Table of Contents

NVMe provisioning ... 1
 NVMe Overview .. 1
 NVMe license requirements ... 2
 NVMe support and limitations .. 2
 Configure a storage VM for NVMe 3
 Provision NVMe storage for SUSE Linux 7
 Provision NVMe storage .. 9
NVMe provisioning

NVMe Overview

You can use the non-volatile memory express (NVMe) protocol to provide storage in a SAN environment. The NVMe protocol is optimized for performance with solid state storage.

For NVMe, storage targets are called namespaces. An NVMe namespace is a quantity of non-volatile storage that can be formatted into logical blocks and presented to a host as a standard block device. You create namespaces and subsystems, and then map the namespaces to the subsystems, similar to the way LUNs are provisioned and mapped to igroups for FC and iSCSI.

NVMe targets are connected to the network through a standard FC infrastructure using FC switches or a standard TCP infrastructure using Ethernet switches and host-side adapters.

Support for NVMe varies based on your version of ONTAP. See NVMe support and limitations for details.

What NVMe is

The nonvolatile memory express (NVMe) protocol is a transport protocol used for accessing nonvolatile storage media.

NVMe over Fabrics (NVMeoF) is a specification-defined extension to NVMe that enables NVMe-based communication over connections other than PCIe. This interface allows for external storage enclosures to be connected to a server.

NVMe is designed to provide efficient access to storage devices built with non-volatile memory, from flash technology to higher performing, persistent memory technologies. As such, it does not have the same limitations as storage protocols designed for hard disk drives. Flash and solid state devices (SSDs) are a type of non-volatile memory (NVM). NVM is a type of memory that keeps its content during a power outage. NVMe is a way that you can access that memory.

The benefits of NVMe include increased speeds, productivity, throughput, and capacity for data transfer. Specific characteristics include the following:

- NVMe is designed to have up to 64 thousand queues.

 Each queue in turn can have up to 64 thousand concurrent commands.

- NVMe is supported by multiple hardware and software vendors

- NVMe is more productive with Flash technologies enabling faster response times

- NVMe allows for multiple data requests for each “request” sent to the SSD.

 NVMe takes less time to decode a “request” and does not require thread locking in a multithreaded program.

- NVMe supports functionality that prevents bottlenecks at the CPU level and enables massive scalability as systems expand.
About NVMe namespaces

An NVMe namespace is a quantity of non-volatile memory (NVM) that can be formatted into logical blocks. Namespaces are used when a storage virtual machine is configured with the NVMe protocol and are the equivalent of LUNs for FC and iSCSI protocols.

One or more namespaces are provisioned and connected to an NVMe host. Each namespace can support various block sizes.

The NVMe protocol provides access to namespaces through multiple controllers. Using NVMe drivers, which are supported on most operating systems, solid state drive (SSD) namespaces appear as standard-block devices on which file systems and applications can be deployed without any modification.

A namespace ID (NSID) is an identifier used by a controller to provide access to a namespace. When setting the NSID for a host or host group, you also configure the accessibility to a volume by a host. A logical block can only be mapped to a single host group at a time, and a given host group does not have any duplicate NSIDs.

About NVMe subsystems

An NVMe subsystem includes one or more NVMe controllers, namespaces, NVM subsystem ports, an NVM storage medium, and an interface between the controller and the NVM storage medium. When you create an NVMe namespace, by default it is not mapped to a subsystem. You can also choose to map it a new or existing subsystem.

Related information

- Provision NVMe storage for SUSE Linux
- Provision NVMe storage for other hosts
- Map an NVMe namespace to a subsystem

NVMe license requirements

Beginning with ONTAP 9.5 a license is required to support NVMe. If NVMe is enabled in ONTAP 9.4, a 90 day grace period is given to acquire the license after upgrading to ONTAP 9.5.

You can enable the license using the following command:

```
system license add -license-code NVMe_license_key
```

NVMe support and limitations

NVMe support and limitations varies based on your version of ONTAP, your platform and your configuration.

Protocol support

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Beginning with …</th>
<th>Allowed by…</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>ONTAP 9.10.1</td>
<td>Default</td>
</tr>
</tbody>
</table>
Platform and configuration support and limitations

Support for NVMe-oF protocol varies by platform and configuration. For details on your specific configuration, see the NetApp Interoperability Matrix Tool.

