Develop a plug-in for your application
SnapCenter Software 4.8

NetApp
September 26, 2025

This PDF was generated from https://docs.netapp.com/us-en/snapcenter-48/protect-
scc/concept_develop_a_plug_in_for_your_application.html on September 26, 2025. Always check

docs.netapp.com for the latest.

Table of Contents

Develop a plug-in for your application
Overview
Generic plug-in handling in all API calls
PERL-based development
General plug-in handling
NATIVE style
General plug-in handling
Java style
Limitations
Supported methods
Tutorial
Custom plug-in in SnapCenter
Custom plug-in in SnapCenter

W W = —a a

10
11
13
13
14
15
21
21

Develop a plug-in for your application

Overview

The SnapCenter Server enables you to deploy and manage your applications as plug-ins
to SnapCenter. Applications of your choice can be plugged into the SnapCenter Server
for data protection and management capabilities.

SnapCenter enables you to develop custom plug-ins using different programming languages. You can develop
a custom plug-in using Perl, Java, BATCH, or other Scripting languages.

To use custom plug-ins in SnapCenter, you must perform the following tasks:

 Create a plug-in for your application using the instructions in this guide
» Create a description file
« Export the custom plug-in to install it on the SnapCenter host

» Upload the plug-in zip file into SnapCenter Server

Generic plug-in handling in all API calls
For every API call, use the following information:

* Plug-in parameters
+ Exit codes
* Log error messages

« Data consistency

Use Plug-in parameters

A set of parameters are passed to the plug-in as part of every API call made. The following table lists the
specific information for the parameters.

Parameter Purpose

ACTION Determines the workflow name. For example,
discover, backup, fileOrVolRestore or cloneVolAndLun

RESOURCES Lists resources to be protected. A resource is
identified by UID and Type. The list is presented to
the plug-in in the following format:

“<UID>,<TYPE>;<UID>,<TYPE>". For example,
“Instance1,Instance;Instance2\\DB1,Database”

APP_NAME Determines which plug-in is being used. For example,
DB2, MYSQL. SnapCenter Server has built-in support
for the listed applications. This parameter is case
sensitive.

Parameter

APP_IGNORE_ERROR

<RESOURCE_NAME>__APP_INSTANCE_USERNA
ME

<RESOURCE_NAME>_APP_INSTANCE_PASSWO
RD

<RESOURCE_NAME>_<CUSTOM_PARAM>

Use exit codes

Purpose

(Y or N) This causes SnapCenter to exit or not exit
when an application error is encountered. This is
useful when you are backing up multiple databases
and do not want a single failure to stop the backup
operation.

SnapCenter credential is set for the resource.

SnapCenter credential is set for the resource.

Every Resource level custom key value is available to
plug-ins prefixed with “<RESOURCE_NAME>_". For
example, if a custom key is “MASTER_SLAVE” for a
resource named “MySQLDB”, then it will be available
as MySQLDB_MASTER_SLAVE

The plug-in returns the status of the operation back to the host by means of exit codes. Each code has a
specific meaning and the plug-in uses the right exit code to indicate the same.

The following table depicts error codes and their meaning.

Exit code

0

99

100

101

other

Log error messages

Purpose

Successful operation.

Requested operation is not supported or
implemented.

Failed operation, skip unquiesce, and exit. Unquiesce
is by default.

Failed operation, continue with backup operation.

Failed operation, run unquiesce, and exit.

The error messages are passed from the plug-in to the SnapCenter Server. The message includes the

message, log level, and time stamp.

The following table lists levels and their purposes.

Parameter Purpose

INFO informational message
WARN warning message
ERROR error message
DEBUG debug message
TRACE trace message

Preserve data consistency

Custom plug-ins preserve data between operations of the same workflow execution. For example, a plug-in
can store data at the end of quiesce, which can be used during unquiesce operation.

The data to be preserved is set as part of result object by plug-in. It follows a specific format and is described in
detail under each style of plug-in development.

PERL-based development
You must follow certain conventions while developing the plug-in using PERL.

» Contents must be readable

* Must implement mandatory operations setENV, quiesce, and unquiesce
* Must use a specific syntax to pass results back to the agent

* The contents should be saved as <PLUGIN_NAME>.pm file

Available operations are

* setENV

* version

* quiesce

* unquiesce

* clone_pre, clone_post
* restore_pre, restore

* cleanup

General plug-in handling

Using results object

Every custom plug-in operation must define the results object. This object sends messages, exit code, stdout,
and stderr back to the host agent.

