Manage SMB server security settings

ONTAP 9

NetApp
November 28, 2022

This PDF was generated from https://docs.netapp.com/us-en/ontap/smb-admin/authentication-access-security-concept.html on November 28, 2022. Always check docs.netapp.com for the latest.
Table of Contents

- Manage SMB server security settings ... 1
 - How ONTAP handles SMB client authentication ... 1
- Guidelines for SMB server security settings in an SVM disaster recovery configuration ... 1
- Display information about SMB server security settings ... 2
- Enable or disable required password complexity for local SMB users ... 3
- Modify the CIFS server Kerberos security settings ... 5
- Set the SMB server minimum authentication security level ... 6
- Configure strong security for Kerberos-based communication by using AES encryption ... 7
- Enable or disable AES encryption for Kerberos-based communication ... 8
- Use SMB signing to enhance network security ... 9
- Configure required SMB encryption on SMB servers for data transfers over SMB ... 19
- Secure LDAP session communication ... 27
Manage SMB server security settings

How ONTAP handles SMB client authentication

Before users can create SMB connections to access data contained on the SVM, they must be authenticated by the domain to which the SMB server belongs. The SMB server supports two authentication methods, Kerberos and NTLM (NTLMv1 or NTLMv2). Kerberos is the default method used to authenticate domain users.

Kerberos authentication

ONTAP supports Kerberos authentication when creating authenticated SMB sessions.

Kerberos is the primary authentication service for Active Directory. The Kerberos server, or Kerberos Key Distribution Center (KDC) service, stores and retrieves information about security principles in the Active Directory. Unlike the NTLM model, Active Directory clients who want to establish a session with another computer, such as the SMB server, contact a KDC directly to obtain their session credentials.

NTLM authentication

NTLM client authentication is done using a challenge response protocol based on shared knowledge of a user-specific secret based on a password.

If a user creates an SMB connection using a local Windows user account, authentication is done locally by the SMB server using NTLMv2.

Guidelines for SMB server security settings in an SVM disaster recovery configuration

Before creating an SVM that is configured as a disaster recovery destination where the identity is not preserved (the -identity-preserve option is set to false in the SnapMirror configuration), you should know about how SMB server security settings are managed on the destination SVM.

- Non-default SMB server security settings are not replicated to the destination.

 When you create a SMB server on the destination SVM, all SMB server security settings are set to default values. When the SVM disaster recovery destination is initialized, updated, or resynced, the SMB server security settings on the source are not replicated to the destination.

- You must manually configure non-default SMB server security settings.

 If you have non-default SMB server security settings configured on the source SVM, you must manually configure these same settings on the destination SVM after the destination becomes read-write (after the SnapMirror relationship is broken).
Display information about SMB server security settings

You can display information about SMB server security settings on your storage virtual machines (SVMs). You can use this information to verify that the security settings are correct.

About this task
A displayed security setting can be the default value for that object or a non-default value that is configured either by using the ONTAP CLI or by using Active Directory group policy objects (GPOs).

Do not use the `vserver cifs security show` command for SMB servers in workgroup mode, because some of the options are not valid.

Step
1. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want display information about…</th>
<th>Enter the command…</th>
</tr>
</thead>
<tbody>
<tr>
<td>All security settings on a specified SVM</td>
<td><code>vserver cifs security show -vserver vserver_name</code></td>
</tr>
<tr>
<td>A specific security setting or settings on the SVM</td>
<td><code>vserver cifs security show -vserver _vserver_name_ -fields [fieldname,...]</code>
You can enter <code>-fields ?</code> to determine what fields you can use.</td>
</tr>
</tbody>
</table>

Example
The following example shows all security settings for SVM vs1:
cluster1::> vserver cifs security show -vserver vs1

Vserver: vs1

 Kerberos Clock Skew: 5 minutes
 Kerberos Ticket Age: 10 hours
 Kerberos Renewal Age: 7 days
 Kerberos KDC Timeout: 3 seconds
 Is Signing Required: false
 Is Password Complexity Required: true
 Use start_tls For AD LDAP connection: false
 Is AES Encryption Enabled: false
 LM Compatibility Level: lm-ntlm-ntlmv2-krb
 Is SMB Encryption Required: false
 Client Session Security: none
 SMB1 Enabled for DC Connections: false
 SMB2 Enabled for DC Connections: system-default
 LDAP Referral Enabled For AD LDAP connections: false
 Use LDAPS for AD LDAP connection: false
 Encryption is required for DC Connections: false
 AES session key enabled for NetLogon channel: false
 Try Channel Binding For AD LDAP Connections: false

Note that the settings displayed depend on the running ONTAP version.

The following example shows the Kerberos clock skew for SVM vs1:

cluster1::> vserver cifs security show -vserver vs1 -fields kerberos-clock-skew

 vserver kerberos-clock-skew
 ------- -------------------
 vs1 5

Related information
Displaying information about GPO configurations

Enable or disable required password complexity for local SMB users

Required password complexity provides enhanced security for local SMB users on your storage virtual machines (SVMs). The required password complexity feature is enabled by default. You can disable it and reenable it at any time.
Before you begin

Local users, local groups, and local user authentication must be enabled on the CIFS server.

About this task

You must not use the `vserver cifs security modify` command for a CIFS server in workgroup mode because some of the options are not valid.

Steps

1. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want required password complexity for local SMB users to be...</th>
<th>Enter the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td><code>vserver cifs security modify -vserver vserver_name -is-password-complexity -required true</code></td>
</tr>
<tr>
<td>Disabled</td>
<td><code>vserver cifs security modify -vserver vserver_name -is-password-complexity -required false</code></td>
</tr>
</tbody>
</table>

2. Verify the security setting for required password complexity: `vserver cifs security show -vserver vserver_name`

Example

The following example shows that required password complexity is enabled for local SMB users for SVM vs1:

```
cluster1::> vserver cifs security modify -vserver vs1 -is-password-complexity-required true

cluster1::> vserver cifs security show -vserver vs1 -fields is-password-complexity-required
vserver is-password-complexity-required
------- -------------------------------
vs1     true
```

Related information

- Displaying information about CIFS server security settings
- Using local users and groups for authentication and authorization
- Requirements for local user passwords
- Changing local user account passwords
Modify the CIFS server Kerberos security settings

You can modify certain CIFS server Kerberos security settings, including the maximum allowed Kerberos clock skew time, the Kerberos ticket lifetime, and the maximum number of ticket renewal days.

