Configure LIFs (cluster administrators only)
ONTAP 9
NetApp
November 28, 2022
Table of Contents

Configure LIFs (cluster administrators only) .. 1
 Overview ... 1
 LIF compatibility with port types ... 2
 LIF roles in ONTAP 9.5 and earlier ... 3
 LIFs and service policies in ONTAP 9.6 and later ... 5
 Configure LIF service policies ... 10
 Create a LIF ... 16
 Modify a LIF ... 20
 Migrate a LIF .. 22
 Revert a LIF to its home port ... 24
 ONTAP 9.8 and later: Recover from an incorrectly configured cluster LIF 25
 Delete a LIF .. 26
 Configure virtual IP (VIP) LIFs ... 27
Configure LIFs (cluster administrators only)

Overview

A LIF (logical interface) represents a network access point to a node in the cluster. You can configure LIFs on ports over which the cluster sends and receives communications over the network.

A cluster administrator can create, view, modify, migrate, revert, or delete LIFs. An SVM administrator can only view the LIFs associated with the SVM.

A LIF is an IP address or WWPN with associated characteristics, such as a service policy, a home port, a home node, a list of ports to fail over to, and a firewall policy. You can configure LIFs on ports over which the cluster sends and receives communications over the network.

LIFs can be hosted on the following ports:

- Physical ports that are not part of interface groups
- Interface groups
- VLANs
- Physical ports or interface groups that host VLANs
- Virtual IP (VIP) ports

Beginning with ONTAP 9.5, VIP LIFs are supported and are hosted on VIP ports.

While configuring SAN protocols such as FC on a LIF, it will be associated with a WWPN.

SAN administration

The following figure illustrates the port hierarchy in an ONTAP system:
LIF compatibility with port types

LIFs can have different characteristics to support different port types.

When intercluster and management LIFs are configured in the same subnet, the management traffic might be blocked by an external firewall and the AutoSupport and NTP connections might fail. You can recover the system by running the `network interface modify -vserver vserver name -lif intercluster LIF -status-admin up|down` command to toggle the intercluster LIF. However, you should set the intercluster LIF and management LIF in different subnets to avoid this issue.

<table>
<thead>
<tr>
<th>LIF</th>
<th>Description</th>
</tr>
</thead>
</table>

When intercluster and management LIFs are configured in the same subnet, the management traffic might be blocked by an external firewall and the AutoSupport and NTP connections might fail. You can recover the system by running the `network interface modify -vserver vserver name -lif intercluster LIF -status-admin up|down` command to toggle the intercluster LIF. However, you should set the intercluster LIF and management LIF in different subnets to avoid this issue.
Data LIF
A LIF that is associated with a storage virtual machine (SVM) and is used for communicating with clients. You can have multiple data LIFs on a port. These interfaces can migrate or fail over throughout the cluster. You can modify a data LIF to serve as an SVM management LIF by modifying its firewall policy to mgmt.

Sessions established to NIS, LDAP, Active Directory, WINS, and DNS servers use data LIFs.

Cluster LIF
A LIF that is used to carry intracluster traffic between nodes in a cluster. Cluster LIFs must always be created on cluster ports.

Cluster LIFs can fail over between cluster ports on the same node, but they cannot be migrated or failed over to a remote node. When a new node joins a cluster, IP addresses are generated automatically. However, if you want to assign IP addresses manually to the cluster LIFs, you must ensure that the new IP addresses are in the same subnet range as the existing cluster LIFs.

Cluster management LIF
LIF that provides a single management interface for the entire cluster.

A cluster management LIF can fail over to any node in the cluster. It cannot fail over to cluster or intercluster ports.

Intercluster LIF
A LIF that is used for cross-cluster communication, backup, and replication. You must create an intercluster LIF on each node in the cluster before a cluster peering relationship can be established.

These LIFs can only fail over to ports in the same node. They cannot be migrated or failed over to another node in the cluster.

Node management LIF
A LIF that provides a dedicated IP address for managing a particular node in a cluster. Node management LIFs are created at the time of creating or joining the cluster. These LIFs are used for system maintenance, for example, when a node becomes inaccessible from the cluster.

VIP LIF
A VIP LIF is any data LIF created on a VIP port. To learn more, see Configure virtual IP (VIP) LIFs.

LIF roles in ONTAP 9.5 and earlier
LIFs with different roles have different characteristics. A LIF role determines the kind of traffic that is supported over the interface, along with the failover rules that apply, the firewall restrictions that are in place, the security, the load balancing, and the routing behavior for each LIF. A LIF can have any one of the following roles: cluster, cluster management, data, intercluster, node management, and undef (undefined). The undef role is used for BGP LIFs.

Beginning with ONTAP 9.6, LIF roles are deprecated. You should specify service policies for LIFs instead of a role. It is not necessary to specify a LIF role when creating a LIF with a service policy.

LIF security
<table>
<thead>
<tr>
<th></th>
<th>Data LIF</th>
<th>Cluster LIF</th>
<th>Node management LIF</th>
<th>Cluster management LIF</th>
<th>Intercluster LIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Require private IP subnet?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Require secure network?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Default firewall policy</td>
<td>Very restrictive</td>
<td>Completely open</td>
<td>Medium</td>
<td>Medium</td>
<td>Very restrictive</td>
</tr>
<tr>
<td>Is firewall customizable?</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

LIF failover

<table>
<thead>
<tr>
<th></th>
<th>Data LIF</th>
<th>Cluster LIF</th>
<th>Node management LIF</th>
<th>Cluster management LIF</th>
<th>Intercluster LIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default behavior</td>
<td>Only those ports in the same failover group that are on the LIF’s home node and on a non-SFO partner node</td>
<td>Only those ports in the same failover group that are on the LIF’s home node</td>
<td>Only those ports in the same failover group that are on the LIF’s home node</td>
<td>Any port in the same failover group</td>
<td>Only those ports in the same failover group that are on the LIF’s home node</td>
</tr>
<tr>
<td>Is customizable?</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

LIF routing

<table>
<thead>
<tr>
<th></th>
<th>Data LIF</th>
<th>Cluster LIF</th>
<th>Node management LIF</th>
<th>Cluster management LIF</th>
<th>Intercluster LIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>When is a default route needed?</td>
<td>When clients or domain controller are on different IP subnet</td>
<td>Never</td>
<td>When any of the primary traffic types require access to a different IP subnet</td>
<td>When administrator is connecting from another IP subnet</td>
<td>When other intercluster LIFs are on a different IP subnet</td>
</tr>
<tr>
<td>When is a static route to a specific IP subnet needed?</td>
<td>Rare</td>
<td>Never</td>
<td>Rare</td>
<td>Rare</td>
<td>Rare</td>
</tr>
</tbody>
</table>
When is a static host route to a specific server needed?

