Table of Contents

Configure SMB access to an SVM .. 1
 Configure SMB access to an SVM .. 1
 Create an SVM .. 1
 Verify that the SMB protocol is enabled on the SVM 2
 Open the export policy of the SVM root volume 3
 Create a LIF .. 4
 Enable DNS for host-name resolution .. 8
 Set up an SMB server in an Active Directory domain 9
 Set up an SMB server in a workgroup 14
 Verify enabled SMB versions .. 19
 Map the SMB server on the DNS server 21
Configure SMB access to an SVM

If you do not already have an SVM configured for SMB client access, you must either create and configure a new SVM or configure an existing SVM. Configuring SMB involves opening SVM root volume access, creating an SMB server, creating a LIF, enabling hostname resolution, configuring name services, and if desired, enabling Kerberos security.

Create an SVM

If you do not already have at least one SVM in a cluster to provide data access to SMB clients, you must create one.

Steps
1. Create an SVM: `vserver create -vserver vserver_name -rootvolume root_volume_name -aggregate aggregate_name -rootvolume-security-style ntfs -language C.UTF-8 -ipspace ipspace_name`
 - Use the NTFS setting for the `-rootvolume-security-style` option.
 - Use the default C.UTF-8 `-language` option.
 - The `ipspace` setting is optional.
2. Verify the configuration and status of the newly created SVM: `vserver show -vserver vserver_name`
 - The `Allowed Protocols` field must include CIFS. You can edit this list later.
 - The `Vserver Operational State` field must display the `running` state. If it displays the `initializing` state, it means that some intermediate operation such as root volume creation failed, and you must delete the SVM and re-create it.

Examples
The following command creates an SVM for data access in the IPspace ipspaceA:

```
cluster1::> vserver create -vserver vs1.example.com -rootvolume root_vs1 -aggregate aggr1 -rootvolume-security-style ntfs -language C.UTF-8 -ipspace ipspaceA

[Job 2059] Job succeeded:
Vserver creation completed
```

The following command shows that an SVM was created with a root volume of 1 GB, and it was started automatically and is in running state. The root volume has a default export policy that does not include any rules, so the root volume is not exported upon creation.
Verify that the SMB protocol is enabled on the SVM

Before you can configure and use SMB on SVMs, you must verify that the protocol is enabled.

About this task
This is typically done during SVM setup, but if you did not enable the protocol during setup, you can enable it later by using the `vserver add-protocols` command.

You cannot add or remove a protocol from a LIF once it is created.

You can also disable protocols on SVMs using the `vserver remove-protocols` command.

Steps
1. Check which protocols are currently enabled and disabled for the SVM: `vserver show -vserver vserver_name -protocols`

 You can also use the `vserver show-protocols` command to view the currently enabled protocols on all SVMs in the cluster.
2. If necessary, enable or disable a protocol:
 - To enable the SMB protocol: `vserver add-protocols -vserver vserver_name -protocols cifs`
 - To disable a protocol: `vserver remove-protocols -vserver vserver_name -protocols protocol_name[,protocol_name,...]`

3. Confirm that the enabled and disabled protocols were updated correctly: `vserver show -vserver vserver_name -protocols`

Example
The following command displays which protocols are currently enabled and disabled (allowed and disallowed) on the SVM named vs1:

```
vsl::> vserver show -vserver vs1.example.com -protocols

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Allowed Protocols</th>
<th>Disallowed Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1.example.com</td>
<td>cifs</td>
<td>nfs, fcp, iscsi, ndmp</td>
</tr>
</tbody>
</table>
```

The following command allows access over SMB by adding `cifs` to the list of enabled protocols on the SVM named vs1:

```
vsl::> vserver add-protocols -vserver vs1.example.com -protocols cifs
```

Open the export policy of the SVM root volume

The default export policy of the SVM root volume must include a rule to allow all clients open access through SMB. Without such a rule, all SMB clients are denied access to the SVM and its volumes.

About this task
When a new SVM is created, a default export policy (called default) is created automatically for the root volume of the SVM. You must create one or more rules for the default export policy before clients can access data on the SVM.