Beginning with ONTAP 9.12.1, 4-node MetroCluster IP configurations are supported on NVMe/FC. MetroCluster configurations are not supported for NVMe prior to 9.12.1.

<table>
<thead>
<tr>
<th>Beginning with ONTAP...</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.12.1</td>
<td>• FAS</td>
</tr>
<tr>
<td></td>
<td>• All Flash FAS (AFF)</td>
</tr>
<tr>
<td></td>
<td>• All SAN Array (ASA) platforms</td>
</tr>
<tr>
<td>9.9.1</td>
<td>• AFF</td>
</tr>
<tr>
<td></td>
<td>• ASA</td>
</tr>
<tr>
<td>9.4</td>
<td>AFF platforms only</td>
</tr>
</tbody>
</table>

Namespace support and limitations

To set up the NVMe protocol in your SAN environment, you must configure an SVM for NVMe, create namespaces and subsystems, configure an NVMe/FC LIF, and then map the namespaces to the subsystems. When working with NVMe namespaces you should be aware of the following:

- Beginning with ONTAP 9.10.1, you can resize a namespace. Resizing a namespace is not supported in releases prior to ONTAP 9.10.1.
- Beginning with ONTAP 9.6, namespaces support 512 byte blocks and 4096 byte blocks. 4096 is the default value. 512 should only be used if the host operating system does not support 4096 byte blocks.
- If you lose data in a LUN, it cannot be restored from a namespace, or vice versa.
- The space guarantee for namespaces is the same as the space guarantee of the containing volume.
- Namespaces do not support the following:
 - Renaming
 You cannot rename a namespace.
 - Inter-volume move
 - Inter-volume copy

Configure a storage VM for NVMe

If you want to use the NVMe protocol on a node, you must configure your SVM
specifically for NVMe.

What you’ll need

Your FC or Ethernet adapters must support NVMe. Supported adapters are listed in the NetApp Hardware Universe.
Example 1. Steps

System Manager
Configure an storage VM for NVMe with ONTAP System Manager (9.7 and later).

<table>
<thead>
<tr>
<th>To configure NVMe on a new storage VM</th>
<th>To configure NVMe on an existing storage VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In System Manager, click Storage > Storage VMs and then click Add.</td>
<td>1. In System Manager, click Storage > Storage VMs.</td>
</tr>
<tr>
<td>2. Enter a name for the storage VM.</td>
<td>2. Click on the storage VM you want to configure.</td>
</tr>
<tr>
<td>3. Select NVMe for the Access Protocol.</td>
<td>3. Click on the Settings tab, and then click on next to the NVMe protocol.</td>
</tr>
<tr>
<td>4. Click Enable FC and Save.</td>
<td>4. Click Enable FC and Save.</td>
</tr>
</tbody>
</table>

CLI
Configure an storage VM for NVMe with the ONTAP CLI.

1. If you do not want to use an existing SVM, create one:

   ```bash
   vserver create -vserver SVM_name
   ```

 a. Verify that the SVM is created:

   ```bash
   vserver show
   ```

2. Verify that you have NVMe or TCP capable adapters installed in your cluster:

 For NVMe: `network fcp adapter show -data-protocols-supported fc-nvme`
 For TCP: `network port show`

3. If you are running ONTAP 9.7 or earlier, remove all protocols from the SVM:

   ```bash
   vserver remove-protocols -vserver SVM_name -protocols iscsi,fcp,nfs,cifs,ndmp
   ```

 Beginning with ONTAP 9.8, it is not necessary to remove other protocols when adding NVMe.

4. Add the NVMe protocol to the SVM:

   ```bash
   vserver add-protocols -vserver SVM_name -protocols nvme
   ```

5. If you are running ONTAP 9.7 or earlier, verify that NVMe is the only protocol allowed on the SVM:

   ```bash
   vserver show -vserver SVM_name -fields allowed-protocols
   ```

 NVMe should be the only protocol displayed under the **allowed protocols** column.