To have one of the traffic types listed under node management LIF, go through a data LIF rather than a node management LIF. This requires a corresponding firewall change.

| When is a static host route to a specific server needed? | Never | Rare | Rare | Rare |

LIF rebalancing

<table>
<thead>
<tr>
<th>DNS: use as DNS server?</th>
<th>Data LIF</th>
<th>Cluster LIF</th>
<th>Node management LIF</th>
<th>Cluster management LIF</th>
<th>Intercluster LIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DNS: export as zone?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

LIF primary traffic types

<table>
<thead>
<tr>
<th>Primary traffic types</th>
<th>Data LIF</th>
<th>Cluster LIF</th>
<th>Node management LIF</th>
<th>Cluster management LIF</th>
<th>Intercluster LIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary traffic types</td>
<td>NFS server, CIFS server, NIS client, Active Directory, LDAP, WINS, DNS client and server, iSCSI and FC server</td>
<td>Intracluster</td>
<td>SSH server, HTTPS server, NTP client, SNMP, AutoSupport client, DNS client, loading software updates</td>
<td>SSH server, HTTPS server</td>
<td>Cross-cluster replication</td>
</tr>
</tbody>
</table>

LIFs and service policies in ONTAP 9.6 and later

You can assign service policies (instead of LIF roles or firewall policies) to LIFs that determine the kind of traffic that is supported for the LIFs. Service policies define a collection of network services supported by a LIF. ONTAP provides a set of built-in service policies that can be associated with a LIF.

You can display service policies and their details using the following command:

```
network interface service-policy show
```
Service policies for system SVMs

The admin SVM and any system SVM contain service policies that can be used for LIFs in that SVM, including management and intercluster LIFs. These policies are automatically created by the system when an IPspace is created.

The following table lists the built-in policies for LIFs in system SVMs as of ONTAP 9.12.1. For other releases, display the service policies and their details using the following command:

```
network interface service-policy show
```

<table>
<thead>
<tr>
<th>Policy</th>
<th>Included services</th>
<th>Equivalent role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-intercluster</td>
<td>intercluster-core, management-https</td>
<td>intercluster</td>
<td>Used by LIFs carrying intercluster traffic. Note: Service intercluster-core is available from ONTAP 9.5 with the name net-intercluster service policy.</td>
</tr>
<tr>
<td>default-route-announce</td>
<td>management-bgp</td>
<td>-</td>
<td>Used by LIFs carrying BGP peer connections Note: Available from ONTAP 9.5 with the name net-route-announce service policy.</td>
</tr>
<tr>
<td>default-management</td>
<td>management-core, management-https, management-http, management-ssh, management-autosupport, management-ems, management-dns-client, management-ad-client, management-ldap-client, management-nis-client, management-ntp-client, management-log-forwarding</td>
<td>node-mgmt, or cluster-mgmt</td>
<td>Use this system scoped management policy to create node- and cluster-scoped management LIFs owned by a system SVM. These LIFs can be used for outbound connections to DNS, AD, LDAP, or NIS servers as well as some additional connections to support applications that run on behalf of the entire system. Beginning in ONTAP 9.12.1, you can use the management-log-forwarding service to control which LIFs are used to forward audit logs to a remote syslog server.</td>
</tr>
</tbody>
</table>

The following table lists the services that LIFs can use on a system SVM as of ONTAP 9.11.1:

<table>
<thead>
<tr>
<th>Service</th>
<th>Failover limitations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercluster-core</td>
<td>home-node-only</td>
<td>Core intercluster services</td>
</tr>
<tr>
<td>management-core</td>
<td>-</td>
<td>Core management services</td>
</tr>
<tr>
<td>management-ssh</td>
<td>-</td>
<td>Services for SSH management access</td>
</tr>
<tr>
<td>management-http</td>
<td>-</td>
<td>Services for HTTP management access</td>
</tr>
<tr>
<td>Service policy</td>
<td>Included services</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>management-https</td>
<td>-</td>
<td>Services for HTTPS management access</td>
</tr>
<tr>
<td>management-autosupport</td>
<td>-</td>
<td>Services related to posting AutoSupport payloads</td>
</tr>
<tr>
<td>management-bgp</td>
<td>home-port-only</td>
<td>Services related to BGP peer interactions</td>
</tr>
<tr>
<td>backup-ndmp-control</td>
<td>-</td>
<td>Services for NDMP backup controls</td>
</tr>
<tr>
<td>management-ems</td>
<td>-</td>
<td>Services for management messaging access</td>
</tr>
<tr>
<td>management-ntp-client</td>
<td>-</td>
<td>Introduced in ONTAP 9.10.1. Services for NTP client access.</td>
</tr>
<tr>
<td>management-ntp-server</td>
<td>-</td>
<td>Introduced in ONTAP 9.11.1. Services for NTP server management access</td>
</tr>
<tr>
<td>management-portmap</td>
<td>-</td>
<td>Services for portmap management</td>
</tr>
<tr>
<td>management-rsh-server</td>
<td>-</td>
<td>Services for rsh server management</td>
</tr>
<tr>
<td>management-snmp-server</td>
<td>-</td>
<td>Services for SNMP server management</td>
</tr>
<tr>
<td>management-telnet-server</td>
<td>-</td>
<td>Services for telnet server management</td>
</tr>
<tr>
<td>management-log-forwarding</td>
<td>-</td>
<td>Introduced in ONTAP 9.12.1. Services for audit log forwarding</td>
</tr>
</tbody>
</table>

Service policies for data SVMs

All data SVMs contain service policies that can be used by LIFs in that SVM.

