Automate using REST APIs
SnapCenter Software 4.6

NetApp
September 29, 2025

This PDF was generated from https://docs.netapp.com/us-en/snapcenter-46/sc-

automation/overview_rest_apis.html on September 29, 2025. Always check docs.netapp.com for the
latest.

Table of Contents

Automate using REST APlIs
Overview of REST APIs
How to access SnapCenter REST API natively
REST web services foundation
Resources and state representation
URI endpoints
HTTP messages
JSON formatting
Input variables controlling an API request
HTTP methods
Request headers
Request body
Filtering objects
Requesting specific object fields
Sorting objects in the output set
Pagination when retrieving objects in a collection
Size properties
Interpretation of an API response
HTTP status code
Response headers
Response body
Errors
Supported REST APIs
REST APIs supported for other plug-ins
REST API supported for disaster recovery of SnapCenter Server
How to access REST APIs using the Swagger APl web page
Get started with the REST API
Hello World

W 00O NN NO o, DB OWWDNDNDNMNNMNN_LAD A A A A

—_ A a
A A D

Automate using REST APIs
Overview of REST APIs

REST APIs can be used to perform several SnapCenter management operations. REST
APls are exposed through the Swagger web page.

You can access the Swagger web page available at
https://<SnapCenter_IP_address_or_name>:<SnapCenter_port>/swagger/ to display the REST API
documentation, as well as to manually issue an API call.

The plug-ins that support REST APIs are:

* Plug-in for Microsoft SQL Server
* Plug-in for SAP HANA Database
* Custom Plug-ins

* Plug-in for Oracle Database

How to access SnapCenter REST API natively

You can access the SnapCenter REST API directly using any programming language that
supports a REST client. Popular language choices include Python, PowerShell, and Java.

REST web services foundation

Representational State Transfer (REST) is a style for creating distributed web
applications. When applied to the design of a web services API, it establishes a set of
technologies and best practices for exposing server-based resources and managing their
states. It uses mainstream protocols and standards to provide a flexible foundation for
managing SnapCenter.

Resources and state representation

Resources are the basic components of a web-based system. When creating a REST web services
application, early design tasks include:

Identification of system or server-based resources

Every system uses and maintains resources. A resource can be a file, business transaction, process, or
administrative entity. One of the first tasks in designing an application based on REST web services is to
identify the resources.

Definition of resource states and associated state operations

Resources are always in one of a finite number of states. The states, as well as the associated operations
used to affect the state changes, should be clearly defined.

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme. The
endpoints where the resources are located and identified use a Uniform Resource Identifier (URI).

The URI provides a general framework for creating a unique name for each resource in the network. The
Uniform Resource Locator (URL) is a type of URI used with web services to identify and access resources.
Resources are typically exposed in a hierarchical structure similar to a file directory.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the protocol used by the web services client and server to exchange
request and response messages about the resources.

As part of designing a web services application, HTTP methods are mapped to the resources and
corresponding state management actions. HTTP is stateless. Therefore, to associate a set of related requests

and responses as part of one transaction, additional information must be included in the HTTP headers carried
with the request and response data flows.

JSON formatting

While information can be structured and transferred between a web services client and server in several ways,
the most popular option is JavaScript Object Notation (JSON).

JSON is an industry standard for representing simple data structures in plain text and is used to transfer state
information describing the resources. The SnapCenter REST API uses JSON to format the data carried in the
body of each HTTP request and response.

Input variables controlling an API request

You can control how an API call is processed through parameters and variables set in the
HTTP request.

HTTP methods

The HTTP methods supported by the SnapCenter REST API are shown in the following table.

@ Not all the HTTP methods are available at each of the REST endpoints.

HTTP method Description

GET Retrieves object properties on a resource instance or
collection.

POST Creates a new resource instance based on the

supplied input.
DELETE Deletes an existing resource instance.

PUT Modifies an existing resource instance.

Request headers

You should include several headers in the HTTP request.

Content-type

If the request body includes JSON, this header should be set to application/json.

Accept

This header should be set to application/json.

Authorization

Basic authentication should be set with the user name and password encoded as a base64 string.

Request body

The content of the request body varies depending on the specific call. The HTTP request body consists of one
of the following:

« JSON object with input variables
* Empty
Filtering objects

When issuing an API call that uses GET, you can limit or filter the returned objects based on any attribute. For
example, you can specify an exact value to match:

<field>=<query value>

In addition to an exact match, other operators are available to return a set of objects over a range of values.
The SnapCenter REST API supports the filtering operators shown in the table below.

Operator Description

= Equal to

< Less than

> Greater than

& Less than or equal to
>= Greater than or equal to
UPDATE Or

! Not equal to

*

Greedy wildcard

You can also return a collection of objects based on whether a specific field is set or not set by using the null
keyword or its negation !null as part of the query.

