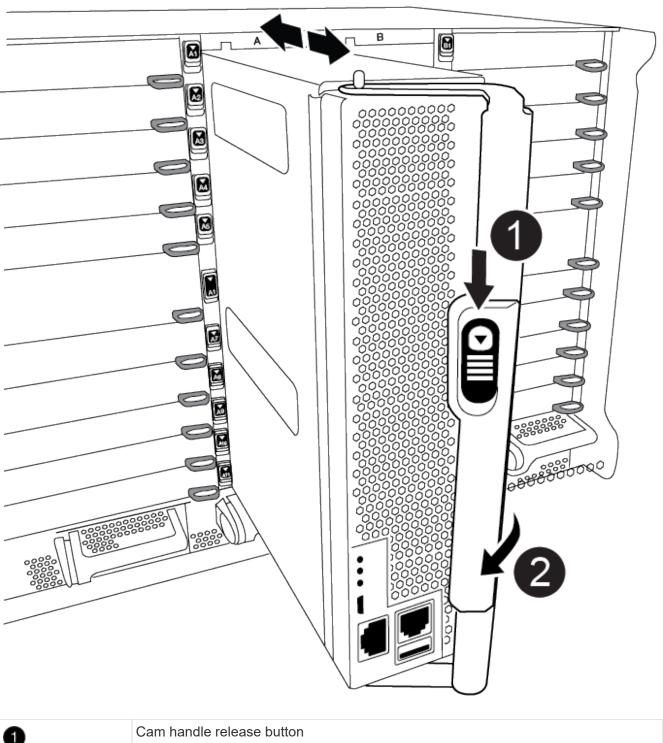
5. Make sure that the DIMM ejector tabs on the connector are in the open position, and then insert the DIMM squarely into the slot.

The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it.

Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot.


- 6. Push carefully, but firmly, on the top edge of the DIMM until the ejector tabs snap into place over the notches at the ends of the DIMM.
- 7. Close the controller module cover.

Step 4: Install the controller


After you install the components into the controller module, you must install the controller module back into the system chassis and boot the operating system.

For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis.

- 1. If you are not already grounded, properly ground yourself.
- 2. If you have not already done so, replace the cover on the controller module.

3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

0	Cam handle release button
2	Cam handle

Do not completely insert the controller module in the chassis until instructed to do so.

4. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections.

You will connect the rest of the cables to the controller module later in this procedure.

- 5. Complete the reinstallation of the controller module:
 - a. If you have not already done so, reinstall the cable management device.
 - b. Firmly push the controller module into the chassis until it meets the midplane and is fully seated.

The locking latches rise when the controller module is fully seated.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process.

- c. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position.
- d. Interrupt the boot process by pressing Ctrl-C when you see Press Ctrl-C for Boot Menu.
- e. Select the option to boot to Maintenance mode from the displayed menu.

Step 5: Run system-level diagnostics

After installing a new DIMM, you should run diagnostics.

Your system must be at the LOADER prompt to start System Level Diagnostics.

All commands in the diagnostic procedures are issued from the controller where the component is being replaced.

- 1. If the controller to be serviced is not at the LOADER prompt, perform the following steps:
 - a. Select the Maintenance mode option from the displayed menu.
 - b. After the controller boots to Maintenance mode, halt the controller: halt

After you issue the command, you should wait until the system stops at the LOADER prompt.

During the boot process, you can safely respond y to prompts.

- If a prompt appears warning that when entering Maintenance mode in an HA configuration, you must ensure that the healthy controller remains down.
- 2. At the LOADER prompt, access the special drivers specifically designed for system-level diagnostics to function properly: boot_diags

During the boot process, you can safely respond y to the prompts until the Maintenance mode prompt (*>) appears.

- 3. Run diagnostics on the system memory: sldiag device run -dev mem
- 4. Verify that no hardware problems resulted from the replacement of the DIMMs: sldiag device status

-dev mem -long -state failed

System-level diagnostics returns you to the prompt if there are no test failures, or lists the full status of failures resulting from testing the component.

5. Proceed based on the result of the preceding step:

If the system-level diagnostics tests	Then
Were completed without any failures	a. Clear the status logs: sldiag device clearstatusb. Verify that the log was cleared: sldiag device status
	The following default response is displayed:
	SLDIAG: No log messages are present.
	c. Exit Maintenance mode: halt
	The controller displays the LOADER prompt.
	d. Boot the controller from the LOADER prompt: bye
	e. Return the controller to normal operation:

If your controller is in	Then
An HA pair	Perform a give back: storage failover giveback -ofnode replacement_node_name Note: If you disabled automatic giveback, re-enable it with the storage failover modify command.

If your controller is in	Then
Resulted in some test failures	Determine the cause of the problem:
	a. Exit Maintenance mode: halt
	After you issue the command, wait until the system stops at the LOADER prompt.
	b. Verify that you have observed all the considerations identified for running system-level diagnostics, that cables are securely connected, and that hardware components are properly installed in the storage system.
	c. Boot the controller module you are servicing, interrupting the boot by pressing Ctrl-C when prompted to get to the Boot menu:
	 If you have two controller modules in the chassis, fully seat the controller module you are servicing in the chassis.
	The controller module boots up when fully seated.
	 If you have one controller module in the chassis, connect the power supplies, and then turn them on.
	d. Select Boot to maintenance mode from the menu.
	e. Exit Maintenance mode by entering the following command: halt
	After you issue the command, wait until the system stops at the LOADER prompt.
	f. Rerun the system-level diagnostic test.

Step 6: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the DCPM containing the NVRAM11 battery - ASA A900

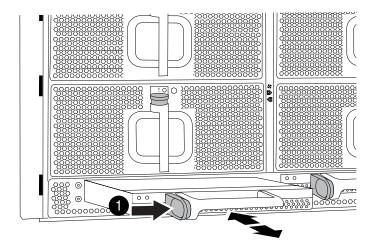
To hot-swap a destage controller power module (DCPM), which contains the NVRAM11 battery, you must locate the failed DCPM module, remove it from the chassis, and install the replacement DCPM module.