The following table lists the built-in policies for LIFs in data SVMs as of ONTAP 9.11.1. For other releases, display the service policies and their details using the following command:

```
network interface service-policy show
```
| default-management | management-https, management-http, management-ssh, management-dns-client, management-ad-client, management-ldap-client, management-nis-client | none | Use this SVM-scoped management policy to create SVM management LIFs owned by a data SVM. These LIFs can be used to provide SSH or HTTPS access to SVM administrators. When necessary, these LIFs can be used for outbound connections to an external DNS, AD, LDAP, or NIS servers. |

| default-data-files | data-fpolicy-client, data-dns-server, data-flexcache, data-cifs, data-nfs, management-dns-client, management-ad-client, management-ldap-client, management-nis-client | nfs, cifs, fcache | Use the default-data-files policy to create NAS LIFs supporting file-based data protocols. Sometimes there is only one LIF present in the SVM, therefore this policy allows the LIF to be used for outbound connections to an external DNS, AD, LDAP, or NIS server. You can remove these services to from this policy if you prefer these connections utilize only management LIFs. |

| default-data-iscsi | data-core, data-iscsi | iscsi | Used by LIFs carrying iSCSI data traffic. |

| default-data-nvme-tcp | data-core, data-nvme-tcp | nvme-tcp | Used by LIFs carrying NVMe/TCP data traffic. |

The following table lists the services that can be used on a data SVM along with any restrictions each service imposes on a LIF’s failover policy as of ONTAP 9.11.1:

<table>
<thead>
<tr>
<th>Service</th>
<th>Failover restrictions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>management-ssh</td>
<td>-</td>
<td>Services for SSH management access</td>
</tr>
<tr>
<td>management-http</td>
<td>-</td>
<td>Introduced in ONTAP 9.10.1 Services for HTTP management access</td>
</tr>
<tr>
<td>management-https</td>
<td>-</td>
<td>Services for HTTPS management access</td>
</tr>
<tr>
<td>management-portmap</td>
<td>-</td>
<td>Services for portmap management access</td>
</tr>
<tr>
<td>management-snmp-server</td>
<td>-</td>
<td>Introduced in ONTAP 9.10.1 Services for SNMP server management access</td>
</tr>
</tbody>
</table>
You should be aware of how the service policies are assigned to the LIFs in data SVMs:

- If a data SVM is created with a list of data services, the built-in "default-data-files" and "default-data-blocks" service policies in that SVM are created using the specified services.
- If a data SVM is created without specifying a list of data services, the built-in "default-data-files" and "default-data-blocks" service policies in that SVM are created using a default list of data services.

The default data services list includes the iSCSI, NFS, NVMe, SMB, and FlexCache services.

- When a LIF is created with a list of data protocols, a service policy equivalent to the specified data protocols is assigned to the LIF.
- If an equivalent service policy does not exist, a custom service policy is created.
- When a LIF is created without a service policy or list of data protocols, the default-data-files service policy is assigned to the LIF by default.

Data-core service

The data-core service allows components that previously used LIFs with the data role to work as expected on clusters that have been upgraded to manage LIFs using service policies instead of LIF roles (which are deprecated in ONTAP 9.6).

Specifying data-core as a service does not open any ports in the firewall, but the service should be included in any service policy in a data SVM. For example, the default-data-files service policy contains the following services by default:
• data-core
• data-nfs
• data-cifs
• data-flexcache

The data-core service should be included in the policy to ensure all applications using the LIF work as expected, but the other three services can be removed, if desired.

Client-side LIF service

Beginning with ONTAP 9.10.1, ONTAP provides client-side LIF services for multiple applications. These services provide control over which LIFs are used for outbound connections on behalf of each application.

The following new services give administrators control over which LIFs are used as source addresses for certain applications.

<table>
<thead>
<tr>
<th>Service</th>
<th>SVM restrictions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>management-ad-client</td>
<td>-</td>
<td>Beginning with ONTAP 9.11.1, ONTAP provides Active Directory client service for outbound connections to an external AD server.</td>
</tr>
<tr>
<td>management-dns-client</td>
<td>-</td>
<td>Beginning with ONTAP 9.11.1, ONTAP provides DNS client service for outbound connections to an external DNS server.</td>
</tr>
<tr>
<td>management-ldap-client</td>
<td>-</td>
<td>Beginning with ONTAP 9.11.1, ONTAP provides LDAP client service for outbound connections to an external LDAP server.</td>
</tr>
<tr>
<td>management-nis-client</td>
<td>-</td>
<td>Beginning with ONTAP 9.11.1, ONTAP provides NIS client service for outbound connections to an external NIS server.</td>
</tr>
<tr>
<td>management-ntp-client</td>
<td>system-only</td>
<td>Beginning with ONTAP 9.10.1, ONTAP provides NTP client service for outbound connections to an external NTP server.</td>
</tr>
<tr>
<td>data-fpolicy-client</td>
<td>data-only</td>
<td>Beginning with ONTAP 9.8, ONTAP provides client service for outbound FPolicy connections.</td>
</tr>
</tbody>
</table>

Each of the new services are automatically included in some of the built-in service policies, but administrators can remove them from the built-in policies or add them to custom policies to control which LIFs are used for outbound connections on behalf of each application.

Configure LIF service policies

You can configure LIF service policies to identify a single service or a list of services that will use a LIF.
Create a service policy for LIFs

You can create a service policy for LIFs. You can assign a service policy to one or more LIFs; thereby allowing the LIF to carry traffic for a single service or a list of services.

You need advanced privileges to run the `network interface service-policy create` command.

About this task

Built-in services and service policies are available for managing data and management traffic on both data and system SVMs. Most use cases are satisfied using a built-in service policy rather than creating a custom service policy.

You can modify these built-in service policies, if required.

Steps

1. View the services that are available in the cluster:

   ```
   network interface service show
   ```

 Services represent the applications accessed by a LIF as well as the applications served by the cluster. Each service includes zero or more TCP and UDP ports on which the application is listening.

 The following additional data and management services are available:

   ```
   cluster1::> network interface service show
   
   Service                     Protocol:Ports
   -------                     --------------
   cluster-core                -
   data-cifs                   -
   data-core                   -
   data-flexcache              -
   data-iscsi                  -
   data-nfs                    -
   intercluster-core           tcp:11104-11105
   management-autosupport     -
   management-bgp             tcp:179
   management-core            -
   management-https           tcp:443
   management-ssh             tcp:22
   12 entries were displayed.
   ```

2. View the service policies that exist in the cluster:
cluster1::> network interface service-policy show

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Policy</th>
<th>Service: Allowed Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1</td>
<td>default-intercluster</td>
<td>intercluster-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-https: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-management</td>
<td>management-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-autosupport: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-ssh: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-https: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-route-announce</td>
<td>management-bgp: 0.0.0.0/0</td>
</tr>
<tr>
<td>Cluster</td>
<td>default-cluster</td>
<td>cluster-core: 0.0.0.0/0</td>
</tr>
<tr>
<td>vs0</td>
<td>default-data-blocks</td>
<td>data-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-iscsi: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-data-files</td>
<td>data-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-nfs: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-cifs: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-flexcache: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-management</td>
<td>data-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-ssh: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-https: 0.0.0.0/0</td>
</tr>
</tbody>
</table>

7 entries were displayed.