@ Any fields that are not set are generally excluded from matching queries.

Requesting specific object fields

By default, issuing an API call using GET returns only the attributes that uniquely identify the object or objects.
This minimum set of fields acts as a key for each object and varies based on the object type. You can select
additional object properties using the fields query parameter in the following ways:

Common or standard fields

Specify fields=" to retrieve the most commonly used object fields. These fields are typically maintained in local
server memory or require little processing to access. These are the same properties returned for an object
after using GET with a URL path key (UUID).

All fields

Specify fields=** to retrieve all the object fields, including those requiring additional server processing to
access.

Custom field selection

Use fields=<field_name> to specify the exact field you want. When requesting multiple fields, the values must
be separated using commas without spaces.

As a best practice, you should always identify the specific fields you want. You should only

@ retrieve the set of common fields or all fields when needed. Which fields are classified as
common, and returned using fields=*, is determined by NetApp based on internal performance
analysis. The classification of a field might change in future releases.

Sorting objects in the output set

The records in a resource collection are returned in the default order defined by the object. You can change the
order using the order by query parameter with the field name and sort direction as follows:

order by=<field name> asc|desc
For example, you can sort the type field in descending order followed by id in ascending order:
order by=type desc, id asc

* If you specify a sort field but do not provide a direction, the values are sorted in ascending order.

* When including multiple parameters, you must separate the fields with a comma.

Pagination when retrieving objects in a collection

When issuing an API call using GET to access a collection of objects of the same type, SnapCenter attempts
to return as many objects as possible based on two constraints. You can control each of these constraints
using additional query parameters on the request. The first constraint reached for a specific GET request
terminates the request and therefore limits the number of records returned.

@ If a request ends before iterating over all the objects, the response contains the link needed to
retrieve the next batch of records.

Limiting the number of objects

By default, SnapCenter returns a maximum of 10,000 objects for a GET request. You can change this limit
using the max_records query parameter. For example:

max records=20

The number of objects actually returned can be less than the maximum in effect, based on the related time
constraint as well as the total number of objects in the system.

Limiting the time used to retrieve the objects

By default, SnapCenter returns as many objects as possible within the time allowed for the GET request. The
default timeout is 15 seconds. You can change this limit using the return_timeout query parameter. For
example:

return timeout=>5

The number of objects actually returned can be less than the maximum in effect, based on the related
constraint on the number of objects as well as the total number of objects in the system.

Narrowing the result set

If needed, you can combine these two parameters with additional query parameters to narrow the result set.
For example, the following returns up to 10 EMS events generated after the specified time:

time= 2018-04-04T15:41:29.140265Z&max records=10

You can issue multiple requests to page through the objects. Each subsequent API call should use a new time
value based on the latest event in the last result set.

Size properties

The input values used with some API calls as well as certain query parameters are numeric. Rather than
provide an integer in bytes, you can optionally use a suffix as shown in the following table.

Suffix Description

KB KB Kilobytes (1024 bytes) or kibibytes

MB MB Megabytes (KB x 1024 bytes) or mebibytes
GB GB Gigabytes (MB x 1024 bytes) or gibibytes
B TB Terabytes (GB x 1024 byes) or tebibytes
PB PB Petabytes (TB x 1024 byes) or pebibytes

Interpretation of an APl response

Each API request generates a response back to the client. You should examine the
response to determine whether it was successful and retrieve additional data as needed.

HTTP status code

The HTTP status codes used by the SnapCenter REST API are described below.

Code
200

201

202

400

401

403

404

405

409

500

Description

OK

Indicates success for calls that do not create a new
object.

Created

An object is successfully created. The location header
in the response includes the unique identifier for the
object.

Accepted

A background job has been started to perform the
request, but has not completed yet.

Bad request

The request input is not recognized or is
inappropriate.

Unauthorized

User authentication has failed.

Forbidden

Access is denied due to an authorization (RBAC)
error.

Not found

The resource referred to in the request does not exist.

Method not allowed

The HTTP method in the request is not supported for
the resource.

Conflict

An attempt to create an object failed because a
different object must be created first or the requested
object already exists.

Internal error

A general internal error occurred at the server.

Response headers

Several headers are included in the HTTP response generated by the SnapCenter.

Location

When an object is created, the location header includes the complete URL to the new object including the
unigque identifier assigned to the object.

Content-type

This will normally be application/json.

Response body

The content of the response body resulting from an API request differs based on the object, processing type,
and the success or failure of the request. The response is always rendered in JSON.

Single object

A single object can be returned with a set of fields based on the request. For example, you can use GET to
retrieve selected properties of a cluster using the unique identifier.

