
Develop a plug-in for your application
SnapCenter Software 4.9
NetApp
September 26, 2025

This PDF was generated from https://docs.netapp.com/us-en/snapcenter-49/protect-
scc/concept_develop_a_plug_in_for_your_application.html on September 26, 2025. Always check
docs.netapp.com for the latest.

Table of Contents

Develop a plug-in for your application . 1

Overview . 1

Generic plug-in handling in all API calls . 1

PERL-based development . 3

General plug-in handling . 3

NATIVE style . 10

General plug-in handling . 11

Java style . 13

Limitations . 13

Supported methods . 14

Tutorial . 15

Custom plug-in in SnapCenter . 21

Custom plug-in in SnapCenter . 21

Develop a plug-in for your application

Overview

The SnapCenter Server enables you to deploy and manage your applications as plug-ins

to SnapCenter. Applications of your choice can be plugged into the SnapCenter Server

for data protection and management capabilities.

SnapCenter enables you to develop custom plug-ins using different programming languages. You can develop

a custom plug-in using Perl, Java, BATCH, or other Scripting languages.

To use custom plug-ins in SnapCenter, you must perform the following tasks:

• Create a plug-in for your application using the instructions in this guide

• Create a description file

• Export the custom plug-in to install it on the SnapCenter host

• Upload the plug-in zip file into SnapCenter Server

Generic plug-in handling in all API calls

For every API call, use the following information:

• Plug-in parameters

• Exit codes

• Log error messages

• Data consistency

Use Plug-in parameters

A set of parameters are passed to the plug-in as part of every API call made. The following table lists the

specific information for the parameters.

Parameter Purpose

ACTION Determines the workflow name. For example,

discover, backup, fileOrVolRestore or cloneVolAndLun

RESOURCES Lists resources to be protected. A resource is

identified by UID and Type. The list is presented to

the plug-in in the following format:

“<UID>,<TYPE>;<UID>,<TYPE>”. For example,

“Instance1,Instance;Instance2\\DB1,Database”

APP_NAME Determines which plug-in is being used. For example,

DB2, MYSQL. SnapCenter Server has built-in support

for the listed applications. This parameter is case

sensitive.

1

Parameter Purpose

APP_IGNORE_ERROR (Y or N) This causes SnapCenter to exit or not exit

when an application error is encountered. This is

useful when you are backing up multiple databases

and do not want a single failure to stop the backup

operation.

<RESOURCE_NAME>__APP_INSTANCE_USERNA

ME

SnapCenter credential is set for the resource.

<RESOURCE_NAME>_APP_INSTANCE_PASSWO

RD

SnapCenter credential is set for the resource.

<RESOURCE_NAME>_<CUSTOM_PARAM> Every Resource level custom key value is available to

plug-ins prefixed with “<RESOURCE_NAME>_”. For

example, if a custom key is “MASTER_SLAVE” for a

resource named “MySQLDB”, then it will be available

as MySQLDB_MASTER_SLAVE

Use exit codes

The plug-in returns the status of the operation back to the host by means of exit codes. Each code has a

specific meaning and the plug-in uses the right exit code to indicate the same.

The following table depicts error codes and their meaning.

Exit code Purpose

0 Successful operation.

99 Requested operation is not supported or

implemented.

100 Failed operation, skip unquiesce, and exit. Unquiesce

is by default.

101 Failed operation, continue with backup operation.

other Failed operation, run unquiesce, and exit.

Log error messages

The error messages are passed from the plug-in to the SnapCenter Server. The message includes the

message, log level, and time stamp.

The following table lists levels and their purposes.

2

Parameter Purpose

INFO informational message

WARN warning message

ERROR error message

DEBUG debug message

TRACE trace message

Preserve data consistency

Custom plug-ins preserve data between operations of the same workflow execution. For example, a plug-in

can store data at the end of quiesce, which can be used during unquiesce operation.

The data to be preserved is set as part of result object by plug-in. It follows a specific format and is described in

detail under each style of plug-in development.

PERL-based development

You must follow certain conventions while developing the plug-in using PERL.