Results object:

my S$result = {

exit code => 0,
stdout => "",
stderr => "",

bi
Returning the results object:

return S$result;

Preserving data consistency

It is possible to preserve data between operations (except cleanup) as part of same workflow execution. This is
done using key-value pairs. The key-value pairs of data are set as part of result object and are retained and
available in the subsequent operations of same workflow.

The following code sample sets the data to be preserved:

my Sresult = {
exit code => 0,
stdout => "",
stderr => "",
i
Sresult->{env}->{‘keyl’} = ‘valuel’;
Sresult->{env}->{‘key2’} ‘value?2’;

return S$result

The above code sets two key-value pairs, which are available as input in the subsequent operation. The two
key-value pairs are accessible using the following code:

sub setENV {
my (Sself, Sconfig) = @ ;
my S$first value = Sconfig->{‘keyl’};
my Ssecond value = Sconfig->{‘key2’};

=== Logging error messages

Each operation can send messages back to the host agent, which displays and stores the content. A message
contains the message level, a timestamp, and a message text. Multiline messages are supported.

Load the SnapCreator::Event Class:
my $msgObj = new SnapCreator::Event () ;
my @message a = ();

Use the msgObj to capture a message by using the collect method.

SmsgObj->collect (\@message a, INFO, "My INFO Message");
$msgObj->collect (\@message a, WARN, "My WARN Message");
$msgObj->collect (\@message a, ERROR, "My ERROR Message");
SmsgObj->collect (\@message a, DEBUG, "My DEBUG Message");
$msgObj->collect (\@message a, TRACE, "My TRACE Message");

Apply messages to the results object:

Sresult->{message} = \@message_a;

Using plug-in stubs

Custom plug-ins must expose plug-in stubs. These are methods that the SnapCenter Server calls, based on a
workflow.

Plug-in Stub Optional/Required Purpose

setENV required This stub sets the environment and
the configuration object.

Any environment parsing or
handling should be done here.
Each time a stub is called, the
setENV stub is called just before. It
is only required for PERL-style
plug-ins.

Version Optional This stub is used to get application
version.

Plug-in Stub

Discover

discovery_complete

Quiesce

Optional/Required
Optional

Optional

required

Purpose

This stub is used to discover
application objects like instance or
database hosted on the agent or
host.

The plug-in is expected to return
discovered application objects in
specific format as part of the
response. This stub is only used in
case the application is integrated
with SnapDrive for Unix.

Linux file system
(Linux Flavors) is

@ supported.
AlX/Solaris (Unix
Flavors) are not
supported.

This stub is used to discover
application objects like instance or
database hosted on the agent or
host.

The plug-in is expected to return
discovered application objects in
specific format as part of the
response. This stub is only used in
case the application is integrated
with SnapDrive for Unix.

Linux file system
(Linux flavors) is
@ supported. AIX and
Solaris (Unix flavors)
are not supported.

This stub is responsible for
performing a quiesce, which means
placing application into a state
where you can create a Snapshot
copy. This is called before
Snapshot copy operation. The
metadata of application to be
retained should be set as part of
response, which shall be returned
during subsequent clone or restore
operations on corresponding
storage Snapshot copy in the form
of configuration parameters.

Plug-in Stub

Unquiesce

clone_pre

clone_post

restore_pre

Restore

Optional/Required

required

optional

optional

optional

optional

Purpose

This stub is responsible for
performing a unquiesce, which
means placing application into a
normal state. This is called after
you create a Snapshot copy.

This stub is responsible for
performing preclone tasks. This
assumes you are using the built-in
SnapCenter Server cloning
interface and is triggered when
performing clone operation.

This stub is responsible for
performing post clone tasks. This
assumes you are using the built-in
SnapCenter Server cloning
interface and is triggered only when
performing clone operation.

This stub is responsible for
performing prerestore tasks. This
assumes you are using the built-in
SnapCenter Server restore
interface and is triggered while
performing restore operation.

This stub is responsible for
performing application restore
tasks. This assumes you are using
the built-in SnapCenter Server
restore interface and is only
triggered when performing restore
operation.