About this task

Modifying CIFS server Kerberos settings by using the `vserver cifs security modify` command modifies the settings only on the single storage virtual machine (SVM) that you specify with the `-vserver` parameter. You can centrally manage Kerberos security settings for all SVMs on the cluster belonging to the same Active Directory domain by using Active Directory group policy objects (GPOs).

Steps

1. Perform one or more of the following actions:

<table>
<thead>
<tr>
<th>If you want to…</th>
<th>Enter…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the maximum allowed Kerberos clock skew time in minutes.</td>
<td><code>vserver cifs security modify -vserver vserver_name -kerberos-clock-skew integer_in_minutes</code>
The default setting is 5 minutes.</td>
</tr>
<tr>
<td>Specify the Kerberos ticket lifetime in hours.</td>
<td><code>vserver cifs security modify -vserver vserver_name -kerberos-ticket-age integer_in_hours</code>
The default setting is 10 hours.</td>
</tr>
<tr>
<td>Specify the maximum number of ticket renewal days.</td>
<td><code>vserver cifs security modify -vserver vserver_name -kerberos-renew-age integer_in_days</code>
The default setting is 7 days.</td>
</tr>
<tr>
<td>Specify the timeout for sockets on KDCs after which all KDCs are marked as unreachable.</td>
<td><code>vserver cifs security modify -vserver vserver_name -kerberos-kdc-timeout integer_in_seconds</code>
The default setting is 3 seconds.</td>
</tr>
</tbody>
</table>

2. Verify the Kerberos security settings:

`vserver cifs security show -vserver vserver_name`

Example

The following example makes the following changes to Kerberos security: “Kerberos Clock Skew” is set to 3 minutes and “Kerberos Ticket Age” is set to 8 hours for SVM vs1:
Related information
Displaying information about CIFS server security settings

Supported GPOs
Applying Group Policy Objects to CIFS servers

Set the SMB server minimum authentication security level

You can set the SMB server minimum security level, also known as the \textbf{LMCompatibilityLevel}, on your SMB server to meet your business security requirements for SMB client access. The minimum security level is the minimum level of the security tokens that the SMB server accepts from SMB clients.

\textbf{About this task}

- SMB servers in workgroup mode support only NTLM authentication. Kerberos authentication is not supported.
- \texttt{LMCompatibilityLevel} applies only to SMB client authentication, not admin authentication.

You can set the minimum authentication security level to one of four supported security levels.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{lm-ntlm-ntlmv2-krb} (default)</td>
<td>The storage virtual machine (SVM) accepts LM, NTLM, NTLMv2, and Kerberos authentication security.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>ntlm-ntlmv2-krb</td>
<td>The SVM accepts NTLM, NTLMv2, and Kerberos authentication security. The SVM denies LM authentication.</td>
</tr>
<tr>
<td>ntlmv2-krb</td>
<td>The SVM accepts NTLMv2 and Kerberos authentication security. The SVM denies LM and NTLM authentication.</td>
</tr>
<tr>
<td>krb</td>
<td>The SVM accepts Kerberos authentication security only. The SVM denies LM, NTLM, and NTLMv2 authentication.</td>
</tr>
</tbody>
</table>

Steps

1. Set the minimum authentication security level:
   ```bash
   vserver cifs security modify -vserver vserver_name -lm-compatibility-level {lm-ntlm-ntlmv2-krb|ntlm-ntlmv2-krb|ntlmv2-krb|krb}
   ```

2. Verify that the authentication security level is set to the desired level:
   ```bash
   vserver cifs security show -vserver vserver_name
   ```

Related information

- Enabling or disabling AES encryption for Kerberos-based communication

Configure strong security for Kerberos-based communication by using AES encryption

For strongest security with Kerberos-based communication, you can enable AES-256 and AES-128 encryption on the SMB server. By default, when you create a SMB server on the SVM, AES encryption is disabled. You must enable it to take advantage of the strong security provided by Advanced Encryption Standard (AES) encryption.

Kerberos-related communication for SMB is used during SMB server creation on the SVM, as well as during the SMB session setup phase. The SMB server supports the following encryption types for Kerberos communication:

- RC4-HMAC
- DES
- AES 128
- AES 256

If you want to use the highest security encryption type for Kerberos communication, you should enable AES encryption for Kerberos communication on the SVM.
Intel AES New Instructions (Intel AES NI) is available in SMB 3.0, improving on the AES algorithm and accelerating data encryption with supported processor families. Beginning with SMB 3.1.1, AES-128-GCM replaces AES-128-CCM as the hash algorithm used by SMB encryption.

When the SMB server is created, the domain controller creates a computer machine account in Active Directory. At this time, the KDC becomes aware of the encryption capabilities of the particular machine account. Subsequently, a particular encryption type is selected for encrypting the service ticket that the client presents to the server during authentication.

Related information
Modifying the CIFS server Kerberos security settings

Enable or disable AES encryption for Kerberos-based communication

To take advantage of the strongest security with Kerberos-based communication, you can enable AES-256 and AES-128 encryption on the SMB server. If you do not want the SMB server to select the AES encryption types for Kerberos-based communication with the Active Directory (AD) KDC, you can disable AES encryption. By default, AES encryption is disabled.

About this task
To enhance security, the storage virtual machine (SVM) changes its machine account password in the AD each time the AES security option is modified. Changing the password might require administrative AD credentials for the organizational unit (OU) that contains the machine account.

If an SVM is configured as a disaster recovery destination where the identity is not preserved (the -identity -preserve option is set to false in the SnapMirror configuration), the non-default SMB server security settings are not replicated to the destination. If you have enabled AES encryption on the source SVM, you must manually enable it on the destination SVM after the destination becomes read-write (after the SnapMirror relationship is broken).