You must have a replacement DCPM module in-hand before removing the failed module from the chassis and it must be replaced within five minutes of removal. Once the DCPM module is removed from the chassis, there is no shutdown protection for the controller module that owns the DCPM module, other than failover to the other controller module.

Step 1: Replace the DCPM module

To replace the DCPM module in your system, you must remove the failed DCPM module from the system and then replace it with a new DCPM module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the bezel on the front of the system and set it aside.
- 3. Locate the failed DCPM module in the front of the system by looking for the Attention LED on the module.


The LED will be steady amber if the module is faulty.

The DCPM module must be replaced in the chassis within five minutes of removal or the associated controller will shut down.

4. Press the terra cotta release button on the module handle, and then slide the DCPM module out of the chassis.

Animation - Remove/install DCPM

5. Align the end of the DCPM module with the chassis opening, and then gently slide it into the chassis until it clicks into place.

The module and slot are keyed. Do not force the module into the opening. If the module does not go in easily, realign the module and slide it into the chassis.

The Amber LED flashes four times upon insertion and the green LED also flashes if the battery is providing a voltage. If it does not flash, it will likely need to be replaced.

Step 2: Dispose of batteries

You must dispose of batteries according to the local regulations regarding battery recycling or disposal. If you cannot properly dispose of batteries, you must return the batteries to NetApp, as described in the RMA instructions that are shipped with the kit.

Safety Information and Regulatory Notices

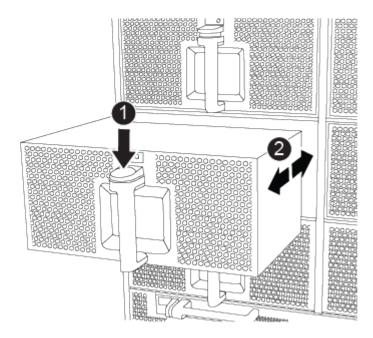
Step 3: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Swap out a fan - ASA A900

To swap out a fan module without interrupting service, you must perform a specific sequence of tasks.

It is a best practice to replace the power supply within two minutes of removing it from the chassis. The system continues to function, but ONTAP sends messages to the console about the degraded power supply until the power supply is replaced.


Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the bezel (if necessary) with two hands, by grasping the openings on each side of the bezel, and then pulling it toward you until the bezel releases from the ball studs on the chassis frame.
- 3. Identify the fan module that you must replace by checking the console error messages and looking at the Attention LED on each fan module.
- 4. Press the terra cotta button on the fan module and pull the fan module straight out of the chassis, making sure that you support it with your free hand.

The fan modules are short. Always support the bottom of the fan module with your free hand so that it does not suddenly drop free from the chassis and injure you.

Animation - Remove/install fan

Terra cotta release button

Slide fan in/out of chassis

- 5. Set the fan module aside.
- 6. Align the edges of the replacement fan module with the opening in the chassis, and then slide it into the chassis until it snaps into place.

When inserted into a live system, the amber Attention LED flashes four times when the fan module is successfully inserted into the chassis.

- 7. Align the bezel with the ball studs, and then gently push the bezel onto the ball studs.
- 8. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

I/O module

Replace the I/O module - ASA A900

To replace an I/O module, you must perform a specific sequence of tasks.

- You can use this procedure with all versions of ONTAP supported by your system.
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired node

Shut down or take over the impaired controller using one of the following options.

Option 1: Most systems

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

Before you begin

If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message command: system node autosupport invoke -node * -type all -message MAINT=number_of_hours_downh

The following AutoSupport command suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond \boldsymbol{y} when prompted.
System prompt or password prompt (enter system password)	Halt or take over the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Option 2: Controller is in a MetroCluster

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster

Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

 If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport command: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport command suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next Step.
Waiting for giveback	Press Ctrl-C, and then respond \boldsymbol{y} when prompted.
System prompt or password prompt (enter system password)	<pre>impaired_node_name</pre> When the impaired controller shows Waiting for giveback, press
	Ctrl-C, and then respond y.

Step 2: Replace I/O modules

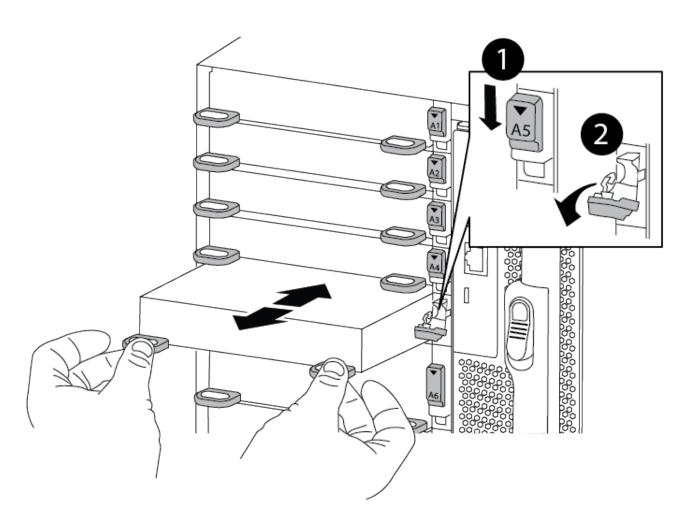
To replace an I/O module, locate it within the chassis and follow the specific sequence of steps.

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug any cabling associated with the target I/O module.

Make sure that you label the cables so that you know where they came from.

- 3. Remove the target I/O module from the chassis:
 - a. Depress the lettered and numbered cam button.

The cam button moves away from the chassis.


b. Rotate the cam latch down until it is in a horizontal position.

The I/O module disengages from the chassis and moves about 1/2 inch out of the I/O slot.

c. Remove the I/O module from the chassis by pulling on the pull tabs on the sides of the module face.