Plug-in Stub

Cleanup

app_version

Optional/Required

optional

Optional

Plug-in package information

Every plug-in must have following information:

package MOCK;

our @ISA = gw(SnapCreator::Mod) ;

=headl NAME

MOCK - class which represents a MOCK module.

=cut

=headl DESCRIPTION

MOCK implements methods which only log requests.

=cut
use strict;
use warnings;

use diagnostics;

use SnapCreator::Util::Generic gqw
use SnapCreator::Util::0S qw

createTmpFile);
use SnapCreator::Event gw (INFO ERROR WARN DEBUG COMMENT ASUP

CMD DUMP) ;
my SmsgObj =
my %config h

new SnapCreator::Event();

= ()

(trim isEmpty);

Purpose

This stub is responsible for
performing cleanup after backup,
restore, or clone operations.
Cleanup can be during normal
workflow execution or in the event
of a workflow failure. You can infer
the workflow name under which
cleanup is called by referring to
configuration parameter ACTION,
which can be backup,
cloneVolAndLun, or
fileOrVolRestore. The configuration
parameter ERROR_MESSAGE
indicates if there was any error
while executing the workflow. If
ERROR_MESSAGE is defined and
NOT NULL, then cleanup is called
during workflow failure execution.

This stub is used by SnapCenter to
get application version detail
managed by the plug-in.

(isWindows isUnix getUid

Operations

You can code various operations like setENV, Version, Quiesce, and Unquiesce, which are supported by the
custom plug-ins.

setENV operation

The setENV operation is required for plug-ins created using PERL. You can set the ENV and can easily access
plug-in parameters.

sub setENV {
my ($self, Sobj) = @ ;
sconfig h = %${Sobj};
my Sresult = {
exit code => 0,
stdout => "",
stderr => "",
}i

return Sresult;

Version operation

The version operation returns the application version information.

sub version {
my Sversion result = {
major => 1,
minor => 2,
patch => 1,
build => 0
i
my @message a = ();
$msgObj->collect (\@message a, INFO, "VOLUMES
$config h{'VOLUMES'}");
SmsgObj->collect (\@message a, INFO,
"Sconfig h{'APP NAME'}::quiesce");
$version result->{message} = \@message a;

return Sversion result;

Quiesce operations

Quiesce operation performs application quiesce operation on resources listed in the RESOURCES parameter.

sub quiesce {
my Sresult = {
exit code => 0,
stdout => "",
stderr =>
i
my @message a = ();
$msgObj->collect (\@message a, INFO, "VOLUMES
$config h{'VOLUMES'}");
$msgObj->collect (\@message a, INFO,
"Sconfig h{'APP NAME'}::quiesce");
Sresult->{message} = \@message_a;

return Sresult;

Unquiesce operation

Unquiesce operation is required to unquiesce the application. The list of resources is available in the
RESOURCES parameter.

sub unquiesce {
my Sresult = {
exit code => 0,
stdout => "",
stderr =>
}i
my @message a = ();
$msgObj->collect (\@message a, INFO, "VOLUMES
$config h{'VOLUMES'}");
$msgObj->collect (\@message a, INFO,
"Sconfig h{'APP NAME'}::unquiesce");
Sresult->{message} = \@message_a;

return Sresult;

NATIVE style

SnapCenter supports non-PERL programming or scripting languages to create plug-ins.
This is known as NATIVE style programming, which can be script or BATCH file.

The NATIVE-style plug-ins must follow certain conventions given below:

The plug-in must be executable

* For Unix systems, the user who runs the agent must have execute privileges on the plug-in

10

* For Windows systems, PowerShell plug-ins must have the suffix .ps1, other windows scripts must have
either .cmd or .bat suffix and must be executable by the user

* The plug-ins must react to command-line argument like "-quiesce", "-unquiesce"
* The plug-ins must return exit code 99 incase an operation or function is not implemented

* The plug-ins must use a specific syntax to pass results back to the server

General plug-in handling

Logging error messages

Each operation can send messages back to the server, which displays and stores the content. A message
contains the message level, a timestamp, and a message text. Multiline messages are supported.

Format:

SC_MSG#<level>#<timestamp>#<message>
SC_MESSAGE#<level>#<timestamp>#<message>

Using plug-in stubs

SnapCenter plug-ins must implement plug-in stubs. These are methods that the SnapCenter Server calls
based on a specific workflow.