Steps
1. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want the AES encryption types for Kerberos communication to be...</th>
<th>Enter the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>vserver cifs security modify -vserver vserver_name -is-aes-encryption-enabled true</td>
</tr>
<tr>
<td>Disabled</td>
<td>vserver cifs security modify -vserver vserver_name -is-aes-encryption-enabled false</td>
</tr>
</tbody>
</table>

2. Verify that AES encryption is enabled or disabled as desired: vserver cifs security show -vserver vserver_name -fields is-aes-encryption-enabled
The `is-aes-encryption-enabled` field displays `true` if AES encryption is enabled and `false` if it is disabled.

Example
The following example enables the AES encryption types for the CIFS server on SVM vs1:

```bash
cluster1::> vserver cifs security modify -vserver vs1 -is-aes-encryption-enabled true
cluster1::> vserver cifs security show -vserver vs1 -fields is-aes-encryption-enabled
vserver  is-aes-encryption-enabled
-------- -------------------------
vs1      true
```

The following example enables the AES encryption types for the SMB server on SVM vs2. The administrator is prompted to enter the administrative AD credentials for the OU containing the SMB server:

```bash
cluster1::> vserver cifs security modify -vserver vs2 -is-aes-encryption-enabled true
Info: In order to enable SMB AES encryption, the password for the SMB server
machine account must be reset. Enter the username and password for the
SMB domain "EXAMPLE.COM".

Enter your user ID: administrator

Enter your password:

cluster1::> vserver cifs security show -vserver vs2 -fields is-aes-encryption-enabled
vserver  is-aes-encryption-enabled
-------- -------------------------
vs2      true
```

Use SMB signing to enhance network security

Use SMB signing to enhance network security overview

SMB signing helps to ensure that network traffic between the SMB server and the client is not compromised; it does this by preventing replay attacks. By default, ONTAP supports SMB signing when requested by the client. Optionally, the storage administrator can
configure the SMB server to require SMB signing.

How SMB signing policies affect communication with a CIFS server

In addition to the CIFS server SMB signing security settings, two SMB signing policies on Windows clients control the digital signing of communications between clients and the CIFS server. You can configure the setting that meets your business requirements.

Client SMB policies are controlled through Windows local security policy settings, which are configured by using the Microsoft Management Console (MMC) or Active Directory GPOs. For more information about client SMB signing and security issues, see the Microsoft Windows documentation.

Here are descriptions of the two SMB signing policies on Microsoft clients:

- **Microsoft network client: Digitally sign communications (if server agrees)**

 This setting controls whether the client’s SMB signing capability is enabled. It is enabled by default. When this setting is disabled on the client, the client communications with the CIFS server depends on the SMB signing setting on the CIFS server.

- **Microsoft network client: Digitally sign communications (always)**

 This setting controls whether the client requires SMB signing to communicate with a server. It is disabled by default. When this setting is disabled on the client, SMB signing behavior is based on the policy setting for *Microsoft network client: Digitally sign communications (if server agrees)* and the setting on the CIFS server.

> If your environment includes Windows clients configured to require SMB signing, you must enable SMB signing on the CIFS server. If you do not, the CIFS server cannot serve data to these systems.

The effective results of client and CIFS server SMB signing settings depends on whether the SMB sessions uses SMB 1.0 or SMB 2.x and later.

The following table summarizes the effective SMB signing behavior if the session uses SMB 1.0:

<table>
<thead>
<tr>
<th>Client</th>
<th>ONTAP—signing not required</th>
<th>ONTAP—signing required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signing disabled and not required</td>
<td>Not signed</td>
<td>Signed</td>
</tr>
<tr>
<td>Signing enabled and not required</td>
<td>Not signed</td>
<td>Signed</td>
</tr>
<tr>
<td>Signing disabled and required</td>
<td>Signed</td>
<td>Signed</td>
</tr>
<tr>
<td>Signing enabled and required</td>
<td>Signed</td>
<td>Signed</td>
</tr>
</tbody>
</table>

> Older Windows SMB 1 clients and some non-Windows SMB 1 clients might fail to connect if signing is disabled on the client but required on the CIFS server.

The following table summarizes the effective SMB signing behavior if the session uses SMB 2.x or SMB 3.0:
For SMB 2.x and SMB 3.0 clients, SMB signing is always enabled. It cannot be disabled.

<table>
<thead>
<tr>
<th>Client</th>
<th>ONTAP—signing not required</th>
<th>ONTAP—signing required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signing not required</td>
<td>Not signed</td>
<td>Signed</td>
</tr>
<tr>
<td>Signing required</td>
<td>Signed</td>
<td>Signed</td>
</tr>
</tbody>
</table>

The following table summarizes the default Microsoft client and server SMB signing behavior:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Hash algorithm</th>
<th>Can enable/disabl e</th>
<th>Can require/not require</th>
<th>Client default</th>
<th>Server default</th>
<th>DC default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMB 1.0</td>
<td>MD5</td>
<td>Yes</td>
<td>Yes</td>
<td>Enabled (not required)</td>
<td>Disabled (not required)</td>
<td>Required</td>
</tr>
<tr>
<td>SMB 2.x</td>
<td>HMAC SHA-256</td>
<td>No</td>
<td>Yes</td>
<td>Not required</td>
<td>Not required</td>
<td>Required</td>
</tr>
<tr>
<td>SMB 3.0</td>
<td>AES-CMAC.</td>
<td>No</td>
<td>Yes</td>
<td>Not required</td>
<td>Not required</td>
<td>Required</td>
</tr>
</tbody>
</table>

Microsoft no longer recommends using Digitally sign communications (if client agrees) or Digitally sign communications (if server agrees) Group Policy settings. Microsoft also no longer recommends using the EnableSecuritySignature registry settings. These options only affect the SMB 1 behavior and can be replaced by the Digitally sign communications (always) Group Policy setting or the RequireSecuritySignature registry setting. You can also get more information from the Microsoft Blog. [The Basics of SMB Signing (covering both SMB1 and SMB2)]

Performance impact of SMB signing

When SMB sessions use SMB signing, all SMB communications to and from Windows clients experience a performance impact, which affects both the clients and the server (that is, the nodes on the cluster running the SVM containing the SMB server).