3. Create a service policy:

cluster1::> set -privilege advanced
Warning: These advanced commands are potentially dangerous; use them only when directed to do so by technical support.
Do you wish to continue? (y or n): y

cluster1::> network interface service-policy create -vserver <svm_name> -policy <service_policy_name> -services <service_name> -allowed -addresses <IP_address/mask,...>
- "service_name" specifies a list of services that should be included in the policy.
- "IP_address/mask" specifies the list of subnet masks for addresses that are allowed to access the services in the service policy. By default, all specified services are added with a default allowed address list of 0.0.0.0/0, which allows traffic from all subnets. When a non-default allowed address list is provided, LIFs using the policy are configured to block all requests with a source address that does not match any of the specified masks.

The following example shows how to create a data service policy, svm1_data_policy, for an SVM that includes NFS and SMB services:

```bash
cluster1::> set -privilege advanced
Warning: These advanced commands are potentially dangerous; use them only when directed to do so by technical support.
Do you wish to continue? (y or n): y

cluster1::> network interface service-policy create -vserver svm1 -policy svm1_data_policy -services data-nfs,data-cifs,data-core
```

The following example shows how to create an intercluster service policy:

```bash
cluster1::> set -privilege advanced
Warning: These advanced commands are potentially dangerous; use them only when directed to do so by technical support.
Do you wish to continue? (y or n): y

cluster1::> network interface service-policy create -vserver cluster1 -policy intercluster1 -services intercluster-core
```

4. Verify that the service policy is created.

```bash
cluster1::> network interface service-policy show
```

The following output shows the service policies that are available:
cluster1::> network interface service-policy show

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Policy</th>
<th>Service: Allowed Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>cluster1</td>
<td>default-intercluster</td>
<td>intercluster-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-https: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>intercluster1</td>
<td>intercluster-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-management</td>
<td>management-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-autosupport: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-ssh: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-https: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-route-announce</td>
<td>management-bgp: 0.0.0.0/0</td>
</tr>
<tr>
<td>Cluster</td>
<td>default-cluster</td>
<td>cluster-core: 0.0.0.0/0</td>
</tr>
<tr>
<td>vs0</td>
<td>default-data-blocks</td>
<td>data-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-iscsi: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-data-files</td>
<td>data-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-nfs: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-cifs: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-flexcache: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>default-management</td>
<td>data-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-ssh: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>management-https: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td>svm1_data_policy</td>
<td>data-core: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-nfs: 0.0.0.0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data-cifs: 0.0.0.0/0</td>
</tr>
</tbody>
</table>

9 entries were displayed.

After you finish
Assign the service policy to a LIF either at the time of creation or by modifying an existing LIF.
Assign a service policy to a LIF

You can assign a service policy to a LIF either at the time of creating the LIF or by modifying the LIF. A service policy defines the list of services that can be used with the LIF.

About this task

You can assign service policies for LIFs in the admin and data SVMs.

Step

Depending on when you want to assign the service policy to a LIF, perform one of the following actions:

<table>
<thead>
<tr>
<th>If you are...</th>
<th>Assign the service policy...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating a LIF</td>
<td>network interface create -vserver svm_name -lif <lif_name> -home-node <node_name> -home-port <port_name> {(-address <IP_address> -netmask <IP_address>) -subnet-name <subnet_name>} -service-policy <service_policy_name></td>
</tr>
<tr>
<td>Modifying a LIF</td>
<td>network interface modify -vserver <svm_name> -lif <lif_name> -service-policy <service_policy_name></td>
</tr>
</tbody>
</table>

When you specify a service policy for a LIF, you need not specify the data protocol and role for the LIF. Creating LIFs by specifying the role and data protocols is also supported.

ℹ️ A service policy can only be used by LIFs in the same SVM that you specified when creating the service policy.

Examples

The following example shows how to modify the service policy of a LIF to use the default-management service policy:

```
cluster1::> network interface modify -vserver cluster1 -lif lif1 -service-policy default-management
```

Commands for managing LIF service policies

Use the network interface service-policy commands to manage LIF service policies.

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a service policy (advanced privileges required)</td>
<td>network interface service-policy create</td>
</tr>
<tr>
<td>Add an additional service entry to an existing service policy (advanced privileges required)</td>
<td>network interface service-policy add-service</td>
</tr>
<tr>
<td>Clone an existing service policy (advanced privileges required)</td>
<td>network interface service-policy clone</td>
</tr>
</tbody>
</table>
Modify a service entry in an existing service policy (advanced privileges required)

network interface service-policy modify-service

Remove a service entry from an existing service policy (advanced privileges required)

network interface service-policy remove-service

Rename an existing service policy (advanced privileges required)

network interface service-policy rename

Delete an existing service policy (advanced privileges required)

network interface service-policy delete

Restore a built-in service-policy to its original state (advanced privileges required)

network interface service-policy restore-defaults

Display existing service policies

network interface service-policy show

Create a LIF

A LIF is an IP address associated with a physical or logical port. If there is a component failure, a LIF can fail over to or be migrated to a different physical port, thereby continuing to communicate with the network.

Before you begin

- The underlying physical or logical network port must have been configured to the administrative up status.
- If you are planning to use a subnet name to allocate the IP address and network mask value for a LIF, the subnet must already exist.

Subnets contain a pool of IP addresses that belong to the same layer 3 subnet. They are created using System Manager or the network subnet create command.

- The mechanism for specifying the type of traffic handled by a LIF has changed. For ONTAP 9.5 and earlier, LIFs used roles to specify the type of traffic it would handle. Beginning with ONTAP 9.6, LIFs use service policies to specify the type of traffic it would handle.

About this task

- You cannot assign NAS and SAN protocols to the same LIF.

The supported protocols are SMB, NFS, FlexCache, iSCSI, and FC; iSCSI and FC cannot be combined with other protocols. However, NAS and Ethernet-based SAN protocols can be present on the same physical port.

- You can create both IPv4 and IPv6 LIFs on the same network port.

- All the name mapping and host-name resolution services used by an SVM, such as DNS, NIS, LDAP, and Active Directory, must be reachable from at least one LIF handling data traffic of the SVM.

- A LIF handling intracluster traffic between nodes should not be on the same subnet as a LIF handling management traffic or a LIF handling data traffic.
• Creating a LIF that does not have a valid failover target results in a warning message.

• If you have a large number of LIFs in your cluster, you can verify the LIF capacity supported on the cluster:
 ◦ System Manager: Beginning with ONTAP 9.12.0, view the throughput on the Network Interface grid.
 ◦ CLI: Use the `network interface capacity show` command and the LIF capacity supported on each node by using the `network interface capacity details show` command (at the advanced privilege level).