Plug-in Stub Optional/Required Purpose

quiesce required This stub is responsible for
performing a quiesce. It places the
application into a state where we
can create a Snapshot copy. This is
called before storage Snapshot
copy operation.

unquiesce required This stub is responsible for
performing a unquiesce. It places
the application in a normal state.
This is called after storage
Snapshot copy operation.

clone_pre optional This stub is responsible for
performing pre clone tasks. This
assumes that you are using the
built-in SnapCenter cloning
interface and also is only triggered
while performing action "clone_vol
or clone_lun".

11

Plug-in Stub

clone_post

restore_pre

restore

Examples

Windows PowerShell

Optional/Required
Optional

Optional

optional

Purpose

This stub is responsible for
performing post clone tasks. This
assumes you are using the built-in
SnapCenter cloning interface and
also is only triggered while
performing "clone_vol or clone_lun"
operations.

This stub is responsible for
performing pre restore tasks. This
assumes you are using the built-in
SnapCenter restore interface and is
only triggered while performing
restore operation.

This stub is responsible for
performing all restore actions. This
assumes you are not using built-in
restore interface. It is triggered
while performing restore operation.

Check if the script can be executed on your system. If you cannot execute the script, set Set-ExecutionPolicy
bypass for the script and retry the operation.

12

if ($args.length -ne 1) {
write-warning "You must specify a method";
break;
}
function log (Slevel, Smessage) {
$d = get-date
echo "SC MSG#$Slevel#Sd#Smessage"
}
function quiesce {
$app name = (get-item env:APP NAME) .value
log "INFO" "Quiescing application using script Sapp name";
log "INFO" "Quiescing application finished successfully"
}
function unquiesce {
Sapp name = (get-item env:APP NAME) .value
log "INFO" "Unquiescing application using script Sapp name";
log "INFO" "Unquiescing application finished successfully"

switch ($Sargs[0]) {

"—quiesce" {
quiesce;

}

"—unquiesce" {
unquiesce;

}

default {

write-error "Function $args[0] is not implemented";
exit 99;

exit 0;

Java style

A Java custom plug-in interacts directly with an application like database, instance and so

on.

Limitations

There are certain limitations that you should be aware of while developing a plug-in using Java programing

language.
Plug-in characteristic Java plug-in
Complexity Low to Medium

13

Plug-in characteristic

Memory footprint

Dependencies on other libraries

Number of threads

Thread runtime

Reason for Java limitations

Java plug-in

Up to 10-20 MB

Libraries for application communication

Less than an hour

The goal of the SnapCenter Agent is to ensure continuous, safe, and robust application integration. By
supporting Java plug-ins, it is possible for plug-ins to introduce memory leaks and other unwanted issues.
Those issues are hard to tackle, especially when the goal is to keep things simple to use. If a plug-in’s
complexity is not too complex, it is much less likely that the developers would have introduced the errors. The
danger of Java plug-in is that they are running in the same JVM as the SnapCenter Agent itself. When the
plug-in crashes or leaks memory, it may also impact the Agent negatively.

Supported methods

Method Required
Version Yes
Quiesce Yes
Unquiesce Yes
Cleanup No

14

Description

Needs to return the
version of the plug-in.

Needs to perform a
quiesce on the
application. In most
cases, this means putting
the application into a state
where the SnapCenter
Server can create a
backup (for example, a
Snapshot copy).

Needs to perform an
unquiesce on the
application. In most
cases, this means putting
the application back into a
normal operation state.

Responsible for cleaning
up anything that the plug-
in needs to clean up.

Called when and by
whom?

By the SnapCenter Server
or agent to request the
version of the plug-in.

Before the SnapCenter
Server creates a
Snapshot(s) copy or
performs a backup in
general.

After the SnapCenter
Server has created a
Snapshot copy or has
performed a backup in
general.

When a workflow on the
SnapCenter Server finish
(successfully or with a
failure).

Method

clonePre

clonePost

restorePre

Restore

appVersion

Tutorial

Required

No

No

No

No

No

Description

Should perform actions
that need to happen
before a clone operation
is performed.

Should perform actions
that need to happen after
a clone operation was
performed.

Should perform actions
that need to happen
before the restore
operation is called.

Responsible for
performing a
restore/recovery of
application.

To retrieve application
version managed by the

plug-in.

Called when and by
whom?

