Table of Contents

Configure NFS with the CLI .. 1
 NFS configuration overview with the CLI 1
 NFS configuration workflow ... 1
 Preparation ... 1
 Configure NFS access to an SVM ... 13
 Add storage capacity to an NFS-enabled SVM 47
 Where to find additional information 62
 How ONTAP exports differ from 7-Mode exports 63
Configure NFS with the CLI

NFS configuration overview with the CLI

You can use ONTAP 9 CLI commands to configure NFS client access to files contained in a new volume or qtree in a new or existing storage virtual machine (SVM).

Use these procedures if you want to configure access to a volume or qtree in the following way:

• You want to use any version of NFS currently supported by ONTAP: NFSv3, NFSv4, NFSv4.1, NFSv4.2, or NFSv4.1 with pNFS.

• You want to use the command-line interface (CLI), not System Manager or an automated scripting tool.

To use System Manager to configure NAS multiprotocol access, see Provision NAS storage for both Windows and Linux using both NFS and SMB.

• You want to use best practices, not explore every available option.

Details about command syntax are available from CLI help and ONTAP man pages.

• UNIX file permissions will be used to secure the new volume.

• You have cluster administrator privileges, not SVM administrator privileges.

If you want details about the range of ONTAP NFS protocol capabilities, consult the NFS reference overview.

Other ways to do this in ONTAP

<table>
<thead>
<tr>
<th>To perform these tasks with…</th>
<th>Refer to…</th>
</tr>
</thead>
<tbody>
<tr>
<td>The redesigned System Manager (available with ONTAP 9.7 and later)</td>
<td>Provision NAS storage for Linux servers using NFS</td>
</tr>
<tr>
<td>System Manager Classic (available with ONTAP 9.7 and earlier)</td>
<td>NFS configuration overview</td>
</tr>
</tbody>
</table>

NFS configuration workflow

Configuring NFS involves assessing physical storage and networking requirements, and then choosing a workflow that is specific to your goal—configuring NFS access to a new or existing SVM, or adding a volume or qtree to an existing SVM that is already fully configured for NFS access.

Preparation

Assess physical storage requirements

Before provisioning NFS storage for clients, you must ensure that there is sufficient space in an existing aggregate for the new volume. If there is not, you can add disks to an
existing aggregate or create a new aggregate of the desired type.

Steps
1. Display available space in existing aggregates:

   ```
   cluster::> storage aggregate show
   ```

 If there is an aggregate with sufficient space, record its name in the worksheet.

   ```
   Aggregate     Size        Available  Used%   State  #Vols  Nodes  RAID Status
   --------- -------- -------------- ------ ------- ------ ------ -----------
   aggr_0     239.0GB    11.13GB     95%   online       1  node1  raid_dp, normal
   aggr_1     239.0GB    11.13GB     95%   online       1  node1  raid_dp, normal
   aggr_2     239.0GB    11.13GB     95%   online       1  node2  raid_dp, normal
   aggr_3     239.0GB    11.13GB     95%   online       1  node2  raid_dp, normal
   aggr_4     239.0GB    238.9GB     95%   online       5  node3  raid_dp, normal
   aggr_5     239.0GB    239.0GB     95%   online       4  node4  raid_dp, normal
   6 entries were displayed.
   ```

2. If there are no aggregates with sufficient space, add disks to an existing aggregate by using the `storage aggregate add-disks` command, or create a new aggregate by using the `storage aggregate create` command.

Related information
ONTAP concepts

Assess networking requirements

Before providing NFS storage to clients, you must verify that networking is correctly configured to meet the NFS provisioning requirements.

What you’ll need
The following cluster networking objects must be configured:

- Physical and logical ports
- Broadcast domains
- Subnets (if required)
- IPspaces (as required, in addition to the default IPspace)
- Failover groups (as required, in addition to the default failover group for each broadcast domain)
Steps

1. Display the available physical and virtual ports:

 network port show

 ◦ When possible, you should use the port with the highest speed for the data network.
 ◦ All components in the data network must have the same MTU setting for best performance.

2. If you are planning to use a subnet name to allocate the IP address and network mask value for a LIF, verify that the subnet exists and has sufficient addresses available:

 network subnet show

 Subnets contain a pool of IP addresses that belong to the same layer 3 subnet. Subnets are created by using the network subnet create command.

3. Display available IPspaces:

 network ipspace show

 You can use the default IPspace or a custom IPspace.

4. If you want to use IPv6 addresses, verify that IPv6 is enabled on the cluster:

 network options ipv6 show

 If required, you can enable IPv6 by using the network options ipv6 modify command.

Decide where to provision new NFS storage capacity

Before you create a new NFS volume or qtree, you must decide whether to place it in a new or existing SVM, and how much configuration the SVM requires. This decision determines your workflow.

Choices

• If you want to provision a volume or qtree on a new SVM, or on an existing SVM that has NFS enabled but not configured, complete the steps in both "Configuring NFS access to an SVM" and "Adding NFS storage to an NFS-enabled SVM".

 Configure NFS access to an SVM

 Add NFS storage to an NFS-enabled SVM

You might choose to create a new SVM if one of the following is true:

• You are enabling NFS on a cluster for the first time.
• You have existing SVMs in a cluster in which you do not want to enable NFS support.
• You have one or more NFS-enabled SVMs in a cluster, and you want another NFS server in an isolated namespace (multi-tenancy scenario). You should also choose this option to provision storage on an existing SVM that has NFS enabled but not configured. This might be the case if you created the SVM
for SAN access or if no protocols were enabled when the SVM was created. After enabling NFS on the SVM, proceed to provision a volume or qtree.

- If you want to provision a volume or qtree on an existing SVM that is fully configured for NFS access, complete the steps in "Adding NFS storage to an NFS-enabled SVM".

Adding NFS storage to an NFS-enabled SVM

Worksheet for gathering NFS configuration information

The NFS configuration worksheet enables you to collect the required information to set up NFS access for clients.

You should complete one or both sections of the worksheet depending on the decision you made about where to provision storage:

- If you are configuring NFS access to an SVM, you should complete both sections.

 Configuring NFS access to an SVM

 Adding storage capacity to an NFS-enabled SVM

- If you are adding storage capacity to an NFS-enabled SVM, you should complete only the second section.

 Adding storage capacity to an NFS-enabled SVM

See the command man pages for details about the parameters.

Configure NFS access to an SVM

Parameters for creating an SVM

You supply these values with the vserver create command if you are creating a new SVM.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-vserver</td>
<td>A name you supply for the new SVM that is either a fully qualified domain name (FQDN) or follows another convention that enforces unique SVM names across a cluster.</td>
<td></td>
</tr>
<tr>
<td>-aggregate</td>
<td>The name of an aggregate in the cluster with sufficient space for new NFS storage capacity.</td>
<td></td>
</tr>
<tr>
<td>-rootvolume</td>
<td>A unique name you supply for the SVM root volume.</td>
<td></td>
</tr>
</tbody>
</table>
Use the UNIX security style for the SVM.

Use the default language setting in this workflow.

IPspaces are distinct IP address spaces in which (storage virtual machines (SVMs)) reside.

Parameters for creating an NFS server

You supply these values with the `vserver nfs create` command when you create a new NFS server and specify supported NFS versions.

If you are enabling NFSv4 or later, you should use LDAP for improved security.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-v3,-v4.0,-v4.1,-v4.1-pnfs</code></td>
<td>Enable NFS versions as needed.</td>
<td>v4.2 is also supported in ONTAP 9.8 and later when v4.1 is enabled.</td>
</tr>
<tr>
<td><code>-v4-id-domain</code></td>
<td>ID mapping domain name.</td>
<td></td>
</tr>
<tr>
<td><code>-v4-numeric-ids</code></td>
<td>Support for numeric owner IDs (enabled or disabled).</td>
<td></td>
</tr>
</tbody>
</table>

Parameters for creating a LIF

You supply these values with the `network interface create` command when you are creating LIFs.

If you are using Kerberos, you should enable Kerberos on multiple LIFs.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-lif</code></td>
<td>A name you supply for the new LIF.</td>
<td></td>
</tr>
<tr>
<td><code>-role</code></td>
<td>Use the data LIF role in this workflow.</td>
<td>data</td>
</tr>
<tr>
<td><code>-data-protocol</code></td>
<td>Use only the NFS protocol in this workflow.</td>
<td>nfs</td>
</tr>
</tbody>
</table>
-home-node | The node to which the LIF returns when the `network interface revert` command is run on the LIF.

-home-port | The port or interface group to which the LIF returns when the `network interface revert` command is run on the LIF.

-address | The IPv4 or IPv6 address on the cluster that will be used for data access by the new LIF.

-netmask | The network mask and gateway for the LIF.

-subnet | A pool of IP addresses. Used instead of `-address` and `-netmask` to assign addresses and netmasks automatically.

-firewall-policy | Use the default data firewall policy in this workflow.

Parameters for DNS host name resolution

You supply these values with the `vserver services name-service dns create` command when you are configuring DNS.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-domains</td>
<td>Up to five DNS domain names.</td>
<td></td>
</tr>
<tr>
<td>-name-servers</td>
<td>Up to three IP addresses for each DNS name server.</td>
<td></td>
</tr>
</tbody>
</table>

Name service information

Parameters for creating local users

You supply these values if you are creating local users by using the `vserver services name-service unix-user create` command. If you are configuring local users by loading a file containing UNIX users from a uniform resource identifier (URI), you do not need to specify these values manually.

<table>
<thead>
<tr>
<th>User name (-user)</th>
<th>User ID (-id)</th>
<th>Group ID (-primary-gid)</th>
<th>Full name (-full-name)</th>
</tr>
</thead>
</table>
Parameters for creating local groups

You supply these values if you are creating local groups by using the `vserver services name-service unix-group create` command. If you are configuring local groups by loading a file containing UNIX groups from a URI, you do not need to specify these values manually.

<table>
<thead>
<tr>
<th>Group name (-name)</th>
<th>Group ID (-id)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Engineering</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Parameters for NIS

You supply these values with the `vserver services name-service nis-domain create` command.

Beginning with ONTAP 9.2, the field `-nis-servers` replaces the field `-servers`. This new field can take either a hostname or an IP address for the NIS server.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-domain</td>
<td>The NIS domain that the SVM will use for name lookups.</td>
<td></td>
</tr>
<tr>
<td>-active</td>
<td>The active NIS domain server.</td>
<td><code>true</code> or <code>false</code></td>
</tr>
</tbody>
</table>
-servers
ONTAP 9.0, 9.1: One or more IP addresses of NIS servers used by the NIS domain configuration.

-nis-servers
ONTAP 9.2: A comma-separated list of IP addresses and hostnames for the NIS servers used by the domain configuration.

Parameters for LDAP

You supply these values with the `vserver services name-service ldap client create` command.

You will also need a self-signed root CA certificate .pem file.

Beginning with ONTAP 9.2, the field `-ldap-servers` replaces the field `-servers`. This new field can take either a hostname or an IP address for the LDAP server.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-vserver</td>
<td>The name of the SVM for which you want to create an LDAP client configuration.</td>
<td></td>
</tr>
<tr>
<td>-client-config</td>
<td>The name you assign for the new LDAP client configuration.</td>
<td></td>
</tr>
<tr>
<td>-servers</td>
<td>ONTAP 9.0, 9.1: One or more LDAP servers by IP address in a comma-separated list.</td>
<td></td>
</tr>
<tr>
<td>-ldap-servers</td>
<td>ONTAP 9.2: A comma-separated list of IP addresses and hostnames for the LDAP servers.</td>
<td></td>
</tr>
<tr>
<td>-query-timeout</td>
<td>Use the default 3 seconds for this workflow.</td>
<td>3</td>
</tr>
<tr>
<td>-min-bind-level</td>
<td>The minimum bind authentication level. The default is anonymous. Must be set to sasl if signing and sealing is configured.</td>
<td></td>
</tr>
<tr>
<td>-preferred-ad-servers</td>
<td>One or more preferred Active Directory servers by IP address in a comma-delimited list.</td>
<td></td>
</tr>
<tr>
<td>-ad-domain</td>
<td>The Active Directory domain.</td>
<td></td>
</tr>
</tbody>
</table>
Field | Description | Your value
--- | --- | ---
-`schema` | The schema template to use. You can use a default or custom schema. |
-`port` | Use the default LDAP server port 389 for this workflow. | 389
-`bind-dn` | The Bind user distinguished name. |
-`base-dn` | The base distinguished name. The default is "" (root). |
-`base-scope` | Use the default base search scope subnet for this workflow. | subnet
-`session-security` | Enables LDAP signing or signing and sealing. The default is none. |
-`use-start-tls` | Enables LDAP over TLS. The default is false. |