• Beginning with ONTAP 9.7, if other LIFs already exist for the SVM in the same subnet, you do not need to specify the home port of the LIF. ONTAP automatically chooses a random port on the specified home node in the same broadcast domain as the other LIFs already configured in the same subnet.

Beginning with ONTAP 9.4, FC-NVMe is supported. If you are creating an FC-NVMe LIF you should be aware of the following:

 ◦ The NVMe protocol must be supported by the FC adapter on which the LIF is created.
 ◦ FC-NVMe can be the only data protocol on data LIFs.

• One LIF handling management traffic must be configured for every storage virtual machine (SVM) supporting SAN.

• NVMe LIFs and namespaces must be hosted on the same node.

• Only one NVMe LIF handling data traffic can be configured per SVM.

• When you create a network interface with a subnet, ONTAP automatically selects an available IP address from the selected subnet and assigns it to the network interface. You can change the subnet if there is more than one subnet, but you cannot change the IP address.

• When you create (add) an SVM, for a network interface, you cannot specify an IP address that is in the range of an existing subnet. You will receive a subnet conflict error. This issue occurs in other workflows for a network interface, such as creating or modifying inter-cluster network interfaces in SVM settings or cluster settings.

• Beginning with ONTAP 9.10.1, the `network interface CLI` commands include an `-rdma-protocols` parameter for NFS over RDMA configurations. Creating network interfaces for NFS over RDMA configurations is supported in System Manager beginning in ONTAP 9.12.1. For more information, see Configure LIFS for NFS over RDMA.

• Beginning with ONTAP 9.11.1, the iSCSI LIF failover feature is available on All SAN Array (ASA) platforms.

iSCSI LIF failover is automatically enabled (the failover policy is set to `sfo-partner-only` and the auto-revert value is set to `true`) on newly created iSCSI LIFs if no iSCSI LIFs exist in the specified SVM or if all existing iSCSI LIFs in the specified SVM are already enabled with iSCSI LIF failover.

If after you upgrade to ONTAP 9.11.1 or later, you have existing iSCSI LIFs in an SVM that have not been enabled with the iSCSI LIF failover feature and you create new iSCSI LIFs in the same SVM, the new iSCSI LIFs assume the same failover policy (disabled) of the existing iSCSI LIFs in the SVM.

iSCSI LIF failover for ASA platforms

Beginning with ONTAP 9.12.0, the procedure you follow depends on the interface that you use—System Manager or the CLI:
System Manager

Use System Manager to add a network interface

Steps
1. Select **Network > Overview > Network Interfaces**.
2. Select **Add**.
3. Select one of the following interface roles:
 a. Data
 b. Intercluster
 c. SVM Management
4. Select the protocol:
 a. SMB/CIFS and NFS
 b. iSCSI
 c. FC
 d. NVMe/FC
 e. NVMe/TCP
5. Name the LIF or accept the name generated from your previous selections.
6. Accept the home node or use the drop-down to select one.
7. If at least one subnet is configured in the IPspace of the selected SVM, the subnet drop-down is displayed.
 a. If you select a subnet, choose it from the drop-down.
 b. If you proceed without a subnet, the broadcast domain drop-down is displayed:
 i. Specify the IP address. If the IP address is in use, a warning message will display.
 ii. Specify a subnet mask.
8. Select the home port from the broadcast domain, either automatically (recommended) or by selecting one from the drop-down menu. The Home port control is displayed based on the broadcast domain or subnet selection.
9. Save the network interface.

CLI

Use the CLI to create a LIF

Steps
1. Create a LIF:

```bash
network interface create -vserver _SVM_name_ -lif _lif_name_ -service-policy _service_policy_name_ -home-node _node_name_ -home-port port_name {-address _IP_address_ -netmask _Netmask_value_ | -subnet-name _subnet_name_} -firewall-policy _policy_ -auto-revert {true|false}
```
- **home-node** is the node to which the LIF returns when the `network interface revert` command is run on the LIF.

You can also specify whether the LIF should automatically revert to the home-node and home-port with the `-auto-revert` option.

- **home-port** is the physical or logical port to which the LIF returns when the `network interface revert` command is run on the LIF.

You can specify an IP address with the `-address` and `-netmask` options, or you enable allocation from a subnet with the `-subnet_name` option.

- When using a subnet to supply the IP address and network mask, if the subnet was defined with a gateway, a default route to that gateway is added automatically to the SVM when a LIF is created using that subnet.

- If you assign IP addresses manually (without using a subnet), you might need to configure a default route to a gateway if there are clients or domain controllers on a different IP subnet. The `network route create` man page contains information about creating a static route within an SVM.

- **-auto-revert** enables you to specify whether a data LIF is automatically reverted to its home node under circumstances such as startup, changes to the status of the management database, or when the network connection is made. The default setting is `false`, but you can set it to `true` depending on network management policies in your environment.

- **-service-policy** Beginning with ONTAP 9.5, you can assign a service policy for the LIF with the `-service-policy` option. When a service policy is specified for a LIF, the policy is used to construct a default role, failover policy, and data protocol list for the LIF. In ONTAP 9.5, service policies are supported only for intercluster and BGP peer services. In ONTAP 9.6, you can create service policies for several data and management services.

- **-data-protocol** enables you to create a LIF that supports the FCP or NVMe/FC protocols. This option is not required when creating an IP LIF.

2. **Optional**: Assign an IPv6 address in the `-address` option:
 a. Use the network `ndp prefix show` command to view the list of RA prefixes learned on various interfaces.

 The `network ndp prefix show` command is available at the advanced privilege level.

 b. Use the format `prefix::id` to construct the IPv6 address manually.

 `prefix` is the prefix learned on various interfaces.

 For deriving the `id`, choose a random 64-bit hexadecimal number.

3. Verify that the LIF was created by using the `network interface show` command.

4. Verify that the configured IP address is reachable:

<table>
<thead>
<tr>
<th>To verify an...</th>
<th>Use...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 address</td>
<td>network ping</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>network ping6</td>
</tr>
</tbody>
</table>
Examples
The following command creates a LIF and specifies the IP address and network mask values using the
-address and -netmask parameters:

```
network interface create -vserver vs1.example.com -lifdatalif1
-service-policy default-data-files -home-node node-4 -home-port e1c
-address 192.0.2.145 -netmask 255.255.255.0 -auto-revert true
```

The following command creates a LIF and assigns IP address and network mask values from the
specified subnet (named client1_sub):

```
network interface create -vserver vs3.example.com -lifdatalif3
-service-policy default-data-files -home-node node-3 -home-port e1c
-subnet-name client1_sub -auto-revert true
```

The following command creates an NVMe/FC LIF and specifies the nvme-fc data protocol:

```
network interface create -vserver vs1.example.com -lifdatalif1 -data
-protocol nvme-fc -home-node node-4 -home-port 1c -address 192.0.2.145
-netmask 255.255.255.0 -auto-revert true
```

More information
Modify a LIF
Configure LIFs for NFS over RDMA

Modify a LIF

You can modify a LIF by changing the attributes, such as home node or current node,
administrative status, IP address, netmask, failover policy, firewall policy, and service
policy. You can also change the address family of a LIF from IPv4 to IPv6.