When a user triggers a
"cloneVol" or "cloneLun"
action and uses the built-
in cloning wizard
(GUI/CLI).

When a user triggers a
"cloneVol" or "cloneLun"
action and uses the built-
in cloning wizard
(GUI/CLI).

When a user triggers a
restore operation.

When a user triggers a
restore operation.

As part of ASUP data
collection in every
workflow like
Backup/Restore/Clone.

This section describes how to create a custom plug-in using the Java programming language.

Setting up eclipse

1. Create a new Java Project "TutorialPlugin" in Eclipse

. Click Finish

. Right click the new project — Properties — Java Build Path — Libraries — Add External JARs

2
3
4. Navigate to the ../lib/ folder of host Agent and select jars scAgent-5.0-core.jar and common-5.0.jar
5

. Select the project and right click the src folder — New — Package and create a new package with the
name com.netapp.snapcreator.agent.plugin.TutorialPlugin

6. Right-click on the new package and select New — Java Class.

a. Enter name as TutorialPlugin.

b. Click the superclass browse button and search for "*AbstractPlugin". Only one result should show up:

15

16

"AbstractPlugin - com.netapp.snapcreator.agent.nextgen.plugin".

c. Click Finish.

d. Java class:

package com.netapp.snapcreator.agent.plugin.TutorialPlugin;
import
com.netapp.snapcreator.agent.nextgen.common.result.Describe
Result;
import
com.netapp.snapcreator.agent.nextgen.common.result.Result;
import
com.netapp.snapcreator.agent.nextgen.common.result.VersionR
esult;
import
com.netapp.snapcreator.agent.nextgen.context.Context;
import
com.netapp.snapcreator.agent.nextgen.plugin.AbstractPlugin;
public class TutorialPlugin extends AbstractPlugin {
@Override
public DescribeResult describe (Context context) {
// TODO Auto-generated method stub
return null;
}
@Override
public Result quiesce (Context context) ({
// TODO Auto-generated method stub
return null;
}
@Override
public Result unquiesce (Context context) {
// TODO Auto-generated method stub
return null;
}
@Override
public VersionResult version() {
// TODO Auto-generated method stub
return null;

Implementing the required methods
Quiesce, unquiesce, and version are mandatory methods that each custom Java plug-in must implement.

The following is a version method to return the version of the plug-in.

@Override
public VersionResult version () {
VersionResult versionResult = VersionResult.builder

.withMajor (
.withMinor (
.withPatch (
.withBuild/(
Louild () ;

()
1)
0)
0)
0)
return versionResult;

Below is the implementation of quiesce and unquiesce method. These will be
interacting with the application, which is being protected by SnapCenter
Server. As this is just a tutorial, the

application part is not explained, and the focus is more on the
functionality that SnapCenter Agent provides the following to the plug-
in developers:

@Override
public Result quiesce (Context context) ({
final Logger logger = context.getLogger();
/%
* TODO: Add application interaction here
*/

logger.error ("Something bad happened.");
logger.info ("Successfully handled application");

Result result = Result.builder ()
.withExitCode (0)
.withMessages (logger.getMessages ())
Jbuildy() ;

return result;

17

The method gets passed in a Context object. This contains multiple helpers, for example a Logger and a
Context Store, and also the information about the current operation (workflow-ID, job-ID). We can get the
logger by calling final Logger logger = context.getLogger();. The logger object provides similar methods known
from other logging frameworks, for example, logback. In the result object, you can also specify the exit code. In
this example, zero is returned, since there was no issue. Other exit codes can map to different failure
scenarios.

Using result object

The Result object contains the following parameters:

Parameter Default Description

Config Empty config This parameter can be used to
send config parameters back to the
server. It can be parameters that
the plug-in wants to update.
Whether this change is actually
reflected in the config on the
SnapCenter Server is dependent
on the
APP_CONF_PERSISTENCY=Y or
N parameter in the config.

exitCode 0 Indicates the status of the
operation. A"0" means the
operation was executed
successfully. Other values indicate
errors or warnings.

Stdout Empty List This can be used to transmit stdout
messages back to the SnapCenter
Server.

Stderr Empty List This can be used to transmit stderr
messages back to the SnapCenter
Server.

Messages Empty List This list contains all the messages
that a plug-in wants to return to the
server. The SnapCenter Server
displays those messages in the CLI
or GUL.