Parameters for Kerberos authentication

You supply these values with the `vserver nfs kerberos realm create` command. Some of the values will differ depending on whether you use Microsoft Active Directory as a Key Distribution Center (KDC) server, or MIT or other UNIX KDC server.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-<code>vserver</code></td>
<td>The SVM that will communicate with the KDC.</td>
<td></td>
</tr>
<tr>
<td>-<code>realm</code></td>
<td>The Kerberos realm.</td>
<td></td>
</tr>
<tr>
<td>-<code>clock-skew</code></td>
<td>Permitted clock skew between clients and servers.</td>
<td></td>
</tr>
<tr>
<td>-<code>kdc-ip</code></td>
<td>KDC IP address.</td>
<td></td>
</tr>
<tr>
<td>-<code>kdc-port</code></td>
<td>KDC port number.</td>
<td></td>
</tr>
<tr>
<td>-<code>adserver-name</code></td>
<td>Microsoft KDC only: AD server name.</td>
<td></td>
</tr>
</tbody>
</table>

9
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-adserver-ip</td>
<td>Microsoft KDC only: AD server IP address.</td>
<td></td>
</tr>
<tr>
<td>-adminserver-ip</td>
<td>UNIX KDC only: Admin server IP address.</td>
<td></td>
</tr>
<tr>
<td>-adminserver-port</td>
<td>UNIX KDC only: Admin server port number.</td>
<td></td>
</tr>
<tr>
<td>-passwordserver-ip</td>
<td>UNIX KDC only: Password server IP address.</td>
<td></td>
</tr>
<tr>
<td>-passwordserver-port</td>
<td>UNIX KDC only: Password server port.</td>
<td></td>
</tr>
<tr>
<td>-kdc-vendor</td>
<td>KDC vendor.</td>
<td>{Microsoft</td>
</tr>
<tr>
<td>-comment</td>
<td>Any desired comments.</td>
<td></td>
</tr>
</tbody>
</table>

You supply these values with the `vserver nfs kerberos interface enable` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-vserver</td>
<td>The name of the SVM for which you want to create a Kerberos configuration.</td>
<td></td>
</tr>
<tr>
<td>-lif</td>
<td>The data LIF on which you will enable Kerberos. You can enable Kerberos on multiple LIFs.</td>
<td></td>
</tr>
<tr>
<td>-spn</td>
<td>The Service Principle Name (SPN)</td>
<td></td>
</tr>
<tr>
<td>-permitted-enc-types</td>
<td>The permitted encryption types for Kerberos over NFS; <code>aes-256</code> is recommended, depending on client capabilities.</td>
<td></td>
</tr>
<tr>
<td>-admin-username</td>
<td>The KDC administrator credentials to retrieve the SPN secret key directly from the KDC. A password is required</td>
<td></td>
</tr>
<tr>
<td>-keytab-uri</td>
<td>The keytab file from the KDC containing the SPN key if you do not have KDC administrator credentials.</td>
<td></td>
</tr>
</tbody>
</table>
The organizational unit (OU) under which the Microsoft Active Directory server account will be created when you enable Kerberos using a realm for Microsoft KDC.

Adding storage capacity to an NFS-enabled SVM

Parameters for creating export policies and rules

You supply these values with the `vserver export-policy create` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-vserver</code></td>
<td>The name of the SVM that will host the new volume.</td>
<td></td>
</tr>
<tr>
<td><code>-policyname</code></td>
<td>A name you supply for a new export policy.</td>
<td></td>
</tr>
</tbody>
</table>

You supply these values for each rule with the `vserver export-policy rule create` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-clientmatch</code></td>
<td>Client match specification.</td>
<td></td>
</tr>
<tr>
<td><code>-ruleindex</code></td>
<td>Position of export rule in the list of rules.</td>
<td></td>
</tr>
<tr>
<td><code>-protocol</code></td>
<td>Use NFS in this workflow.</td>
<td>nfs</td>
</tr>
<tr>
<td><code>-rorule</code></td>
<td>Authentication method for read-only access.</td>
<td></td>
</tr>
<tr>
<td><code>-rwrule</code></td>
<td>Authentication method for read-write access.</td>
<td></td>
</tr>
<tr>
<td><code>-superuser</code></td>
<td>Authentication method for superuser access.</td>
<td></td>
</tr>
<tr>
<td><code>-anon</code></td>
<td>User ID to which anonymous users are mapped.</td>
<td></td>
</tr>
</tbody>
</table>

You must create one or more rules for each export policy.
Parameters for creating a volume

You supply these values with the `volume create` command if you are creating a volume instead of a qtree.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-vserver</code></td>
<td>The name of a new or existing SVM that will host the new volume.</td>
<td></td>
</tr>
<tr>
<td><code>-volume</code></td>
<td>A unique descriptive name you supply for the new volume.</td>
<td></td>
</tr>
<tr>
<td><code>-aggregate</code></td>
<td>The name of an aggregate in the cluster with sufficient space for the new NFS volume.</td>
<td></td>
</tr>
<tr>
<td><code>-size</code></td>
<td>An integer you supply for the size of the new volume.</td>
<td></td>
</tr>
<tr>
<td><code>-user</code></td>
<td>Name or ID of the user that is set as the owner of the volume’s root.</td>
<td></td>
</tr>
<tr>
<td><code>-group</code></td>
<td>Name or ID of the group that is set as the owner of the volume’s root.</td>
<td></td>
</tr>
<tr>
<td><code>--security-style</code></td>
<td>Use the UNIX security style for this workflow.</td>
<td><code>unix</code></td>
</tr>
<tr>
<td><code>-junction-path</code></td>
<td>Location under root (/) where the new volume is to be mounted.</td>
<td></td>
</tr>
</tbody>
</table>
If you are planning to use an existing export policy, you can enter its name when you create the volume.

Parameters for creating a qtree

You supply these values with the `volume qtree create` command if you are creating a qtree instead of a volume.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-vserver</code></td>
<td>The name of the SVM on which the volume containing the qtree resides.</td>
<td></td>
</tr>
<tr>
<td><code>-volume</code></td>
<td>The name of the volume that will contain the new qtree.</td>
<td></td>
</tr>
<tr>
<td><code>-qtree</code></td>
<td>A unique descriptive name you supply for the new qtree, 64 characters or less.</td>
<td></td>
</tr>
<tr>
<td><code>-qtree-path</code></td>
<td>The qtree path argument in the format <code>/vol/volume_name/qtree_name</code> > can be specified instead of specifying volume and qtree as separate arguments.</td>
<td></td>
</tr>
<tr>
<td><code>-unix-permissions</code></td>
<td>Optional: The UNIX permissions for the qtree.</td>
<td></td>
</tr>
<tr>
<td><code>-export-policy</code></td>
<td>If you are planning to use an existing export policy, you can enter its name when you create the qtree.</td>
<td></td>
</tr>
</tbody>
</table>

Configure NFS access to an SVM

Create an SVM

If you do not already have at least one SVM in a cluster to provide data access to NFS clients, you must create one.

Steps

1. Create an SVM:
vserver create -vserver vserver_name -rootvolume root_volume_name -aggregate aggregate_name -rootvolume-security-style unix -language C.UTF-8 -ipspace ipspace_name

◦ Use the UNIX setting for the -rootvolume-security-style option.
◦ Use the default C.UTF-8 -language option.
◦ The ipspace setting is optional.

2. Verify the configuration and status of the newly created SVM:

vserver show -vserver vserver_name

The Allowed Protocols field must include NFS. You can edit this list later.

The Vserver Operational State field must display the running state. If it displays the initializing state, it means that some intermediate operation such as root volume creation failed, and you must delete the SVM and re-create it.

Examples
The following command creates an SVM for data access in the IPspace ipspaceA:

```
class1::> vserver create -vserver vs1.example.com -rootvolume root_vs1
-aggregate aggrl
-rootvolume-security-style unix -language C.UTF-8 -ipspace ipspaceA

[Job 2059] Job succeeded:
Vserver creation completed
```

The following command shows that an SVM was created with a root volume of 1 GB, and it was started automatically and is in running state. The root volume has a default export policy that does not include any rules, so the root volume is not exported upon creation.
cluster1::> vserver show -vserver vs1.example.com
 Vserver: vs1.example.com
 Vserver Type: data
 Vserver Subtype: default
 Vserver UUID: b8375669-19b0-11e5-b9d1-00a0983d9736
 Root Volume: root_vs1
 Aggregate: aggr1
 NIS Domain: -
 Root Volume Security Style: unix
 LDAP Client: -
 Default Volume Language Code: C.UTF-8
 Snapshot Policy: default
 Comment:
 Quota Policy: default
 List of Aggregates Assigned: -
 Limit on Maximum Number of Volumes allowed: unlimited
 Vserver Admin State: running
 Vserver Operational State: running
 Vserver Operational State Stopped Reason: -
 Allowed Protocols: nfs, cifs, fcp, iscsi, ndmp
 Disallowed Protocols: -
 QoS Policy Group: -
 Config Lock: false
 IPspace Name: ipspaceA

Verify that the NFS protocol is enabled on the SVM

Before you can configure and use NFS on SVMs, you must verify that the protocol is enabled.

About this task
This is typically done during SVM setup, but if you did not enable the protocol during setup, you can enable it later by using the vserver add-protocols command.

You cannot add or remove a protocol from a LIF once it is created.

You can also disable protocols on SVMs using the vserver remove-protocols command.

Steps
1. Check which protocols are currently enabled and disabled for the SVM:

 vserver show -vserver vserver_name -protocols

 You can also use the vserver show-protocols command to view the currently enabled protocols on all SVMs in the cluster.
2. If necessary, enable or disable a protocol:
 - To enable the NFS protocol:
 `vserver add-protocols -vserver vserver_name -protocols nfs`
 - To disable a protocol:
 `vserver remove-protocols -vserver vserver_name -protocols protocol_name [, protocol_name, ...]`

3. Confirm that the enabled and disabled protocols were updated correctly:
 `vserver show -vserver vserver_name -protocols`

Example
The following command displays which protocols are currently enabled and disabled (allowed and disallowed) on the SVM named vs1:

```
vs1::> vserver show -vserver vs1.example.com -protocols
Vserver           Allowed Protocols         Disallowed Protocols
-----------       ----------------------    -----------------------
vs1.example.com   nfs                       cifs, fcp, iscsi, ndmp
```

The following command allows access over NFS by adding `nfs` to the list of enabled protocols on the SVM named vs1:
```
vs1::> vserver add-protocols -vserver vs1.example.com -protocols nfs
```

Open the export policy of the SVM root volume
The default export policy of the SVM root volume must include a rule to allow all clients open access through NFS. Without such a rule, all NFS clients are denied access to the SVM and its volumes.

About this task
When a new SVM is created, a default export policy (called default) is created automatically for the root volume of the SVM. You must create one or more rules for the default export policy before clients can access data on the SVM.

You should verify that access is open to all NFS clients in the default export policy, and later restrict access to individual volumes by creating custom export policies for individual volumes or qtrees.

Steps
1. If you are using an existing SVM, check the default root volume export policy:
 `vserver export-policy rule show`

The command output should be similar to the following:
If such a rule exists that allows open access, this task is complete. If not, proceed to the next step.

2. Create an export rule for the SVM root volume:

```
vserver export-policy rule create -vserver vserver_name -policyname default -ruleindex 1 -protocol nfs -clientmatch 0.0.0.0/0 -rorule any -rwrule any -superuser any
```

If the SVM will only contain volumes secured by Kerberos, you can set the export rule options -rorule, -rwrule, and -superuser for the root volume to krb5 or krb5i. For example:

```
-rorule krb5i -rwrule krb5i -superuser krb5i
```

3. Verify rule creation by using the vserver export-policy rule show command.

Result
Any NFS client can now access any volume or qtree created on the SVM.

Create an NFS server

After verifying that NFS is licensed on your cluster, you can use the vserver nfs create command to create an NFS server on the SVM and specify the NFS versions it supports.

What you’ll need
The SVM must have been configured to allow the NFS protocol.

About this task
The SVM can be configured to support one or more versions of NFS. If you are supporting NFSv4 or later:

- The NFSv4 user ID mapping domain name must be the same on the NFSv4 server and target clients.

 It does not necessarily need to be the same as an LDAP or NIS domain name as long as the NFSv4 server
and clients are using the same name.

- Target clients must support the NFSv4 numeric ID setting.
- For security reasons, you should use LDAP for name services in NFSv4 deployments.

Steps

1. Verify that NFS is licensed on your cluster:

   ```
   system license show -package nfs
   ```

 If it is not, contact your sales representative.

2. Create an NFS server:

   ```
   vserver nfs create -vserver vserver_name -v3 {enabled|disabled} -v4.0 {enabled|disabled} -v4-id-domain nfsv4_id_domain -v4-numeric-ids {enabled|disabled} -v4.1 {enabled|disabled} -v4.1-pnfs {enabled|disabled}
   ```

 You can choose to enable any combination of NFS versions. If you want to support pNFS, you must enable both `-v4.1` and `-v4.1-pnfs` options.