Make sure that you keep track of which slot the I/O module was in.

Animation - Remove/install I/O module

0	Lettered and numbered I/O cam latch
2	I/O cam latch completely unlocked

- 4. Set the I/O module aside.
- 5. Install the replacement I/O module into the chassis by gently sliding the I/O module into the slot until the lettered and numbered I/O cam latch begins to engage with the I/O cam pin, and then push the I/O cam latch all the way up to lock the module in place.
- 6. Recable the I/O module, as needed.

Step 3: Reboot the controller

After you replace an I/O module, you must reboot the controller module.

If the new I/O module is not the same model as the failed module, you must first reboot the BMC.

Steps

- 1. Reboot the BMC if the replacement module is not the same model as the old module:
 - a. From the LOADER prompt, change to advanced privilege mode: priv set advanced
 - b. Reboot the BMC: sp reboot
- 2. From the LOADER prompt, reboot the node: bye

This reinitializes the PCle cards and other components and reboots the node.

3. If your system is configured to support 10 GbE cluster interconnect and data connections on 40 GbE NICs, convert these ports to 10 GbE connections by using the nicadmin convert command from Maintenance mode. See Convert 40GbE NIC ports into multiple 10GbE ports for 10GbE connectivity for more information.

Be sure to exit Maintenance mode after completing the conversion.

- 4. Return the node to normal operation: storage failover giveback -ofnode impaired_node_name
- 5. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 4: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Add an I/O module - ASA A900

If the storage system has empty slots, install the new I/O module into one of the available slots. If all slots are occupied, remove an existing I/O module to make space and then install the new one.

Before you begin

- Check the NetApp Hardware Universe to make sure that the new I/O module is compatible with your system and version of ONTAP you're running.
- If multiple slots are available, check the slot priorities in NetApp Hardware Universe and use the best one available for your I/O module.
- To non-disruptively add an I/O module, you must take over the target controller, remove the slot blanking cover in the target slot or remove an existing I/O module, add the new or replacement I/O module, and then giveback the target controller.
- Make sure that all other components are functioning properly.

Add I/O module to an empty slot

You can add a new I/O module into a storage system with available empty slots.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the target slot blanking cover:
 - a. Depress the lettered and numbered cam latch.
 - b. Rotate the cam latch down until it is the open position.
 - c. Remove the blanking cover.
- 3. Install the I/O module:
 - a. Align the I/O module with the edges of the slot.
 - b. Slide the I/O module into the slot until the lettered and numbered I/O cam latch begins to engage with the I/O cam pin.
 - c. Push the I/O cam latch all the way up to lock the module in place.
- 4. If the replacement I/O module is a NIC, cable the module to the data switches.

Make sure that any unused I/O slots have blanks installed to prevent possible thermal issues.

5. Reboot the controller from the LOADER prompt: bye

This reinitializes the PCIe cards and other components and reboots the node.

- 6. Give back the controller from the partner controller. storage failover giveback -ofnode target node name
- 7. Enable automatic giveback if it was disabled: storage failover modify -node local -auto -giveback true
- 8. If you are using slots 3 and/or 7 for networking, use the storage port modify -node <node name> -port name> -mode network command to convert the slot for networking use.
- 9. Repeat these steps for controller B.
- 10. If you installed a storage I/O module, install and cable your NS224 shelves, as described in Hot-add workflow.

Add I/O module to a fully-populated system

You can add an I/O module to a fully-populated system by removing an existing I/O module and installing a new one in its place.

About this task

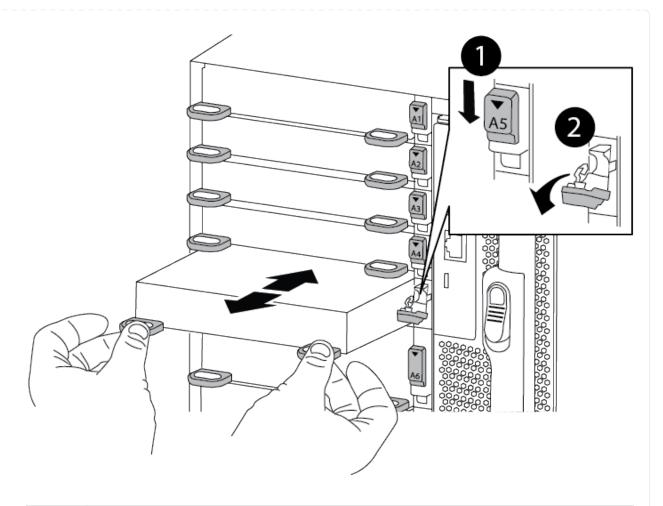
Make sure you understand the following scenarios for adding a new I/O module to a fully-populated system:

Scenario	Action required
NIC to NIC (same number of ports)	The LIFs will automatically migrate when its controller module is shut down.
NIC to NIC (different number of ports)	Permanently reassign the selected LIFs to a different home port. See Migrating a LIF for more information.
NIC to storage I/O module	Use System Manager to permanently migrate the LIFs to different home ports, as described in Migrating a LIF.

Steps

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug any cabling on the target I/O module.
- 3. Remove the target I/O module from the chassis:
 - a. Depress the lettered and numbered cam latch.

The cam latch moves away from the chassis.


b. Rotate the cam latch down until it is in a horizontal position.

The I/O module disengages from the chassis and moves about 1/2 inch out of the I/O slot.

c. Remove the I/O module from the chassis by pulling on the pull tabs on the sides of the module face.

Make sure that you keep track of which slot the I/O module was in.