The SnapCenter Agent provides Builders (Builder Pattern) for all its result types. This makes using them very
straightforward:

18

https://en.wikipedia.org/wiki/Builder_pattern

Result result = Result.builder ()
.withExitCode (0)
.withStdout (stdout)
.withStderr (stderr)
.withConfig(confiqg)
.withMessages (logger.getMessages ())
.build()

For example, set exit code to 0, set lists for Stdout and Stderr, set config parameters and also append the log
messages that will be sent back to the server. If you do not need all the parameters, send only the ones that
are needed. As each parameter has a default value, if you remove .withExitCode(0) from the code below, the
result is unaffected:

Result result = Result.builder ()
.withExitCode (0)
.withMessages (logger.getMessages())
.build () ;

VersionResult

The VersionResult informs the SnapCenter Server the plug-in version. As it also inherits from Result, it
contains the config, exitCode, stdout, stderr, and messages parameters.

Parameter Default Description

Major 0 Maijor version field of the plug-in.
Minor 0 Minor version field of the plug-in.
Patch 0 Patch version field of the plug-in.
Build 0 Build version field of the plug-in.
For example:

VersionResult result = VersionResult.builder
.withMajor

.withPatch
.withBuild
Jbuild() ;

()
(1)
.withMinor (0)
(0)
(0)

Using the Context Object

The context object provides the following methods:

Context method Purpose

String getWorkflowld(); Returns the workflow id that is being used by the
SnapCenter Server for the current workflow.

Config getConfig(); Returns the config that is being send from the
SnapCenter Server to the Agent.

Workflow-ID

The workflow-ID is the id that the SnapCenter Server uses to refer to a specific running workflow.

Config

This object contains (most) of the parameters that a user can set in the config on the SnapCenter Server.
However, due to security reasons, some of those parameters may get filtered on the server side. Following is
an example on how to access to the Config and retrieve a parameter:

final Config config = context.getConfig();
String myParameter =
config.getParameter (" PLUGIN MANDATORY PARAMETER") ;

"/ myParameter" now contains the parameter read from the config on the SnapCenter Server If a config
parameter key doesn't exist, it will return an empty String ("").

Exporting the plug-in
You must export the plug-in to install it on the SnapCenter host.
In Eclipse perform the following tasks:

1. Right click on the base package of the plug-in (in our example
com.netapp.snapcreator.agent.plugin. TutorialPlugin).

2. Select Export — Java — Jar File

3. Click Next.

4. In the following window, specify the destination jar file path: tutorial_plugin.jar The plug-in’s base class is
named TutorialPlugin.class, the plug-in must be added to a folder with the same name.

If your plug-in depends on additional libraries, you can create the following folder: lib/

You can add jar files, on which the plug-in is dependent (for example, a database driver). When SnapCenter
loads the plug-in, it automatically associates all the jar files in this folder with it and adds them to the classpath.

20

Custom plug-in in SnapCenter

Custom plug-in in SnapCenter

The custom plug-in created using Java, PERL, or NATIVE style can be installed on the host using SnapCenter
Server to enable data protection of your application. You must have exported the plug-in to install it on the
SnapCenter host using the procedure provided in this tutorial.

Creating a plug-in description file

For every plug-in created, you must have a description file. The description file describes the details of the
plug-in. The name of the file must be Plugin_descriptor.xml.

Using plug-in descriptor file attributes and its significance

Attribute

Name

Version

DisplayName

PluginType

OSName

OSVersion

ResourceName

Description

Name of the plug-in. Alpha numeric characters are
allowed. For example, DB2, MYSQL, MongoDB

For plug-ins created in NATIVE style, ensure that you
do not provide the extension of the file. For example,
if the plug-in name is MongoDB.sh, specify the name
as MongoDB.

Plug-in version. Can include both major and minor
version. For example, 1.0, 1.1, 2.0, 2.1

The plug-in name to be displayed in SnapCenter
Server. If multiple versions of the same plug-in are
written, ensure that the display name is the same
across all versions.

Language used to create the plug-in. Supported
values are Perl, Java and Native. Native plug-in type
includes Unix/Linux shell scripts, Windows scripts,
Python or any other scripting language.

The host OS name where the plug-in is installed. Valid
values are Windows and Linux. It is possible for a
single plug-in to be available for deployment on
multiple OS types, like PERL type plug-in.