You should verify that all SMB access is open in the default export policy, and later restrict access to individual volumes by creating custom export policies for individual volumes or qtrees.

Steps
1. If you are using an existing SVM, check the default root volume export policy: `vserver export-policy rule show`

 The command output should be similar to the following:
If such a rule exists that allows open access, this task is complete. If not, proceed to the next step.

2. Create an export rule for the SVM root volume:

 `vserver export-policy rule create -vserver vserver_name -policyname default -ruleindex 1 -protocol cifs -clientmatch 0.0.0.0/0 -rorule any -rwrule any -superuser any`

3. Verify rule creation by using the `vserver export-policy rule show` command.

Results

Any SMB client can now access any volume or qtree created on the SVM.

Create a LIF

A LIF is an IP address associated with a physical or logical port. If there is a component failure, a LIF can fail over to or be migrated to a different physical port, thereby continuing to communicate with the network.

Before you begin

- The underlying physical or logical network port must have been configured to the administrative `up` status.
- If you are planning to use a subnet name to allocate the IP address and network mask value for a LIF, the subnet must already exist.

 Subnets contain a pool of IP addresses that belong to the same layer 3 subnet. They are created using the `network subnet create` command.

- The mechanism for specifying the type of traffic handled by a LIF has changed. For ONTAP 9.5 and earlier, LIFs used roles to specify the type of traffic it would handle. Beginning with ONTAP 9.6, LIFs use service policies to specify the type of traffic it would handle.

About this task

- You can create both IPv4 and IPv6 LIFs on the same network port.
- If you have a large number of LIFs in your cluster, you can verify the LIF capacity supported on the cluster.
by using the `network interface capacity show` command and the LIF capacity supported on each node by using the `network interface capacity details show` command (at the advanced privilege level).

- Beginning with ONTAP 9.7, if other LIFs already exist for the SVM in the same subnet, you do not need to specify the home port of the LIF. ONTAP automatically chooses a random port on the specified home node in the same broadcast domain as the other LIFs already configured in the same subnet.

Beginning with ONTAP 9.4, FC-NVMe is supported. If you are creating an FC-NVMe LIF you should be aware of the following:

- The NVMe protocol must be supported by the FC adapter on which the LIF is created.
- FC-NVMe can be the only data protocol on data LIFs.
- One LIF handling management traffic must be configured for every storage virtual machine (SVM) supporting SAN.
- NVMe LIFs and namespaces must be hosted on the same node.
- Only one NVMe LIF handling data traffic can be configured per SVM

Steps

1. Create a LIF:

   ```
   network interface create -vserver vserver_name -lif lif_name -role data -data-protocol cifs -home-node node_name -home-port port_name {-address IP_address -netmask IP_address | -subnet-name subnet_name} -firewall-policy data -auto -revert {true|false}
   ```

ONTAP 9.5 and earlier

   ```
   network interface create -vserver vserver_name -lif lif_name -role data -data-protocol cifs -home-node node_name -home-port port_name {-address IP_address -netmask IP_address | -subnet-name subnet_name} -firewall-policy data -auto -revert {true|false}
   ```

ONTAP 9.6 and later

   ```
   network interface create -vserver vserver_name -lif lif_name -service-policy service_policy_name -home-node node_name -home-port port_name {-address IP_address -netmask IP_address | -subnet-name subnet_name} -firewall-policy data -auto-revert {true|false}
   ```

- The `-role` parameter is not required when creating a LIF using a service policy (beginning with ONTAP 9.6).
- The `-data-protocol` parameter must be specified when the LIF is created, and cannot be modified later without destroying and re-creating the data LIF.

The `-data-protocol` parameter is not required when creating a LIF using a service policy (beginning with ONTAP 9.6).

- `-home-node` is the node to which the LIF returns when the `network interface revert` command is run on the LIF.
You can also specify whether the LIF should automatically revert to the home-node and home-port with the `-auto-revert` option.

- `-home-port` is the physical or logical port to which the LIF returns when the `network interface revert` command is run on the LIF.

- You can specify an IP address with the `-address` and `-netmask` options, or you enable allocation from a subnet with the `-subnet_name` option.