Animation - Remove or replacing an I/O module

0	Lettered and numbered I/O cam latch
2	I/O cam latch completely unlocked

- 4. Install the I/O module into the target slot:
 - a. Align the I/O module with the edges of the slot.
 - b. Slide the I/O module into the slot until the lettered and numbered I/O cam latch begins to engage with the I/O cam pin.
 - c. Push the I/O cam latch all the way up to lock the module in place.
- 5. Repeat the remove and install steps to replace additional modules for controller A.
- 6. If the replacement I/O module is a NIC, cable the module or modules to the data switches.
- 7. Reboot the controller from the LOADER prompt:
 - a. Check the version of BMC on the controller: system service-processor show
 - b. Update the BMC firmware if needed: system service-processor image update
 - c. Reboot the node: bye

This reinitializes the PCle cards and other components and reboots the node.

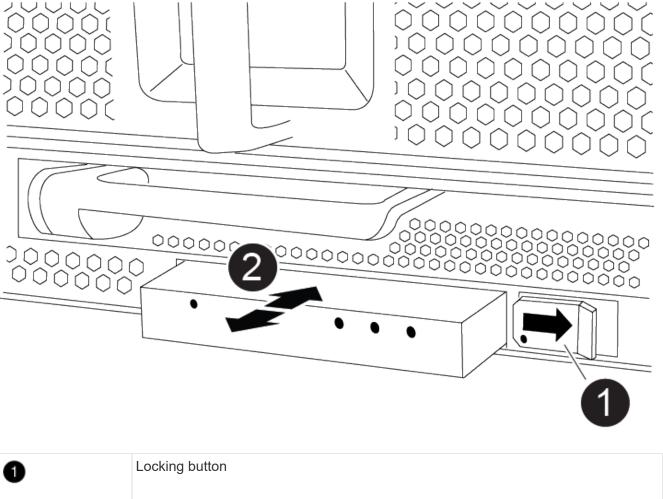
If you encounter an issue during reboot, see BURT 1494308 - Environment shutdown might be triggered during I/O module replacement

- 8. Give back the controller from the partner controller. storage failover giveback -ofnode target_node_name
- 9. Enable automatic giveback if it was disabled: storage failover modify -node local -auto -giveback true
- 10. If you added:

If I/O module is a	Then
NIC module in slots 3 or 7,	Use the storage port modify -node * <node name=""> -port *<port name=""> -mode network command for each port.</port></node>
Storage module	Install and cable your NS224 shelves, as described in Hot-add workflow.

11. Repeat these steps for controller B.

Replace an LED USB module - ASA A900


The LED USB module provides connectivity to console ports and system status. Replacement of this module does not require tools and does not interrupt service.

Step 1: Replace the LED USB module

Steps

1. Remove the impaired LED USB module:

Animation - Remove/install LED-USB module

- 2 USB LED module
- a. With the bezel removed, locate the LED USB module at the front of the chassis, on the bottom left side.
- b. Slide the latch to partially eject the module.
- c. Pull the module out of the bay to disconnect it from the midplane. Do not leave the slot empty.
- 2. Install the new LED USB module:
 - a. Align the module to the bay with the notch in the corner of the module positioned near the slider latch on the chassis. The bay will prevent you from installing the module upside down.
 - b. Push the module into the bay until it is fully seated flush with the chassis.

There is an audible click when the module is secure and connected to the midplane.

Step 2: Return the failed component

1. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the NVRAM module and NVRAM DIMMs - ASA A900

The NVRAM module consists of the NVRAM11 and DIMMs. You can replace a failed

NVRAM module or the DIMMs inside the NVRAM module. To replace a failed NVRAM module, you must remove it from the chassis, move the DIMMs to the replacement module, and install the replacement NVRAM module into the chassis.

To replace and NVRAM DIMM, you must remove the NVRAM module from the chassis, replace the failed DIMM in the module, and then reinstall the NVRAM module.

About this task

Because the system ID is derived from the NVRAM module, if replacing the module, disks belonging to the system are reassigned to a new system ID.

Before you begin

- All disk shelves must be working properly.
- If your system is in an HA pair, the partner controller must be able to take over the controller associated with the NVRAM module that is being replaced.
- This procedure uses the following terminology:
 - The impaired controller is the controller on which you are performing maintenance.
 - The healthy controller is the HA partner of the impaired controller.
- This procedure includes steps for automatically reassigning disks to the controller module associated with the new NVRAM module. You must reassign the disks when directed to in the procedure. Completing the disk reassignment before giveback can cause issues.
- You must replace the failed component with a replacement FRU component you received from your provider.
- You cannot change any disks or disk shelves as part of this procedure.

Step 1: Shut down the impaired controller

Shut down or take over the impaired controller using one of the following options.

Option 1: Most systems

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true
	The -halt true parameter brings you to the LOADER prompt.

Option 2: Controller is in a MetroCluster

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

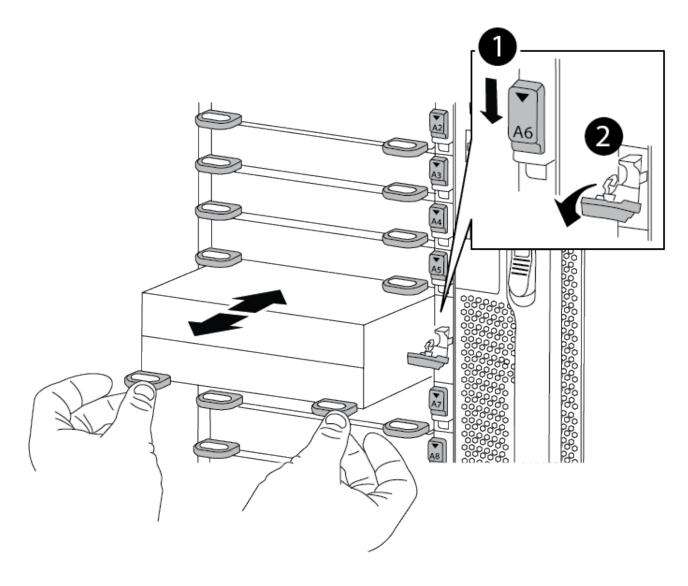
If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Step 2: Replace the NVRAM module