The host OS version where plug-in is installed.

Name of resource type that the plug-in can support.
For example, database, instance, collections.

21

Attribute

Parent

RequireFileSystemPlugin

ResourceRequiresAuthentication

RequireFileSystemClone

Description

In case, the ResourceName is hierarchically
dependent on another Resource type, then Parent
determines the parent ResourceType.

For instance, DB2 plug-in, the ResourceName
“Database” has a parent “Instance”.

Yes or No. Determines if the recovery tab is displayed
in the restore wizard.

Yes or No. Determines if the resources, which are
auto discovered or have not been auto discovered
need credentials to perform the data protection
operations after discovering the storage.

Yes or No. Determines if the plug-in requires
FileSystem plug-in integration for clone workflow.

An example of the Plugin_descriptor.xml file for custom plug-in DB2 is as follows:

22

<Plugin>

<SMSServer></SMSServer>

<Name>DB2</Name>

<Version>1.0</Version>

<PluginType>Perl</PluginType>

<DisplayName>Custom DB2 Plugin</DisplayName>
<SupportedOS>

<0S>

<0OSName>windows</OSName>

<0SVersion>2012</0SVersion>

</0S>

<0S>

<OSName>Linux</0OSName>

<0OSVersion>7</0SVersion>

</0S>

</Supported0OS>

<ResourceTypes>

<ResourceType>

<ResourceName>Database</ResourceName>
<Parent>Instance</Parent>

</ResourceType>

<ResourceType>

<ResourceName>Instance</ResourceName>

</ResourceType>

</ResourceTypes>
<RequireFileSystemPlugin>no</RequireFileSystemPlugin>
<ResourceRequiresAuthentication>yes</ResourceRequiresAuthentication>
<SupportsApplicationRecovery>yes</SupportsApplicationRecovery>
</Plugin>

Creating a ZIP file

After a plug-in is developed and a descriptor file is created, you must add the plug-in files and the
Plugin_descriptor.xml file to a folder and zip it.

You must consider the following before creating a ZIP file:

* The script name must be same as the plug-in name.

» For PERL plug-in, the ZIP folder must contain a folder with the script file and the descriptor file must be
outside this folder. The folder name must be the same as the plug-in name.

* For plug-ins other than the PERL plug-in, the ZIP folder must contain the descriptor and the script files.

* The OS version must be a number.
Examples:

» DB2 plug-in: add DB2.pm and Plugin_descriptor.xml file to “DB2.zip”.

23

* Plug-in developed using Java: add jar files, dependent jar files, and Plugin_descriptor.xml file to a folder
and zip it.

Uploading the plug-in ZIP file

You must upload the plug-in ZIP file to SnapCenter Server so that the plug-in is available for deployment on the
desired host.

You can upload the plug-in using the Ul or cmdlets.
Ul:

» Upload the plug-in ZIP file as part of Add or Modify Host workflow wizard

* Click “Select to upload custom plug-in”
PowerShell:
» Upload-SmPluginPackage cmdlet
For example, PS> Upload-SmPIluginPackage -AbsolutePath c:\\DB2_1.zip

For detailed information about PowerShell cmdlets, use the SnapCenter cmdlet help or see the cmdlet
reference information.

SnapCenter Software Cmdlet Reference Guide.

Deploying the custom plug-ins

The uploaded custom plug-in is now available for deployment on the desired host as part of the Add and
Modify Host workflow. You can have multiple version of plug-ins uploaded to the SnapCenter Server and you
can select the desired version to deploy on a specific host.

For more information on how to upload the plug-in see, Add hosts and install plug-in packages on remote hosts

24

https://docs.netapp.com/us-en/snapcenter-cmdlets-48/index.html
https://docs.netapp.com/us-en/snapcenter-48/protect-scc/task_add_hosts_and_install_plug_in_packages_on_remote_hosts_scc.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

25

http://www.netapp.com/TM

	Develop a plug-in for your application : SnapCenter Software 4.8
	Table of Contents
	Develop a plug-in for your application
	Overview
	Generic plug-in handling in all API calls

	PERL-based development
	General plug-in handling

	NATIVE style
	General plug-in handling

	Java style
	Limitations
	Supported methods
	Tutorial

	Custom plug-in in SnapCenter
	Custom plug-in in SnapCenter

