

Manage routing in an SVM

ONTAP 9

NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/us-en/ontap/networking/manage_routing_in_an_svm_overview.html on February 12, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Manage routing in an SVM	1
Learn about SVM routing on the ONTAP network	1
Create static routes for the ONTAP network	1
Enable multipath routing for the ONTAP network	1
Delete static routes from the ONTAP network	2
View ONTAP routing information	2
Remove dynamic routes from routing tables for the ONTAP network	4

Manage routing in an SVM

Learn about SVM routing on the ONTAP network

The routing table for an SVM determines the network path the SVM uses to communicate with a destination. It's important to understand how routing tables work so that you can prevent network problems before they occur.

Routing rules are as follows:

- ONTAP routes traffic over the most specific available route.
- ONTAP routes traffic over a default gateway route (having 0 bits of netmask) as a last resort, when more specific routes are not available.

In the case of routes with the same destination, netmask, and metric, there is no guarantee that the system will use the same route after a reboot or after an upgrade. This is especially an issue if you have configured multiple default routes.

It is a best practice to configure one default route only for an SVM. To avoid disruption, you should ensure that the default route is able to reach any network address that is not reachable by a more specific route. For more information, see [NetApp Knowledge Base: SU134 - Network access might be disrupted by incorrect routing configuration in clustered ONTAP](#)

Create static routes for the ONTAP network

You can create static routes within a storage virtual machine (SVM) to control how LIFs use the network for outbound traffic.

When you create a route entry associated with an SVM, the route will be used by all LIFs that are owned by the specified SVM and that are on the same subnet as the gateway.

Step

Use the `network route create` command to create a route.

```
network route create -vserver vs0 -destination 0.0.0.0/0 -gateway  
10.61.208.1
```

Learn more about `network route create` in the [ONTAP command reference](#).

Enable multipath routing for the ONTAP network

If multiple routes have the same metric for a destination, only one of the routes is picked for outgoing traffic. This leads to other routes being unused for sending outgoing traffic. You can enable multipath routing to load balance across all available routes in proportion to their metrics, as opposed to ECMP routing, which load balances across available routes of the same metric.

Steps

1. Log in to the advanced privilege level:

```
set -privilege advanced
```

2. Enable multipath routing:

```
network options multipath-routing modify -is-enabled true
```

Multipath routing is enabled for all nodes in the cluster.

```
network options multipath-routing modify -is-enabled true
```

Learn more about `network options multipath-routing modify` in the [ONTAP command reference](#).

Delete static routes from the ONTAP network

You can delete an unneeded static route from a storage virtual machine (SVM).

Step

Use the `network route delete` command to delete a static route.

The following example deletes a static route associated with SVM vs0 with a gateway of 10.63.0.1 and a destination IP address of 0.0.0.0/0:

```
network route delete -vserver vs0 -gateway 10.63.0.1 -destination 0.0.0.0/0
```

Learn more about `network route delete` in the [ONTAP command reference](#).

View ONTAP routing information

You can display information about the routing configuration for each SVM on your cluster. This can help you diagnose routing problems involving connectivity issues between client applications or services and a LIF on a node in the cluster.

Steps

1. Use the `network route show` command to display routes within one or more SVMs. The following example shows a route configured in the vs0 SVM:

```
network route show
  (network route show)
Vserver          Destination      Gateway      Metric
-----
vs0              0.0.0.0/0       172.17.178.1  20
```

2. Use the `network route show-lifs` command to display the association of routes and LIFs within one or more SVMs.

The following example shows LIFs with routes owned by the vs0 SVM:

```
network route show-lifs
  (network route show-lifs)

Vserver: vs0
Destination      Gateway      Logical Interfaces
-----
0.0.0.0/0       172.17.178.1  cluster_mgmt,
                           LIF-b-01_mgmt1,
                           LIF-b-02_mgmt1
```

Learn more about `network route show` and `network route show-lifs` in the [ONTAP command reference](#).

3. Use the `network route active-entry show` command to display installed routes on one or more nodes, SVMs, subnets, or routes with specified destinations.

The following example shows all installed routes on a specific SVM:

```
network route active-entry show -vserver Data0

Vserver: Data0
Node: node-1
Subnet Group: 0.0.0.0/0
Destination      Gateway      Interface  Metric  Flags
-----
127.0.0.1        127.0.0.1    lo        10      UHS
127.0.10.1       127.0.20.1   losk      10      UHS
127.0.20.1       127.0.20.1   losk      10      UHS

Vserver: Data0
Node: node-1
Subnet Group: fd20:8b1e:b255:814e::/64
Destination      Gateway      Interface  Metric  Flags
```

```

----- -----
default          fd20:8b1e:b255:814e::1
                           e0d          20  UGS
fd20:8b1e:b255:814e::/64
                           link#4      e0d          0   UC

Vserver: Data0
Node: node-2
Subnet Group: 0.0.0.0/0
Destination      Gateway      Interface  Metric  Flags
----- -----
127.0.0.1        127.0.0.1   lo          10    UHS

Vserver: Data0
Node: node-2
Subnet Group: 0.0.0.0/0
Destination      Gateway      Interface  Metric  Flags
----- -----
127.0.10.1       127.0.20.1  losk        10    UHS
127.0.20.1       127.0.20.1  losk        10    UHS

Vserver: Data0
Node: node-2
Subnet Group: fd20:8b1e:b255:814e::/64
Destination      Gateway      Interface  Metric  Flags
----- -----
default          fd20:8b1e:b255:814e::1
                           e0d          20  UGS
fd20:8b1e:b255:814e::/64
                           link#4      e0d          0   UC
fd20:8b1e:b255:814e::1  link#4      e0d          0   UHL
11 entries were displayed.

```

Learn more about `network route active-entry show` in the [ONTAP command reference](#).

Remove dynamic routes from routing tables for the ONTAP network

When ICMP redirects are received for IPv4 and IPv6, dynamic routes are added to the routing table. By default, the dynamic routes are removed after 300 seconds. If you want to maintain dynamic routes for a different amount of time, you can change the time out value.

About this task

You can set the timeout value from 0 to 65,535 seconds. If you set the value to 0, the routes never expire.

Removing dynamic routes prevents loss of connectivity caused by the persistence of invalid routes.

Steps

1. Display the current timeout value.

- For IPv4:

```
network tuning icmp show
```

- For IPv6:

```
network tuning icmp6 show
```

2. Modify the timeout value.

- For IPv4:

```
network tuning icmp modify -node node_name -redirect-timeout  
timeout_value
```

- For IPv6:

```
network tuning icmp6 modify -node node_name -redirect-v6-timeout  
timeout_value
```

3. Verify that the timeout value was modified correctly.

- For IPv4:

```
network tuning icmp show
```

- For IPv6:

```
network tuning icmp6 show
```

Learn more about `network tuning icmp` in the [ONTAP command reference](#).

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—with prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.