Cluster management (cluster administrators only)
ONTAP 9
NetApp
March 08, 2024

This PDF was generated from https://docs.netapp.com/us-en/ontap/system-admin/display-nodes-cluster-task.html on March 08, 2024. Always check docs.netapp.com for the latest.
# Table of Contents

Cluster management (cluster administrators only) .................................................. 1
  Display information about the nodes in a cluster .............................................. 1
  Display cluster attributes ...................................................................................... 2
  Modify cluster attributes ...................................................................................... 2
  Display the status of cluster replication rings .................................................... 2
  About quorum and epsilon ................................................................................... 3
  What system volumes are ..................................................................................... 4
Cluster management (cluster administrators only)

Display information about the nodes in a cluster

You can display node names, whether the nodes are healthy, and whether they are eligible to participate in the cluster. At the advanced privilege level, you can also display whether a node holds epsilon.

Steps

1. To display information about the nodes in a cluster, use the cluster show command.

   If you want the output to show whether a node holds epsilon, run the command at the advanced privilege level.

Examples of displaying the nodes in a cluster

The following example displays information about all nodes in a four-node cluster:

```
cluster1::> cluster show
Node                  Health  Eligibility
--------------------- ------- ------------
node1                 true    true
node2                 true    true
node3                 true    true
node4                 true    true
```

The following example displays detailed information about the node named “node1” at the advanced privilege level:

```
cluster1::> set -privilege advanced
Warning: These advanced commands are potentially dangerous; use them only when directed to do so by support personnel.
Do you want to continue? {y|n}: y

cluster1::*> cluster show -node node1

   Node: node1
   Node UUID: a67f9f34-9d8f-11da-b484-000423b6f094
   Epsilon: false
   Eligibility: true
   Health: true
```
Display cluster attributes

You can display a cluster’s unique identifier (UUID), name, serial number, location, and contact information.

Steps
1. To display a cluster’s attributes, use the `cluster identity show` command.

Example of displaying cluster attributes
The following example displays the name, serial number, location, and contact information of a cluster.

```
cluster1::> cluster identity show

    Cluster UUID: 1cd8a442-86d1-11e0-ae1c-123478563412
    Cluster Name: cluster1
    Cluster Serial Number: 1-80-123456
    Cluster Location: Sunnyvale
    Cluster Contact: jsmith@example.com
```

Modify cluster attributes

You can modify a cluster’s attributes, such as the cluster name, location, and contact information as needed.

About this task
You cannot change a cluster’s UUID, which is set when the cluster is created.

Steps
1. To modify cluster attributes, use the `cluster identity modify` command.

   The `-name` parameter specifies the name of the cluster. The `cluster identity modify` man page describes the rules for specifying the cluster’s name.

   The `-location` parameter specifies the location for the cluster.

   The `-contact` parameter specifies the contact information such as a name or e-mail address.

Example of renaming a cluster
The following command renames the current cluster (“cluster1”) to “cluster2”:

```
cluster1::> cluster identity modify -name cluster2
```

Display the status of cluster replication rings

You can display the status of cluster replication rings to help you diagnose cluster-wide
problems. If your cluster is experiencing problems, support personnel might ask you to perform this task to assist with troubleshooting efforts.

Steps
1. To display the status of cluster replication rings, use the `cluster ring show` command at the advanced privilege level.

Example of displaying cluster ring-replication status
The following example displays the status of the VLDB replication ring on a node named node0:

```bash
cluster1::> set -privilege advanced
Warning: These advanced commands are potentially dangerous; use them only when directed to do so by support personnel.
Do you wish to continue? (y or n): y

cluster1::*> cluster ring show -node node0 -unitname vldb
    Node: node0
    Unit Name: vldb
    Status: master
    Epoch: 5
    Master Node: node0
    Local Node: node0
    DB Epoch: 5
    DB Transaction: 56
    Number Online: 4
    RDB UUID: e492d2c1-fc50-11e1-bae3-123478563412
```

About quorum and epsilon

Quorum and epsilon are important measures of cluster health and function that together indicate how clusters address potential communications and connectivity challenges.