- When using a subnet to supply the IP address and network mask, if the subnet was defined with a gateway, a default route to that gateway is added automatically to the SVM when a LIF is created using that subnet.

- If you assign IP addresses manually (without using a subnet), you might need to configure a default route to a gateway if there are clients or domain controllers on a different IP subnet. The `network route create` man page contains information about creating a static route within an SVM.

- For the `-firewall-policy` option, use the same default data as the LIF role.

You can create and add a custom firewall policy later if desired.

- `-auto-revert` allows you to specify whether a data LIF is automatically reverted to its home node under circumstances such as startup, changes to the status of the management database, or when the network connection is made. The default setting is `false`, but you can set it to `false` depending on network management policies in your environment.

2. Verify that the LIF was created successfully:

 network interface show

3. Verify that the configured IP address is reachable:

<table>
<thead>
<tr>
<th>To verify an...</th>
<th>Use...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 address</td>
<td><code>network ping</code></td>
</tr>
<tr>
<td>IPv6 address</td>
<td><code>network ping6</code></td>
</tr>
</tbody>
</table>

Examples

The following command creates a LIF and specifies the IP address and network mask values using the `-address` and `-netmask` parameters:

```
 network interface create -vserver vs1.example.com -lif datalif1 -role data -data-protocol cifs -home-node node-4 -home-port e1c -address 192.0.2.145 -netmask 255.255.255.0 -firewall-policy data -auto-revert true
```

The following command creates a LIF and assigns IP address and network mask values from the specified subnet (named client1_sub):
network interface create -vserver vs3.example.com -lif datalif3 -role data -data-protocol cifs -home-node node-3 -home-port e1c -subnet-name client1_sub -firewall-policy data -auto-revert true

The following command shows all the LIFs in cluster-1. Data LIFs datalif1 and datalif3 are configured with IPv4 addresses, and datalif4 is configured with an IPv6 address:

```
network interface show

Logical Interface Status Admin/Oper Network Address/Mask Current Node Port Current Is
----------- ------- ---------- -------------------- ------------ ------- -------
Vserver Home
-------- ------- 

----
cluster-1
true node-1

clus1 up/up 192.0.2.12/24 node-1 e0a
true
clus2 up/up 192.0.2.13/24 node-1 e0b
true
mgmt1 up/up 192.0.2.68/24 node-1 e1a
true node-2

clus1 up/up 192.0.2.14/24 node-2 e0a
true
clus2 up/up 192.0.2.15/24 node-2 e0b
true
mgmt1 up/up 192.0.2.69/24 node-2 e1a
true

vs1.example.com

datalif1 up/down 192.0.2.145/30 node-1 e1c
true

vs3.example.com

datalif3 up/up 192.0.2.146/30 node-2 e0c
true

datalif4 up/up 2001::2/64 node-2 e0c
true
5 entries were displayed.
```

The following command shows how to create a NAS data LIF that is assigned with the default-data-files service policy:
Enable DNS for host-name resolution

You can use the `vserver services name-service dns` command to enable DNS on an SVM, and configure it to use DNS for host-name resolution. Host names are resolved using external DNS servers.

Before you begin
A site-wide DNS server must be available for host name lookups.

You should configure more than one DNS server to avoid a single-point-of-failure. The `vserver services name-service dns` create command issues a warning if you enter only one DNS server name.

About this task
The *Network Management Guide* contains information about configuring dynamic DNS on the SVM.

Steps

1. Enable DNS on the SVM: `vserver services name-service dns create -vserver vserver_name -domains domain_name -name-servers ip_addresses -state enabled`

 The following command enables external DNS server servers on the SVM vs1:

   ```
   vserver services name-service dns create -vserver vs1.example.com -domains example.com -name-servers 192.0.2.201,192.0.2.202 -state enabled
   ```

 Beginning with ONTAP 9.2, the `vserver services name-service dns` create command performs an automatic configuration validation and reports an error message if ONTAP cannot contact the name server.