• Contents must be readable

• Must implement mandatory operations setENV, quiesce, and unquiesce

• Must use a specific syntax to pass results back to the agent

• The contents should be saved as <PLUGIN_NAME>.pm file

Available operations are

• setENV

• version

• quiesce

• unquiesce

• clone_pre, clone_post

• restore_pre, restore

• cleanup

General plug-in handling

Using results object

Every custom plug-in operation must define the results object. This object sends messages, exit code, stdout,

and stderr back to the host agent.

Results object:

3

my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

};

Returning the results object:

return $result;

Preserving data consistency

It is possible to preserve data between operations (except cleanup) as part of same workflow execution. This is

done using key-value pairs. The key-value pairs of data are set as part of result object and are retained and

available in the subsequent operations of same workflow.

The following code sample sets the data to be preserved:

my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

};

 $result->{env}->{‘key1’} = ‘value1’;

 $result->{env}->{‘key2’} = ‘value2’;

 ….

 return $result

The above code sets two key-value pairs, which are available as input in the subsequent operation. The two

key-value pairs are accessible using the following code:

sub setENV {

 my ($self, $config) = @_;

 my $first_value = $config->{‘key1’};

 my $second_value = $config->{‘key2’};

 …

}

=== Logging error messages

4

Each operation can send messages back to the host agent, which displays and stores the content. A message

contains the message level, a timestamp, and a message text. Multiline messages are supported.

Load the SnapCreator::Event Class:

my $msgObj = new SnapCreator::Event();

my @message_a = ();

Use the msgObj to capture a message by using the collect method.

$msgObj->collect(\@message_a, INFO, "My INFO Message");

$msgObj->collect(\@message_a, WARN, "My WARN Message");

$msgObj->collect(\@message_a, ERROR, "My ERROR Message");

$msgObj->collect(\@message_a, DEBUG, "My DEBUG Message");

$msgObj->collect(\@message_a, TRACE, "My TRACE Message");

Apply messages to the results object:

$result->{message} = \@message_a;

Using plug-in stubs

Custom plug-ins must expose plug-in stubs. These are methods that the SnapCenter Server calls, based on a

workflow.

Plug-in Stub Optional/Required Purpose

setENV required This stub sets the environment and

the configuration object.

Any environment parsing or

handling should be done here.

Each time a stub is called, the

setENV stub is called just before. It

is only required for PERL-style

plug-ins.

Version Optional This stub is used to get application

version.

5

Plug-in Stub Optional/Required Purpose

Discover Optional This stub is used to discover

application objects like instance or

database hosted on the agent or

host.

The plug-in is expected to return

discovered application objects in

specific format as part of the

response. This stub is only used in

case the application is integrated

with SnapDrive for Unix.

Linux file system

(Linux Flavors) is

supported.

AIX/Solaris (Unix

Flavors) are not

supported.

discovery_complete Optional This stub is used to discover

application objects like instance or

database hosted on the agent or

host.

The plug-in is expected to return

discovered application objects in

specific format as part of the

response. This stub is only used in

case the application is integrated

with SnapDrive for Unix.

Linux file system

(Linux flavors) is

supported. AIX and

Solaris (Unix flavors)

are not supported.

Quiesce required This stub is responsible for

performing a quiesce, which means

placing application into a state

where you can create a Snapshot

copy. This is called before

Snapshot copy operation. The

metadata of application to be

retained should be set as part of

response, which shall be returned

during subsequent clone or restore

operations on corresponding

storage Snapshot copy in the form

of configuration parameters.

6

Plug-in Stub Optional/Required Purpose

Unquiesce required This stub is responsible for

performing a unquiesce, which

means placing application into a

normal state. This is called after

you create a Snapshot copy.

clone_pre optional This stub is responsible for

performing preclone tasks. This

assumes you are using the built-in

SnapCenter Server cloning

interface and is triggered when

performing clone operation.

clone_post optional This stub is responsible for

performing post clone tasks. This

assumes you are using the built-in

SnapCenter Server cloning

interface and is triggered only when

performing clone operation.

restore_pre optional This stub is responsible for

performing prerestore tasks. This

assumes you are using the built-in

SnapCenter Server restore

interface and is triggered while

performing restore operation.