About this task

- When modifying a LIF’s administrative status to down, any outstanding NFSv4 locks are held until the LIF’s
 administrative status is returned to up.

 To avoid lock conflicts that can occur when other LIFs attempt to access the locked files, you must move
 the NFSv4 clients to a different LIF before setting the administrative status to down.

- You cannot modify the data protocols used by an FC LIF. However, you can modify the services assigned
 to a service policy or change the service policy assigned to an IP LIF.

 To modify the data protocols used by a FC LIF, you must delete and re-create the LIF. To make service
 policy changes to an IP LIF, there is a brief outage while the updates occur.

- You cannot modify either the home node or the current node of a node-scoped management LIF.
• When using a subnet to change the IP address and network mask value for a LIF, an IP address is allocated from the specified subnet; if the LIF’s previous IP address is from a different subnet, the IP address is returned to that subnet.

• To modify the address family of a LIF from IPv4 to IPv6, you must use the colon notation for the IPv6 address and add a new value for the -netmask-length parameter.

• You cannot modify the auto-configured link-local IPv6 addresses.

• Modification of a LIF that results in the LIF having no valid failover target results in a warning message.

 If a LIF that does not have a valid failover target attempts to fail over, an outage might occur.

• Beginning with ONTAP 9.5, you can modify the service policy associated with a LIF.

 In ONTAP 9.5, service policies are supported only for intercluster and BGP peer services. In ONTAP 9.6, you can create service policies for several data and management services.

• Beginning with ONTAP 9.11.1, the iSCSI LIF failover feature is available on All SAN Array (ASA) platforms.

 For pre-existing iSCSI LIFs, meaning LIFs created prior to upgrading to 9.11.1 or later, you can modify the failover policy to enable the iSCSI LIF failover feature.

 iSCSI LIF failover for ASA platforms

The procedure you follow depends on the interface that you use—System Manager or the CLI:
System Manager

Beginning with ONTAP 9.12.0, you can use System Manager to edit a network interface

Steps
1. Select **Network > Overview > Network Interfaces**.
2. Select ⚒️ > Edit beside the network interface you want to change.
3. Change one or more of the network interface settings. For details, see Create a LIF.
4. Save your changes.

CLI

Use the CLI to modify a LIF

Steps
1. Modify a LIF’s attributes by using the `network interface modify` command.

 The following example shows how to modify the IP address and network mask of LIF datalif2 using an IP address and the network mask value from subnet client1_sub:

   ```
   network interface modify -vserver vs1 -lif datalif2 -subnet-name client1_sub
   ```

 The following example shows how to modify the service policy of a LIF.

   ```
   network interface modify -vserver siteA -lif node1_inter1 -service -policy example
   ```

2. Verify that the IP addresses are reachable.

<table>
<thead>
<tr>
<th>If you are using…</th>
<th>Then use…</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 addresses</td>
<td><code>network ping</code></td>
</tr>
<tr>
<td>IPv6 addresses</td>
<td><code>network ping6</code></td>
</tr>
</tbody>
</table>

Migrate a LIF

You might have to migrate a LIF to a different port on the same node or a different node within the cluster, if the port is either faulty or requires maintenance. Migrating a LIF is similar to LIF failover, but LIF migration is a manual operation, while LIF failover is the automatic migration of a LIF in response to a link failure on the LIF’s current network port.

Before you begin
• A failover group must have been configured for the LIFs.
• The destination node and ports must be operational and must be able to access the same network as the source port.

About this task
• BGP LIFs reside on the home-port and cannot be migrated to any other node or port.
• You must migrate LIFs hosted on the ports belonging to a NIC to other ports in the cluster, before removing the NIC from the node.
• You must execute the command for migrating a cluster LIF from the node where the cluster LIF is hosted.
• A node-scoped LIF, such as a node-scoped management LIF, cluster LIF, intercluster LIF, cannot be migrated to a remote node.
• When an NFSv4 LIF is migrated between nodes, a delay of up to 45 seconds results before the LIF is available on a new port.

To work around this problem, use NFSv4.1 where no delay is encountered.
• You can migrate iSCSI LIFs on All SAN Array (ASA) platforms running ONTAP 9.11.1 or later.

Migrating iSCSI LIFs is limited to ports on the home-node or the HA partner.

You can also use System Manager to migrate iSCSI LIFs.

iSCSI LIF failover for ASA platforms
• If your platform is not an All SAN Array (ASA) platform running ONTAP version 9.11.1 or later, you cannot migrate iSCSI LIFs from one node to another node.

To work around this restriction, you must create an iSCSI LIF on the destination node. For information about guidelines for creating an iSCSI LIF, see SAN administration.

• If you want to migrate a LIF (network interface) for NFS over RDMA, you must ensure the destination port is RoCE capable. You must be running ONTAP 9.10.1 or later to migrate a LIF with the CLI, or ONTAP 9.12.1 to migrate using System Manager. In System Manager, once you have selected your RoCE capable destination-port, you must check the box next to Use RoCE ports to complete the migration successfully. For more information, refer to Configure LIFs for NFS over RDMA.

• VMware VAAI copy offload operations fail when you migrate the source or the destination LIF. For more information about VMware VAAI, see NFS reference or SAN administration.

The procedure you follow depends on the interface that you use—System Manager or the CLI:
System Manager
Use System Manager to migrate a network interface

Steps
1. Select Network > Overview > Network Interfaces.
2. Select Migrate beside the network interface you want to change.
3. Save your changes.