2. Display the DNS domain configurations by using the `vserver services name-service dns show` command. ""

 The following command displays the DNS configurations for all SVMs in the cluster:
vserver services name-service dns show

<table>
<thead>
<tr>
<th>Vserver</th>
<th>State</th>
<th>Domains</th>
<th>Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1</td>
<td>enabled</td>
<td>example.com</td>
<td>192.0.2.201, 192.0.2.202</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>enabled</td>
<td>example.com</td>
<td>192.0.2.201, 192.0.2.202</td>
</tr>
</tbody>
</table>

The following command displays detailed DNS configuration information for SVM vs1:

```
vserver services name-service dns show -vserver vs1.example.com
```

- **Vserver**: vs1.example.com
- **Domains**: example.com
- **Name Servers**: 192.0.2.201, 192.0.2.202
- **Enable/Disable DNS**: enabled
- **Timeout (secs)**: 2
- **Maximum Attempts**: 1

3. Validate the status of the name servers by using the `vserver services name-service dns check` command.

The `vserver services name-service dns check` command is available beginning with ONTAP 9.2.

```
vserver services name-service dns check -vserver vs1.example.com
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Name Server</th>
<th>Status</th>
<th>Status Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1.example.com</td>
<td>10.0.0.50</td>
<td>up</td>
<td>Response time (msec): 2</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>10.0.0.51</td>
<td>up</td>
<td>Response time (msec): 2</td>
</tr>
</tbody>
</table>

Set up an SMB server in an Active Directory domain

Configure time services

Before creating an SMB server in an Active Domain controller, you must ensure that the cluster time and the time on the domain controllers of the domain to which the SMB server will belong matches to within five minutes.

About this task

You should configure cluster NTP services to use the same NTP servers for time synchronization that the
Active Directory domain uses.

Beginning with ONTAP 9.5, you can set up your NTP server with symmetric authentication.

Steps

1. Configure time services by using the `cluster time-service ntp server create` command.

 - To configure time services without symmetric authentication enter the following command:

     ```
     cluster time-service ntp server create -server server_ip_address
     ```

 - To configure time services with symmetric authentication, enter the following command:

     ```
     cluster time-service ntp server create -server server_ip_address -key-id key_id
     ```


   ```
   cluster time-service ntp server create -server 10.10.10.1
   cluster time-service ntp server create -server 10.10.10.2
   ```

2. Verify that time services are set up correctly by using the `cluster time-service ntp server show` command.

   ```
   cluster time-service ntp server show
   ```

<table>
<thead>
<tr>
<th>Server</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.1</td>
<td>auto</td>
</tr>
<tr>
<td>10.10.10.2</td>
<td>auto</td>
</tr>
</tbody>
</table>

Commands for managing symmetric authentication on NTP servers

Beginning with ONTAP 9.5, Network Time Protocol (NTP) version 3 is supported. NTPv3 includes symmetric authentication using SHA-1 keys which increases network security.

<table>
<thead>
<tr>
<th>To do this...</th>
<th>Use this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure an NTP server without symmetric authentication</td>
<td><code>cluster time-service ntp server create -server server_name</code></td>
</tr>
<tr>
<td>Configure an NTP server with symmetric authentication</td>
<td><code>cluster time-service ntp server create -server server_ip_address -key-id key_id</code></td>
</tr>
<tr>
<td>Enable symmetric authentication for an existing NTP server</td>
<td><code>cluster time-service ntp server modify -server server_name -key-id key_id</code></td>
</tr>
<tr>
<td>To do this...</td>
<td>Use this command...</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Configure a shared NTP key | `cluster time-service ntp key create -id shared_key_id -type shared_key_type -value shared_key_value`
| | Shared keys are referred to by an ID. The ID, its type, and value must be identical on both the node and the NTP server. |