Restore optional This stub is responsible for

performing application restore

tasks. This assumes you are using

the built-in SnapCenter Server

restore interface and is only

triggered when performing restore

operation.

7

Plug-in Stub Optional/Required Purpose

Cleanup optional This stub is responsible for

performing cleanup after backup,

restore, or clone operations.

Cleanup can be during normal

workflow execution or in the event

of a workflow failure. You can infer

the workflow name under which

cleanup is called by referring to

configuration parameter ACTION,

which can be backup,

cloneVolAndLun, or

fileOrVolRestore. The configuration

parameter ERROR_MESSAGE

indicates if there was any error

while executing the workflow. If

ERROR_MESSAGE is defined and

NOT NULL, then cleanup is called

during workflow failure execution.

app_version Optional This stub is used by SnapCenter to

get application version detail

managed by the plug-in.

Plug-in package information

Every plug-in must have following information:

package MOCK;

our @ISA = qw(SnapCreator::Mod);

=head1 NAME

MOCK - class which represents a MOCK module.

=cut

=head1 DESCRIPTION

MOCK implements methods which only log requests.

=cut

use strict;

use warnings;

use diagnostics;

use SnapCreator::Util::Generic qw (trim isEmpty);

use SnapCreator::Util::OS qw (isWindows isUnix getUid

createTmpFile);

use SnapCreator::Event qw (INFO ERROR WARN DEBUG COMMENT ASUP

CMD DUMP);

my $msgObj = new SnapCreator::Event();

my %config_h = ();

8

Operations

You can code various operations like setENV, Version, Quiesce, and Unquiesce, which are supported by the

custom plug-ins.

setENV operation

The setENV operation is required for plug-ins created using PERL. You can set the ENV and can easily access

plug-in parameters.

sub setENV {

 my ($self, $obj) = @_;

 %config_h = %{$obj};

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 return $result;

}

Version operation

The version operation returns the application version information.

sub version {

 my $version_result = {

 major => 1,

 minor => 2,

 patch => 1,

 build => 0

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

 $version_result->{message} = \@message_a;

 return $version_result;

}

Quiesce operations

Quiesce operation performs application quiesce operation on resources listed in the RESOURCES parameter.

9

sub quiesce {

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

 $result->{message} = \@message_a;

 return $result;

}

Unquiesce operation

Unquiesce operation is required to unquiesce the application. The list of resources is available in the

RESOURCES parameter.

sub unquiesce {

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::unquiesce");

 $result->{message} = \@message_a;

 return $result;

}

NATIVE style

SnapCenter supports non-PERL programming or scripting languages to create plug-ins.

This is known as NATIVE style programming, which can be script or BATCH file.

The NATIVE-style plug-ins must follow certain conventions given below:

The plug-in must be executable

• For Unix systems, the user who runs the agent must have execute privileges on the plug-in

10

• For Windows systems, PowerShell plug-ins must have the suffix .ps1, other windows scripts must have

either .cmd or .bat suffix and must be executable by the user

• The plug-ins must react to command-line argument like "-quiesce", "-unquiesce"

• The plug-ins must return exit code 99 incase an operation or function is not implemented

• The plug-ins must use a specific syntax to pass results back to the server

General plug-in handling

Logging error messages

Each operation can send messages back to the server, which displays and stores the content. A message

contains the message level, a timestamp, and a message text. Multiline messages are supported.

Format:

SC_MSG#<level>#<timestamp>#<message>

SC_MESSAGE#<level>#<timestamp>#<message>

Using plug-in stubs

SnapCenter plug-ins must implement plug-in stubs. These are methods that the SnapCenter Server calls

based on a specific workflow.

Plug-in Stub Optional/Required Purpose

quiesce required This stub is responsible for

performing a quiesce. It places the

application into a state where we

can create a Snapshot copy. This is

called before storage Snapshot

copy operation.

unquiesce required This stub is responsible for

performing a unquiesce. It places

the application in a normal state.

