Table of Contents

Manage SnapMirror root volume replication .. 1
 Manage SnapMirror root volume replication overview 1
Create and initializing load-sharing mirror relationships 1
Update a load-sharing mirror relationship .. 2
Promote a load-sharing mirror ... 3
Manage SnapMirror root volume replication

Manage SnapMirror root volume replication overview

Every SVM in a NAS environment has a unique namespace. The SVM root volume, containing operating system and related information, is the entry point to the namespace hierarchy. To ensure that data remains accessible to clients in the event of a node outage or failover, you should create a load-sharing mirror copy of the SVM root volume.

The main purpose of load-sharing mirrors for SVM root volumes is no longer for load sharing; instead, their purpose is for disaster recovery.

- If the root volume is temporarily unavailable, the load-sharing mirror automatically provides read-only access to root volume data.
- If the root volume is permanently unavailable, you can promote one of the load-sharing volumes to provide write access to root volume data.

Create and initializing load-sharing mirror relationships

You should create a load-sharing mirror (LSM) for each SVM root volume that serves NAS data in the cluster. You can create the LSM on any node other than the one containing the root volume, such as the partner node in an HA pair, or preferably in a different HA pair. For a two-node cluster, you should create the LSM on the partner of the node with the SVM root volume.

About this task

If you create an LSM on the same node, and the node is unavailable, you have a single point of failure, and you do not have a second copy to ensure the data remains accessible to clients. But when you create the LSM on a node other than the one containing the root volume, or on a different HA pair, your data is still accessible in the event of an outage.

For example, in a four-node cluster with a root volume on three nodes:

- For the root volume on HA 1 node 1, create the LSM on HA 2 node 1 or HA 2 node 2.
- For the root volume on HA 1 node 2, create the LSM on HA 2 node 1 or HA 2 node 2.
- For the root volume on HA 2 node 1, create the LSM on HA 1 node 1 or HA 1 node 2.

Steps

1. Create a destination volume for the LSM:

   ```bash
   volume create -vserver SVM -volume volume -aggregate aggregate -type DP -size size
   
   The destination volume should be the same or greater in size than the root volume.
   
   It is a best practice to name the root and destination volume with suffixes, such as _root and _m1.
   
   For complete command syntax, see the man page.
   ```
The following example creates a load-sharing mirror volume for the root volume `svm1_root` in `cluster_src`:

```
cluster_src:> volume create -vserver svm1 -volume svm1_m1 -aggregate aggr_1 -size 1gb -state online -type DP
```

2. Create a replication job schedule, as described in [Creating a replication job schedule](#).

3. Create a load-sharing mirror relationship between the SVM root volume and the destination volume for the LSM:

```
```

For complete command syntax, see the man page.

The following example creates a load-sharing mirror relationship between the root volume `svm1_root` and the load-sharing mirror volume `svm1_m1`:

```
cluster_src::> snapmirror create -source-path svm1:svm1_root -destination-path svm1:svm1_m1 -type LS -schedule hourly
```

The type attribute of the load-sharing mirror changes from DP to LS.

4. Initialize the load-sharing mirror:

```
snapmirror initialize-ls-set -source-path SVM:volume|cluster://SVM/volume
```

Initialization can be time-consuming. You might want to run the baseline transfer in off-peak hours.

For complete command syntax, see the man page.

The following example initializes the load-sharing mirror for the root volume `svm1_root`:

```
cluster_src::> snapmirror initialize-ls-set -source-path svm1:svm1_root
```

Update a load-sharing mirror relationship

Load-sharing mirror (LSM) relationships are updated automatically for SVM root volumes after a volume in the SVM is mounted or unmounted, and during `volume create` operations that include the `junction-path` option. You can manually update a LSM relationship if you want it updated before the next scheduled update.

Load-sharing mirror relationships update automatically in the following circumstances:

- It's time for a scheduled update
• A mount or unmount operation is performed on a volume in the SVM root volume
• A `volume create` command is issued that includes the `junction-path` option

Step

1. Update a load-sharing mirror relationship manually:

   ```
   snapmirror update-ls-set -source-path SVM:volume|cluster://SVM/volume
   ```

 The following example updates the load-sharing mirror relationship for the root volume `svml_root`:

   ```
   cluster_src::> snapmirror update-ls-set -source-path svml:svml_root
   ```

Promote a load-sharing mirror

If a root volume is permanently unavailable, you can promote the load-sharing mirror (LSM) volume to provide write access to root volume data.

What you’ll need

You must use advanced privilege level commands for this task.

Steps

1. Change to advanced privilege level:

   ```
   set -privilege advanced
   ```

2. Promote an LSM volume:

   ```
   snapmirror promote -destination-path SVM:volume|cluster://SVM/volume
   ```

 For complete command syntax, see the man page.

 The following example promotes the volume `svml_m2` as the new SVM root volume:

   ```
   cluster_src::*> snapmirror promote -destination-path svml:svml_m2
   ```

 Warning: Promote will delete the offline read-write volume `cluster_src://svml/svml_root` and replace it with `cluster_src://svml/svml_m2`. Because the volume is offline, it is not possible to determine whether this promote will affect other relationships associated with this source.

 Do you want to continue? {y|n}: y

 Enter y. ONTAP makes the LSM volume a read/write volume, and deletes the original root volume if it is accessible.
The promoted root volume might not have all of the data that was in the original root volume if the last update did not occur recently.

3. Return to admin privilege level:

```bash
set -privilege admin
```

4. Rename the promoted volume following the naming convention you used for the root volume:

```bash
volume rename -vserver SVM -volume volume -newname new_name
```

The following example renames the promoted volume `svm1_m2` with the name `svm1_root`:

```
cluster_src::> volume rename -vserver svm11 -volume svm1_m2 -newname svm1_root
```

5. Protect the renamed root volume, as described in step 3 through step 4 in Creating and initializing load-sharing mirror relationships.