| Configure an NTP server with an unknown key ID | `cluster time-service ntp server create -server server_name -key-id key_id` |
| Configure a server with a key ID not configured on the NTP server. | `cluster time-service ntp server create -server server_name -key-id key_id` |
| | The key ID, type, and value must be identical to the key ID, type, and value configured on the NTP server. |
| Disable symmetric authentication | `cluster time-service ntp server modify -server server_name -authentication disabled` |

Create an SMB server in an Active Directory domain

You can use the `vserver cifs create` command to create an SMB server on the SVM and specify the Active Directory (AD) domain to which it belongs.

Before you begin
The SVM and LIFs that you are using to serve data must have been configured to allow the SMB protocol. The LIFs must be able to connect to the DNS servers that are configured on the SVM and to an AD domain controller of the domain to which you want to join the SMB server.

Any user who is authorized to create machine accounts in the AD domain to which you are joining the SMB server can create the SMB server on the SVM. This can include users from other domains.

Beginning with ONTAP 9.7, your AD administrator can provide you with a URI to a keytab file as an alternative to providing you with a name and password to a privileged Windows account. When you receive the URI, include it in the `-keytab-uri` parameter with the `vserver cifs` commands.

About this task
When creating an SMB server in an Activity Directory domain:

- You must use the fully qualified domain name (FQDN) when specifying the domain.
- The default setting is to add the SMB server machine account to the Active Directory CN=Computer object.
- You can choose to add the SMB server to a different organizational unit (OU) by using the `-ou` option.
• You can optionally choose to add a comma-delimited list of one or more NetBIOS aliases (up to 200) for
the SMB server.

Configuring NetBIOS aliases for an SMB server can be useful when you are consolidating data from other
file servers to the SMB server and want the SMB server to respond to the original servers’ names.

The vserver cifs man pages contain additional optional parameters and naming requirements.

Beginning with ONTAP 9.1, you can enable SMB version 2.0 to connect to a domain controller
(DC). Doing so is necessary if you have disabled SMB 1.0 on domain controllers. Beginning with
ONTAP 9.2, SMB 2.0 is enabled by default.

Beginning with ONTAP 9.8, you can specify that connections to domain controllers be encrypted. ONTAP
requires encryption for domain controller communications when the -encryption-required-for-dc
-connection option is set to true; the default is false. When the option is set, only the SMB3 protocol will
be used for ONTAP-DC connections, because encryption is only supported by SMB3.

SMB management contains more information about SMB server configuration options.

Steps
1. Verify that SMB is licensed on your cluster: system license show -package cifs
 If it is not, contact your sales representative.

 A CIFS license is not required if the SMB server will be used for authentication only.

2. Create the SMB server in an AD domain: vserver cifs create -vserver vserver_name -cifs
 -server smb_server_name -domain FQDN [-ou organizational_unit][-netbios-
 aliases NetBIOS_name, ...][-keytab-uri {(ftp|http://hostname|IP_address)}]
 [-comment text]

 When joining a domain, this command might take several minutes to finish.

 The following command creates the SMB server “smb_server01” in the domain “example.com”:

 cluster1::> vserver cifs create -vserver vs1.example.com -cifs-server
 smb_server01 -domain example.com

 The following command creates the SMB server “smb_server02” in the domain “mydomain.com” and
 authenticates the ONTAP administrator with a keytab file:

 cluster1::> vserver cifs create -vserver vs1.mydomain.com -cifs-server
 smb_server02 -domain mydomain.com -keytab-uri
 http://admin.mydomain.com/ontap1.keytab

3. Verify the SMB server configuration by using the vserver cifs show command.

 In this example, the command output shows that an SMB server named “SMB_SERVER01” was created
 on SVM vs1.example.com, and was joined to the “example.com” domain.
4. If desired, enable encrypted communication with the domain controller (ONTAP 9.8 and later):