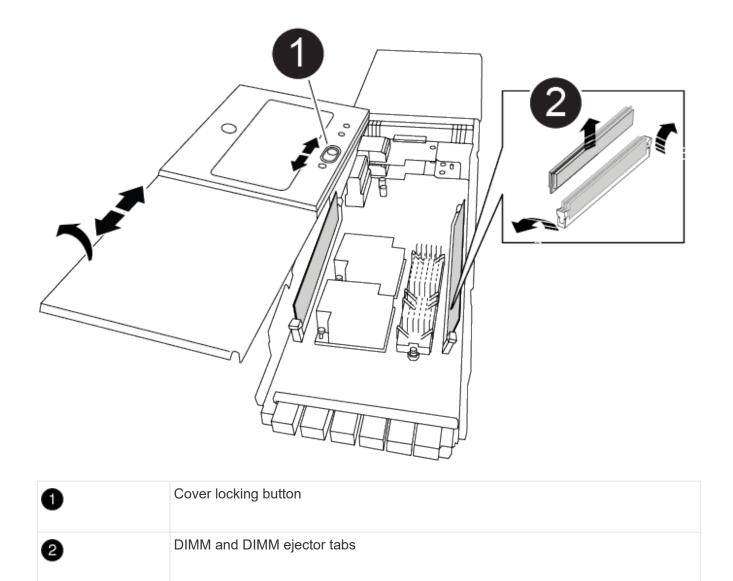
To replace the NVRAM module, locate it in slot 6 in the chassis and follow the specific sequence of steps.

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the target NVRAM module from the chassis:
 - a. Depress the lettered and numbered cam button.


The cam button moves away from the chassis.

b. Rotate the cam latch down until it is in a horizontal position.

The NVRAM module disengages from the chassis and moves out a few inches.


c. Remove the NVRAM module from the chassis by pulling on the pull tabs on the sides of the module face.

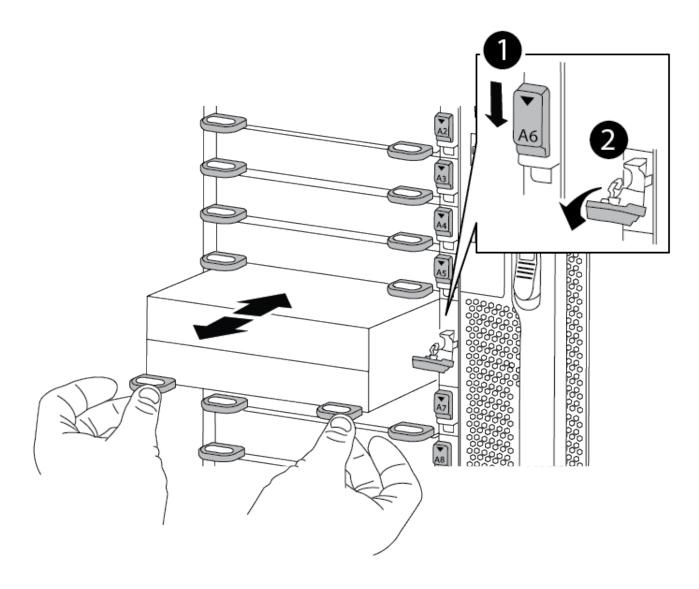
Animation - Replace the NVRAM module

0	Lettered and numbered cam latch
2	Cam latch completely unlocked

3. Set the NVRAM module on a stable surface and remove the cover from the NVRAM module by pushing down on the blue locking button on the cover, and then, while holding down the blue button, slide the lid off the NVRAM module.

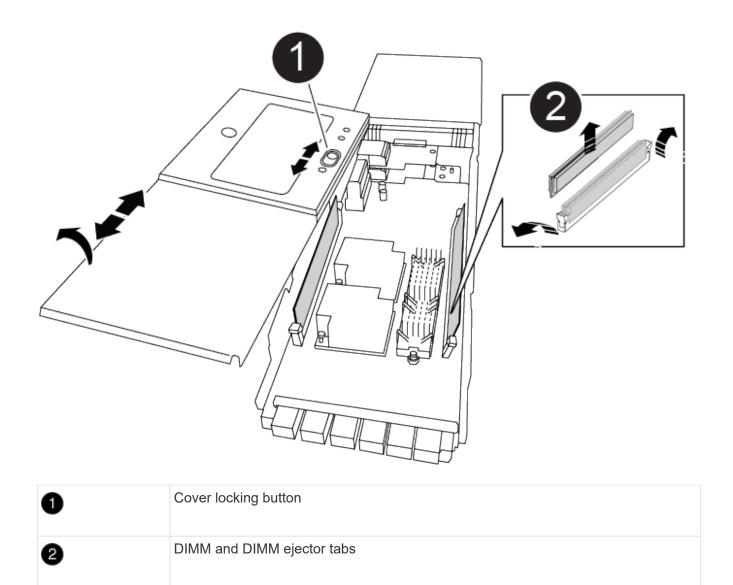
- 4. Remove the DIMMs, one at a time, from the old NVRAM module and install them in the replacement NVRAM module.
- 5. Close the cover on the module.
- 6. Install the replacement NVRAM module into the chassis:
 - a. Align the module with the edges of the chassis opening in slot 6.
 - b. Gently slide the module into the slot until the lettered and numbered cam latch begins to engage with the I/O cam pin, and then push the cam latch all the way up to lock the module in place.

Step 3: Replace a NVRAM DIMM


To replace NVRAM DIMMs in the NVRAM module, you must remove the NVRAM module, open the module, and then replace the target DIMM.

- 1. If you are not already grounded, properly ground yourself.
- 2. Remove the target NVRAM module from the chassis:
 - a. Depress the lettered and numbered cam button.

The cam button moves away from the chassis.