The performance impact shows as increased CPU usage on both the clients and the server, although the amount of network traffic does not change.

The extent of the performance impact depends on the version of ONTAP 9 you are running. Beginning with ONTAP 9.7, a new encryption off-load algorithm can enable better performance in signed SMB traffic. SMB signing offload is enabled by default when SMB signing is enabled.

Enhanced SMB signing performance requires AES-NI offload capability. See the Hardware Universe (HWU) to verify that AES-NI offload is supported for your platform.

Further performance improvements are also possible if you are able to use SMB version 3.11 (supported with
Windows 10 and Windows Server 2016), which supports the much faster GCM algorithm.

Depending on your network, ONTAP 9 version, SMB version, and SVM implementation, the performance impact of SMB signing can vary widely; you can verify it only through testing in your network environment.

Most Windows clients negotiate SMB signing by default if it is enabled on the server. If you require SMB protection for some of your Windows clients, and if SMB signing is causing performance issues, you can disable SMB signing on any of your Windows clients that do not require protection against replay attacks. For information about disabling SMB signing on Windows clients, see the Microsoft Windows documentation.

Recommendations for configuring SMB signing

You can configure SMB signing behavior between SMB clients and the CIFS server to meet your security requirements. The settings you choose when configuring SMB signing on your CIFS server are dependent on what your security requirements are.

You can configure SMB signing on either the client or the CIFS server. Consider the following recommendations when configuring SMB signing:

<table>
<thead>
<tr>
<th>If...</th>
<th>Recommendation...</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to increase the security of the communication between the client and the server</td>
<td>Make SMB signing required at the client by enabling the Require Option (Sign always) security setting on the client.</td>
</tr>
<tr>
<td>You want all SMB traffic to a certain storage virtual machine (SVM) signed</td>
<td>Make SMB signing required on the CIFS server by configuring the security settings to require SMB signing.</td>
</tr>
</tbody>
</table>

See Microsoft documentation for more information on configuring Windows client security settings.

Guidelines for SMB signing when multiple data LIFS are configured

If you enable or disable required SMB signing on the SMB server, you should be aware of the guidelines for multiple data LIFS configurations for an SVM.

When you configure a SMB server, there might be multiple data LIFs configured. If so, the DNS server contains multiple A record entries for the CIFS server, all using the same SMB server host name, but each with a unique IP address. For example, a SMB server that has two data LIFs configured might have the following DNS A record entries:

```
10.1.1.128 A VS1.IEPUB.LOCAL VS1
10.1.1.129 A VS1.IEPUB.LOCAL VS1
```

The normal behavior is that upon changing the required SMB signing setting, only new connections from clients are affected by the change in the SMB signing setting. However, there is an exception to this behavior. There is a case where a client has an existing connection to a share, and the client creates a new connection to the same share after the setting is changed, while maintaining the original connection. In this case, both the new and the existing SMB connection adopt the new SMB signing requirements.
Consider the following example:

1. Client1 connects to a share without required SMB signing using the path O:\.
2. The storage administrator modifies the SMB server configuration to require SMB signing.
3. Client1 connects to the same share with required SMB signing using the path S:\ (while maintaining the connection using the path O:\).
4. The result is that SMB signing is used when accessing data over both the O:\ and S:\ drives.

Enable or disable required SMB signing for incoming SMB traffic

You can enforce the requirement for clients to sign SMB messages by enabling required SMB signing. If enabled, ONTAP accepts SMB messages only if they have valid signatures. If you want to permit SMB signing, but not require it, you can disable required SMB signing.

About this task

By default, required SMB signing is disabled. You can enable or disable required SMB signing at any time.

SMB signing is not disabled by default under the following circumstances:

1. Required SMB signing is enabled, and the cluster is reverted to a version of ONTAP that does not support SMB signing.
2. The cluster is subsequently upgraded to a version of ONTAP that supports SMB signing.

Under these circumstances, the SMB signing configuration that was originally configured on a supported version of ONTAP is retained through reversion and subsequent upgrade.

When you set up a storage virtual machine (SVM) disaster recovery relationship, the value that you select for the -identity-preserve option of the snapmirror create command determines the configuration details that are replicated in the destination SVM.

If you set the -identity-preserve option to true (ID-preserve), the SMB signing security setting is replicated to the destination.

If you set the -identity-preserve option to false (non-ID-preserve), the SMB signing security setting is not replicated to the destination. In this case, the CIFS server security settings on the destination are set to the default values. If you have enabled required SMB signing on the source SVM, you must manually enable required SMB signing on the destination SVM.

Steps

1. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want required SMB signing to be...</th>
<th>Enter the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>vserver cifs security modify -vserver vserver_name -is-signing-required true</td>
</tr>
</tbody>
</table>
If you want required SMB signing to be...

<table>
<thead>
<tr>
<th>Enter the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
</tr>
</tbody>
</table>

vserver cifs security modify -vserver vserver_name -is-signing-required false

2. Verify that required SMB signing is enabled or disabled by determining whether the value in the Is Signing Required field in the output of the following command is set to the desired value:

text

vserver cifs security show -vserver vserver_name -fields is-signing-required

Example

The following example enables required SMB signing for SVM vs1:

<table>
<thead>
<tr>
<th>cluster1::> vserver cifs security modify -vserver vs1 -is-signing-required true</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1::> vserver cifs security show -vserver vs1 -fields is-signing-required</td>
</tr>
<tr>
<td>vserver is-signing-required</td>
</tr>
<tr>
<td>--------- ----------------------</td>
</tr>
<tr>
<td>vs1 true</td>
</tr>
</tbody>
</table>

Determine whether SMB sessions are signed

You can display information about connected SMB sessions on the CIFS server. You can use this information to determine whether SMB sessions are signed. This can be helpful in determining whether SMB client sessions are connecting with the desired security settings.