Multiple objects

Multiple objects from a resource collection can be returned. In all cases, there is a consistent format used, with
num_records indicating the number of records and records containing an array of the object instances. For
example, you can retrieve the nodes defined in a specific cluster.

Job object

If an API call is processed asynchronously, a Job object is returned which anchors the background task. For
example, the PATCH request used to update the cluster configuration is processed asynchronously and returns
a Job object.

Error object

If an error occurs, an Error object is always returned. For example, you will receive an error when attempting to
change a field not defined for a cluster.

Empty

In certain cases, no data is returned and the response body includes an empty JSON object.

Errors

If an error occurs, an error object is returned in the response body.

Format

An error object has the following format:

"error": {

"message": "<string>",
"code": <integer>[,
"target": "<string>"]
}

You can use the code value to determine the general error type or category, and the message to determine the
specific error. When available, the target field includes the specific user input associated with the error.

Common error codes

The common error codes are described in the following table. Specific API calls can include additional error
codes.

Code Description

409 An object with the same identifier already exists.

400 The value for a field has an invalid value or is missing,
or an extra field was provided.

400 The operation is not supported.

405 An object with the specified identifier cannot be not
found.

403 Permission to perform the request is denied.

409 The resource is in use.

Supported REST APlIs

REST APIs supported for other plug-ins

The resources available through the SnapCenter REST API are organized in categories,
as displayed on the SnapCenter APl documentation page. A brief description of each of
the resources with the base resource paths is presented below, along with additional
usage considerations where appropriate.

Auth

You can use this API call to log into the SnapCenter Server. This API returns a user authorization token that is
used to authenticate subsequent requests.

Domains
You can use these API calls to perform the following:
* retrieve all the domains

* retrieve details of a specific domain

* register or unregister a domain

* modify a domain

Jobs

You can use these API calls to perform the following:

* retrieve all the jobs
* retrieve status of a job

 cancel or stop a job

Settings

You can use these API calls to perform the following:
* register, view, modify, or remove a credential
+ configure notification settings

Hosts

You can use these API calls to perform the following:

* retrieve host details
* retrieve the plug-in installed and their resource details
 add, remove, or modify a plug-in host

« install or upgrade plug-ins

Resources

You can use these API calls to perform the following:

* retrieve resources
« create, modify, or remove resources
* protect a resource
* back up, restore, or clone a resource

Backups

You can use these API calls to perform the following:
* retrieve backup details
* rename or delete backups

Clones

You can use these API calls to perform the following:

« retrieve clone details

» delete clones

Clonesplit

You can use these API calls to perform the following:
« retrieve the status of a clone split operation
» start or stop a clone split operation

Resource Groups

You can use these API calls to perform the following:

* retrieve details of a resource group
« create, modify, or delete a resource group

* back up a resource group

Policies
You can use these API calls to perform the following:
* retrieve policy details

« create, modify, or delete policies

Storage

You can use these API calls to perform the following:

* retrieve storage details

» create, modify, or delete a storage

« discover resources on a storage

* create or delete a share on the storage

Share

You can use these API calls to perform the following:

« retrieve the details of a share

* create or delete a share on the storage

Plugins

You can use these API calls to retrieve all the plug-ins on a host and perform different operations.
Reports

You can use these API calls to perform the following:

* generate backup, restore, clone, and plug-in reports

* add, run, delete, or modify schedules

10

Alerts

You can use these API calls to perform the following:
* retrieve all the alerts
» delete alerts

Rbac

You can use these API calls to perform the following:

« retrieve details of users, groups, and roles
* add users
« create, modify, or delete roles

* assign or unassign roles and groups

Configuration
You can use these API calls to perform the following:
* view the configuration settings

» modify the configuration settings

CertificateSettings

You can use these API calls to perform the following:
* view the certificate status
» modify the certificate settings

Repository

You can use these API calls to perform the following:

 backup and restore the NSM repository
« protect and unprotect the NSM repository
« failover

* rebuild the NSM repository

REST API supported for disaster recovery of SnapCenter Server

SnapCenter disaster recovery (DR) functionality uses REST APIs to backup SnapCenter
Server. Using REST APIs, you can perform the following operations on the REST APIs
Swagger page. For information to access the Swagger page, see How to access REST
APIs using the swagger APl web page.

What you will need

* You should log in as the SnapCenter Admin user.

11

https://docs.netapp.com/us-en/snapcenter/sc-automation/task_how%20to_access_rest_apis_using_the_swagger_api_web_page.html
https://docs.netapp.com/us-en/snapcenter/sc-automation/task_how%20to_access_rest_apis_using_the_swagger_api_web_page.html

* The SnapCenter Server should be up and running to run DR restore API.

About this task

SnapCenter Server DR supports all plug-ins.