This is called after storage

Snapshot copy operation.

clone_pre optional This stub is responsible for

performing pre clone tasks. This

assumes that you are using the

built-in SnapCenter cloning

interface and also is only triggered

while performing action "clone_vol

or clone_lun".

11

Plug-in Stub Optional/Required Purpose

clone_post Optional This stub is responsible for

performing post clone tasks. This

assumes you are using the built-in

SnapCenter cloning interface and

also is only triggered while

performing "clone_vol or clone_lun"

operations.

restore_pre Optional This stub is responsible for

performing pre restore tasks. This

assumes you are using the built-in

SnapCenter restore interface and is

only triggered while performing

restore operation.

restore optional This stub is responsible for

performing all restore actions. This

assumes you are not using built-in

restore interface. It is triggered

while performing restore operation.

Examples

Windows PowerShell

Check if the script can be executed on your system. If you cannot execute the script, set Set-ExecutionPolicy

bypass for the script and retry the operation.

12

if ($args.length -ne 1) {

 write-warning "You must specify a method";

 break;

}

function log ($level, $message) {

 $d = get-date

 echo "SC_MSG#$level#$d#$message"

}

function quiesce {

 $app_name = (get-item env:APP_NAME).value

 log "INFO" "Quiescing application using script $app_name";

 log "INFO" "Quiescing application finished successfully"

}

function unquiesce {

 $app_name = (get-item env:APP_NAME).value

 log "INFO" "Unquiescing application using script $app_name";

 log "INFO" "Unquiescing application finished successfully"

}

 switch ($args[0]) {

 "-quiesce" {

 quiesce;

}

"-unquiesce" {

 unquiesce;

}

default {

 write-error "Function $args[0] is not implemented";

 exit 99;

 }

}

exit 0;

Java style

A Java custom plug-in interacts directly with an application like database, instance and so

on.

Limitations

There are certain limitations that you should be aware of while developing a plug-in using Java programing

language.

Plug-in characteristic Java plug-in

Complexity Low to Medium

13

Plug-in characteristic Java plug-in

Memory footprint Up to 10-20 MB

Dependencies on other libraries Libraries for application communication

Number of threads 1

Thread runtime Less than an hour

Reason for Java limitations

The goal of the SnapCenter Agent is to ensure continuous, safe, and robust application integration. By

supporting Java plug-ins, it is possible for plug-ins to introduce memory leaks and other unwanted issues.

Those issues are hard to tackle, especially when the goal is to keep things simple to use. If a plug-in’s

complexity is not too complex, it is much less likely that the developers would have introduced the errors. The

danger of Java plug-in is that they are running in the same JVM as the SnapCenter Agent itself. When the

plug-in crashes or leaks memory, it may also impact the Agent negatively.

Supported methods

Method Required Description Called when and by

whom?

Version Yes Needs to return the

version of the plug-in.

By the SnapCenter Server

or agent to request the

version of the plug-in.

Quiesce Yes Needs to perform a

quiesce on the

application. In most

cases, this means putting

the application into a state

where the SnapCenter

Server can create a

backup (for example, a

Snapshot copy).

Before the SnapCenter

Server creates a

Snapshot(s) copy or

performs a backup in

general.

Unquiesce Yes Needs to perform an

unquiesce on the

application. In most

cases, this means putting

the application back into a

normal operation state.

After the SnapCenter

Server has created a

Snapshot copy or has

performed a backup in

general.

Cleanup No Responsible for cleaning

up anything that the plug-

in needs to clean up.

When a workflow on the

SnapCenter Server finish

(successfully or with a

failure).

14

Method Required Description Called when and by

whom?

clonePre No Should perform actions

that need to happen

before a clone operation

is performed.

When a user triggers a

"cloneVol" or "cloneLun"

action and uses the built-

in cloning wizard

(GUI/CLI).

clonePost No Should perform actions

that need to happen after

a clone operation was

performed.

When a user triggers a

"cloneVol" or "cloneLun"

action and uses the built-

in cloning wizard

(GUI/CLI).

restorePre No Should perform actions

that need to happen

before the restore

operation is called.

When a user triggers a

restore operation.

Restore No Responsible for

performing a

restore/recovery of

application.