 If you enable v4 or later, you should also be sure that the following options are set correctly:

 - `-v4-id-domain`

 This optional parameter specifies the domain portion of the string form of user and group names as defined by the NFSv4 protocol. By default, ONTAP uses the NIS domain if one is set; if not, the DNS domain is used. You must supply a value that matches the domain name used by target clients.

 - `-v4-numeric-ids`

 This optional parameter specifies whether the support for numeric string identifiers in NFSv4 owner attributes is enabled. The default setting is enabled but you should verify that the target clients support it.

 You can enable additional NFS features later by using the `vserver nfs modify` command.

3. Verify that NFS is running:

   ```
   vserver nfs status -vserver vserver_name
   ```

4. Verify that NFS is configured as desired:

   ```
   vserver nfs show -vserver vserver_name
   ```

Examples

The following command creates an NFS server on the SVM named vs1 with NFSv3 and NFSv4.0 enabled:

```
vs1::> vserver nfs create -vserver vs1 -v3 enabled -v4.0 enabled -v4-id-domain my_domain.com
```
The following commands verify the status and configuration values of the new NFS server named vs1:

```
vs1::> vserver nfs status -vserver vs1
The NFS server is running on Vserver "vs1".

vs1::> vserver nfs show -vserver vs1

Vserver: vs1
  General NFS Access: true
    NFS v3: enabled
    NFS v4.0: enabled
    UDP Protocol: enabled
    TCP Protocol: enabled
  Default Windows User: -
  NFSv4.0 ACL Support: disabled
  NFSv4.0 Read Delegation Support: disabled
  NFSv4.0 Write Delegation Support: disabled
  NFSv4 ID Mapping Domain: my_domain.com
```

Create a LIF

A LIF is an IP address associated with a physical or logical port. If there is a component failure, a LIF can fail over to or be migrated to a different physical port, thereby continuing to communicate with the network.

What you’ll need

- The underlying physical or logical network port must have been configured to the administrative up status.
- If you are planning to use a subnet name to allocate the IP address and network mask value for a LIF, the subnet must already exist.

 Subnets contain a pool of IP addresses that belong to the same layer 3 subnet. They are created using the `network subnet create` command.

- The mechanism for specifying the type of traffic handled by a LIF has changed. For ONTAP 9.5 and earlier, LIFs used roles to specify the type of traffic it would handle. Beginning with ONTAP 9.6, LIFs use service policies to specify the type of traffic it would handle.

About this task

- You can create both IPv4 and IPv6 LIFs on the same network port.
- If you are using Kerberos authentication, enable Kerberos on multiple LIFs.
- If you have a large number of LIFs in your cluster, you can verify the LIF capacity supported on the cluster by using the `network interface capacity show` command and the LIF capacity supported on each node by using the `network interface capacity details show` command (at the advanced privilege level).
- Beginning with ONTAP 9.7, if other LIFs already exist for the SVM in the same subnet, you do not need to specify the home port of the LIF. ONTAP automatically chooses a random port on the specified home node.
in the same broadcast domain as the other LIFs already configured in the same subnet.

Beginning with ONTAP 9.4, FC-NVMe is supported. If you are creating an FC-NVMe LIF you should be aware of the following:

- The NVMe protocol must be supported by the FC adapter on which the LIF is created.
- FC-NVMe can be the only data protocol on data LIFs.
- One LIF handling management traffic must be configured for every storage virtual machine (SVM) supporting SAN.
- NVMe LIFs and namespaces must be hosted on the same node.
- Only one NVMe LIF handling data traffic can be configured per SVM

Steps
1. Create a LIF:

   ```bash
   network interface create -vserver vserver_name -lif lif_name -role data -data-protocol nfs -home-node node_name -home-port port_name { -address IP_address -netmask IP_address | -subnet-name subnet_name } -firewall-policy data -auto -revert {true|false}
   ```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAP 9.5 and earlier</td>
<td>network interface create -vserver vserver_name -lif lif_name -role data -data-protocol nfs -home-node node_name -home-port port_name { -address IP_address -netmask IP_address</td>
</tr>
<tr>
<td>ONTAP 9.6 and later</td>
<td>network interface create -vserver vserver_name -lif lif_name -role data -data-protocol nfs -home-node node_name -home-port port_name { -address IP_address -netmask IP_address</td>
</tr>
</tbody>
</table>

- The `-role` parameter is not required when creating a LIF using a service policy (beginning with ONTAP 9.6).
- The `-data-protocol` parameter must be specified when the LIF is created, and cannot be modified later without destroying and re-creating the data LIF.

 The `-data-protocol` parameter is not required when creating a LIF using a service policy (beginning with ONTAP 9.6).

- `-home-node` is the node to which the LIF returns when the `network interface revert` command is run on the LIF.

 You can also specify whether the LIF should automatically revert to the home-node and home-port with
the -auto-revert option.

- home-port is the physical or logical port to which the LIF returns when the network interface revert command is run on the LIF.

- You can specify an IP address with the -address and -netmask options, or you enable allocation from a subnet with the -subnet_name option.

- When using a subnet to supply the IP address and network mask, if the subnet was defined with a gateway, a default route to that gateway is added automatically to the SVM when a LIF is created using that subnet.

- If you assign IP addresses manually (without using a subnet), you might need to configure a default route to a gateway if there are clients or domain controllers on a different IP subnet. The network route create man page contains information about creating a static route within an SVM.

- For the -firewall-policy option, use the same default data as the LIF role.

You can create and add a custom firewall policy later if desired.

- -auto-revert allows you to specify whether a data LIF is automatically reverted to its home node under circumstances such as startup, changes to the status of the management database, or when the network connection is made. The default setting is false, but you can set it to false depending on network management policies in your environment.

2. Verify that the LIF was created successfully by using the network interface show command.

3. Verify that the configured IP address is reachable:

<table>
<thead>
<tr>
<th>To verify an…</th>
<th>Use…</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 address</td>
<td>network ping</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>network ping6</td>
</tr>
</tbody>
</table>

4. If you are using Kerberos, repeat Steps 1 through 3 to create additional LIFs.

Kerberos must be enabled separately on each of these LIFs.

Examples
The following command creates a LIF and specifies the IP address and network mask values using the -address and -netmask parameters:

```
network interface create -vserver vs1.example.com -lif datalif1 -role data -data-protocol nfs -home-node node-4 -home-port e1c -address 192.0.2.145 -netmask 255.255.255.0 -firewall-policy data -auto-revert true
```

The following command creates a LIF and assigns IP address and network mask values from the specified subnet (named client1_sub):
The following command shows all the LIFs in cluster-1. Data LIFs datalif1 and datalif3 are configured with IPv4 addresses, and datalif4 is configured with an IPv6 address:

```
network interface show
```

<table>
<thead>
<tr>
<th>Logical Interface</th>
<th>Status</th>
<th>Network Address/Mask</th>
<th>Current Node</th>
<th>Current Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster_mgmt</td>
<td>up/up</td>
<td>192.0.2.3/24</td>
<td>node-1</td>
<td>e1a</td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>node-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs1.example.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>datalif1</td>
<td>up/down</td>
<td>192.0.2.145/30</td>
<td>node-1</td>
<td>e1c</td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs3.example.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>datalif3</td>
<td>up/up</td>
<td>192.0.2.146/30</td>
<td>node-2</td>
<td>e0c</td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 entries were displayed.

The following command shows how to create a NAS data LIF that is assigned with the `default-data-files` service policy:
Enable DNS for host-name resolution

You can use the `vserver services name-service dns` command to enable DNS on an SVM, and configure it to use DNS for host-name resolution. Host names are resolved using external DNS servers.

What you’ll need
A site-wide DNS server must be available for host name lookups.

You should configure more than one DNS server to avoid a single-point-of-failure. The `vserver services name-service dns create` command issues a warning if you enter only one DNS server name.

About this task
The *Network Management Guide* contains information about configuring dynamic DNS on the SVM.

Steps
1. Enable DNS on the SVM:

   ```bash
   vserver services name-service dns create -vserver vs1_name -domains domain_name -name-servers ip_addresses -state enabled
   ```

 The following command enables external DNS server servers on the SVM vs1:

   ```bash
   vserver services name-service dns create -vserver vs1.example.com -domains example.com -name-servers 192.0.2.201,192.0.2.202 -state enabled
   ```

 Beginning with ONTAP 9.2, the `vserver services name-service dns create` command performs an automatic configuration validation and reports an error message if ONTAP cannot contact the name server.

2. Display the DNS domain configurations by using the `vserver services name-service dns show` command.

 The following command displays the DNS configurations for all SVMs in the cluster:
vserver services name-service dns show

<table>
<thead>
<tr>
<th>Vserver</th>
<th>State</th>
<th>Domains</th>
<th>Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1</td>
<td>enabled</td>
<td>example.com</td>
<td>192.0.2.201,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>192.0.2.202</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>enabled</td>
<td>example.com</td>
<td>192.0.2.201,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>192.0.2.202</td>
</tr>
</tbody>
</table>

The following command displays detailed DNS configuration information for SVM vs1:

vserver services name-service dns show -vserver vs1.example.com

Vserver: vs1.example.com
Domains: example.com
Name Servers: 192.0.2.201, 192.0.2.202
Enable/Disable DNS: enabled
Timeout (secs): 2
Maximum Attempts: 1

3. Validate the status of the name servers by using the vserver services name-service dns check command.

The vserver services name-service dns check command is available beginning with ONTAP 9.2.

vserver services name-service dns check -vserver vs1.example.com

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Name Server</th>
<th>Status</th>
<th>Status Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1.example.com</td>
<td>10.0.0.50</td>
<td>up</td>
<td>Response time (msec): 2</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>10.0.0.51</td>
<td>up</td>
<td>Response time (msec): 2</td>
</tr>
</tbody>
</table>

Configure name services

Configure name services overview

Depending on the configuration of your storage system, ONTAP needs to be able to look up host, user, group, or netgroup information to provide proper access to clients. You must configure name services to enable ONTAP to access local or external name services to obtain this information.

You should use a name service such as NIS or LDAP to facilitate name lookups during client authentication. It is best to use LDAP whenever possible for greater security, especially when deploying NFSv4 or later. You
should also configure local users and groups in case external name servers are not available.

Name service information must be kept synchronized on all sources.

Configure the name service switch table

You must configure the name service switch table correctly to enable ONTAP to consult local or external name services to retrieve host, user, group, netgroup, or name mapping information.

What you'll need

You must have decided which name services you want to use for host, user, group, netgroup, or name mapping as applicable to your environment.

If you plan to use netgroups, all IPv6 addresses specified in netgroups must be shortened and compressed as specified in RFC 5952.

About this task

Do not include information sources that are not being used. For example, if NIS is not being used in your environment, do not specify the `-sources nis` option.

Steps

1. Add the necessary entries to the name service switch table:


   ```
   vserver services name-service ns-switch create -vserver vserver_name -database database_name -sources source_names
   ```

2. Verify that the name service switch table contains the expected entries in the desired order:

   ```
   vserver services name-service ns-switch show -vserver vserver_name
   ```

 If you want to make any corrections, you must use the `vserver services name-service ns-switch modify` or `vserver services name-service ns-switch delete` commands.

Example

The following example creates a new entry in the name service switch table for the SVM `vs1` to use the local netgroup file and an external NIS server to look up netgroup information in that order:

```bash
cluster::> vserver services name-service ns-switch create -vserver vs1 -database netgroup -sources files,nis
```

After you finish

- You must configure the name services you have specified for the SVM to provide data access.
- If you delete any name service for the SVM, you must remove it from the name service switch table as well.

 The client access to the storage system might not work as expected, if you fail to delete the name service from the name service switch table.
Configure local UNIX users and groups

Configure local UNIX users and groups overview

You can use local UNIX users and groups on the SVM for authentication and name mappings. You can create UNIX users and groups manually, or you can load a file containing UNIX users or groups from a uniform resource identifier (URI).

There is a default maximum limit of 32,768 local UNIX user groups and group members combined in the cluster. The cluster administrator can modify this limit.

Create a local UNIX user

You can use the `vserver services name-service unix-user create` command to create local UNIX users. A local UNIX user is a UNIX user you create on the SVM as a UNIX name services option to be used in the processing of name mappings.

Step

1. Create a local UNIX user:

   ```
   vserver services name-service unix-user create -vserver vserver_name -user user_name -id integer -primary-gid integer -full-name full_name
   ```

 - `user user_name` specifies the user name. The length of the user name must be 64 characters or fewer.
 - `-id integer` specifies the user ID that you assign.
 - `-primary-gid integer` specifies the primary group ID. This adds the user to the primary group. After creating the user, you can manually add the user to any desired additional group.

Example

The following command creates a local UNIX user named johnm (full name "John Miller") on the SVM named vs1. The user has the ID 123 and the primary group ID 100.

```
node::> vserver services name-service unix-user create -vserver vs1 -user johnm -id 123 -primary-gid 100 -full-name "John Miller"
```

Load local UNIX users from a URI

As an alternative to manually creating individual local UNIX users in SVMs, you can simplify the task by loading a list of local UNIX users into SVMs from a uniform resource identifier (URI) (`vserver services name-service unix-user load-from-uri`).