Step Description

1 Fetch existing SnapCenter Server DR
backups

You must provide the
backup name and the

@ target path where the
DR backups must be
stored.

2 Create a new Server DR backup.
Restores a SnapCenter Server from a
specified Server DR backup.

12

REST API HTTP
method

/4.5/disasterrecovery/server/backup? GET
targetpath={path}

/4.5/disasterrecovery/server/backup POST

Step Description REST API HTTP
method

3 Restores a SnapCenter Server froma /4.5/disasterrecovery/server/restore POST
specified Server DR backup.

Prerequisites

* The alternate server host name
should be same as the primary
server, but the IP address can be
different.

» Server version should be the same
as the primary server.

* Host name should be the same as
the primary server.

* Ensure the DR backup files are
copied to the new SnapCenter
server using the following
command:

xcopy <Ssource Path>
\\<Destination Server IP>
\<Folder Path> /O /X /E
/H /K {ex : xcopy
C:\DRBackup
\\10.225.81.114\c$\DRBack
up /O /X /E /H /K}

If the plug-in is not able to resolve the
server hostname, log into each of the
plug-in host and add the etc/host entry
for the new IP in the format: <New

IP> SC Server Name

For example, 10.225.81.35 SCServer1

The server etc/host entries will not be
restored. You can restore it manually
from the DR backup folder.

4 Delete the Server DR backup based /4.5/disasterrecovery/server/backup DELETE
on backup name.

5 Enable or disable the storage DR /4. 5/dj_sasterrecovery/storage POST

For more information, see the Disaster Recovery APls video.

13

https://www.youtube.com/watch?v=_8NG-tTGy8k&list=PLdXI3bZJEw7nofM6lN44eOe4aOSoryckg

How to access REST APIs using the Swagger APl web page

REST APIs are exposed through the Swagger web page. You can access the Swagger
web page to display the SnapCenter Server REST APls, as well as to manually issue an
API call. You can use REST APIs to help manage your SnapCenter Server or to perform
data protection operations.

You should know the management IP address or domain name of the SnapCenter Server on which you want to
execute the REST APIs.

You do not need special permissions to run the REST API client. Any user can access the Swagger web page.
The respective permissions on the objects that are accessed via the REST API are based on the user who
generates the token to login to the REST API.

Steps

1. From a browser, enter the URL to access the Swagger web page in the format
https://<SnapCenter_ IP_address _or_name>:<SnapCenter_port>/swagger/.

@ Ensure that the REST APl URL does not have the following characters: +, ., %, and &.

2. In the Swagger Explore field, if the Swagger API documentation does not display automatically, type:
https://<SnapCenter_IP_address_or_name>:<SnapCenter_port>/Content/swagger/SnapCenter.yaml|

3. Click Explore.
A list of API resource types or categories are displayed.
4. Click an API resource type to display the APlIs in that resource type.

If you encounter unexpected behavior when executing SnapCenter REST APlIs, you can use the log files to
identify the cause and resolve the problem. You can download the log files from the SnapCenter user interface
by clicking Monitor > Logs > Download.

Get started with the REST API

You can quickly get started using the SnapCenter REST API. Accessing the API provides
some perspective before you begin using it with the more complex workflow processes
on a live setup.

Hello World

You can run a simple command on your system to get started using the SnapCenter REST API and confirm its
availability.

What you will need

» Ensure that the Curl utility is available on your system.
* I[P address or host name of the SnapCenter Server

« User name and password for an account with authority to access the SnapCenter REST API.

14

If your credentials include special characters, you need to format them in a way that is
@ acceptable to Curl based on the shell you are using. For example, you can insert a backslash

before each special character or wrap the entire username : password string in single quotes.

Step
At the command line interface, run the following to retrieve the plug-in information:

curl -X GET -u username:password -k
"https://<ip address>/api/hosts?fields=IncludePluginInfo"

Example:

curl -X GET -u admin:password -k
"'"https://10.225.87.97/api/hosts?fields=IncludePluginInfo"

15

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

16

http://www.netapp.com/TM

	Automate using REST APIs : SnapCenter Software 4.6
	Table of Contents
	Automate using REST APIs
	Overview of REST APIs
	How to access SnapCenter REST API natively
	REST web services foundation
	Resources and state representation
	URI endpoints
	HTTP messages
	JSON formatting

	Input variables controlling an API request
	HTTP methods
	Request headers
	Request body
	Filtering objects
	Requesting specific object fields
	Sorting objects in the output set
	Pagination when retrieving objects in a collection
	Size properties

	Interpretation of an API response
	HTTP status code
	Response headers
	Response body
	Errors

	Supported REST APIs
	REST APIs supported for other plug-ins
	REST API supported for disaster recovery of SnapCenter Server

	How to access REST APIs using the Swagger API web page
	Get started with the REST API
	Hello World