When a user triggers a

restore operation.

appVersion No To retrieve application

version managed by the

plug-in.

As part of ASUP data

collection in every

workflow like

Backup/Restore/Clone.

Tutorial

This section describes how to create a custom plug-in using the Java programming language.

Setting up eclipse

1. Create a new Java Project "TutorialPlugin" in Eclipse

2. Click Finish

3. Right click the new project → Properties → Java Build Path → Libraries → Add External JARs

4. Navigate to the ../lib/ folder of host Agent and select jars scAgent-5.0-core.jar and common-5.0.jar

5. Select the project and right click the src folder → New → Package and create a new package with the

name com.netapp.snapcreator.agent.plugin.TutorialPlugin

6. Right-click on the new package and select New → Java Class.

a. Enter name as TutorialPlugin.

b. Click the superclass browse button and search for "*AbstractPlugin". Only one result should show up:

15

"AbstractPlugin - com.netapp.snapcreator.agent.nextgen.plugin".

c. Click Finish.

d. Java class:

package com.netapp.snapcreator.agent.plugin.TutorialPlugin;

import

com.netapp.snapcreator.agent.nextgen.common.result.Describe

Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.VersionR

esult;

import

com.netapp.snapcreator.agent.nextgen.context.Context;

import

com.netapp.snapcreator.agent.nextgen.plugin.AbstractPlugin;

public class TutorialPlugin extends AbstractPlugin {

 @Override

 public DescribeResult describe(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Result quiesce(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Result unquiesce(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public VersionResult version() {

 // TODO Auto-generated method stub

 return null;

 }

}

16

Implementing the required methods

Quiesce, unquiesce, and version are mandatory methods that each custom Java plug-in must implement.

The following is a version method to return the version of the plug-in.

@Override

public VersionResult version() {

 VersionResult versionResult = VersionResult.builder()

 .withMajor(1)

 .withMinor(0)

 .withPatch(0)

 .withBuild(0)

 .build();

 return versionResult;

}

Below is the implementation of quiesce and unquiesce method. These will be

interacting with the application, which is being protected by SnapCenter

Server. As this is just a tutorial, the

application part is not explained, and the focus is more on the

functionality that SnapCenter Agent provides the following to the plug-

in developers:

@Override

 public Result quiesce(Context context) {

 final Logger logger = context.getLogger();

 /*

 * TODO: Add application interaction here

 */

logger.error("Something bad happened.");

logger.info("Successfully handled application");

 Result result = Result.builder()

 .withExitCode(0)

 .withMessages(logger.getMessages())

 .build();

 return result;

}

17

The method gets passed in a Context object. This contains multiple helpers, for example a Logger and a

Context Store, and also the information about the current operation (workflow-ID, job-ID). We can get the

logger by calling final Logger logger = context.getLogger();. The logger object provides similar methods known

from other logging frameworks, for example, logback. In the result object, you can also specify the exit code. In

this example, zero is returned, since there was no issue. Other exit codes can map to different failure

scenarios.

Using result object

The Result object contains the following parameters:

Parameter Default Description

Config Empty config This parameter can be used to

send config parameters back to the

server. It can be parameters that

the plug-in wants to update.

Whether this change is actually

reflected in the config on the

SnapCenter Server is dependent

on the

APP_CONF_PERSISTENCY=Y or

N parameter in the config.

exitCode 0 Indicates the status of the

operation. A "0" means the

operation was executed

successfully. Other values indicate

errors or warnings.

Stdout Empty List This can be used to transmit stdout

messages back to the SnapCenter

Server.

Stderr Empty List This can be used to transmit stderr

messages back to the SnapCenter

Server.

Messages Empty List This list contains all the messages

that a plug-in wants to return to the

server. The SnapCenter Server

displays those messages in the CLI

or GUI.