```bash
vserver cifs security modify -vserver svm_name -encryption-required-for-dc-connection true
```

Examples

The following command creates a SMB server named “smb_server02” on SVM vs2.example.com in the “example.com” domain. The machine account is created in the “OU=eng,OU=corp,DC=example,DC=com” container. The SMB server is assigned a NetBIOS alias.

```bash
cluster1::> vserver cifs create -vserver vs2.example.com –cifs-server smb_server02 -domain example.com –ou OU=eng,OU=corp -netbios-aliases old_cifs_server01

cluster1::> vserver cifs show -vserver vs1
```

The following command enables a user from a different domain, in this case an administrator of a trusted domain, to create a SMB server named “smb_server03” on SVM vs3.example.com. The `-domain` option specifies the name of the home domain (specified in the DNS configuration) in which you want to create the SMB server. The `username` option specifies the administrator of the trusted domain.

- Home domain: example.com
- Trusted domain: trust.lab.com
- Username for the trusted domain: Administrator1
Create keytab files for SMB authentication

Beginning with ONTAP 9.7, ONTAP supports SVM authentication with Active Directory (AD) servers using keytab files. AD administrators generate a keytab file and make it available to ONTAP administrators as a uniform resource identifier (URI), which is supplied when `vserver cifs` commands require Kerberos authentication with the AD domain.

AD administrators can create the keytab files using the standard Windows Server `ktpass` command. The command should be run on the primary domain where authentication is required. The `ktpass` command can be used to generate keytab files only for primary domain users; keys generated using trusted-domain users are not supported.

Keytab files are generated for specific ONTAP admin users. As long as the admin user’s password does not change, the keys generated for the specific encryption type and domain will not change. Therefore, a new keytab file is required whenever the admin user’s password is changed.

The following encryption types are supported:

- AES256-SHA1
- DES-CBC-MD5
- RC4-HMAC

AES256 is the highest encryption type and should be used if enabled on the ONTAP system.

Keytab files can be generated by specifying either the admin password or by using a randomly-generated password. However, at any given time only one password option can be used, because a private key specific to the admin user is needed at the AD server for decrypting the keys inside the keytab file. Any change in the private key for a specific admin will invalidate the keytab file.

Set up an SMB server in a workgroup

Set up an SMB server in a workgroup overview

Setting up an SMB server as a member in a workgroup consists of creating the SMB server, and then creating local users and groups.

You can configure an SMB server in a workgroup when the Microsoft Active Directory domain infrastructure is not available.
An SMB server in workgroup mode supports only NTLM authentication and does not support Kerberos authentication.

Create an SMB server in a workgroup

You can use the `vserver cifs create` command to create an SMB server on the SVM and specify the workgroup to which it belongs.

Before you begin

The SVM and LIFs that you are using to serve data must have been configured to allow the SMB protocol. The LIFs must be able to connect to the DNS servers that are configured on the SVM.

About this task

SMB servers in workgroup mode do not support the following SMB features:

- SMB3 Witness protocol
- SMB3 CA shares
- SQL over SMB
- Folder Redirection
- Roaming Profiles
- Group Policy Object (GPO)
- Volume Snapshot Service (VSS)

The `vserver cifs` man pages contain additional optional configuration parameters and naming requirements.

Steps

1. Verify that SMB is licensed on your cluster: `system license show -package cifs`

 If it is not, contact your sales representative.

 A CIFS license is not required if the SMB server will be used for authentication only.

2. Create the SMB server in a workgroup: `vserver cifs create -vserver vserver_name -cifs -server cifs_server_name -workgroup workgroup_name [-comment text]`

 The following command creates the SMB server “smb_server01” in the workgroup “workgroup01”:

   ```bash
   cluster1::> vserver cifs create -vserver vs1.example.com -cifs -server SMB_SERVER01 -workgroup workgroup01
   ```

3. Verify the SMB server configuration by using the `vserver cifs show` command.

 In the following example, the command output shows that a SMB server named “smb_server01” was created on SVM vs1.example.com in the workgroup “workgroup01”:
After you finish
For a CIFS server in a workgroup, you must create local users, and optionally local groups, on the SVM.

Related information
SMB management

Create local user accounts

You can create a local user account that can be used to authorize access to data contained in the SVM over an SMB connection. You can also use local user accounts for authentication when creating an SMB session.

About this task
Local user functionality is enabled by default when the SVM is created.

When you create a local user account, you must specify a user name and you must specify the SVM with which to associate the account.

The vserver cifs users-and-groups local-user man pages contain details about optional parameters and naming requirements.

Steps
1. Create the local user: vserver cifs users-and-groups local-user create -vserver vserver_name -user-name user_name optional_parameters

The following optional parameters might be useful:

° -full-name

The user’s full name.

° -description

A description for the local user.
- `is-account-disabled {true|false}`

 Specifies whether the user account is enabled or disabled. If this parameter is not specified, the default is to enable the user account.

 The command prompts for the local user’s password.

2. Enter a password for the local user, and then confirm the password.

3. Verify that the user was successfully created: `vserver cifs users-and-groups local-user show -vserver vserver_name`

Example

The following example creates a local user “SMB_SERVER01\sue”, with a full name “Sue Chang”, associated with SVM vs1.example.com:

```
cluster1::> vserver cifs users-and-groups local-user create -vserver vs1.example.com -user-name SMB_SERVER01\sue -full-name "Sue Chang"
Enter the password:
Confirm the password:

cluster1::> vserver cifs users-and-groups local-user show
Vserver  User Name                  Full Name  Description
-------- -------------------------- ---------- -------------
vs1      SMB_SERVER01\Administrator            Built-in administrator account
vs1      SMB_SERVER01\sue            Sue Chang
```

Create local groups

You can create local groups that can be used for authorizing access to data associated with the SVM over an SMB connection. You can also assign privileges that define what user rights or capabilities a member of the group has.

About this task

Local group functionality is enabled by default when the SVM is created.

When you create a local group, you must specify a name for the group and you must specify the SVM with which to associate the group. You can specify a group name with or without the local domain name, and you can optionally specify a description for the local group. You cannot add a local group to another local group.

The `vserver cifs users-and-groups local-group` man pages contain details about optional parameters and naming requirements.

Steps

1. Create the local group: `vserver cifs users-and-groups local-group create -vserver vserver_name -group-name group_name`
The following optional parameter might be useful:

◦ -description

A description for the local group.

2. Verify that the group was successfully created: `vserver cifs users-and-groups local-group show -vserver vserver_name`

Example

The following example creates a local group “SMB_SERVER01\engineering” associated with SVM vs1:

```
cluster1::> vserver cifs users-and-groups local-group create -vserver vs1.example.com -group-name SMB_SERVER01\engineering
```

```
cluster1::> vserver cifs users-and-groups local-group show -vserver vs1.example.com
```

<table>
<thead>
<tr>
<th>Vserver</th>
<th>Group Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs1.example.com</td>
<td>BUILTIN\Administrators</td>
<td>Built-in Administrators</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>BUILTIN\Backup Operators</td>
<td>Backup Operators group</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>BUILTIN\Power Users</td>
<td>Restricted administrative privileges</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>BUILTIN\Users</td>
<td>All users</td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>SMB_SERVER01\engineering</td>
<td></td>
</tr>
<tr>
<td>vs1.example.com</td>
<td>SMB_SERVER01\sales</td>
<td></td>
</tr>
</tbody>
</table>

After you finish

You must add members to the new group.

Manage local group membership

You can manage local group membership by adding and removing local or domain users, or adding and removing domain groups. This is useful if you want to control access to data based on access controls placed on the group, or if you want users to have privileges associated with that group.

About this task

If you no longer want a local user, domain user, or domain group to have access rights or privileges based on membership in a group, you can remove the member from the group.

You must keep the following in mind when adding members to a local group:

- You cannot add users to the special Everyone group.
- You cannot add a local group to another local group.
- To add a domain user or group to a local group, ONTAP must be able to resolve the name to a SiD.
You must keep the following in mind when removing members from a local group:

• You cannot remove members from the special *Everyone* group.
• To remove a member from a local group, ONTAP must be able to resolve their name to a SID.

Steps

1. Add a member to or remove a member from a group.

 ◦ **Add a member**:

   ```
   vserver cifs users-and-groups local-group add-members
   -vserver vserver_name -group-name group_name -member-names name[,..]
   ```

 You can specify a comma-delimited list of local users, domain users, or domain groups to add to the specified local group.

 ◦ **Remove a member**:

   ```
   vserver cifs users-and-groups local-group remove-members
   -vserver vserver_name -group-name group_name -member-names name[,..]
   ```

 You can specify a comma-delimited list of local users, domain users, or domain groups to remove from the specified local group.

Examples

The following example adds a local user “SMB_SERVER01\sue” to the local group “SMB_SERVER01\engineering” on SVM vs1.example.com:

```
cluster1::> vserver cifs users-and-groups local-group add-members
   -vserver vs1.example.com -group-name SMB_SERVER01\engineering
   -member-names SMB_SERVER01\sue
```

The following example removes the local users “SMB_SERVER01\sue” and “SMB_SERVER01\james” from the local group “SMB_SERVER01\engineering” on SVM vs1.example.com:

```
cluster1::> vserver cifs users-and-groups local-group remove-members
   -vserver vs1.example.com -group-name SMB_SERVER\engineering
   -member-names SMB_SERVER\sue,SMB_SERVER\james
```

Verify enabled SMB versions

Your ONTAP 9 release determines which SMB versions are enabled by default for connections with clients and domain controllers. You should verify that the SMB server supports the clients and functionality required in your environment.

About this task

For connections with both clients and domain controllers, you should enable SMB 2.0 and later whenever possible. For security reasons, you should avoid using SMB 1.0, and you should disable it if you have verified that it is not required in your environment.

In ONTAP 9, SMB versions 2.0 and later are enabled by default for client connections, but the version of SMB 1.0 enabled by default depends on your ONTAP release.
• Beginning with ONTAP 9.1 P8, SMB 1.0 can be disabled on SVMs.

The `--smb1-enabled` option to the `vserver cifs options modify` command enables or disables SMB 1.0.

• Beginning with ONTAP 9.3, it is disabled by default on new SVMs.

If your SMB server is in an Active Directory (AD) domain, you can enable SMB 2.0 to connect to a domain controller (DC) beginning with ONTAP 9.1. Doing so is necessary if you have disabled SMB 1.0 on DCs. Beginning with ONTAP 9.2, SMB 2.0 is enabled by default for DC connections.

If `-smb1-enabled-for-dc-connections` is set to `false` while `-smb1-enabled` is set to `true`, ONTAP denies SMB 1.0 connections as the client, but continues to accept inbound SMB 1.0 connections as the server.

SMB management contains details about supported SMB versions and functionality.

Steps

1. Set the privilege level to advanced: `set --privilege advanced`

2. Verify which SMB versions are enabled: `vserver cifs options show`

You can scroll down the list to view the SMB versions enabled for client connections, and if you are configuring an SMB server in an AD domain, for AD domain connections.

3. Enable or disable the SMB protocol for client connections as required:

 • To enable an SMB version: `vserver cifs options modify -vserver vserver_name smb_version true`

 • To disable an SMB version: `vserver cifs options modify -vserver vserver_name smb_version false` Possible values for `smb_version`:

 ° `-smb1-enabled`
 ° `-smb2-enabled`
 ° `-smb3-enabled`
 ° `-smb31-enabled`

 The following command enables SMB 3.1 on SVM vs1.example.com:

   ```
   cluster1::*> vserver cifs options modify -vserver vs1.example.com -smb31-enabled true
   ```

4. If your SMB server is in an Active Directory domain, enable or disable the SMB protocol for DC connections as required:

 • To enable an SMB version: `vserver cifs security modify -vserver vserver_name -smb2-enabled-for-dc-connections true`

 • To disable an SMB version: `vserver cifs security modify -vserver vserver_name -smb2-enabled-for-dc-connections false`

5. Return to the admin privilege level: `set --privilege admin`
Map the SMB server on the DNS server

Your site’s DNS server must have an entry pointing the SMB server name, and any NetBIOS aliases, to the IP address of the data LIF so that Windows users can map a drive to the SMB server name.

Before you begin
You must have administrative access to your site’s DNS server. If you do not have administrative access, you must ask the DNS administrator to perform this task.

About this task
If you use NetBIOS aliases for the SMB server name, it is a best practice to create DNS server entry points for each alias.

Steps
1. Log in to the DNS server.
2. Create forward (A - Address record) and reverse (PTR - Pointer record) lookup entries to map the SMB server name to the IP address of the data LIF.
3. If you use NetBIOS aliases, create an Alias canonical name (CNAME resource record) lookup entry to map each alias to the IP address of the SMB server’s data LIF.

Results
After the mapping is propagated across the network, Windows users can map a drive to the SMB server name or its NetBIOS aliases.
Copyright information

Copyright © 2022 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data - Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.