- b. Rotate the cam latch down until it is in a horizontal position.
 - The NVRAM module disengages from the chassis and moves out a few inches.
- c. Remove the NVRAM module from the chassis by pulling on the pull tabs on the sides of the module face.

Animation - Replace NVRAM DIMM

0	Lettered and numbered cam latch
2	cam latch completely unlocked

3. Set the NVRAM module on a stable surface and remove the cover from the NVRAM module by pushing down on the blue locking button on the cover, and then, while holding down the blue button, slide the lid off the NVRAM module.

- 4. Locate the DIMM to be replaced inside the NVRAM module, and then remove it by pressing down on the DIMM locking tabs and lifting the DIMM out of the socket.
- 5. Install the replacement DIMM by aligning the DIMM with the socket and gently pushing the DIMM into the socket until the locking tabs lock in place.
- 6. Close the cover on the module.
- 7. Install the NVRAM module into the chassis:
 - a. Align the module with the edges of the chassis opening in slot 6.
 - b. Gently slide the module into the slot until the lettered and numbered cam latch begins to engage with the I/O cam pin, and then push the cam latch all the way up to lock the module in place.

Step 4: Reboot the controller

After you replace the FRU, you must reboot the controller module.

1. To boot ONTAP from the LOADER prompt, enter bye.

Step 5: Reassign disks

You must confirm the system ID change when you boot the replacement controller and then verify that the change was implemented.

Disk reassignment is only needed when replacing the NVRAM module and does not apply to NVRAM DIMM replacement.

Steps

- 1. If the replacement controller is in Maintenance mode (showing the *> prompt), exit Maintenance mode and go to the LOADER prompt: halt
- 2. From the LOADER prompt on the replacement controller, boot the controller and entering y if you are prompted to override the system ID due to a system ID mismatch.
- 3. Wait until the Waiting for giveback... message is displayed on the console of the controller with the replacement module and then, from the healthy controller, verify that the new partner system ID has been automatically assigned: storage failover show

In the command output, you should see a message that the system ID has changed on the impaired controller, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706.

nodel:> storage failover show			
Node	Partner	Takeover Possible 	State Description
node1 partner (Old:	node2	false	System ID changed on
			151759755, New:
151759706), In node2 (HA mailboxes)	takeover node1	-	Waiting for giveback

4. Give back the controller:

a. From the healthy controller, give back the replaced controller's storage: storage failover giveback -ofnode replacement node name

The replacement controller takes back its storage and completes booting.

If you are prompted to override the system ID due to a system ID mismatch, you should enter y.

If the giveback is vetoed, you can consider overriding the vetoes.

For more information, see the Manual giveback commands topic to override the veto.

b. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show

The output from the storage failover show command should not include the System ID changed on partner message.

5. Verify that the disks were assigned correctly: storage disk show -ownership

The disks belonging to the replacement controller should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 151759706:

6. If the system is in a MetroCluster configuration, monitor the status of the controller: metrocluster node show

The MetroCluster configuration takes a few minutes after the replacement to return to a normal state, at which time each controller will show a configured state, with DR Mirroring enabled and a mode of normal. The metrocluster node show -fields node-systemid command output displays the old system ID until the MetroCluster configuration returns to a normal state.

7. If the controller is in a MetroCluster configuration, depending on the MetroCluster state, verify that the DR home ID field shows the original owner of the disk if the original owner is a controller on the disaster site.

This is required if both of the following are true:

- The MetroCluster configuration is in a switchover state.
- The replacement controller is the current owner of the disks on the disaster site.

See Disk ownership changes during HA takeover and MetroCluster switchover in a four-node MetroCluster configuration for more information.

8. If your system is in a MetroCluster configuration, verify that each controller is configured: metrocluster node show - fields configuration-state

```
node1 siteA::> metrocluster node show -fields configuration-state
dr-group-id
                     cluster node
                                          configuration-state
_____
1 node1_siteA node1mcc-001
                                          configured
                                         configured
1 node1 siteA
                   node1mcc-002
1 node1 siteB
                                          configured
                   node1mcc-003
1 node1 siteB
                   node1mcc-004
                                          configured
4 entries were displayed.
```

- 9. Verify that the expected volumes are present for each controller: vol show -node node-name
- 10. If storage encryption is enabled, you must restore functionality.
- 11. If you disabled automatic takeover on reboot, enable it from the healthy controller: storage failover modify -node replacement-node-name -onreboot true

Step 6: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Swap out a power supply - ASA A900

Swapping out a power supply involves turning off, disconnecting, and removing the power supply and installing, connecting, and turning on the replacement power supply.

All other components in the system must be functioning properly; if not, you must contact technical support.

About this task

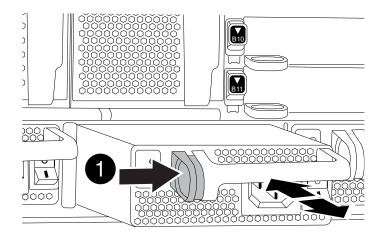
- The power supplies are redundant and hot-swappable.
- This procedure is written for replacing one power supply at a time.

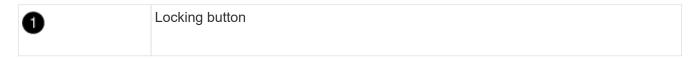
It is a best practice to replace the power supply within two minutes of removing it from the chassis. The system continues to function, but ONTAP sends messages to the console about the degraded power supply until the power supply is replaced.

- · There are four power supplies in the system.
- · Power supplies are auto-ranging.

Do not mix PSUs with different efficiency ratings. Always replace like for like.

Steps


- 1. Identify the power supply you want to replace, based on console error messages or through the LEDs on the power supplies.
- 2. If you are not already grounded, properly ground yourself.


- 3. Turn off the power supply and disconnect the power cables:
 - a. Turn off the power switch on the power supply.
 - b. Open the power cable retainer, and then unplug the power cable from the power supply.
- 4. Press and hold the terra cotta button on the power supply handle, and then pull the power supply out of the chassis.