The SnapCenter Agent provides Builders (Builder Pattern) for all its result types. This makes using them very

straightforward:

18

https://en.wikipedia.org/wiki/Builder_pattern

Result result = Result.builder()

 .withExitCode(0)

 .withStdout(stdout)

 .withStderr(stderr)

 .withConfig(config)

 .withMessages(logger.getMessages())

 .build()

For example, set exit code to 0, set lists for Stdout and Stderr, set config parameters and also append the log

messages that will be sent back to the server. If you do not need all the parameters, send only the ones that

are needed. As each parameter has a default value, if you remove .withExitCode(0) from the code below, the

result is unaffected:

Result result = Result.builder()

 .withExitCode(0)

 .withMessages(logger.getMessages())

 .build();

VersionResult

The VersionResult informs the SnapCenter Server the plug-in version. As it also inherits from Result, it

contains the config, exitCode, stdout, stderr, and messages parameters.

Parameter Default Description

Major 0 Major version field of the plug-in.

Minor 0 Minor version field of the plug-in.

Patch 0 Patch version field of the plug-in.

Build 0 Build version field of the plug-in.

For example:

VersionResult result = VersionResult.builder()

 .withMajor(1)

 .withMinor(0)

 .withPatch(0)

 .withBuild(0)

 .build();

19

Using the Context Object

The context object provides the following methods:

Context method Purpose

String getWorkflowId(); Returns the workflow id that is being used by the

SnapCenter Server for the current workflow.

Config getConfig(); Returns the config that is being send from the

SnapCenter Server to the Agent.

Workflow-ID

The workflow-ID is the id that the SnapCenter Server uses to refer to a specific running workflow.

Config

This object contains (most) of the parameters that a user can set in the config on the SnapCenter Server.

However, due to security reasons, some of those parameters may get filtered on the server side. Following is

an example on how to access to the Config and retrieve a parameter:

final Config config = context.getConfig();

String myParameter =

config.getParameter("PLUGIN_MANDATORY_PARAMETER");

""// myParameter" now contains the parameter read from the config on the SnapCenter Server If a config

parameter key doesn’t exist, it will return an empty String ("").

Exporting the plug-in

You must export the plug-in to install it on the SnapCenter host.

In Eclipse perform the following tasks:

1. Right click on the base package of the plug-in (in our example

com.netapp.snapcreator.agent.plugin.TutorialPlugin).

2. Select Export → Java → Jar File

3. Click Next.

4. In the following window, specify the destination jar file path: tutorial_plugin.jar The plug-in’s base class is

named TutorialPlugin.class, the plug-in must be added to a folder with the same name.

If your plug-in depends on additional libraries, you can create the following folder: lib/

You can add jar files, on which the plug-in is dependent (for example, a database driver). When SnapCenter

loads the plug-in, it automatically associates all the jar files in this folder with it and adds them to the classpath.

20

Custom plug-in in SnapCenter

Custom plug-in in SnapCenter

The custom plug-in created using Java, PERL, or NATIVE style can be installed on the host using SnapCenter

Server to enable data protection of your application. You must have exported the plug-in to install it on the

SnapCenter host using the procedure provided in this tutorial.

Creating a plug-in description file

For every plug-in created, you must have a description file. The description file describes the details of the

plug-in. The name of the file must be Plugin_descriptor.xml.

Using plug-in descriptor file attributes and its significance

Attribute Description

Name Name of the plug-in. Alpha numeric characters are

allowed. For example, DB2, MYSQL, MongoDB

For plug-ins created in NATIVE style, ensure that you

do not provide the extension of the file. For example,

if the plug-in name is MongoDB.sh, specify the name

as MongoDB.

Version Plug-in version. Can include both major and minor

version. For example, 1.0, 1.1, 2.0, 2.1

DisplayName The plug-in name to be displayed in SnapCenter

Server. If multiple versions of the same plug-in are

written, ensure that the display name is the same

across all versions.

PluginType Language used to create the plug-in. Supported

values are Perl, Java and Native. Native plug-in type

includes Unix/Linux shell scripts, Windows scripts,

Python or any other scripting language.

OSName The host OS name where the plug-in is installed. Valid

values are Windows and Linux. It is possible for a

single plug-in to be available for deployment on

multiple OS types, like PERL type plug-in.

OSVersion The host OS version where plug-in is installed.

ResourceName Name of resource type that the plug-in can support.

For example, database, instance, collections.