Steps

1. Create a file containing the list of local UNIX users you want to load.

 The file must contain user information in the UNIX `/etc/passwd` format:
user_name: password: user_ID: group_ID: full_name

The command discards the value of the password field and the values of the fields after the full_name field (home_directory and shell).

The maximum supported file size is 2.5 MB.

2. Verify that the list does not contain any duplicate information.

 If the list contains duplicate entries, loading the list fails with an error message.

3. Copy the file to a server.

 The server must be reachable by the storage system over HTTP, HTTPS, FTP, or FTPS.

4. Determine what the URI for the file is.

 The URI is the address you provide to the storage system to indicate where the file is located.

5. Load the file containing the list of local UNIX users into SVMs from the URI:

 vserver services name-service unix-user load-from-uri -vserver vserver_name -uri {ftp|http|ftps|https}://uri -overwrite {true|false}

 -overwrite {true|false} specifies whether to overwrite entries. The default is false.

Example

The following command loads a list of local UNIX users from the URI ftp://ftp.example.com/passwd into the SVM named vs1. Existing users on the SVM are not overwritten by information from the URI.

 node::> vserver services name-service unix-user load-from-uri -vserver vs1 -uri ftp://ftp.example.com/passwd -overwrite false

Create a local UNIX group

You can use the vserver services name-service unix-group create command to create UNIX groups that are local to the SVM. Local UNIX groups are used with local UNIX users.

Step

1. Create a local UNIX group:

 vserver services name-service unix-group create -vserver vserver_name -name group_name -id integer

 -name group_name specifies the group name. The length of the group name must be 64 characters or fewer.

 -id integer specifies the group ID that you assign.
Example
The following command creates a local group named eng on the SVM named vs1. The group has the ID 101.

```
vsl::> vserver services name-service unix-group create -vserver vsl -name eng -id 101
```

Add a user to a local UNIX group

You can use the `vserver services name-service unix-group adduser` command to add a user to a supplemental UNIX group that is local to the SVM.

Step
1. Add a user to a local UNIX group:

```
vserver services name-service unix-group adduser -vserver vserver_name -name group_name -username user_name
```

- `-name group_name` specifies the name of the UNIX group to add the user to in addition to the user’s primary group.

Example
The following command adds a user named max to a local UNIX group named eng on the SVM named vs1:

```
vsl::> vserver services name-service unix-group adduser -vserver vsl -name eng -username max
```

Load local UNIX groups from a URI

As an alternative to manually creating individual local UNIX groups, you can load a list of local UNIX groups into SVMs from a uniform resource identifier (URI) by using the `vserver services name-service unix-group load-from-uri` command.

Steps
1. Create a file containing the list of local UNIX groups you want to load.

 The file must contain group information in the UNIX `/etc/group` format:

 `group_name: password: group_ID: comma_separated_list_of_users`

 The command discards the value of the `password` field.

 The maximum supported file size is 1 MB.

 The maximum length of each line in the group file is 32,768 characters.

2. Verify that the list does not contain any duplicate information.
The list must not contain duplicate entries, or else loading the list fails. If there are entries already present in the SVM, you must either set the -overwrite parameter to true to overwrite all existing entries with the new file, or ensure that the new file does not contain any entries that duplicate existing entries.

3. Copy the file to a server.

The server must be reachable by the storage system over HTTP, HTTPS, FTP, or FTPS.

4. Determine what the URI for the file is.

The URI is the address you provide to the storage system to indicate where the file is located.

5. Load the file containing the list of local UNIX groups into the SVM from the URI:

```
vserver services name-service unix-group load-from-uri -vserver vserver_name -uri {ftp|http|ftps|https}://uri -overwrite {true|false}
```

-overwrite {true|false} specifies whether to overwrite entries. The default is false. If you specify this parameter as true, ONTAP replaces the entire existing local UNIX group database of the specified SVM with the entries from the file you are loading.

Example

The following command loads a list of local UNIX groups from the URI ftp://ftp.example.com/group into the SVM named vs1. Existing groups on the SVM are not overwritten by information from the URI.

```
vsl::> vserver services name-service unix-group load-from-uri -vserver vs1 -uri ftp://ftp.example.com/group -overwrite false
```

Work with netgroups

Working with netgroups overview

You can use netgroups for user authentication and to match clients in export policy rules. You can provide access to netgroups from external name servers (LDAP or NIS), or you can load netgroups from a uniform resource identifier (URI) into SVMs using the `vserver services name-service netgroup load` command.

What you’ll need

Before working with netgroups, you must ensure the following conditions are met:

- All hosts in netgroups, regardless of source (NIS, LDAP, or local files), must have both forward (A) and reverse (PTR) DNS records to provide consistent forward and reverse DNS lookups.

 In addition, if an IP address of a client has multiple PTR records, all of those host names must be members of the netgroup and have corresponding A records.

- The names of all hosts in netgroups, regardless of their source (NIS, LDAP, or local files), must be correctly spelled and use the correct case. Case inconsistencies in host names used in netgroups can lead to unexpected behavior, such as failed export checks.

- All IPv6 addresses specified in netgroups must be shortened and compressed as specified in RFC 5952.
For example, 2011:hu9:0:0:0:3:1 must be shortened to 2011:hu9::3:1.

About this task
When you work with netgroups, you can perform the following operations:

• You can use the `vserver export-policy netgroup check-membership` command to help determine whether a client IP is a member of a certain netgroup.

• You can use the `vserver services name-service getxxbyyy netgrp` command to check whether a client is part of a netgroup.

The underlying service for doing the lookup is selected based on the configured name service switch order.

Load netgroups into SVMs

One of the methods you can use to match clients in export policy rules is by using hosts listed in netgroups. You can load netgroups from a uniform resource identifier (URI) into SVMs as an alternative to using netgroups stored in external name servers (`vserver services name-service netgroup load`).

What you’ll need

Netgroup files must meet the following requirements before being loaded into an SVM:

• The file must use the same proper netgroup text file format that is used to populate NIS.

 ONTAP checks the netgroup text file format before loading it. If the file contains errors, it will not be loaded and a message is displayed indicating the corrections you have to perform in the file. After correcting the errors, you can reload the netgroup file into the specified SVM.

• Any alphabetic characters in host names in the netgroup file should be lowercase.

• The maximum supported file size is 5 MB.

• The maximum supported level for nesting netgroups is 1000.

• Only primary DNS host names can be used when defining host names in the netgroup file.

 To avoid export access issues, host names should not be defined using DNS CNAME or round robin records.

• The user and domain portions of triples in the netgroup file should be kept empty because ONTAP does not support them.

 Only the host/IP part is supported.

About this task

ONTAP supports netgroup-by-host searches for the local netgroup file. After you load the netgroup file, ONTAP automatically creates a netgroup.byhost map to enable netgroup-by-host searches. This can significantly speed up local netgroup searches when processing export policy rules to evaluate client access.

Step

1. Load netgroups into SVMs from a URI:

 `vserver services name-service netgroup load -vserver vserver_name -source`
Loading the netgroup file and building the netgroup.byhost map can take several minutes.

If you want to update the netgroups, you can edit the file and load the updated netgroup file into the SVM.

Example
The following command loads netgroup definitions into the SVM named vs1 from the HTTP URL http://intranet/downloads/corp-netgroup:

```
vs1::> vserver services name-service netgroup load -vserver vs1
   -source http://intranet/downloads/corp-netgroup
```

Verify the status of netgroup definitions

After loading netgroups into the SVM, you can use the `vserver services name-service netgroup status` command to verify the status of netgroup definitions. This enables you to determine whether netgroup definitions are consistent on all of the nodes that back the SVM.

Steps

1. Set the privilege level to advanced:
   ```
   set -privilege advanced
   ```

2. Verify the status of netgroup definitions:
   ```
   vserver services name-service netgroup status
   ```
 You can display additional information in a more detailed view.

3. Return to the admin privilege level:
   ```
   set -privilege admin
   ```

Example

After the privilege level is set, the following command displays netgroup status for all SVMs:

```
Create an NIS domain configuration

If a Network Information Service (NIS) is used in your environment for name services, you must create an NIS domain configuration for the SVM by using the `vserver services name-service nis-domain create` command.

What you’ll need

All configured NIS servers must be available and reachable before you configure the NIS domain on the SVM.

If you plan to use NIS for directory searches, the maps in your NIS servers cannot have more than 1,024 characters for each entry. Do not specify the NIS server that does not comply with this limit. Otherwise, client access dependent on NIS entries might fail.

About this task

You can create multiple NIS domains. However, you can only use one that is set to **active**.

If your NIS database contains a `netgroup.byhost` map, ONTAP can use it for quicker searches. The `netgroup.byhost` and `netgroup` maps in the directory must be kept in sync at all times to avoid client access issues. Beginning with ONTAP 9.7, NIS `netgroup.byhost` entries can be cached using the `vserver services name-service nis-domain netgroup-database` commands.

Using NIS for host name resolution is not supported.

Steps

1. Create an NIS domain configuration:
vserver services name-service nis-domain create -vserver vs1 -domain domain_name -active true -servers IP_addresses

You can specify up to 10 NIS servers.

Beginning with ONTAP 9.2, the field -nis-servers replaces the field -servers. This new field can take either a hostname or an IP address for the NIS server.

2. Verify that the domain is created:

vserver services name-service nis-domain show

Example
The following command creates and makes an active NIS domain configuration for an NIS domain called nisdomain on the SVM named vs1 with an NIS server at IP address 192.0.2.180:

```
vs1::> vserver services name-service nis-domain create -vserver vs1 -domain nisdomain -active true -nis-servers 192.0.2.180
```

Use LDAP

Overview of using LDAP

If LDAP is used in your environment for name services, you need to work with your LDAP administrator to determine requirements and appropriate storage system configurations, then enable the SVM as an LDAP client.

Beginning with ONTAP 9.10.1, LDAP channel binding is supported by default for both Active Directory and name services LDAP connections. ONTAP will try channel binding with LDAP connections only if Start-TLS or LDAPS is enabled along with session security set to either sign or seal. To disable or reenable LDAP channel binding with name servers, use the -try-channel-binding parameter with the ldap client modify command.

For more information, see 2020 LDAP channel binding and LDAP signing requirements for Windows.

• Before configuring LDAP for ONTAP, you should verify that your site deployment meets best practices for LDAP server and client configuration. In particular, the following conditions must be met:

  ◦ The domain name of the LDAP server must match the entry on the LDAP client.
  ◦ The LDAP user password hash types supported by the LDAP server must include those supported by ONTAP:
    ▪ CRYPT (all types) and SHA-1 (SHA, SSHA).
    ▪ Beginning with ONTAP 9.8, SHA-2 hashes (SHA-256, SSH-384, SHA-512, SSHA-256, SSHA-256, SSHA-384, and SSHA-512) are also supported.
  ◦ If the LDAP server requires session security measures, you must configure them in the LDAP client.

The following session security options are available:
• LDAP signing (provides data integrity checking) and LDAP signing and sealing (provides data integrity checking and encryption)
• START TLS
• LDAPS (LDAP over TLS or SSL)
  - To enable signed and sealed LDAP queries, the following services must be configured:
    - LDAP servers must support the GSSAPI (Kerberos) SASL mechanism.
    - LDAP servers must have DNS A/AAAA records as well as PTR records set up on the DNS server.
    - Kerberos servers must have SRV records present on the DNS server.
  - To enable START TLS or LDAPS, the following points should be considered.
    - It is a NetApp best practice to use Start TLS rather than LDAPS.
    - If LDAPS is used, the LDAP server must be enabled for TLS or for SSL in ONTAP 9.5 and later. SSL is not supported in ONTAP 9.0-9.4.
    - A certificate server must already be configured in the domain.
  - To enable LDAP referral chasing (in ONTAP 9.5 and later), the following conditions must be satisfied:
    - Both domains should be configured with one of the following trust relationships:
      - Two-way
      - One-way, where the primary trusts the referral domain
      - Parent-child
    - DNS must be configured to resolve all referred server names.
    - Domain passwords should be same to authenticate when --bind-as-cifs-server set to true.

The following configurations are not supported with LDAP referral chasing.
  - For all ONTAP versions:
    - LDAP clients on an admin SVM
  - For ONTAP 9.8 and earlier (they are supported in 9.9.1 and later):
    - LDAP signing and sealing (the -session-security option)
    - Encrypted TLS connections (the -use-start-tls option)
    - Communications over LDAPS port 636 (the -use-ldaps-for-ad-ldap option)

• You must enter an LDAP schema when configuring the LDAP client on the SVM.

In most cases, one of the default ONTAP schemas will be appropriate. However, if the LDAP schema in your environment differs from these, you must create a new LDAP client schema for ONTAP before creating the LDAP client. Consult with your LDAP administrator about requirements for your environment.

• Using LDAP for host name resolution is not supported.

For additional information, see NetApp Technical Report 4835: How to Configure LDAP in ONTAP.

Create a new LDAP client schema

If the LDAP schema in your environment differs from the ONTAP defaults, you must create a new LDAP client schema for ONTAP before creating the LDAP client.
configuration.

About this task
Most LDAP servers can use the default schemas provided by ONTAP:

- MS-AD-BIS (the preferred schema for most Windows 2012 and later AD servers)
- AD-IDMU (Windows 2008, Windows 2012 and later AD servers)
- AD-SFU (Windows 2003 and earlier AD servers)
- RFC-2307 (UNIX LDAP servers)

If you need to use a non-default LDAP schema, you must create it before creating the LDAP client configuration. Consult with your LDAP administrator before creating a new schema.

The default LDAP schemas provided by ONTAP cannot be modified. To create a new schema, you create a copy and then modify the copy accordingly.

Steps
1. Display the existing LDAP client schema templates to identify the one you want to copy:

   vserver services name-service ldap client schema show

2. Set the privilege level to advanced:

   set -privilege advanced

3. Make a copy of an existing LDAP client schema:

   vserver services name-service ldap client schema copy -vserver vserver_name -schema existing_schema_name -new-schema-name new_schema_name

4. Modify the new schema and customize it for your environment:

   vserver services name-service ldap client schema modify

5. Return to the admin privilege level:

   set -privilege admin

Install the self-signed root CA certificate on the SVM

If LDAP authentication with TLS is required when binding to LDAP servers, you must first install the self-signed root CA certificate on the SVM.

About this task
When LDAP over TLS is enabled, the ONTAP LDAP client on the SVM does not support revoked certificates in ONTAP 9.0 and 9.1.

Beginning with ONTAP 9.2, all applications within ONTAP that use TLS communications can check digital certificate status using Online Certificate Status Protocol (OCSP). If OCSP is enabled for LDAP over TLS, revoked certificates are rejected and the connection fails.

Steps
1. Install the self-signed root CA certificate:
   a. Begin the certificate installation:
      
      ```
 security certificate install -vserver vserver_name -type server-ca
      ```
      
      The console output displays the following message:
      
      ```
 Please enter Certificate: Press <Enter> when done
      ```
       
   b. Open the certificate .pem file with a text editor, copy the certificate, including the lines beginning with
      ```
 -----BEGIN CERTIFICATE-----
      ```
      and ending with
      ```
 -----END CERTIFICATE-----
      ```
      , and then paste the certificate after the command prompt.
   c. Verify that the certificate is displayed correctly.
   d. Complete the installation by pressing Enter.

2. Verify that the certificate is installed:
   
   ```
 security certificate show -vserver vserver_name
   ```

Create an LDAP client configuration

If you want ONTAP to access the external LDAP servers in your environment, you must first set up an LDAP client on the storage system.

What you’ll need
One of the first three servers in the AD-domain resolved list must be up and serving data. Otherwise, this task fails.

ℹ️ There are multiple servers, out of which more than two servers are down at any point of time.

Steps
1. Consult with your LDAP administrator to determine the appropriate configuration values for the vserver services name-service ldap client create command:
   a. Specify a domain-based or an address-based connection to LDAP servers.

      The -ad-domain and -servers options are mutually exclusive.

      * Use the -ad-domain option to enable LDAP server discovery in the Active Directory domain.

         You can use the -preferred-ad-servers option to specify one or more preferred Active Directory servers by IP address in a comma-delimited list. After the client is created, you can modify this list by using the vserver services name-service ldap client modify command.

      * Use the -servers option to specify one or more LDAP servers (AD or UNIX) by IP address in a comma-delimited list.

         The -servers option is deprecated in ONTAP 9.2. Beginning with ONTAP 9.2, the -ldap-servers field replaces the -servers field. This new field can take either a host name or an IP address for the LDAP server.
b. Specify a default or custom LDAP schema.

Most LDAP servers can use the default read-only schemas that are provided by ONTAP. It is best to use those default schemas unless there is a requirement to do otherwise. If so, you can create your own schema by copying a default schema (they are read-only), and then modifying the copy.

Default schemas:

- **MS-AD-BIS**
  
  Based on RFC-2307bis, this is the preferred LDAP schema for most standard Windows 2012 and later LDAP deployments.

- **AD-IDMU**
  
  Based on Active Directory Identity Management for UNIX, this schema is appropriate for most Windows 2008, Windows 2012, and later AD servers.

- **AD-SFU**
  
  Based on Active Directory Services for UNIX, this schema is appropriate for most Windows 2003 and earlier AD servers.

- **RFC-2307**
  
  Based on RFC-2307 (An Approach for Using LDAP as a Network Information Service), this schema is appropriate for most UNIX AD servers.

c. Select bind values.

- **-min-bind-level** {anonymous|simple|sasl} specifies the minimum bind authentication level.

  The default value is **anonymous**.

- **-bind-dn** LDAP_DN specifies the bind user.

  For Active Directory servers, you must specify the user in the account (DOMAIN\user) or principal (user@domain.com) form. Otherwise, you must specify the user in distinguished name (CN=user,DC=domain,DC=com) form.

- **-bind-password** password specifies the bind password.

d. Select session security options, if required.

You can enable either LDAP signing and sealing or LDAP over TLS if required by the LDAP server.

- **--session-security** {none|sign|seal}

  You can enable signing (sign, data integrity), signing and sealing (seal, data integrity and encryption), or neither (none, no signing or sealing). The default value is **none**.

  You should also set -min-bind-level {sasl} unless you want the bind authentication to fall back to **anonymous** or **simple** if the signing and sealing bind fails.
-use-start-tls{true|false}

If set to true and the LDAP server supports it, the LDAP client uses an encrypted TLS connection to the server. The default value is false. You must install a self-signed root CA certificate of the LDAP server to use this option.

If the SVM has a SMB server added to a domain and the LDAP server is one of the domain controllers of the home-domain of the SMB server, then you can modify the -session-security-for-ad-ldap option by using the vserver cifs security modify command.

e. Select port, query, and base values.

The default values are recommended, but you must verify with your LDAP administrator that they are appropriate for your environment.

- -port port specifies the LDAP server port.
  The default value is 389.

  If you plan to use Start TLS to secure the LDAP connection, you must use the default port 389. Start TLS begins as a plaintext connection over the LDAP default port 389, and that connection is then upgraded to TLS. If you change the port, Start TLS fails.

- -query-timeout integer specifies the query timeout in seconds.
  The allowed range is from 1 through 10 seconds. The default value is 3 seconds.

- -base-dn LDAP_DN specifies the base DN.
  Multiple values can be entered if needed (for example, if LDAP referral chasing is enabled). The default value is "" (root).

- -base-scope {base|onelevel|subtree} specifies the base search scope.
  The default value is subtree.

- -referral-enabled{true|false} specifies whether LDAP referral chasing is enabled.

  Beginning with ONTAP 9.5, this allows the ONTAP LDAP client to refer look-up requests to other LDAP servers if an LDAP referral response is returned by the primary LDAP server indicating that the desired records are present on referred LDAP servers. The default value is false.

  To search for records present in the referred LDAP servers, the base-dn of the referred records must be added to the base-dn as part of LDAP client configuration.

2. Create an LDAP client configuration on the SVM:

vserver services name-service ldap client create -vserver vserver_name -client -config client_config_name {-servers LDAP_server_list | -ad-domain ad_domain -preferred-ad-servers preferred_ad_server_list -schema schema -port 389 -query -timeout 3 -min-bind-level {anonymous|simple|sasl} -bind-dn LDAP_DN -bind -password password -base-dn LDAP_DN -base-scope subtree -session-security
You must provide the SVM name when creating an LDAP client configuration.

3. Verify that the LDAP client configuration is created successfully:

```bash
vserver services name-service ldap client show -client-config client_config_name
```

**Examples**

The following command creates a new LDAP client configuration named ldap1 for the SVM vs1 to work with an Active Directory server for LDAP:

```bash
cluster1::> vserver services name-service ldap client create -vserver vs1 -client-config ldapclient1 -ad-domain addomain.example.com -schema AD-SFU -port 389 -query-timeout 3 -min-bind-level simple -base-dn DC=addomain,DC=example,DC=com -base-scope subtree -preferred-ad-servers 172.17.32.100
```

The following command creates a new LDAP client configuration named ldap1 for the SVM vs1 to work with an Active Directory server for LDAP on which signing and sealing is required:

```bash
cluster1::> vserver services name-service ldap client create -vserver vs1 -client-config ldapclient1 -ad-domain addomain.example.com -schema AD-SFU -port 389 -query-timeout 3 -min-bind-level sasl -base-dn DC=addomain,DC=example,DC=com -base-scope subtree -preferred-ad-servers 172.17.32.100 -session-security seal
```

The following command creates a new LDAP client configuration named ldap1 for the SVM vs1 to work with an Active Directory server for LDAP where LDAP referral chasing is required:

```bash
cluster1::> vserver services name-service ldap client create -vserver vs1 -client-config ldapclient1 -ad-domain addomain.example.com -schema AD-SFU -port 389 -query-timeout 3 -min-bind-level sasl -base-dn "DC=adbasedomain,DC=example1,DC=com; DC=adrefdomain,DC=example2,DC=com" -base-scope subtree -preferred-ad-servers 172.17.32.100 -referral-enabled true
```

The following command modifies the LDAP client configuration named ldap1 for the SVM vs1 by specifying the base DN:

```bash
cluster1::> vserver services name-service ldap client modify -vserver vs1 -client-config ldap1 -base-dn CN=Users,DC=addomain,DC=example,DC=com
```
The following command modifies the LDAP client configuration named ldap1 for the SVM vs1 by enabling referral chasing:

```
cluster1::> vserver services name-service ldap client modify -vserver vs1 -client-config ldap1 -base-dn "DC=adbasedomain,DC=example1,DC=com; DC=adrefdomain,DC=example2,DC=com" -referral-enabled true
```

### Associate the LDAP client configuration with SVMs

To enable LDAP on an SVM, you must use the `vserver services name-service ldap create` command to associate an LDAP client configuration with the SVM.

#### What you'll need

- An LDAP domain must already exist within the network and must be accessible to the cluster that the SVM is located on.
- An LDAP client configuration must exist on the SVM.

#### Steps

1. Enable LDAP on the SVM:

   ```
 vserver services name-service ldap create -vserver vserver_name -client-config client_config_name
   ```

   **Beginning with ONTAP 9.2,** the `vserver services name-service ldap create` command performs an automatic configuration validation and reports an error message if ONTAP is unable to contact the name server.

   The following command enables LDAP on the "vs1" SVM and configures it to use the "ldap1" LDAP client configuration:

   ```
 cluster1::> vserver services name-service ldap create -vserver vs1 -client-config ldap1 -client-enabled true
   ```

2. Validate the status of the name servers by using the `vserver services name-service ldap check` command.

   The following command validates LDAP servers on the SVM vs1.

   ```
 cluster1::> vserver services name-service ldap check -vserver vs1
 | Vserver: vs1 |
 | Client Configuration Name: c1 |
 | LDAP Status: up |
 | LDAP Status Details: Successfully connected to LDAP server "10.11.12.13". |
   ```

   The name service check command is available beginning with ONTAP 9.2.
Verify LDAP sources in the name service switch table

You must verify that LDAP sources for name services are listed correctly in the name service switch table for the SVM.

Steps
1. Display the current name service switch table contents:

   vserver services name-service ns-switch show -vserver svm_name

   The following command shows the results for the SVM My_SVM:

   ```
 ie3220-a::> vserver services name-service ns-switch show -vserver My_SVM
 Vserver Database Order
 --------------- ------------ ---------
 My_SVM hosts files, dns
 My_SVM group files, ldap
 My_SVM passwd files, ldap
 My_SVM netgroup files
 My_SVM namemap files
 5 entries were displayed.
   ```

   namemap specifies the sources to search for name mapping information and in what order. In a UNIX-only environment, this entry is not necessary. Name mapping is only required in a mixed environment using both UNIX and Windows.

2. Update the ns-switch entry as appropriate:

<table>
<thead>
<tr>
<th>If you want to update the ns-switch entry for...</th>
<th>Enter the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>User information</td>
<td>vserver services name-service ns-switch modify -vserver vserver_name -database passwd -sources ldap,files</td>
</tr>
<tr>
<td>Group information</td>
<td>vserver services name-service ns-switch modify -vserver vserver_name -database group -sources ldap,files</td>
</tr>
<tr>
<td>Netgroup information</td>
<td>vserver services name-service ns-switch modify -vserver vserver_name -database netgroup -sources ldap,files</td>
</tr>
</tbody>
</table>

Use Kerberos with NFS for strong security
Overview of using Kerberos with NFS for strong security

If Kerberos is used in your environment for strong authentication, you need to work with your Kerberos administrator to determine requirements and appropriate storage system configurations, and then enable the SVM as a Kerberos client.

Your environment should meet the following guidelines:

• Your site deployment should follow best practices for Kerberos server and client configuration before you configure Kerberos for ONTAP.
• If possible, use NFSv4 or later if Kerberos authentication is required.

NFSv3 can be used with Kerberos. However, the full security benefits of Kerberos are only realized in ONTAP deployments of NFSv4 or later.

• To promote redundant server access, Kerberos should be enabled on several data LIFs on multiple nodes in the cluster using the same SPN.
• When Kerberos is enabled on the SVM, one of the following security methods must be specified in export rules for volumes or qtrees depending on your NFS client configuration.
  ◦ krb5 (Kerberos v5 protocol)
  ◦ krb5i (Kerberos v5 protocol with integrity checking using checksums)
  ◦ krb5p (Kerberos v5 protocol with privacy service)

In addition to the Kerberos server and clients, the following external services must be configured for ONTAP to support Kerberos:

• Directory service

  You should use a secure directory service in your environment, such as Active Directory or OpenLDAP, that is configured to use LDAP over SSL/TLS. Do not use NIS, whose requests are sent in clear text and are hence not secure.

• NTP

  You must have a working time server running NTP. This is necessary to prevent Kerberos authentication failure due to time skew.

• Domain name resolution (DNS)

  Each UNIX client and each SVM LIF must have a proper service record (SRV) registered with the KDC under forward and reverse lookup zones. All participants must be properly resolvable via DNS.

Verify permissions for Kerberos configuration

Kerberos requires that certain UNIX permissions be set for the SVM root volume and for local users and groups.

Steps

1. Display the relevant permissions on the SVM root volume:

   ```bash
 volume show -volume root_vol_name-fields user,group,unix-permissions
   ```
The root volume of the SVM must have the following configuration:

<table>
<thead>
<tr>
<th>Name...</th>
<th>Setting...</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>root or ID 0</td>
</tr>
<tr>
<td>GID</td>
<td>root or ID 0</td>
</tr>
<tr>
<td>UNIX permissions</td>
<td>755</td>
</tr>
</tbody>
</table>

If these values are not shown, use the `volume modify` command to update them.

2. Display the local UNIX users:

   `vserver services name-service unix-user show -vserver vserver_name`

   The SVM must have the following UNIX users configured:

<table>
<thead>
<tr>
<th>User name</th>
<th>User ID</th>
<th>Primary group ID</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>nfs</td>
<td>500</td>
<td>0</td>
<td>Required for GSS INIT phase.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The first component of the NFS client user SPN is used as the user.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The nfs user is not required if a Kerberos-UNIX name mapping exists for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the SPN of the NFS client user.</td>
</tr>
<tr>
<td>root</td>
<td>0</td>
<td>0</td>
<td>Required for mounting.</td>
</tr>
</tbody>
</table>

   If these values are not shown, you can use the `vserver services name-service unix-user modify` command to update them.

3. Display the local UNIX groups:

   `vserver services name-service unix-group show -vserver vserver_name`

   The SVM must have the following UNIX groups configured:

<table>
<thead>
<tr>
<th>Group name</th>
<th>Group ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>daemon</td>
<td>1</td>
</tr>
<tr>
<td>root</td>
<td>0</td>
</tr>
</tbody>
</table>
If these values are not shown, you can use the `vserver services name-service unix-group modify` command to update them.

Create an NFS Kerberos realm configuration

If you want ONTAP to access external Kerberos servers in your environment, you must first configure the SVM to use an existing Kerberos realm. To do so, you need to gather configuration values for the Kerberos KDC server, and then use the `vserver nfs kerberos realm create` command to create the Kerberos realm configuration on an SVM.

What you’ll need

The cluster administrator should have configured NTP on the storage system, client, and KDC server to avoid authentication issues. Time differences between a client and server (clock skew) are a common cause of authentication failures.

Steps

1. Consult with your Kerberos administrator to determine the appropriate configuration values to supply with the `vserver nfs kerberos realm create` command.

2. Create a Kerberos realm configuration on the SVM:

   ```
 vserver nfs kerberos realm create -vserver vserver_name -realm realm_name {AD_KDC_server_values |AD_KDC_server_values} -comment "text"
   ```

3. Verify that the Kerberos realm configuration was created successfully:

   ```
 vserver nfs kerberos realm show
   ```

Examples

The following command creates an NFS Kerberos realm configuration for the SVM vs1 that uses a Microsoft Active Directory server as the KDC server. The Kerberos realm is AUTH.EXAMPLE.COM. The Active Directory server is named ad-1 and its IP address is 10.10.8.14. The permitted clock skew is 300 seconds (the default). The IP address of the KDC server is 10.10.8.14, and its port number is 88 (the default). "Microsoft Kerberos config" is the comment.

```
vs1::> vserver nfs kerberos realm create -vserver vs1 -realm AUTH.EXAMPLE.COM -adserver-name ad-1 -adserver-ip 10.10.8.14 -clock-skew 300 -kdc-ip 10.10.8.14 -kdc-port 88 -kdc-vendor Microsoft -comment "Microsoft Kerberos config"
```

The following command creates an NFS Kerberos realm configuration for the SVM vs1 that uses an MIT KDC. The Kerberos realm is SECURITY.EXAMPLE.COM. The permitted clock skew is 300 seconds. The IP address of the KDC server is 10.10.9.1, and its port number is 88. The KDC vendor is Other to indicate a UNIX vendor. The IP address of the administrative server is 10.10.9.1, and its port number is 749 (the default). The IP address of the password server is 10.10.9.1, and its port number is 464 (the default). "UNIX Kerberos config" is the comment.

```
vs1::> vserver nfs kerberos realm create -vserver vs1 -realm SECURITY.EXAMPLE.COM -admin-server-name 10.10.9.1 -admin-server-ip 10.10.9.1 -admin-server-port 749 -password-server-name 10.10.9.1 -password-server-ip 10.10.9.1 -password-server-port 464 -kdc-vendor Other -comment "UNIX Kerberos config"
```
Configure NFS Kerberos permitted encryption types

By default, ONTAP supports the following encryption types for NFS Kerberos: DES, 3DES, AES-128, and AES-256. You can configure the permitted encryption types for each SVM to suit the security requirements for your particular environment by using the `vserver nfs modify` command with the `--permitted-enc-types` parameter.

About this task

For greatest client compatibility, ONTAP supports both weak DES and strong AES encryption by default. This means, for example, that if you want to increase security and your environment supports it, you can use this procedure to disable DES and 3DES and require clients to use only AES encryption.

You should use the strongest encryption available. For ONTAP, that is AES-256. You should confirm with your KDC administrator that this encryption level is supported in your environment.

- Enabling or disabling AES entirely (both AES-128 and AES-256) on SVMs is disruptive because it destroys the original DES principal/keytab file, thereby requiring that the Kerberos configuration be disabled on all LIFs for the SVM.

Before making this change, you should verify that NFS clients do not rely on AES encryption on the SVM.

- Enabling or disabling DES or 3DES does not require any changes to the Kerberos configuration on LIFs.

Step

1. Enable or disable the permitted encryption type you want:

<table>
<thead>
<tr>
<th>If you want to enable or disable...</th>
<th>Follow these steps...</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES or 3DES</td>
<td>a. Configure the NFS Kerberos permitted encryption types of the SVM: &lt;br&gt;<code>vserver nfs modify --vserver vserver_name --permitted-enc-types encryption_types</code>&lt;br&gt;Separate multiple encryption types with a comma.</td>
</tr>
<tr>
<td></td>
<td>b. Verify that the change was successful: &lt;br&gt;<code>vserver nfs show --vserver vserver_name --fields permitted-enc-types</code></td>
</tr>
</tbody>
</table>
If you want to enable or disable AES-128 or AES-256

<table>
<thead>
<tr>
<th>Follow these steps…</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Identify on which SVM and LIF Kerberos is enabled: vserver nfs kerberos interface show</td>
</tr>
<tr>
<td>b. Disable Kerberos on all LIFs on the SVM whose NFS Kerberos permitted encryption type you want to modify: vserver nfs kerberos interface disable -lif lif_name</td>
</tr>
<tr>
<td>c. Configure the NFS Kerberos permitted encryption types of the SVM: vserver nfs modify -vserver vserver_name -permitted-enc-types encryption_types</td>
</tr>
<tr>
<td>d. Verify that the change was successful: vserver nfs show -vserver vserver_name -fields permitted-enc-types</td>
</tr>
<tr>
<td>e. Reenable Kerberos on all LIFs on the SVM: vserver nfs kerberos interface enable -lif lif_name -spn service_principal_name</td>
</tr>
<tr>
<td>f. Verify that Kerberos is enabled on all LIFs: vserver nfs kerberos interface show</td>
</tr>
</tbody>
</table>

Enable Kerberos on a data LIF

You can use the `vserver nfs kerberos interface enable` command to enable Kerberos on a data LIF. This enables the SVM to use Kerberos security services for NFS.

About this task

If you are using an Active Directory KDC, the first 15 characters of any SPNs used must be unique across SVMs within a realm or domain.

Steps

1. Create the NFS Kerberos configuration:

   ```bash
 vserver nfs kerberos interface enable -vserver vserver_name -lif logical_interface -spn service_principal_name
   ```

   ONTAP requires the secret key for the SPN from the KDC to enable the Kerberos interface.

   For Microsoft KDCs, the KDC is contacted and a user name and password prompt are issued at the CLI to obtain the secret key. If you need to create the SPN in a different OU of the Kerberos realm, you can
specify the optional -ou parameter.

For non-Microsoft KDCs, the secret key can be obtained using one of two methods:

<table>
<thead>
<tr>
<th>If you...</th>
<th>You must also include the following parameter with the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have the KDC administrator credentials to retrieve the key directly from the KDC</td>
<td>-admin-username kdc_admin_username</td>
</tr>
<tr>
<td>Do not have the KDC administrator credentials but have a keytab file from the KDC containing the key</td>
<td>-keytab-uri {ftp</td>
</tr>
</tbody>
</table>

2. Verify that Kerberos was enabled on the LIF:

   `vserver nfs kerberos-config show`

3. Repeat steps 1 and 2 to enable Kerberos on multiple LIFs.

**Example**

The following command creates and verifies an NFS Kerberos configuration for the SVM named vs1 on the logical interface ves03-d1, with the SPN nfs/ves03-d1.lab.example.com@TEST.LAB.EXAMPLE.COM in the OU lab2ou:

```bash
vs1::> vserver nfs kerberos interface enable -lif ves03-d1 -vserver vs2 -spn nfs/ves03-d1.lab.example.com@TEST.LAB.EXAMPLE.COM -ou "ou=lab2ou"

vs1::> vserver nfs kerberos-config show

Logical Vserver Interface Address Kerberos SPN
------- --------- ------- --------- -------------------------------
vs0 ves01-a1 10.10.10.30 disabled -
vs2 ves01-d1 10.10.10.40 enabled nfs/ves03-d1.lab.example.com@TEST.LAB.EXAMPLE.COM
2 entries were displayed.
```

**Add storage capacity to an NFS-enabled SVM**

**Add storage capacity to an NFS-enabled SVM overview**

To add storage capacity to an NFS-enabled SVM, you must create a volume or qtree to provide a storage container, and create or modify an export policy for that container. You can then verify NFS client access from the cluster and test access from client systems.

**What you’ll need**
- NFS must be completely set up on the SVM.
- The default export policy of the SVM root volume must contain a rule that permits access to all clients.
- Any updates to your name services configuration must be complete.
- Any additions or modifications to a Kerberos configuration must be complete.

**Create an export policy**

Before creating export rules, you must create an export policy to hold them. You can use the `vserver export-policy create` command to create an export policy.

**Steps**

1. Create an export policy:

   ```bash
 vserver export-policy create -vserver vserver_name -policyname policy_name
   ```
   The policy name can be up to 256 characters long.

2. Verify that the export policy was created:

   ```bash
 vserver export-policy show -policyname policy_name
   ```

**Example**

The following commands create and verify the creation of an export policy named `exp1` on the SVM named `vs1`:

```bash
vs1::> vserver export-policy create -vserver vs1 -policyname exp1
vs1::> vserver export-policy show -policyname exp1
Vserver Policy Name
--------------- -------------------
vs1 exp1
```

**Add a rule to an export policy**

Without rules, the export policy cannot provide client access to data. To create a new export rule, you must identify clients and select a client match format, select the access and security types, specify an anonymous user ID mapping, select a rule index number, and select the access protocol. You can then use the `vserver export-policy rule create` command to add the new rule to an export policy.

**What you’ll need**

- The export policy you want to add the export rules to must already exist.
- DNS must be correctly configured on the data SVM and DNS servers must have correct entries for NFS clients.

   This is because ONTAP performs DNS lookups using the DNS configuration of the data SVM for certain
client match formats, and failures in export policy rule matching can prevent client data access.

• If you are authenticating with Kerberos, you must have determined which of the following security methods is used on your NFS clients:
  ° krb5 (Kerberos V5 protocol)
  ° krb5i (Kerberos V5 protocol with integrity checking using checksums)
  ° krb5p (Kerberos V5 protocol with privacy service)

About this task
It is not necessary to create a new rule if an existing rule in an export policy covers your client match and access requirements.

If you are authenticating with Kerberos and if all volumes of the SVM are accessed over Kerberos, you can set the export rule options -rorule, -rerule, and -superuser for the root volume to krb5, krb5i, or krb5p.

Steps
1. Identify the clients and the client match format for the new rule.

   The -clientmatch option specifies the clients to which the rule applies. Single or multiple client match values can be specified; specifications of multiple values must be separated by commas. You can specify the match in any of the following formats:

<table>
<thead>
<tr>
<th>Client match format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain name preceded by the &quot;.&quot; character</td>
<td>.example.com or .example.com,.example.net,...</td>
</tr>
<tr>
<td>Host name</td>
<td>host1 or host1,host2, ...</td>
</tr>
<tr>
<td>IPv4 address</td>
<td>10.1.12.24 or 10.1.12.24,10.1.12.25, ...</td>
</tr>
<tr>
<td>IPv4 address with a subnet mask expressed as a number of bits</td>
<td>10.1.12.10/4 or 10.1.12.10/4,10.1.12.11/4,...</td>
</tr>
<tr>
<td>IPv4 address with a network mask</td>
<td>10.1.16.0/255.255.255.0 or 10.1.16.0/255.255.255.0,10.1.17.0/255.255.255.0,...</td>
</tr>
<tr>
<td>IPv6 address in dotted format</td>
<td>::1.2.3.4 or ::1.2.3.4,::1.2.3.5,...</td>
</tr>
<tr>
<td>IPv6 address with a subnet mask expressed as a number of bits</td>
<td>ff::00/32 or ff::00/32,ff::01/32,...</td>
</tr>
<tr>
<td>A single netgroup with the netgroup name preceded by the @ character</td>
<td>@netgroup1 or @netgroup1,@netgroup2,...</td>
</tr>
</tbody>
</table>

You can also combine types of client definitions; for example, .example.com,@netgroup1.
When specifying IP addresses, note the following:

- Entering an IP address range, such as 10.1.12.10-10.1.12.70, is not allowed. Entries in this format are interpreted as a text string and treated as a host name.

- When specifying individual IP addresses in export rules for granular management of client access, do not specify IP addresses that are dynamically (for example, DHCP) or temporarily (for example, IPv6) assigned. Otherwise, the client loses access when its IP address changes.

- Entering an IPv6 address with a network mask, such as ff::12/ff::00, is not allowed.

2. Select the access and security types for client matches.

You can specify one or more of the following access modes to clients that authenticate with the specified security types:

- \-rorule (read-only access)
- \-rwrule (read-write access)
- \-superuser (root access)

A client can only get read-write access for a specific security type if the export rule allows read-only access for that security type as well. If the read-only parameter is more restrictive for a security type than the read-write parameter, the client might not get read-write access. The same is true for superuser access.

You can specify a comma-separated list of multiple security types for a rule. If you specify the security type as any or never, do not specify any other security types. Choose from the following valid security types:

<table>
<thead>
<tr>
<th>When security type is set to...</th>
<th>A matching client can access the exported data...</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Always, regardless of incoming security type.</td>
</tr>
<tr>
<td>none</td>
<td>If listed alone, clients with any security type are granted access as anonymous. If listed with other security types, clients with a specified security type are granted access and clients with any other security type are granted access as anonymous.</td>
</tr>
<tr>
<td>never</td>
<td>Never, regardless of incoming security type.</td>
</tr>
<tr>
<td>krb5</td>
<td>If it is authenticated by Kerberos 5. Authentication only: The header of each request and response is signed.</td>
</tr>
<tr>
<td>When security type is set to...</td>
<td>A matching client can access the exported data...</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>krb5i</td>
<td>If it is authenticated by Kerberos 5i. Authentication and integrity: The header and body of each request and response is signed.</td>
</tr>
<tr>
<td>krb5p</td>
<td>If it is authenticated by Kerberos 5p. Authentication, integrity, and privacy: The header and body of each request and response is signed, and the NFS data payload is encrypted.</td>
</tr>
<tr>
<td>ntlm</td>
<td>If it is authenticated by CIFS NTLM.</td>
</tr>
<tr>
<td>sys</td>
<td>If it is authenticated by NFS AUTH_SYS.</td>
</tr>
</tbody>
</table>

The recommended security type is sys, or if Kerberos is used, krb5, krb5i, or krb5p.

If you are using Kerberos with NFSv3, the export policy rule must allow -rorule and -rwrule access to sys in addition to krb5. This is because of the need to allow Network Lock Manager (NLM) access to the export.

3. Specify an anonymous user ID mapping.

The -anon option specifies a UNIX user ID or user name that is mapped to client requests that arrive with a user ID of 0 (zero), which is typically associated with the user name root. The default value is 65534. NFS clients typically associate user ID 65534 with the user name nobody (also known as root squashing). In ONTAP, this user ID is associated with the user pcuser. To disable access by any client with a user ID of 0, specify a value of 65535.

4. Select the rule index order.

The -ruleindex option specifies the index number for the rule. Rules are evaluated according to their order in the list of index numbers; rules with lower index numbers are evaluated first. For example, the rule with index number 1 is evaluated before the rule with index number 2.

<table>
<thead>
<tr>
<th>If you are adding...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The first rule to an export policy</td>
<td>Enter 1.</td>
</tr>
<tr>
<td>Additional rules to an export policy</td>
<td>a. Display existing rules in the policy:</td>
</tr>
<tr>
<td></td>
<td>vserver export-policy rule show</td>
</tr>
<tr>
<td></td>
<td>-instance -policyname your_policy</td>
</tr>
<tr>
<td></td>
<td>b. Select an index number for the new rule</td>
</tr>
<tr>
<td></td>
<td>depending on the order it should be evaluated.</td>
</tr>
</tbody>
</table>

5. Select the applicable NFS access value: \{nfs|nfs3|nfs4\}.

nfs matches any version, nfs3 and nfs4 match only those specific versions.
6. Create the export rule and add it to an existing export policy:

```
vserver export-policy rule create -vserver vserver_name -policyname policy_name -ruleindex integer -protocol {nfs|nfs3|nfs4} -clientmatch { text | "text,text,..." } -rorule security_type -rwwrule security_type -superuser security_type -anon user_ID
```

7. Display the rules for the export policy to verify that the new rule is present:

```
vserver export-policy rule show -policyname policy_name
```

The command displays a summary for that export policy, including a list of rules applied to that policy. ONTAP assigns each rule a rule index number. After you know the rule index number, you can use it to display detailed information about the specified export rule.

8. Verify that the rules applied to the export policy are configured correctly:

```
vserver export-policy rule show -policyname policy_name -vserver vserver_name -ruleindex integer
```

**Examples**

The following commands create and verify the creation of an export rule on the SVM named vs1 in an export policy named rs1. The rule has the index number 1. The rule matches any client in the domain eng.company.com and the netgroup @netgroup1. The rule enables all NFS access. It enables read-only and read-write access to users that authenticated with AUTH_SYS. Clients with the UNIX user ID 0 (zero) are anonymized unless authenticated with Kerberos.
The following commands create and verify the creation of an export rule on the SVM named vs2 in an export policy named expol2. The rule has the index number 21. The rule matches clients to members of the netgroup dev_netgroup_main. The rule enables all NFS access. It enables read-only access for users that authenticated with AUTH_SYS and requires Kerberos authentication for read-write and root access. Clients with the UNIX user ID 0 (zero) are denied root access unless authenticated with Kerberos.
Create a volume or qtree storage container

Create a volume

You can create a volume and specify its junction point and other properties by using the `volume create` command.

What you’ll need
The SVM security style must be UNIX, and NFS should be set up and running.

About this task
A volume must include a *junction path* for its data to be made available to clients. You can specify the junction path when you create a new volume. If you create a volume without specifying a junction path, you must *mount* the volume in the SVM namespace using the `volume mount` command.

Steps
1. Create the volume with a junction point:

   ```bash
 volume create -vserver vserver_name -volume volume_name -aggregate
   ```
aggregate_name -size {integer[KB|MB|GB|TB|PB]} -security-style unix -user user_name_or_number -group group_name_or_number -junction-path junction_path [-policy export_policy_name]

The choices for -junction-path are the following:

* Directly under root, for example, /new_vol

You can create a new volume and specify that it be mounted directly to the SVM root volume.

* Under an existing directory, for example, /existing_dir/new_vol

You can create a new volume and specify that it be mounted to an existing volume (in an existing hierarchy), expressed as a directory.

If you want to create a volume in a new directory (in a new hierarchy under a new volume), for example, /new_dir/new_vol, then you must first create a new parent volume that is junctioned to the SVM root volume. You would then create the new child volume in the junction path of the new parent volume (new directory).

+ If you plan to use an existing export policy, you can specify it when you create the volume. You can also add an export policy later with the volume modify command.

2. Verify that the volume was created with the desired junction point:

   volume show -vserver vserver_name -volume volume_name -junction

Examples

The following command creates a new volume named users1 on the SVM vs1.example.com and the aggregate aggr1. The new volume is made available at /users. The volume is 750 GB in size, and its volume guarantee is of type volume (by default).

```bash
cluster1::> volume create -vserver vs1.example.com -volume users -aggregate aggr1 -size 750g -junction-path /users
[Job 1642] Job succeeded: Successful
```

```bash
cluster1::> volume show -vserver vs1.example.com -volume users -junction

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Volume</th>
<th>Active</th>
<th>Junction Path</th>
<th>Path Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1.example.com</td>
<td>users1</td>
<td>true</td>
<td>/users</td>
<td>RW_volume</td>
</tr>
</tbody>
</table>
```

The following command creates a new volume named "home4" on the SVM "vs1.example.com" and the aggregate "aggr1". The directory /eng/ already exists in the namespace for the vs1 SVM, and the new volume is made available at /eng/home, which becomes the home directory for the /eng/ namespace. The volume is 750 GB in size, and its volume guarantee is of type volume (by default).

```bash
cluster1::> volume create -vserver vs1.example.com -volume users -aggregate aggr1 -size 750g -junction-path /eng/home
[Job 1642] Job succeeded: Successful
```
Create a qtree

You can create a qtree to contain your data and specify its properties by using the `volume qtree create` command.

**What you’ll need**

- The SVM and the volume that will contain the new qtree must already exist.
- The SVM security style must be UNIX, and NFS should be set up and running.

**Steps**

1. Create the qtree:

   ```bash
 volume qtree create -vserver vserver_name { -volume volume_name -qtree qtree_name | -qtree-path qtree path } -security-style unix [-policy export_policy_name]
   ```

   You can specify the volume and qtree as separate arguments or specify the qtree path argument in the format `/vol/volume_name/_qtree_name`.

   By default, qtrees inherit the export policies of their parent volume, but they can be configured to use their own. If you plan to use an existing export policy, you can specify it when you create the qtree. You can also add an export policy later with the `volume qtree modify` command.

2. Verify that the qtree was created with the desired junction path:

   ```bash
 volume qtree show -vserver vserver_name { -volume volume_name -qtree qtree_name | -qtree-path qtree path }
   ```

**Example**

The following example creates a qtree named qt01 located on SVM vs1.example.com that has a junction path `/vol/data1`.
Secure NFS access using export policies

Secure NFS access using export policies

You can use export policies to restrict NFS access to volumes or qtrees to clients that match specific parameters. When provisioning new storage, you can use an existing policy and rules, add rules to an existing policy, or create a new policy and rules. You can also check the configuration of export policies.

Beginning with ONTAP 9.3, you can enable export policy configuration checking as a background job that records any rules violations in an error rule list. The `vserver export-policy config-checker` commands invoke the checker and display results, which you can use to verify your configuration and delete erroneous rules from the policy. The commands only validate export configuration for host names, netgroups, and anonymous users.

Manage the processing order of export rules

You can use the `vserver export-policy rule setindex` command to manually set an existing export rule’s index number. This enables you to specify the precedence by which ONTAP applies export rules to client requests.

About this task

If the new index number is already in use, the command inserts the rule at the specified spot and reorders the list accordingly.

Step

1. Modify the index number of a specified export rule:
vserver export-policy rule setindex -vserver virtual_server_name -policyname policy_name -ruleindex integer -newruleindex integer

Example
The following command changes the index number of an export rule at index number 3 to index number 2 in an export policy named rs1 on the SVM named vs1:

```
vs1::> vserver export-policy rule setindex -vserver vs1
 -policyname rs1 -ruleindex 3 -newruleindex 2
```

Assign an export policy to a volume

Each volume contained in the SVM must be associated with an export policy that contains export rules for clients to access data in the volume.

About this task
You can associate an export policy to a volume when you create the volume or at any time after you create the volume. You can associate one export policy to the volume, although one policy can be associated to many volumes.

Steps
1. If an export policy was not specified when the volume was created, assign an export policy to the volume:

   ```
volume modify -vserver vserver_name -volume volume_name -policy export_policy_name
   ```

2. Verify that the policy was assigned to the volume:

   ```
volume show -volume volume_name -fields policy
   ```

Example
The following commands assign the export policy nfs_policy to the volume vol1 on the SVM vs1 and verify the assignment:

```
cluster::> volume modify -vserver vs1 -volume vol1 -policy nfs_policy

cluster::>volume show -volume vol -fields policy
vserver volume policy
------- ------------ ----------------
vs1 vol1 nfs_policy
```

Assign an export policy to a qtree

Instead of exporting an entire volume, you can also export a specific qtree on a volume to make it directly accessible to clients. You can export a qtree by assigning an export policy to it. You can assign the export policy either when you create a new qtree or by modifying
an existing qtree.

What you’ll need
The export policy must exist.

About this task
By default, qtrees inherit the parent export policy of the containing volume if not otherwise specified at the time of creation.

You can associate an export policy to a qtree when you create the qtree or at any time after you create the qtree. You can associate one export policy to the qtree, although one policy can be associated with many qtrees.

Steps
1. If an export policy was not specified when the qtree was created, assign an export policy to the qtree:

   ```
 volume qtree modify -vserver vserver_name -qtree-path /vol/volume_name/qtrees/qtree_name -export-policy export_policy_name
   ```

2. Verify that the policy was assigned to the qtree:

   ```
 volume qtree show -qtree qtree_name -fields export-policy
   ```

Example
The following commands assign the export policy nfs_policy to the qtree qt1 on the SVM vs1 and verify the assignment:

```
cluster::> volume modify -vserver vs1 -qtree-path /vol/vol1/qt1 -policy nfs_policy

cluster::> volume qtree show -volume vol1 -fields export-policy
vs1 data1 qt01 nfs_policy
```

Verify NFS client access from the cluster
You can give select clients access to the share by setting UNIX file permissions on a UNIX administration host. You can check client access by using the vserver export-policy check-access command, adjusting the export rules as necessary.

Steps
1. On the cluster, check client access to exports by using the vserver export-policy check-access command.

   The following command checks read/write access for an NFSv3 client with the IP address 1.2.3.4 to the volume home2. The command output shows that the volume uses the export policy exp-home-dir and that access is denied.
cluster1::> vserver export-policy check-access -vserver vs1 -client-ip 1.2.3.4 -volume home2 -authentication-method sys -protocol nfs3 -access -type read-write

<table>
<thead>
<tr>
<th>Path</th>
<th>Policy</th>
<th>Policy</th>
<th>Owner</th>
<th>Owner Type</th>
<th>Index</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>default</td>
<td>vs1_root</td>
<td>volume</td>
<td>1</td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>/eng</td>
<td>default</td>
<td>vs1_root</td>
<td>volume</td>
<td>1</td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>/eng/home2</td>
<td>exp-home-dir</td>
<td>home2</td>
<td>volume</td>
<td>1</td>
<td>denied</td>
<td></td>
</tr>
</tbody>
</table>

3 entries were displayed.

2. Examine the output to determine whether the export policy works as intended and the client access behaves as expected.

Specifically, you should verify which export policy is used by the volume or qtree and the type of access the client has as a result.

3. If necessary, reconfigure the export policy rules.

**Test NFS access from client systems**

After you verify NFS access to the new storage object, you should test the configuration by logging in to an NFS administration host and reading data from and writing data to the SVM. You should then repeat the process as a non-root user on a client system.

**What you’ll need**

- The client system must have an IP address that is allowed by the export rule you specified earlier.
- You must have the login information for the root user.

**Steps**

1. On the cluster, verify the IP address of the LIF that is hosting the new volume:

   network interface show –vserver svm_name

2. Log in as the root user to the administration host client system.

3. Change the directory to the mount folder:

   cd /mnt/

4. Create and mount a new folder using the IP address of the SVM:

   a. Create a new folder:

      mkdir /mnt/folder

   b. Mount the new volume at this new directory:

      mount -t nfs -o hard IPAddress:/volume_name /mnt/folder
c. Change the directory to the new folder:
   cd folder

   The following commands create a folder named test1, mount the vol1 volume at the 192.0.2.130 IP address on the test1 mount folder, and change to the new test1 directory:

   host# mkdir /mnt/test1
   host# mount -t nfs -o hard 192.0.2.130:/vol1 /mnt/test1
   host# cd /mnt/test1

5. Create a new file, verify that it exists, and write text to it:
   a. Create a test file:
      touch filename
   
   b. Verify that the file exists:
      ls -l filename
   
   c. Enter:
      cat > filename

      Type some text, and then press Ctrl+D to write text to the test file.
   
   d. Display the content of the test file.
      cat filename
   
   e. Remove the test file:
      rm filename
   
   f. Return to the parent directory:
      cd ..

   host# touch myfile1
   host# ls -l myfile1
   -rw-r--r-- 1 root root 0 Sep 18 15:58 myfile1
   host# cat >myfile1
   This text inside the first file
   host# cat myfile1
   This text inside the first file
   host# rm -r myfile1
   host# cd ..

6. As root, set any desired UNIX ownership and permissions on the mounted volume.

7. On a UNIX client system identified in your export rules, log in as one of the authorized users who now has access to the new volume, and repeat the procedures in steps 3 to 5 to verify that you can mount the volume and create a file.
Where to find additional information

After you have successfully tested NFS client access, you can perform additional NFS configuration or add SAN access. When protocol access is complete, you should protect the root volume of storage virtual machine (SVM).

NFS configuration

You can further configure NFS access using the following information and technical reports:

- **NFS management**

  Describes how to configure and manage file access using NFS.


  Serves as an NFSv3 and NFSv4 operational guide, and provides an overview of the ONTAP operating system with a focus on NFSv4.


  Explains how to configure ONTAP for use with UNIX-based Kerberos version 5 (krb5) servers for NFS storage authentication and Windows Server Active Directory (AD) as the KDC and Lightweight Directory Access Protocol (LDAP) identity provider.


  Describes the best practices that should be followed while implementing NFSv4 components on AIX, Linux, or Solaris clients attached to systems running ONTAP.

Networking configuration

You can further configure networking features and name services using the following information and technical reports:

- **NFS management**

  Describes how to configure and manage ONTAP networking.


  Describes the implementation of ONTAP network configurations, and provides common network deployment scenarios and best practice recommendations.


  Explains how to configure LDAP, NIS, DNS, and local file configuration for authentication purposes.
SAN protocol configuration

If you want to provide or modify SAN access to the new SVM, you can use the FC or iSCSI configuration information, which is available for multiple host operating systems.

Root volume protection

After configuring protocols on the SVM, you should ensure that its root volume is protected:

- **Data protection**

  Describes how to create a load-sharing mirror to protect the SVM root volume, which is a NetApp best practice for NAS-enabled SVMs. Also describes how to quickly recover from volume failures or losses by promoting the SVM root volume from a load-sharing mirror.

How ONTAP exports differ from 7-Mode exports

**How ONTAP exports differ from 7-Mode exports**

If you are unfamiliar with how ONTAP implements NFS exports, you can compare 7-Mode and ONTAP export configuration tools, as well as sample 7-Mode `/etc/exports` files with clustered policies and rules.

In ONTAP there is no `/etc/exports` file and no `exportfs` command. Instead, you must define an export policy. Export policies enable you to control client access in much the same way as you did in 7-Mode, but give you additional functionality such as the ability to reuse the same export policy for multiple volumes.

Related information

- NFS management


Comparison of exports in 7-Mode and ONTAP

Exports in ONTAP are defined and used differently than they are in 7-Mode environments.

<table>
<thead>
<tr>
<th>Areas of difference</th>
<th>7-Mode</th>
<th>ONTAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>How exports are defined</td>
<td>Exports are defined in the <code>/etc/exports</code> file.</td>
<td>Exports are defined by creating an export policy within an SVM. An SVM can include more than one export policy.</td>
</tr>
</tbody>
</table>
### Scope of export

- Exports apply to a specified file path or qtree.
- You must create a separate entry in `/etc/exports` for each file path or qtree.
- Exports are persistent only if they are defined in the `/etc/exports` file.

- Export policies apply to an entire volume, including all of the file paths and qtrees contained in the volume.
- Export policies can be applied to more than one volume if you want.
- All export policies are persistent across system restarts.

### Fencing (specifying different access for specific clients to the same resources)

To provide specific clients different access to a single exported resource, you have to list each client and its permitted access in the `/etc/exports` file.

Export policies are composed of a number of individual export rules. Each export rule defines specific access permissions for a resource and lists the clients that have those permissions. To specify different access for specific clients, you have to create an export rule for each specific set of access permissions, list the clients that have those permissions, and then add the rules to the export policy.

### Name aliasing

When you define an export, you can choose to make the name of the export different from the name of the file path. You should use the `-actual` parameter when defining such an export in the `/etc/exports` file.

You can choose to make the name of the exported volume different from the actual volume name. To do this, you must mount the volume with a custom junction path name within the SVM namespace.

By default, volumes are mounted with their volume name. To customize a volume’s junction path name you need to unmount it, rename it, and then remount it.

### Examples of ONTAP export policies

You can review example export policies to better understand how export policies work in ONTAP.

### Sample ONTAP implementation of a 7-Mode export

The following example shows a 7-Mode export as it appears in the `/etc/export` file:
To reproduce this export as a clustered export policy, you have to create an export policy with three export rules, and then assign the export policy to the volume vol1.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
<td>-clientmatch (client specification)</td>
<td>@readonly_netgroup</td>
</tr>
<tr>
<td></td>
<td>-ruleindex (position of export rule in the list of rules)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-protocol</td>
<td>nfs</td>
</tr>
<tr>
<td></td>
<td>-rorule (allow read-only access)</td>
<td>sys (client authenticated with AUTH_SYS)</td>
</tr>
<tr>
<td></td>
<td>-rwrule (allow read-write access)</td>
<td>never</td>
</tr>
<tr>
<td></td>
<td>-superuser (allow superuser access)</td>
<td>none (root squashed to anon)</td>
</tr>
<tr>
<td>Rule 2</td>
<td>-clientmatch</td>
<td>@rootaccess_netgroup</td>
</tr>
<tr>
<td></td>
<td>-ruleindex</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-protocol</td>
<td>nfs</td>
</tr>
<tr>
<td></td>
<td>-rorule</td>
<td>sys</td>
</tr>
<tr>
<td></td>
<td>-rwrule</td>
<td>sys</td>
</tr>
<tr>
<td></td>
<td>-superuser</td>
<td>sys</td>
</tr>
</tbody>
</table>
1. Create an export policy called exp_vol1:

   vserver export-policy create -vserver NewSVM -policyname exp_vol1

2. Create three rules with the following parameters to the base command:

   * Base command:
     vserver export-policy rule create -vserver NewSVM -policyname exp_vol1
   
   * Rule parameters:
     -clientmatch @readonly_netgroup -ruleindex 1 -protocol nfs -rorule sys
     -rwrule never -superuser none
     -clientmatch @rootaccess_netgroup -ruleindex 2 -protocol nfs -rorule sys
     -rwrule sys -superuser sys
     -clientmatch @readwrite_netgroup1,@readwrite_netgroup2 -ruleindex 3
     -protocol nfs -rorule sys -rwrule sys -superuser none

3. Assign the policy to the volume vol1:

   volume modify -vserver NewSVM -volume vol1 -policy exp_vol1

Sample consolidation of 7-Mode exports

The following example shows a 7-Mode /etc/export file that includes one line for each of 10 qtrees:
In ONTAP, one of two policies is needed for each qtree: one with a rule including `-clientmatch host1519s`, or one with a rule including `-clientmatch host2057s`.

1. Create two export policies called `exp_vol1q1` and `exp_vol1q2`:
   - `vserver export-policy create -vserver NewSVM -policyname exp_vol1q1`
   - `vserver export-policy create -vserver NewSVM -policyname exp_vol1q2`

2. Create a rule for each policy:
   - `vserver export-policy rule create -vserver NewSVM -policyname exp_vol1q1 -clientmatch host1519s -rwrule sys -superuser sys`
   - `vserver export-policy rule create -vserver NewSVM -policyname exp_vol1q2 -clientmatch host1519s -rwrule sys -superuser sys`

3. Apply the policies to the qtrees:
   - `volume qtree modify -vserver NewSVM -qtree-path /vol/vol1/q_1472 -export -policy exp_vol1q1`
   - `volume qtree modify -vserver NewSVM -qtree-path /vol/vol1/q_2237 -export -policy exp_vol1q2`
   - [next 4 qtrees...]

If you need to add additional qtrees for those hosts later, you would use the same export policies.
Copyright information

Copyright © 2022 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.