CLI
Use the CLI to migrate a LIF

Step
Depending on whether you want to migrate a specific LIF or all the LIFs, perform the appropriate action:

<table>
<thead>
<tr>
<th>If you want to migrate...</th>
<th>Enter the following command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A specific LIF</td>
<td><code>network interface migrate</code></td>
</tr>
<tr>
<td>All the data and cluster-</td>
<td><code>network interface migrate-all</code></td>
</tr>
<tr>
<td>management LIFs on a node</td>
<td></td>
</tr>
<tr>
<td>All of the LIFs off of a</td>
<td><code>network interface migrate-all -node <node> -port <port></code></td>
</tr>
<tr>
<td>port</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to migrate a LIF named `datalif1` on the SVM `vs0` to the port `e0d` on `node0b`:

```
network interface migrate -vserver vs0 -lif datalif1 -dest-node node0b -dest-port e0d
```

The following example shows how to migrate all the data and cluster-management LIFs from the current (local) node:

```
network interface migrate-all -node local
```

Revert a LIF to its home port

You can revert a LIF to its home port after it fails over or is migrated to a different port either manually or automatically. If the home port of a particular LIF is unavailable, the LIF remains at its current port and is not reverted.

About this task
- If you administratively bring the home port of a LIF to the up state before setting the automatic revert
option, the LIF is not returned to the home port.

• The LIF does not automatically revert unless the value of the "auto-revert" option is set to true.
• You must ensure that the "auto-revert" option is enabled for the LIFs to revert to their home ports.

The procedure you follow depends on the interface that you use—System Manager or the CLI:

System Manager

Use System Manager to revert a network interface to its home port

Steps

1. Select **Network > Overview > Network Interfaces**.
2. Select **⋯ > Revert** beside the network interface you want to change.
3. Save your changes.

CLI

Use the CLI to revert a LIF to its home port

Step
Revert a LIF to its home port manually or automatically:

<table>
<thead>
<tr>
<th>If you want to revert a LIF to its home port...</th>
<th>Then enter the following command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually</td>
<td><code>network interface revert -vserver vserver_name -lif lif_name</code></td>
</tr>
<tr>
<td>Automatically</td>
<td><code>network interface modify -vserver vserver_name -lif lif_name -auto-revert true</code></td>
</tr>
</tbody>
</table>

ONTAP 9.8 and later: Recover from an incorrectly configured cluster LIF

A cluster cannot be created when the cluster network is cabled to a switch but not all of the ports configured in the Cluster IPspace can reach the other ports configured in the Cluster IPspace.

About this task

In a switched cluster, if a cluster network interface (LIF) is configured on the wrong port, or if a cluster port is wired into the wrong network, the **cluster create** command can fail with the following error:

```
Not all local cluster ports have reachability to one another.
Use the "network port reachability show -detail" command for more details.
```

The results of the **network port show** command might show that several ports are added to the Cluster IPspace because they are connected to a port that is configured with a cluster LIF. However, the results of the **network port reachability show -detail** command reveal which ports do not have connectivity to
one another.

To recover from a cluster LIF configured on a port that is not reachable to the other ports configured with cluster LIFs, perform the following steps:

Steps

1. Reset the home port of the cluster LIF to the correct port:
   ```
   network port modify -home-port
   ```

2. Remove the ports that do not have cluster LIFs configured on them from the cluster broadcast domain:
   ```
   network port broadcast-domain remove-ports
   ```

3. Create the cluster:
   ```
   cluster create
   ```

Result

When you complete the cluster creation, the system detects the correct configuration and places the ports into the correct broadcast domains.

Delete a LIF

You can delete a network interface (LIF) that is no longer required.

Before you begin

LIFs to be deleted must not be in use.

Steps

1. Mark the LIFs you want to delete as administratively down using the following command:
   ```
   network interface modify -vserver vserver_name -lif lif_name -status -admin down
   ```

2. Use the `network interface delete` command to delete one or all LIFs:

<table>
<thead>
<tr>
<th>If you want to delete...</th>
<th>Enter the command ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A specific LIF</td>
<td><code>network interface delete -vserver vserver_name -lif lif_name</code></td>
</tr>
<tr>
<td>All LIFs</td>
<td><code>network interface delete -vserver vserver_name -lif *</code></td>
</tr>
</tbody>
</table>
The following command deletes the LIF mgmtlif2:

```
network interface delete -vserver vs1 -lif mgmtlif2
```

3. Use the `network interface show` command to confirm that the LIF is deleted.

Configure virtual IP (VIP) LIFs

Some next-generation data centers use Network-Layer-3 mechanisms that require LIFs to be failed over across subnets. Beginning with ONTAP 9.5, VIP data LIFs and the associated routing protocol, border gateway protocol (BGP), are supported, which enable ONTAP to participate in these next-generation networks.

About this task

A VIP data LIF is a LIF that is not part of any subnet and is reachable from all ports that host a BGP LIF in the same IPspace. A VIP data LIF eliminates the dependency of a host on individual network interfaces. Because multiple physical adapters carry the data traffic, the entire load is not concentrated on a single adapter and the associated subnet. The existence of a VIP data LIF is advertised to peer routers through the routing protocol, Border Gateway Protocol (BGP).

VIP data LIFs provide the following advantages:

- **LIF portability beyond a broadcast domain or subnet**: VIP data LIFs can fail over to any subnet in the network by announcing the current location of each VIP data LIF to routers through BGP.
- **Aggregate throughput**: VIP data LIFs can support aggregate throughput that exceeds the bandwidth of any individual port because the VIP LIFs can send or receive data from multiple subnets or ports simultaneously.

Set up border gateway protocol (BGP)

Before creating VIP LIFs, you must set up BGP, which is the routing protocol used for announcing the existence of a VIP LIF to peer routers.

Beginning with ONTAP 9.9.1, VIP BGP provides default route automation using BGP peer grouping to simplify configuration.

ONTAP has a simple way to learn default routes using the BGP peers as next-hop routers when the BGP peer is on the same subnet. To use the feature, set the `-use-peer-as-next-hop` attribute to `true`. By default, this attribute is `false`.

If you have static routes configured, those are still preferred over these automated default routes.

Before you begin

The peer router must be configured to accept a BGP connection from the BGP LIF for the configured autonomous system number (ASN).

ONTAP does not process any incoming route announcements from the router; therefore, you should configure the peer router to not send any route updates to the cluster.

About this task
Setting up BGP involves optionally creating a BGP configuration, creating a BGP LIF, and creating a BGP peer group. ONTAP automatically creates a default BGP configuration with default values when the first BGP peer group is created on a given node. A BGP LIF is used to establish BGP TCP sessions with peer routers. For a peer router, a BGP LIF is the next hop to reach a VIP LIF. Failover is disabled for the BGP LIF. A BGP peer group advertises the VIP routes for all the SVMs in the peer group’s IPspace.

Beginning with ONTAP 9.8, these fields have been added to the `network bgp peer-group` command:

- `-asn-prepend-type`
- `-asn-prepend-count`
- `-community`

These BGP attributes allow you to configure the AS Path and community attributes for the BGP peer group.