6. Create the NVMe service:

   ```bash
   vserver nvme create -vserver SVM_name
   ```
7. Verify that the NVMe service was created:

```
vserver nvme show -vserver SVM_name
```

The Administrative Status of the SVM should be listed as up.

8. Create an NVMe/FC LIF:

<table>
<thead>
<tr>
<th>ONTAP version</th>
<th>Applicable protocols</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAP 9.9.1 or earlier</td>
<td>FC</td>
<td><code>network interface create -vserver SVM_name -lif lif_name -role data -data-protocol fc-nvme -home-node home_node -home-port home_port</code></td>
</tr>
<tr>
<td>ONTAP 9.10.1</td>
<td>FC or TCP</td>
<td>`network interface create -vserver SVM_name -lif lif_name -service-policy {default-data-nvme-tcp</td>
</tr>
</tbody>
</table>

9. Create an NVMe/FC LIF on the HA partner node:

<table>
<thead>
<tr>
<th>ONTAP version</th>
<th>Applicable protocols</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAP 9.9.1 or earlier</td>
<td>FC</td>
<td><code>network interface create -vserver SVM_name -lif lif_name -role data -data-protocol fc-nvme -home-node home_node -home-port home_port</code></td>
</tr>
<tr>
<td>ONTAP version</td>
<td>Applicable protocols</td>
<td>Command</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ONTAP 9.10.1 or later</td>
<td>FC or TCP</td>
<td>`network interface create -vserver SVM_name -lif lif_name -service-policy {default-data-nvme-tcp</td>
</tr>
</tbody>
</table>

10. Verify the NVMe/FC LIFs were created:

   ```bash
   network interface show -vserver SVM_name
   ```

11. Create volume on the same node as the LIF:

   ```bash
   vol create -vserver SVM_name -volume vol_name -aggregate aggregate_name -size volume_size
   ```

 If a warning message is displayed about the auto efficiency policy, it can be safely ignored.

Provision NVMe storage for SUSE Linux

Create namespaces to provide storage for a SUSE Linux server using the NVMe protocol. Namespaces appear to Linux as SCSI disk devices.

This procedure creates new namespaces on an existing storage VM. Your storage VM must be configured for NVME, and your FC or TCP transport should already be set up.

Beginning with ONTAP 9.8, when you provision storage, QoS is enabled by default. You can disable QoS or choose a custom QoS policy during the provisioning process or at a later time.
Example 2. Steps

System Manager
Create namespaces to provide storage using the NVMe protocol with ONTAP System Manager (9.7 and later).

1. In System Manager, click *Storage > NVMe Namespaces* and then click *Add*.
 a. If you need to create a new subsystem, click *More Options*.
 b. If you are running ONTAP 9.8 or later and you want to disable QoS or choose a custom QoS policy, click *More Options* and then, under *Storage and Optimization* select *Performance Service Level*.

2. Zone your FC switches by WWPN. Use one zone per initiator and include all target ports in each zone.

3. On your Linux server, discover the new namespaces.

4. Initialize the namespace and format it with a file system.

5. Verify the Linux server can write and read data on the namespace.

CLI
Create namespaces to provide storage using the NVMe protocol with the ONTAP CLI.

This procedure creates an NVMe namespace and subsystem on an existing storage VM which has already been configured for the NVMe protocol, then maps the namespace to the subsystem to allow data access from your host system.

If you need to configure the storage VM for NVMe, see [Configure an SVM for NVMe](#).

Steps

1. Verify that the SVM is configured for NVMe:

   ```
   vserver show -vserver SVM_name -fields allowed-protocols
   ```

 NVMe should be displayed under the *allowed-protocols* column.

2. Create the NVMe namespace:

   ```
   vserver nvme namespace create -vserver SVM_name -path path -size size_of_namespace -ostype OS_type
   ```

3. Create the NVMe subsystem:

   ```
   vserver nvme subsystem create -vserver SVM_name -subsystem name_of_subsystem -ostype OS_type
   ```

 The NVMe subsystem name is case sensitive. It must contain 1 to 96 characters. Special characters are allowed.

4. Verify that the subsystem was created:

   ```
   vserver nvme subsystem show -vserver SVM_name
   ```
The *nvme* subsystem should be displayed under the *Subsystem* column.