Steps

1. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want display information about...</th>
<th>Enter the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>All signed sessions on a specified storage virtual machine (SVM)</td>
<td>vserver cifs session show -vserver vserver_name -is-session-signed true</td>
</tr>
<tr>
<td>Details for a signed session with a specific session ID on the SVM</td>
<td>vserver cifs session show -vserver vserver_name -session-id integer -instance</td>
</tr>
</tbody>
</table>

Examples

The following command displays session information about signed sessions on SVM vs1. The default summary output does not display the “Is Session Signed” output field:
The following command displays detailed session information, including whether the session is signed, on an SMB session with a session ID of 2:

```
cluster1::> vserver cifs session show -vserver vs1 -session-id 2 -instance
```

Node: node1
Vserver: vs1
Session ID: 2
Connection ID: 3151274158
Incoming Data LIF IP Address: 10.2.1.1
Workstation: 10.1.1.2
Authentication Mechanism: Kerberos
Windows User: DOMAIN\joe
UNIX User: pcuser
Open Shares: 1
Open Files: 1
Open Other: 0
Connected Time: 10m 43s
Idle Time: 1m 19s
Protocol Version: SMB3
Continuously Available: No
Is Session Signed: true
User Authenticated as: domain-user
NetBIOS Name: CIFS_ALIAS1
SMB Encryption Status: Unencrypted
• cifs enables you to monitor SMB signing for all SMB sessions.
• smb1 enables you to monitor SMB signing for SMB 1.0 sessions.
• smb2 enables you to monitor SMB signing for SMB 2.x and SMB 3.0 sessions.

SMB 3.0 statistics are included in the output for the smb2 object.

If you want to compare the number of signed session to the total number of sessions, you can compare output for the signed_sessions counter with the output for the established_sessions counter.

You must start a statistics sample collection before you can view the resultant data. You can view data from the sample if you do not stop data collection. Stopping data collection gives you a fixed sample. Not stopping data collection gives you the ability to get updated data that you can use to compare against previous queries. The comparison can help you identify trends.

Steps
1. Set the privilege level to advanced: set -privilege advanced
2. Start a data collection: statistics start -object {cifs|smb1|smb2} -instance instance -sample-id sample_ID [-node node_name]

 If you do not specify the -sample-id parameter, the command generates a sample identifier for you and defines this sample as the default sample for the CLI session. The value for -sample-id is a text string. If you run this command during the same CLI session and do not specify the -sample-id parameter, the command overwrites the previous default sample.

 You can optionally specify the node on which you want to collect statistics. If you do not specify the node, the sample collects statistics for all nodes in the cluster.

3. Use the statistics stop command to stop collecting data for the sample.
4. View SMB signing statistics:

<table>
<thead>
<tr>
<th>If you want to view information for...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed sessions</td>
<td>show -sample-id sample_ID -counter signed_sessions</td>
</tr>
<tr>
<td>Signed sessions and established sessions</td>
<td>show -sample-id sample_ID -counter signed_sessions</td>
</tr>
</tbody>
</table>

 If you want to display information for only a single node, specify the optional -node parameter.

5. Return to the admin privilege level: set -privilege admin

Examples
The following example shows how you can monitor SMB 2.x and SMB 3.0 signing statistics on storage virtual machine (SVM) vs1.
The following command moves to the advanced privilege level:

```
cluster1::> set -privilege advanced
```

Warning: These advanced commands are potentially dangerous; use them only when directed to do so by support personnel.
Do you want to continue? {y|n}: y

The following command starts data collection for a new sample:

```
cluster1::*> statistics start -object smb2 -sample-id smbsigning_sample -vserver vs1
Statistics collection is being started for Sample-id: smbsigning_sample
```

The following command stops the data collection for the sample:

```
cluster1::*> statistics stop -sample-id smbsigning_sample
Statistics collection is being stopped for Sample-id: smbsigning_sample
```

The following command shows signed SMB sessions and established SMB sessions by node from the sample:
cluster1::*> statistics show -sample-id smbsigning_sample -counter signed_sessions|established_sessions|node_name

Object: smb2
Instance: vs1
Start-time: 2/6/2013 01:00:00
End-time: 2/6/2013 01:03:04
Cluster: cluster1

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>established_sessions</td>
<td>0</td>
</tr>
<tr>
<td>node_name</td>
<td>node1</td>
</tr>
<tr>
<td>signed_sessions</td>
<td>0</td>
</tr>
<tr>
<td>established_sessions</td>
<td>1</td>
</tr>
<tr>
<td>node_name</td>
<td>node2</td>
</tr>
<tr>
<td>signed_sessions</td>
<td>1</td>
</tr>
<tr>
<td>established_sessions</td>
<td>0</td>
</tr>
<tr>
<td>node_name</td>
<td>node3</td>
</tr>
<tr>
<td>signed_sessions</td>
<td>0</td>
</tr>
<tr>
<td>established_sessions</td>
<td>0</td>
</tr>
<tr>
<td>node_name</td>
<td>node4</td>
</tr>
</tbody>
</table>

The following command shows signed SMB sessions for node2 from the sample:

cluster1::*> statistics show -sample-id smbsigning_sample -counter signed_sessions|node_name -node node2

Object: smb2
Instance: vs1
Start-time: 2/6/2013 01:00:00
End-time: 2/6/2013 01:22:43
Cluster: cluster1

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>node_name</td>
<td>node2</td>
</tr>
<tr>
<td>signed_sessions</td>
<td>1</td>
</tr>
</tbody>
</table>

The following command moves back to the admin privilege level:

cluster1::*> set -privilege admin
Configure required SMB encryption on SMB servers for data transfers over SMB

SMB encryption overview

SMB encryption for data transfers over SMB is a security enhancement that you can enable or disable on SMB servers. You can also configure the desired SMB encryption setting on a share-by-share basis through a share property setting.

By default, when you create a SMB server on the storage virtual machine (SVM), SMB encryption is disabled. You must enable it to take advantage of the enhanced security provided by SMB encryption.

To create an encrypted SMB session, the SMB client must support SMB encryption. Windows clients beginning with Windows Server 2012 and Windows 8 support SMB encryption.