Beginning with ONTAP 9.9.1, these fields have been added:

- `-asn` or `-peer-asn` (4-byte value)
 The attribute itself is not new, but it now uses a 4-byte integer.
- `-med`
- `-use-peer-as-next-hop`

You can make advanced route selections with Multi-Exit Discriminator (MED) support for path prioritization. MED is an optional attribute in the BGP update message that tells routers to select the best route for the traffic. The MED is an unsigned 32-bit integer (0 - 4294967295); lower values are preferred.

While ONTAP supports the above BGP attributes, routers need not honor them. NetApp highly recommends you confirm which attributes are supported by your router and configure BGP peer-groups accordingly. For details, refer to the BGP documentation provided by your router.

Steps
1. Log in to the advanced privilege level:
   ```
   set -privilege advanced
   ```

2. Optional: Create a BGP configuration or modify the default BGP configuration of the cluster by performing one of the following actions:
 a. Create a BGP configuration:

   ```
   network bgp config create -node {node_name | local} -asn asn_integer -holdtime hold_time -routerid local_router_IP_address
   ```

 Sample with a 2-byte ASN:

   ```
   network bgp config create -node node1 -asn 65502 -holdtime 180 -routerid 1.1.1.1
   ```
Sample with a 4-byte ASN:

```
network bgp config create -node node1 -asn 85502 -holdtime 180 -routerid 1.1.1.1
```

b. Modify the default BGP configuration:

```
network bgp defaults modify -asn asn_integer -holdtime hold_time
network bgp defaults modify -asn 65502
```

- **asn_integer** specifies the ASN. Beginning with ONTAP 9.8, ASN for BGP supports a 2-byte non-negative integer. This is a 16-bit number (1 - 65534 available values). Beginning with ONTAP 9.9.1, ASN for BGP supports a 4-byte non-negative integer (1 - 4294967295). The default ASN is 65501. ASN 23456 is reserved for ONTAP session establishment with peers that do not announce 4-byte ASN capability.
- **hold_time** specifies the hold time in seconds. The default value is 180s.

3. Create a BGP LIF for the system SVM:

```
network interface create -vserver system_svm -lif lif_name -service -policy default-route-announce -home-node home_node -home-port home_port -address ip_address -netmask netmask
```

You can use the `default-route-announce` service policy for the BGP LIF or any custom service policy which contains the "management-bgp" service.

```
network interface create -vserver cluster1 -lif bgp1 -service-policy default-route-announce -home-node cluster1-01 -home-port e0c -address 10.10.10.100 -netmask 255.255.255.0
```

4. Create a BGP peer group that is used to establish BGP sessions with the remote peer routers and configure the VIP route information that is advertised to the peer routers:

Sample 1: Create a peer group without an auto default route

In this case, the admin has to create a static route to the BGP peer.

```
network bgp peer-group create -peer-group group_name -ipspace ipspace_name -bgp-lif bgp_lif -peer-address peer-router_ip_address -peer -asn 65502 -route-preference integer -asn-prepend-type <ASN_prepend_type> -asn-prepend-count integer -med integer -community BGP community list <0-65535>:<0-65535>
```
Create a virtual IP (VIP) data LIF

The existence of a VIP data LIF is advertised to peer routers through the routing protocol, Border Gateway Protocol (BGP).

Before you begin

- The BGP peer group must be set up and the BGP session for the SVM on which the LIF is to be created must be active.
- A static route to the BGP router or any other router in the BGP LIF’s subnet must be created for any outgoing VIP traffic for the SVM.
- You should turn on multipath routing so that the outgoing VIP traffic can utilize all the available routes.

If multipath routing is not enabled, all the outgoing VIP traffic goes from a single interface.

Steps

1. Create a VIP data LIF:

   ```
   network interface create -vserver svm_name -lif lif_name -role data -data-protocol {nfs|cifs|iscsi|fcache|none|fc-nvme} -home-node home_node -address ip_address -is-vip true
   ```

A VIP port is automatically selected if you do not specify the home port with the `network interface create` command.
By default, the VIP data LIF belongs to the system-created broadcast domain named 'Vip', for each IPspace. You cannot modify the VIP broadcast domain.

A VIP data LIF is reachable simultaneously on all ports hosting a BGP LIF of an IPspace. If there is no active BGP session for the VIP's SVM on the local node, the VIP data LIF fails over to the next VIP port on the node that has a BGP session established for that SVM.

2. Verify that the BGP session is in the up status for the SVM of the VIP data LIF:

```
network bgp vserver-status show

<table>
<thead>
<tr>
<th>Node</th>
<th>Vserver</th>
<th>bgp status</th>
</tr>
</thead>
<tbody>
<tr>
<td>node1</td>
<td>vs1</td>
<td>up</td>
</tr>
</tbody>
</table>
```

If the BGP status is down for the SVM on a node, the VIP data LIF fails over to a different node where the BGP status is up for the SVM. If BGP status is down on all the nodes, the VIP data LIF cannot be hosted anywhere, and has LIF status as down.

Commands for managing the BGP

Beginning with ONTAP 9.5, you use the `network bgp` commands to manage the BGP sessions in ONTAP.

Manage BGP configuration

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Use this command…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a BGP configuration</td>
<td><code>network bgp config create</code></td>
</tr>
<tr>
<td>Modify BGP configuration</td>
<td><code>network bgp config modify</code></td>
</tr>
<tr>
<td>Delete BGP configuration</td>
<td><code>network bgp config delete</code></td>
</tr>
<tr>
<td>Display BGP configuration</td>
<td><code>network bgp config show</code></td>
</tr>
<tr>
<td>Displays the BGP status for the SVM of the VIP LIF</td>
<td><code>network bgp vserver-status show</code></td>
</tr>
</tbody>
</table>

Manage BGP default values

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Use this command…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify BGP default values</td>
<td><code>network bgp defaults modify</code></td>
</tr>
<tr>
<td>Display BGP default values</td>
<td><code>network bgp defaults show</code></td>
</tr>
</tbody>
</table>

Manage BGP peer groups

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Use this command…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a BGP peer group</td>
<td><code>network bgp peer-group create</code></td>
</tr>
<tr>
<td>Modify a BGP peer group</td>
<td><code>network bgp peer-group modify</code></td>
</tr>
<tr>
<td>Delete a BGP peer group</td>
<td>network bgp peer-group delete</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Display BGP peer groups information</td>
<td>network bgp peer-group show</td>
</tr>
<tr>
<td>Rename a BGP peer group</td>
<td>network bgp peer-group rename</td>
</tr>
</tbody>
</table>

Related information

ONTAP 9 commands