Automate using REST APIs

SnapCenter software

NetApp
January 09, 2026

This PDF was generated from https://docs.netapp.com/us-en/snapcenter/sc-
automation/overview_rest_apis.html on January 09, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Automate using REST APlIs
SnapCenter automation using REST APIs
How to access SnapCenter REST API natively
REST web services foundation

Resources and state representation
URI endpoints

HTTP messages

JSON formatting

Basic operational characteristics

Request and response API transaction
Support for CRUD operations

Object identifiers

Object instances and collections
Synchronous and asynchronous operations
Security

Input variables controlling an API request

HTTP methods

Request headers

Request body

Filtering objects

Requesting specific object fields
Sorting objects in the output set

Pagination when retrieving objects in a collection

Size properties

Interpretation of an API response

HTTP status code
Response headers
Response body
Errors

REST APIs supported for SnapCenter Server and plug-ins

Auth
Domains
Jobs
Settings
Hosts
Resources
Backups
Clones
Clone split
Resource Groups
Policies
Storage
Share

© 0 O N~N~NOOOOORDDEDDNEO®WOWMWNNNNMNN-S o o o o

- A A A A A a4 = A A A A
A A D OWOWWN-O0OOOOO

Plugins
Reports
Alerts
Rbac
Configuration
CertificateSettings
Repository
Version
How to access REST APIs using the Swagger AP| web page
Get started with the REST API
Hello World

14
15
16
16
16
16
16
17
17
17
18

Automate using REST APlIs
SnapCenter automation using REST APIs

You can use REST APIs to perform several SnapCenter management operations. REST
APls are exposed through the Swagger web page. You can access the Swagger web
page available at
https.//<SnapCenter_IP_address_or_name>:<SnapCenter_port>/swagger/ to display the
REST API documentation, as well as to manually issue an API call.

The plug-ins that support REST APls are:

* Plug-in for Microsoft SQL Server
¢ Plug-in for SAP HANA Database

* Plug-in for Oracle Database

For information on SnapCenter Plug-in for VMware vSphere REST APIs, see SnapCenter Plug-in for VMware
vSphere REST APls

How to access SnapCenter REST API natively

You can access the SnapCenter REST API directly using any programming language that
supports a REST client. Popular language choices include Python, PowerShell, and Java.

REST web services foundation

Representational State Transfer (REST) is a style for creating distributed web
applications. When applied to the design of a web services API, it establishes a set of
technologies and best practices for exposing server-based resources and managing their
states. It uses mainstream protocols and standards to provide a flexible foundation for
managing SnapCenter.

Resources and state representation

Resources are the basic components of a web-based system. When creating a REST web services
application, early design tasks include:

Identification of system or server-based resources

Every system uses and maintains resources. A resource can be a file, business transaction, process, or
administrative entity. One of the first tasks in designing an application based on REST web services is to
identify the resources.

Definition of resource states and associated state operations

Resources are always in one of a finite number of states. The states, as well as the associated operations
used to affect the state changes, should be clearly defined.

https://docs.netapp.com/us-en/sc-plugin-vmware-vsphere/scpivs44_rest_apis_overview.html
https://docs.netapp.com/us-en/sc-plugin-vmware-vsphere/scpivs44_rest_apis_overview.html

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme. The
endpoints where the resources are located and identified use a Uniform Resource Identifier (URI).

The URI provides a general framework for creating a unique name for each resource in the network. The
Uniform Resource Locator (URL) is a type of URI used with web services to identify and access resources.
Resources are typically exposed in a hierarchical structure similar to a file directory.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the protocol used by the web services client and server to exchange
request and response messages about the resources.

As part of designing a web services application, HTTP methods are mapped to the resources and
corresponding state management actions. HTTP is stateless. Therefore, to associate a set of related requests
and responses as part of one transaction, additional information must be included in the HTTP headers carried
with the request and response data flows.

JSON formatting

While information can be structured and transferred between a web services client and server in several ways,
the most popular option is JavaScript Object Notation (JSON).

JSON is an industry standard for representing simple data structures in plain text and is used to transfer state

information describing the resources. The SnapCenter REST API uses JSON to format the data carried in the
body of each HTTP request and response.

Basic operational characteristics

While REST establishes a common set of technologies and best practices, the details of
each API can vary based on the design choices.
Request and response API transaction

Every REST API call is performed as an HTTP request to the SnapCenter Server system which generates an
associated response to the client. This request and response pair is considered an API transaction.

Before using the API, you should be familiar with the input variables available to control a request and the
contents of the response output.