Quorum is a precondition for a fully functioning cluster. When a cluster is in quorum, a simple majority of nodes are healthy and can communicate with each other. When quorum is lost, the cluster loses the ability to accomplish normal cluster operations. Only one collection of nodes can have quorum at any one time because all of the nodes collectively share a single view of the data. Therefore, if two non-communicating nodes are permitted to modify the data in divergent ways, it is no longer possible to reconcile the data into a single data view.

Each node in the cluster participates in a voting protocol that elects one node master; each remaining node is a secondary. The master node is responsible for synchronizing information across the cluster. When quorum is formed, it is maintained by continual voting. If the master node goes offline and the cluster is still in quorum, a new master is elected by the nodes that remain online.

Because there is the possibility of a tie in a cluster that has an even number of nodes, one node has an extra fractional voting weight called epsilon. If the connectivity between two equal portions of a large cluster fails, the group of nodes containing epsilon maintains quorum, assuming that all of the nodes are healthy. For example, the following illustration shows a four-node cluster in which two of the nodes have failed. However, because
one of the surviving nodes holds epsilon, the cluster remains in quorum even though there is not a simple majority of healthy nodes.

Epsilon is automatically assigned to the first node when the cluster is created. If the node that holds epsilon becomes unhealthy, takes over its high-availability partner, or is taken over by its high-availability partner, then epsilon is automatically reassigned to a healthy node in a different HA pair.

Taking a node offline can affect the ability of the cluster to remain in quorum. Therefore, ONTAP issues a warning message if you attempt an operation that will either take the cluster out of quorum or else put it one outage away from a loss of quorum. You can disable the quorum warning messages by using the `cluster quorum-service options modify` command at the advanced privilege level.

In general, assuming reliable connectivity among the nodes of the cluster, a larger cluster is more stable than a smaller cluster. The quorum requirement of a simple majority of half the nodes plus epsilon is easier to maintain in a cluster of 24 nodes than in a cluster of two nodes.

A two-node cluster presents some unique challenges for maintaining quorum. Two-node clusters use `cluster HA`, in which neither node holds epsilon; instead, both nodes are continuously polled to ensure that if one node fails, the other has full read-write access to data, as well as access to logical interfaces and management functions.

### What system volumes are

System volumes are FlexVol volumes that contain special metadata, such as metadata for file services audit logs. These volumes are visible in the cluster so that you can fully account for storage use in your cluster.

System volumes are owned by the cluster management server (also called the admin SVM), and they are created automatically when file services auditing is enabled.

You can view system volumes by using the `volume show` command, but most other volume operations are not permitted. For example, you cannot modify a system volume by using the `volume modify` command.

This example shows four system volumes on the admin SVM, which were automatically created when file services auditing was enabled for a data SVM in the cluster:
cluster1::> volume show -vserver cluster1

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Volume</th>
<th>Aggregate</th>
<th>State</th>
<th>Type</th>
<th>Size</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1</td>
<td>MDV_aud_1d0131843d4811e296fc123478563412</td>
<td>aggr0</td>
<td>online</td>
<td>RW</td>
<td>2GB</td>
<td>1.90GB</td>
</tr>
<tr>
<td>cluster1</td>
<td>MDV_aud_8be27f813d7311e296fc123478563412</td>
<td>root_vs0</td>
<td>online</td>
<td>RW</td>
<td>2GB</td>
<td>1.90GB</td>
</tr>
<tr>
<td>cluster1</td>
<td>MDV_aud_9dc4ad503d7311e296fc123478563412</td>
<td>aggr1</td>
<td>online</td>
<td>RW</td>
<td>2GB</td>
<td>1.90GB</td>
</tr>
<tr>
<td>cluster1</td>
<td>MDV_aud_a4b887ac3d7311e296fc123478563412</td>
<td>aggr2</td>
<td>online</td>
<td>RW</td>
<td>2GB</td>
<td>1.90GB</td>
</tr>
</tbody>
</table>

4 entries were displayed.