CAUTION:

When removing a power supply, always use two hands to support its weight.

Animation - Remove/install PSU

- 5. Make sure that the on/off switch of the new power supply is in the Off position.
- 6. Using both hands, support and align the edges of the power supply with the opening in the system chassis, and then gently push the power supply into the chassis until it locks into place.

The power supplies are keyed and can only be installed one way.

Do not use excessive force when sliding the power supply into the system. You can damage the connector.

- 7. Reconnect the power supply cabling:
 - a. Reconnect the power cable to the power supply.
 - b. Secure the power cable to the power supply using the power cable retainer.

Once power is restored to the power supply, the status LED should be green.

8. Turn on the power to the new power supply, and then verify the operation of the power supply activity LEDs.

The green power LED lights when the PSU is fully inserted into the chassis and the amber attention LED flashes initially, but turns off after a few moments.

9. Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Replace the real-time clock battery - ASA A900

You replace the real-time clock (RTC) battery in the controller module so that your system's services and applications that depend on accurate time synchronization continue to function.

- · You can use this procedure with all versions of ONTAP supported by your system
- All other components in the system must be functioning properly; if not, you must contact technical support.

Step 1: Shut down the impaired controller

Shut down or take over the impaired controller using one of the following options.

Option 1: Most systems

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

About this task

• If you have a SAN system, you must have checked event messages (cluster kernel-service show) for the impaired controller SCSI blade. The cluster kernel-service show command (from priv advanced mode) displays the node name, quorum status of that node, availability status of that node, and operational status of that node.

Each SCSI-blade process should be in quorum with the other nodes in the cluster. Any issues must be resolved before you proceed with the replacement.

• If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.

Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message:

```
system node autosupport invoke -node * -type all -message MAINT=<\# of hours>h
```

The following AutoSupport message suppresses automatic case creation for two hours:

```
cluster1:> system node autosupport invoke -node * -type all -message
MAINT=2h
```

- 2. Disable automatic giveback:
 - a. Enter the following command from the console of the healthy controller:

```
storage failover modify -node local -auto-giveback false
```

- b. Enter y when you see the prompt *Do you want to disable auto-giveback?*
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

If the impaired controller is displaying	Then
System prompt or password prompt	Take over or halt the impaired controller from the healthy controller:
	storage failover takeover -ofnode impaired_node_name -halt true
	The -halt true parameter brings you to the LOADER prompt.

Option 2: Controller is in a MetroCluster

Do not use this procedure if your system is in a two-node MetroCluster configuration.

To shut down the impaired controller, you must determine the status of the controller and, if necessary, take over the controller so that the healthy controller continues to serve data from the impaired controller storage.

- If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy controller shows false for eligibility and health, you must correct the issue before shutting down the impaired controller; see Synchronize a node with the cluster.
- If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show).

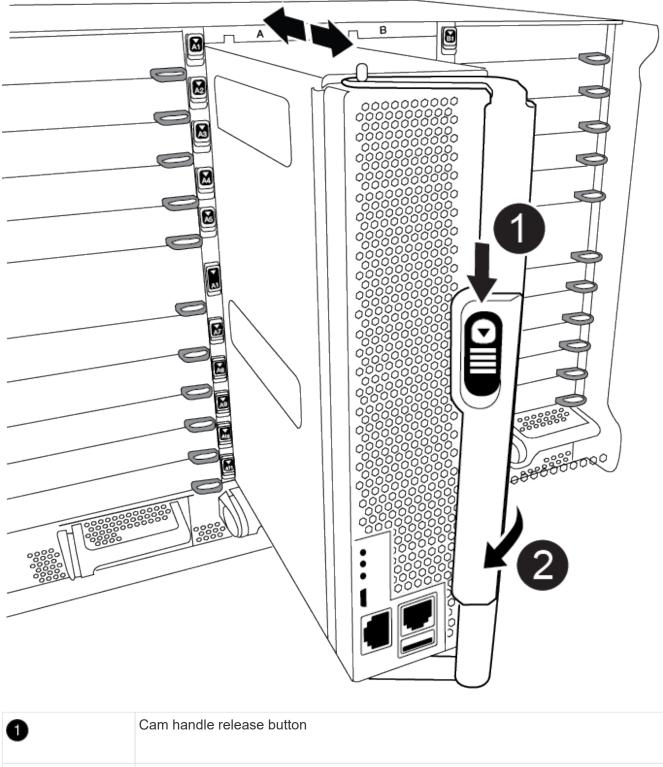
Steps

1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh

The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h

- 2. Disable automatic giveback from the console of the healthy controller: storage failover modify -node local -auto-giveback false
- 3. Take the impaired controller to the LOADER prompt:

If the impaired controller is displaying	Then
The LOADER prompt	Go to the next step.
Waiting for giveback	Press Ctrl-C, and then respond y when prompted.