Support for CRUD operations

Each of the resources available through the SnapCenter REST API is accessed based on the CRUD model:
* Create
* Read
* Update

e Delete

For some of the resources, only a subset of the operations is supported.

Object identifiers

Each resource instance or object is assigned a unique identifier when it is created. In most cases, the identifier
is a 128-bit UUID. These identifiers are globally unique within a specific SnapCenter Server.

After issuing an API call that creates a new object instance, a URL with the associated ID is returned to the
caller in the location header of the HTTP response. You can extract the identifier and use it on subsequent
calls when referring to the resource instance.

The content and internal structure of the object identifiers can change at any time. You should
only use the identifiers on the applicable API calls as needed when referring to the associated
objects.

Object instances and collections

Depending on the resource path and HTTP method, an API call can apply to a specific object instance or a
collection of objects.

Synchronous and asynchronous operations

SnapCenter performs an HTTP request received from a client either synchronously or asynchronously.

Synchronous processing

SnapCenter performs the request immediately and responds with an HTTP status code of 200 or 201 if it is
successful.

Every request using the method GET is always performed synchronously. In addition, requests that use POST
are designed to run synchronously if they are expected to complete in less than two seconds.

Asynchronous processing

If an asynchronous request is valid, SnapCenter creates a background task to process the request and a job
object to anchor the task. The HTTP status code 202 is returned to the caller along with the job object. You
should retrieve the state of the job to determine success or failure.

Requests that use the methods POST and DELETE are designed to run asynchronously if they are expected
to take more than two seconds to complete.

Security

The security provided with the REST API is based primarily on the existing security features available with
SnapCenter. The following security is used by the API:

Transport Layer Security

All traffic sent over the network between the SnapCenter Server and client is typically encrypted using TLS,
based on the SnapCenter configuration settings.

HTTP authentication

At an HTTP level, basic authentication is used for the API transactions. An HTTP header with the user name
and password in a base64 string is added to each request.

Input variables controlling an API request

You can control how an API call is processed through parameters and variables set in the
HTTP request.

HTTP methods

The HTTP methods supported by the SnapCenter REST API are shown in the following table.

@ Not all the HTTP methods are available at each of the REST endpoints.

HTTP method Description

GET Retrieves object properties on a resource instance or
collection.

POST Creates a new resource instance based on the

supplied input.
DELETE Deletes an existing resource instance.

PUT Modifies an existing resource instance.

Request headers

You should include several headers in the HTTP request.

Content-type

If the request body includes JSON, this header should be set to application/json.

Accept

This header should be set to application/json.

Authorization

Basic authentication should be set with the user name and password encoded as a base64 string.

Request body

The content of the request body varies depending on the specific call. The HTTP request body consists of one
of the following:

+ JSON object with input variables
* Empty
Filtering objects

When issuing an API call that uses GET, you can limit or filter the returned objects based on any attribute. For
example, you can specify an exact value to match:

<field>=<query value>

In addition to an exact match, other operators are available to return a set of objects over a range of values.
The SnapCenter REST API supports the filtering operators shown in the table below.

Operator Description

= Equal to

< Less than

> Greater than

& Less than or equal to
>= Greater than or equal to
UPDATE Or

! Not equal to

*

Greedy wildcard

You can also return a collection of objects based on whether a specific field is set or not set by using the null
keyword or its negation !null as part of the query.

@ Any fields that are not set are generally excluded from matching queries.

Requesting specific object fields

By default, issuing an API call using GET returns only the attributes that uniquely identify the object or objects.
This minimum set of fields acts as a key for each object and varies based on the object type. You can select
additional object properties using the fields query parameter in the following ways:

Common or standard fields

Specify fields=* to retrieve the most commonly used object fields. These fields are typically maintained in local
server memory or require little processing to access. These are the same properties returned for an object
after using GET with a URL path key (UUID).

All fields

Specify fields=** to retrieve all the object fields, including those requiring additional server processing to
access.

Custom field selection

Use fields=<field_name> to specify the exact field you want. When requesting multiple fields, the values must
be separated using commas without spaces.

As a best practice, you should always identify the specific fields you want. You should only

@ retrieve the set of common fields or all fields when needed. Which fields are classified as
common, and returned using fields=*, is determined by NetApp based on internal performance
analysis. The classification of a field might change in future releases.

Sorting objects in the output set

The records in a resource collection are returned in the default order defined by the object. You can change the
order using the order by query parameter with the field name and sort direction as follows:

order by=<field name> asc|desc
For example, you can sort the type field in descending order followed by id in ascending order:
order by=type desc, id asc

* If you specify a sort field but do not provide a direction, the values are sorted in ascending order.