SMB encryption on the SVM is controlled through two settings:

- A SMB server security option that enables the functionality on the SVM
- A SMB share property that configures the SMB encryption setting on a share-by-share basis

You can decide whether to require encryption for access to all data on the SVM or to require SMB encryption to access data only in selected shares. SVM-level settings supersede share-level settings.

The effective SMB encryption configuration depends on the combination of the two settings and is described in the following table:

<table>
<thead>
<tr>
<th>SMB server SMB encryption enabled</th>
<th>Share encrypt data setting enabled</th>
<th>Server-side encryption behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>False</td>
<td>Server-level encryption is enabled for all of the shares in the SVM. With this configuration, encryption happens for the entire SMB session.</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>Server-level encryption is enabled for all of the shares in the SVM irrespective of share-level encryption. With this configuration, encryption happens for the entire SMB session.</td>
</tr>
</tbody>
</table>
SMB server SMB encryption enabled

<table>
<thead>
<tr>
<th>SMB server SMB encryption enabled</th>
<th>Share encrypt data setting enabled</th>
<th>Server-side encryption behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>True</td>
<td>Share-level encryption is enabled for the specific shares. With this configuration, encryption happens from the tree connect.</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>No encryption is enabled.</td>
</tr>
</tbody>
</table>

SMB clients that do not support encryption cannot connect to a SMB server or share that requires encryption.

Performance impact of SMB encryption

When SMB sessions use SMB encryption, all SMB communications to and from Windows clients experience a performance impact, which affects both the clients and the server (that is, the nodes on the cluster running the SVM that contains the SMB server).

The performance impact shows as increased CPU usage on both the clients and the server, although the amount of network traffic does not change.

The extent of the performance impact depends on the version of ONTAP 9 you are running. Beginning with ONTAP 9.7, a new encryption off-load algorithm can enable better performance in encrypted SMB traffic. SMB encryption offload is enabled by default when SMB encryption is enabled.

Enhanced SMB encryption performance requires AES-NI offload capability. See the Hardware Universe (HWU) to verify that AES-NI offload is supported for your platform.

Further performance improvements are also possible if you are able to use SMB version 3.11 (supported with Windows 10 and Windows Server 2016), which supports the much faster GCM algorithm.

Depending on your network, ONTAP 9 version, SMB version, and SVM implementation, the performance impact of SMB encryption can vary widely; you can verify it only through testing in your network environment.

SMB encryption is disabled by default on the SMB server. You should enable SMB encryption only on those SMB shares or SMB servers that require encryption. With SMB encryption, ONTAP performs additional processing of decrypting the requests and encrypting the responses for every request. SMB encryption should therefore be enabled only when necessary.

Enable or disable required SMB encryption for incoming SMB traffic

If you want to require SMB encryption for incoming SMB traffic you can enable it on the CIFS server or at the share level. By default, SMB encryption is not required.

About this task

You can enable SMB encryption on the CIFS server, which applies to all shares on the CIFS server. If you do not want required SMB encryption for all shares on the CIFS server or if you want to enable required SMB encryption for incoming SMB traffic on a share-by-share basis, you can disable required SMB encryption on the CIFS server.

When you set up a storage virtual machine (SVM) disaster recovery relationship, the value you select for the `identity-preserve` option of the `snapmirror create` command determines the configuration details
that are replicated in the destination SVM.

If you set the `-identity-preserve` option to `true` (ID-preserve), the SMB encryption security setting is replicated to the destination.

If you set the `-identity-preserve` option to `false` (non-ID-preserve), the SMB encryption security setting is not replicated to the destination. In this case, the CIFS server security settings on the destination are set to the default values. If you have enabled SMB encryption on the source SVM, you must manually enable CIFS server SMB encryption on the destination.

Steps

1. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want required SMB encryption for incoming SMB traffic on the CIFS server to be...</th>
<th>Enter the command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td><code>vserver cifs security modify -vserver vserver_name -is-smb-encryption -required true</code></td>
</tr>
<tr>
<td>Disabled</td>
<td><code>vserver cifs security modify -vserver vserver_name -is-smb-encryption -required false</code></td>
</tr>
</tbody>
</table>

2. Verify that required SMB encryption on the CIFS server is enabled or disabled as desired: `vserver cifs security show -vserver vserver_name -fields is-smb-encryption-required`

 The `is-smb-encryption-required` field displays `true` if required SMB encryption is enabled on the CIFS server and `false` if it is disabled.

Example

The following example enables required SMB encryption for incoming SMB traffic for the CIFS server on SVM vs1:

```
cluster1::> vserver cifs security modify -vserver vs1 -is-smb-encryption -required true

cluster1::> vserver cifs security show -vserver vs1 -fields is-smb-encryption-required
vserver  is-smb-encryption-required
-------- -------------------------
vs1      true
```

Determine whether clients are connected using encrypted SMB sessions

You can display information about connected SMB sessions to determine whether clients are using encrypted SMB connections. This can be helpful in determining whether SMB client sessions are connecting with the desired security settings.
About this task

SMB clients sessions can have one of three encryption levels:

- **unencrypted**

 The SMB session is not encrypted. Neither storage virtual machine (SVM)-level or share-level encryption is configured.

- **partially-encrypted**

 Encryption is initiated when the tree-connect occurs. Share-level encryption is configured. SVM-level encryption is not enabled.

- **encrypted**

 The SMB session is fully encrypted. SVM-level encryption is enabled. Share level encryption might or might not be enabled. The SVM-level encryption setting supersedes the share-level encryption setting.