21

Attribute Description

Parent In case, the ResourceName is hierarchically

dependent on another Resource type, then Parent

determines the parent ResourceType.

For instance, DB2 plug-in, the ResourceName

“Database” has a parent “Instance”.

RequireFileSystemPlugin Yes or No. Determines if the recovery tab is displayed

in the restore wizard.

ResourceRequiresAuthentication Yes or No. Determines if the resources, which are

auto discovered or have not been auto discovered

need credentials to perform the data protection

operations after discovering the storage.

RequireFileSystemClone Yes or No. Determines if the plug-in requires

FileSystem plug-in integration for clone workflow.

An example of the Plugin_descriptor.xml file for custom plug-in DB2 is as follows:

22

<Plugin>

<SMSServer></SMSServer>

<Name>DB2</Name>

<Version>1.0</Version>

<PluginType>Perl</PluginType>

<DisplayName>Custom DB2 Plugin</DisplayName>

<SupportedOS>

<OS>

<OSName>windows</OSName>

<OSVersion>2012</OSVersion>

</OS>

<OS>

<OSName>Linux</OSName>

<OSVersion>7</OSVersion>

</OS>

</SupportedOS>

<ResourceTypes>

<ResourceType>

<ResourceName>Database</ResourceName>

<Parent>Instance</Parent>

</ResourceType>

<ResourceType>

<ResourceName>Instance</ResourceName>

</ResourceType>

</ResourceTypes>

<RequireFileSystemPlugin>no</RequireFileSystemPlugin>

<ResourceRequiresAuthentication>yes</ResourceRequiresAuthentication>

<SupportsApplicationRecovery>yes</SupportsApplicationRecovery>

</Plugin>

Creating a ZIP file

After a plug-in is developed and a descriptor file is created, you must add the plug-in files and the

Plugin_descriptor.xml file to a folder and zip it.

You must consider the following before creating a ZIP file:

• The script name must be same as the plug-in name.

• For PERL plug-in, the ZIP folder must contain a folder with the script file and the descriptor file must be

outside this folder. The folder name must be the same as the plug-in name.

• For plug-ins other than the PERL plug-in, the ZIP folder must contain the descriptor and the script files.

• The OS version must be a number.

Examples:

• DB2 plug-in: add DB2.pm and Plugin_descriptor.xml file to “DB2.zip”.

23

• Plug-in developed using Java: add jar files, dependent jar files, and Plugin_descriptor.xml file to a folder

and zip it.

Uploading the plug-in ZIP file

You must upload the plug-in ZIP file to SnapCenter Server so that the plug-in is available for deployment on the

desired host.

You can upload the plug-in using the UI or cmdlets.

UI:

• Upload the plug-in ZIP file as part of Add or Modify Host workflow wizard

• Click “Select to upload custom plug-in”

PowerShell:

• Upload-SmPluginPackage cmdlet

For example, PS> Upload-SmPluginPackage -AbsolutePath c:\DB2_1.zip

For detailed information about PowerShell cmdlets, use the SnapCenter cmdlet help or see the cmdlet

reference information.

SnapCenter Software Cmdlet Reference Guide.

Deploying the custom plug-ins

The uploaded custom plug-in is now available for deployment on the desired host as part of the Add and

Modify Host workflow. You can have multiple version of plug-ins uploaded to the SnapCenter Server and you

can select the desired version to deploy on a specific host.

For more information on how to upload the plug-in see, Add hosts and install plug-in packages on remote hosts

24

https://docs.netapp.com/us-en/snapcenter-cmdlets-49/index.html
https://docs.netapp.com/us-en/snapcenter-49/protect-scc/task_add_hosts_and_install_plug_in_packages_on_remote_hosts_scc.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

25

http://www.netapp.com/TM

	Develop a plug-in for your application : SnapCenter Software 4.9
	Table of Contents
	Develop a plug-in for your application
	Overview
	Generic plug-in handling in all API calls

	PERL-based development
	General plug-in handling

	NATIVE style
	General plug-in handling

	Java style
	Limitations
	Supported methods
	Tutorial

	Custom plug-in in SnapCenter
	Custom plug-in in SnapCenter