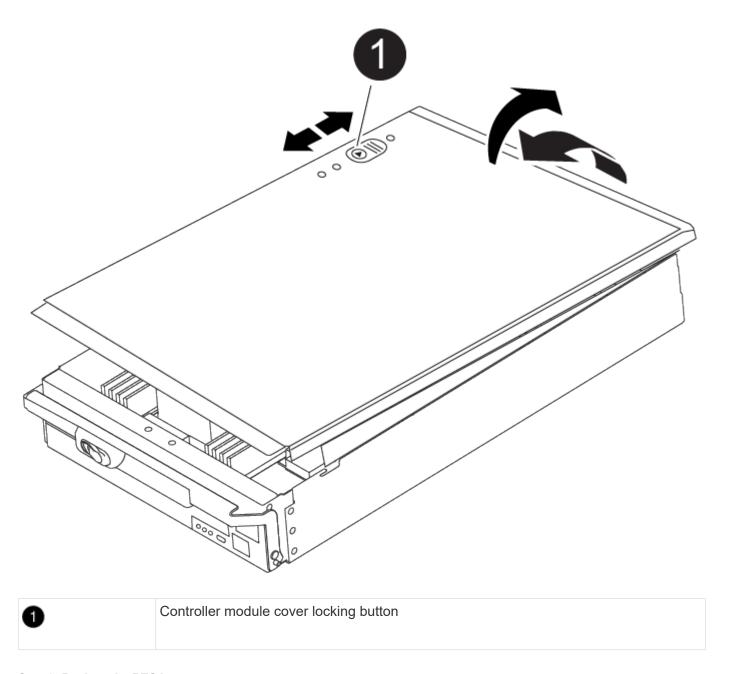

If the impaired controller is displaying	Then
System prompt or password prompt (enter system password)	Take over or halt the impaired controller from the healthy controller: storage failover takeover -ofnode impaired_node_name When the impaired controller shows Waiting for giveback, press Ctrl-C, and then respond y.

Step 2: Remove the controller

To access components inside the controller, you must first remove the controller module from the system and then remove the cover on the controller module.

- 1. If you are not already grounded, properly ground yourself.
- 2. Unplug the cables from the impaired controller module, and keep track of where the cables were connected.
- 3. Slide the terra cotta button on the cam handle downward until it unlocks.

Animation - Remove the controller

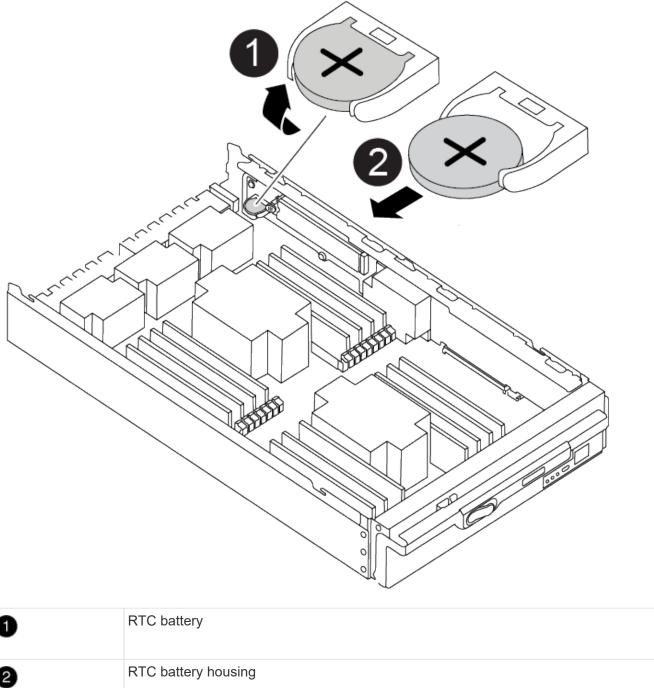


0	Cam handle release button
2	Cam handle

4. Rotate the cam handle so that it completely disengages the controller module from the chassis, and then slide the controller module out of the chassis.

Make sure that you support the bottom of the controller module as you slide it out of the chassis.

5. Place the controller module lid-side up on a stable, flat surface, press the blue button on the cover, slide the cover to the back of the controller module, and then swing the cover up and lift it off of the controller module.



Step 3: Replace the RTC battery

To replace the RTC battery, you must locate the failed battery in the controller module, remove it from the holder, and then install the replacement battery in the holder.

- 1. If you are not already grounded, properly ground yourself.
- 2. Locate the RTC battery.

Animation - Replace RTC battery

2 RTC battery housing

3. Gently push the battery away from the holder, rotate it away from the holder, and then lift it out of the holder.

Note the polarity of the battery as you remove it from the holder. The battery is marked with a plus sign and must be positioned in the holder correctly. A plus sign near the holder tells you how the battery should be positioned.

- 4. Remove the replacement battery from the antistatic shipping bag.
- 5. Locate the empty battery holder in the controller module.
- 6. Note the polarity of the RTC battery, and then insert it into the holder by tilting the battery at an angle and pushing down.

- Visually inspect the battery to make sure that it is completely installed into the holder and that the polarity is correct.
- 8. Reinstall the controller module cover.

Step 4: Reinstall the controller module and set time/date

After you replace the RTC battery, you must reinstall the controller module. If the RTC battery has been left out of the controller module for more than 10 minutes, you may have to reset the time and date.

- 1. If you have not already done so, close the air duct or controller module cover.
- 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system.

Do not completely insert the controller module in the chassis until instructed to do so.

3. Recable the system, as needed.

If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables.

- 4. If the power supplies were unplugged, plug them back in and reinstall the power cable retainers.
- 5. Complete the reinstallation of the controller module:
 - a. With the cam handle in the open position, firmly push the controller module in until it meets the midplane and is fully seated, and then close the cam handle to the locked position.

Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors.

- b. If you have not already done so, reinstall the cable management device.
- c. Bind the cables to the cable management device with the hook and loop strap.
- d. Reconnect the power cables to the power supplies and to the power sources, and then turn on the power to start the boot process.
- e. Halt the controller at the LOADER prompt.

If your system stops at the boot menu, select the option for "Reboot node" and respond y when prompted,

then boot to LOADER by pressing Ctrl-C.

- 1. Reset the time and date on the controller:
 - a. Check the date and time on the healthy controller with the show date command.
 - b. At the LOADER prompt on the target controller, check the time and date.
 - c. If necessary, modify the date with the set date mm/dd/yyyy command.
 - d. If necessary, set the time, in GMT, using the set time hh:mm:ss command.
 - e. Confirm the date and time on the target controller.
- 2. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components and let the controller reboot.

- 3. Return the controller to normal operation by giving back its storage: storage failover giveback -ofnode impaired_node_name
- 4. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true

Step 5: Return the failed part to NetApp

Return the failed part to NetApp, as described in the RMA instructions shipped with the kit. See the Part Return and Replacements page for further information.

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.