Steps

1. Perform one of the following actions:

<table>
<thead>
<tr>
<th>If you want display information about…</th>
<th>Enter the command…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions with a specified encryption setting for sessions on a specified SVM</td>
<td>`vserver cifs session show -vserver vserver_name {unencrypted</td>
</tr>
<tr>
<td>The encryption setting for a specific session ID on a specified SVM</td>
<td><code>vserver cifs session show -vserver vserver_name -session-id integer -instance</code></td>
</tr>
</tbody>
</table>

Examples

The following command displays detailed session information, including the encryption setting, on an SMB session with a session ID of 2:
cluster1::> vserver cifs session show -vserver vs1 -session-id 2 -instance
 Node: node1
 Vserver: vs1
 Session ID: 2
 Connection ID: 3151274158
 Incoming Data LIF IP Address: 10.2.1.1
 Workstation: 10.1.1.2
 Authentication Mechanism: Kerberos
 Windows User: DOMAIN\joe
 UNIX User: pcuser
 Open Shares: 1
 Open Files: 1
 Open Other: 0
 Connected Time: 10m 43s
 Idle Time: 1m 19s
 Protocol Version: SMB3
 Continuously Available: No
 Is Session Signed: true
 User Authenticated as: domain-user
 NetBIOS Name: CIFS_ALIAS1
 SMB Encryption Status: Unencrypted

Monitor SMB encryption statistics

You can monitor SMB encryption statistics and determine which established sessions and share connections are encrypted and which are not.

About this task

The statistics command at the advanced privilege level provides the following counters, which you can use to monitor the number of encrypted SMB sessions and share connections:

<table>
<thead>
<tr>
<th>Counter name</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>encrypted_sessions</td>
<td>Gives the number of encrypted SMB 3.0 sessions</td>
</tr>
<tr>
<td>encrypted_share_connections</td>
<td>Gives the number of encrypted shares on which a tree connect has happened</td>
</tr>
<tr>
<td>rejected_unencrypted_sessions</td>
<td>Gives the number of session setups rejected due to a lack of client encryption capability</td>
</tr>
<tr>
<td>rejected_unencrypted_shares</td>
<td>Gives the number of share mappings rejected due to a lack of client encryption capability</td>
</tr>
</tbody>
</table>

These counters are available with the following statistics objects:
• cifs enables you to monitor SMB encryption for all SMB 3.0 sessions.

SMB 3.0 statistics are included in the output for the cifs object. If you want to compare the number of encrypted sessions to the total number of sessions, you can compare output for the encrypted_sessions counter with the output for the established_sessions counter.

If you want to compare the number of encrypted share connections to the total number of share connections, you can compare output for the `encrypted_share_connections` counter with the output for the `connected_shares` counter.

• rejected_unencrypted_sessions provides the number of times an attempt has been made to establish an SMB session that requires encryption from a client that does not support SMB encryption.

• rejected_unencrypted_shares provides the number of times an attempt has been made to connect to an SMB share that requires encryption from a client that does not support SMB encryption.

You must start a statistics sample collection before you can view the resultant data. You can view data from the sample if you do not stop the data collection. Stopping data collection gives you a fixed sample. Not stopping data collection gives you the ability to get updated data that you can use to compare against previous queries. The comparison can help you identify trends.

Performance management

Steps

1. Set the privilege level to advanced: `set -privilege advanced`

2. Start a data collection: `statistics start -object {cifs|smb1|smb2} -instance instance -sample-id sample_ID [-node node_name]`

 If you do not specify the -sample-id parameter, the command generates a sample identifier for you and defines this sample as the default sample for the CLI session. The value for -sample-id is a text string. If you run this command during the same CLI session and do not specify the -sample-id parameter, the command overwrites the previous default sample.

 You can optionally specify the node on which you want to collect statistics. If you do not specify the node, the sample collects statistics for all nodes in the cluster.

3. Use the `statistics stop` command to stop collecting data for the sample.

4. View SMB encryption statistics:

<table>
<thead>
<tr>
<th>If you want to view information for...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypted sessions</td>
<td>show -sample-id sample_ID -counter encrypted_sessions</td>
</tr>
<tr>
<td>If you want to view information for...</td>
<td>Enter...</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Encrypted sessions and established sessions</td>
<td>show -sample-id sample_ID -counter encrypted_sessions</td>
</tr>
<tr>
<td>Encrypted share connections</td>
<td>show -sample-id sample_ID -counter encrypted_share_connections</td>
</tr>
<tr>
<td>Encrypted share connections and connected shares</td>
<td>show -sample-id sample_ID -counter encrypted_share_connections</td>
</tr>
<tr>
<td>Rejected unencrypted sessions</td>
<td>show -sample-id sample_ID -counter rejected_unencrypted_sessions</td>
</tr>
<tr>
<td>Rejected unencrypted share connections</td>
<td>show -sample-id sample_ID -counter rejected_unencrypted_share</td>
</tr>
</tbody>
</table>

If you want to display information only for a single node, specify the optional -node parameter.

5. Return to the admin privilege level: set -privilege admin

Examples
The following example shows how you can monitor SMB 3.0 encryption statistics on storage virtual machine (SVM) vs1.

The following command moves to the advanced privilege level:

```
cluster1::> set -privilege advanced
```

Warning: These advanced commands are potentially dangerous; use them only when directed to do so by support personnel.
Do you want to continue? {y|n}: y

The following command starts data collection for a new sample:

```
cluster1::*> statistics start -object cifs -sample-id smbencryption_sample -vserver vs1
Statistics collection is being started for Sample-id: smbencryption_sample
```

The following command stops data collection for that sample:
The following command shows encrypted SMB sessions and established SMB sessions by the node from the sample:

```
cluster2::*> statistics show -object cifs -counter established_sessions|encrypted_sessions|node_name -node node_name
```

Object: cifs
Instance: [proto_ctx:003]
Start-time: 4/12/2016 11:17:45
End-time: 4/12/2016 11:21:45
Scope: vsim2

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>established_sessions</td>
<td>1</td>
</tr>
<tr>
<td>encrypted_sessions</td>
<td>1</td>
</tr>
</tbody>
</table>

2 entries were displayed

The following command shows the number of rejected unencrypted SMB sessions by the node from the sample:

```
clus-2::*> statistics show -object cifs -counter rejected_unencrypted_sessions -node node_name
```

Object: cifs
Instance: [proto_ctx:003]
Start-time: 4/12/2016 11:17:45
End-time: 4/12/2016 11:21:51
Scope: vsim2

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rejected_unencrypted_sessions</td>
<td>1</td>
</tr>
</tbody>
</table>

1 entry was displayed.