5. Obtain the NQN from the host.
6. Add the host NQN to the subsystem:

   ```
   vserver nvme subsystem host add -vserver SVM_name -subsystem subsystem_name
   -host-nqn Host_NQN:subsystem.subsystem_name
   ```

7. Map the namespace to the subsystem:

   ```
   vserver nvme subsystem map add -vserver SVM_name -subsystem subsystem_name
   -path path
   ```

 A namespace can only be mapped to a single subsystem.

8. Verify that the namespace is mapped to the subsystem:

   ```
   vserver nvme namespace show -vserver SVM_name -instance
   ```

 The subsystem should be listed as the *Attached* subsystem.

Provision NVMe storage

If a procedure for your specific host is not available, you can use these steps to create namespaces and provision storage for any NVMe supported host.

Namespaces appear to Linux as SCSI disk devices.

This procedure creates new namespaces on an existing storage VM. Your storage VM must be configured for NVME, and your FC or TCP transport should already be set up.

Unresolved directive in san-admin/create-nvme-namespace-subsystem-task.adoc - include::_include/98_qos_enabled_by_default.adoc[]
Example 3. Steps

System Manager
Create namespaces to provide storage using the NVMe protocol with ONTAP System Manager (9.7 and later).

1. In System Manager, click **Storage > NVMe Namespaces** and then click **Add**.

 If you need to create a new subsystem, click **More Options**.

 Unresolved directive in san-admin/create-nvme-namespace-subsystem-task.adoc - include::_include/98_qos_how_to_modify.adoc[]

2. Zone your FC switches by WWPN. Use one zone per initiator and include all target ports in each zone.
3. On your host, discover the new namespaces.
4. Initialize the namespace and format it with a file system.
5. Verify that your host can write and read data on the namespace.

CLI
Create namespaces to provide storage using the NVMe protocol with the ONTAP CLI.

This procedure creates an NVMe namespace and subsystem on an existing storage VM which has already been configured for the NVMe protocol, then maps the namespace to the subsystem to allow data access from your host system.

If you need to configure the storage VM for NVMe, see [Configure an SVM for NVMe](#).

Unresolved directive in san-admin/create-nvme-namespace-subsystem-task.adoc - include::_include/nvme-provisioning-cli.adoc[]

== About NVMe subsystems

An NVMe subsystem includes one or more controllers, one or more namespaces, one or more non-volatile memory (NVM) subsystem ports (FC-NVMe or RDMA transport ports), an NVM storage medium, and an interface between the controllers and the NVM storage medium. For controller mapping and management, an NVM subsystem maps to a vserver in ONTAP.

An NVMe over Fabric (NVMeoF) subsystem is a separate kernel object that resides in the FreeBSD kernel. The NVMeoF subsystem interfaces with the following components:

- SAN components, such as BCOMKA, FCT, and VDOM
- WAFL
- RAS components, such as CM, ASUP, and EMS

All interfaces with NVMeoF subsystems adhere to the current definitions and patterns found in ONTAP.

= Map an NVMe namespace to a subsystem

:icons: font
:relative_path: /san-admin/
:imagesdir: /tmp/d20221128-16434-1snqfww/source=./san-admin/../media/
This procedure maps an existing NVMe namespace to an existing NVMe subsystem using the ONTAP CLI.

Your namespace and subsystem should already be created. If you need to create a namespace and subsystem, see Provision NVMe storage.

Steps

1. Obtain the NQN from the host.

2. Add the host NQN to the subsystem:

   ```bash
   vserver nvme subsystem host add -vserver SVM_name -subsystem subsystem_name -host-nqn Host_NQN:subsystem.subsystem_name
   ```

3. Map the namespace to the subsystem:

   ```bash
   vserver nvme subsystem map add -vserver SVM_name -subsystem subsystem_name -path path
   ```

 A namespace can only be mapped to a single subsystem.

4. Verify that the namespace is mapped to the subsystem:

   ```bash
   vserver nvme namespace show -vserver SVM_name -instance
   ```

 The subsystem should be listed as the Attached subsystem.
Copyright information

Copyright © 2022 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.