The following command shows the number of connected SMB shares and encrypted SMB shares by the node from the sample:
clus-2::*> statistics show -object cifs -counter connected_shares|encrypted_share_connections|node_name -node node_name

Object: cifs
Instance: [proto_ctx:003]
Start-time: 4/12/2016 10:41:38
End-time: 4/12/2016 10:41:43
Scope: vsim2

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>connected_shares</td>
<td>2</td>
</tr>
<tr>
<td>encrypted_share_connections</td>
<td>1</td>
</tr>
</tbody>
</table>

2 entries were displayed.

The following command shows the number of rejected unencrypted SMB share connections by the node from the sample:

clus-2::*> statistics show -object cifs -counter rejected_unencrypted_shares -node node_name

Object: cifs
Instance: [proto_ctx:003]
Start-time: 4/12/2016 10:41:38
End-time: 4/12/2016 10:42:06
Scope: vsim2

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rejected_unencrypted_shares</td>
<td>1</td>
</tr>
</tbody>
</table>

1 entry was displayed.

Related information

- Determining which statistics objects and counters are available
- Performance monitoring express setup

Secure LDAP session communication

LDAP signing and sealing concepts

Beginning with ONTAP 9, you can configure signing and sealing to enable LDAP session security on queries to an Active Directory (AD) server. You must configure the CIFS
server security settings on the storage virtual machine (SVM) to correspond to those on the LDAP server.

Signing confirms the integrity of the LDAP payload data using secret key technology. Sealing encrypts the LDAP payload data to avoid transmitting sensitive information in clear text. An LDAP Security Level option indicates whether the LDAP traffic needs to be signed, signed and sealed, or neither. The default is none.

LDAP signing and sealing on CIFS traffic is enabled on the SVM with the -session-security-for-ad-ldap option to the vserver cifs security modify command.

Enable LDAP signing and sealing on the CIFS server

Before your CIFS server can use signing and sealing for secure communication with an Active Directory LDAP server, you must modify the CIFS server security settings to enable LDAP signing and sealing.

Before you begin
You must consult with your AD server administrator to determine the appropriate security configuration values.

Steps
1. Configure the CIFS server security setting that enables signed and sealed traffic with Active Directory LDAP servers:

 vserver cifs security modify -vserver vserver_name -session-security-for-ad-ldap {none|sign|seal}

 You can enable signing (sign, data integrity), signing and sealing (seal, data integrity and encryption), or neither (none, no signing or sealing). The default value is none.

2. Verify that the LDAP signing and sealing security setting is set correctly:

 vserver cifs security show -vserver vserver_name

 If the SVM uses the same LDAP server for querying name-mapping or other UNIX information, such as users, groups, and netgroups, then you must enable the corresponding setting with the -session-security option of the vserver services name-service ldap client modify command.

Configure LDAP over TLS

Export a copy of the self-signed root CA certificate

To use LDAP over SSL/TLS for securing Active Directory communication, you must first export a copy of the Active Directory Certificate Service’s self-signed root CA certificate to a certificate file and convert it to an ASCII text file. This text file is used by ONTAP to install the certificate on the storage virtual machine (SVM).

Before you begin
The Active Directory Certificate Service must already be installed and configured for the domain to which the CIFS server belongs. You can find information about installing and configuring Active Director Certificate Services by consulting the Microsoft TechNet Library.

Microsoft TechNet Library: technet.microsoft.com
Step
1. Obtain a root CA certificate of the domain controller that is in the .pem text format.

Microsoft TechNet Library: technet.microsoft.com

After you finish
Install the certificate on the SVM.

Related information
Microsoft TechNet Library

Install the self-signed root CA certificate on the SVM

If LDAP authentication with TLS is required when binding to LDAP servers, you must first install the self-signed root CA certificate on the SVM.

About this task
When LDAP over TLS is enabled, the ONTAP LDAP client on the SVM does not support revoked certificates in ONTAP 9.0 and 9.1.

Beginning with ONTAP 9.2, all applications within ONTAP that use TLS communications can check digital certificate status using Online Certificate Status Protocol (OCSP). If OCSP is enabled for LDAP over TLS, revoked certificates are rejected and the connection fails.

Steps
1. Install the self-signed root CA certificate:
 a. Begin the certificate installation: `security certificate install -vserver vserver_name -type server-ca`

 The console output displays the following message: Please enter Certificate: Press <Enter> when done

 b. Open the certificate .pem file with a text editor, copy the certificate, including the lines beginning with -----BEGIN CERTIFICATE----- and ending with -----END CERTIFICATE-----, and then paste the certificate after the command prompt.

 c. Verify that the certificate is displayed correctly.

 d. Complete the installation by pressing Enter.

2. Verify that the certificate is installed: `security certificate show -vserver vserver_name`

Enable LDAP over TLS on the server

Before your SMB server can use TLS for secure communication with an Active Directory LDAP server, you must modify the SMB server security settings to enable LDAP over TLS.

Beginning with ONTAP 9.10.1, LDAP channel binding is supported by default for both Active Directory (AD) and name services LDAP connections. ONTAP will try channel binding with LDAP connections only if Start-TLS or LDAPS is enabled along with session security set to either sign or seal. To disable or reenable LDAP channel binding with AD servers, use the -try-channel-binding-for-ad-ldap parameter with the
vserver cifs security modify command.

For more information, see 2020 LDAP channel binding and LDAP signing requirements for Windows.

Steps

1. Configure the SMB server security setting that allows secure LDAP communication with Active Directory LDAP servers: vserver cifs security modify -vserver vserver_name -use-start-tls -for-ad-ldap true

2. Verify that the LDAP over TLS security setting is set to true: vserver cifs security show -vserver vserver_name

If the SVM uses the same LDAP server for querying name-mapping or other UNIX information (such as users, groups, and netgroups), then you must also modify the -use-start-tls option by using the vserver services name-service ldap client modify command.

Related information

LDAPS concepts

NFS management