* When including multiple parameters, you must separate the fields with a comma.

Pagination when retrieving objects in a collection

When issuing an API call using GET to access a collection of objects of the same type, SnapCenter attempts
to return as many objects as possible based on two constraints. You can control each of these constraints
using additional query parameters on the request. The first constraint reached for a specific GET request
terminates the request and therefore limits the number of records returned.

@ If a request ends before iterating over all the objects, the response contains the link needed to
retrieve the next batch of records.

Limiting the number of objects

By default, SnapCenter returns a maximum of 10,000 objects for a GET request. You can change this limit
using the max_records query parameter. For example:

max records=20

The number of objects actually returned can be less than the maximum in effect, based on the related time
constraint as well as the total number of objects in the system.

Limiting the time used to retrieve the objects

By default, SnapCenter returns as many objects as possible within the time allowed for the GET request. The
default timeout is 15 seconds. You can change this limit using the return_timeout query parameter. For
example:

return timeout=>5

The number of objects actually returned can be less than the maximum in effect, based on the related
constraint on the number of objects as well as the total number of objects in the system.

Narrowing the result set

If needed, you can combine these two parameters with additional query parameters to narrow the result set.
For example, the following returns up to 10 EMS events generated after the specified time:

time= 2018-04-04T15:41:29.140265Z&max _records=10

You can issue multiple requests to page through the objects. Each subsequent API call should use a new time

value based on the latest event in the last result set.

Size properties

The input values used with some API calls as well as certain query parameters are numeric. Rather than
provide an integer in bytes, you can optionally use a suffix as shown in the following table.

Suffix Description

KB KB Kilobytes (1024 bytes) or kibibytes

MB MB Megabytes (KB x 1024 bytes) or mebibytes
GB GB Gigabytes (MB x 1024 bytes) or gibibytes
B TB Terabytes (GB x 1024 byes) or tebibytes
PB PB Petabytes (TB x 1024 byes) or pebibytes

Interpretation of an APl response

Each API request generates a response back to the client. You should examine the
response to determine whether it was successful and retrieve additional data as needed.

HTTP status code

The HTTP status codes used by the SnapCenter REST API are described below.

Code Description

200 OK
Indicates success for calls that do not create a new
object.

201 Created

An object is successfully created. The location header
in the response includes the unique identifier for the
object.

202 Accepted

A background job has been started to perform the
request, but has not completed yet.

400 Bad request
The request input is not recognized or is
inappropriate.

401 Unauthorized

User authentication has failed.

Code Description

403 Forbidden

Access is denied due to an authorization (RBAC)
error.

404 Not found

The resource referred to in the request does not exist.

405 Method not allowed

The HTTP method in the request is not supported for
the resource.

409 Conflict

An attempt to create an object failed because a
different object must be created first or the requested
object already exists.

500 Internal error

A general internal error occurred at the server.

Response headers

Several headers are included in the HTTP response generated by the SnapCenter.

Location

When an object is created, the location header includes the complete URL to the new object including the
unique identifier assigned to the object.

Content-type

This will normally be application/json.

Response body

The content of the response body resulting from an API request differs based on the object, processing type,
and the success or failure of the request. The response is always rendered in JSON.

Single object

A single object can be returned with a set of fields based on the request. For example, you can use GET to
retrieve selected properties of a cluster using the unique identifier.

Multiple objects

Multiple objects from a resource collection can be returned. In all cases, there is a consistent format used, with
num_records indicating the number of records and records containing an array of the object instances. For
example, you can retrieve the nodes defined in a specific cluster.

Job object

If an API call is processed asynchronously, a Job object is returned which anchors the background task. For
example, the PATCH request used to update the cluster configuration is processed asynchronously and returns
a Job object.

Error object

If an error occurs, an Error object is always returned. For example, you will receive an error when attempting to
change a field not defined for a cluster.

Empty

In certain cases, no data is returned and the response body includes an empty JSON object.

Errors

If an error occurs, an error object is returned in the response body.

Format

An error object has the following format:

"error": {

"message": "<string>",
"code": <integer>[,
"target": "<string>"]

}

You can use the code value to determine the general error type or category, and the message to determine the
specific error. When available, the target field includes the specific user input associated with the error.

Common error codes

The common error codes are described in the following table. Specific API calls can include additional error
codes.

Code Description

409 An object with the same identifier already exists.

400 The value for a field has an invalid value or is missing,
or an extra field was provided.

400 The operation is not supported.

405 An object with the specified identifier cannot be not
found.

403 Permission to perform the request is denied.

409 The resource is in use.

REST APIs supported for SnapCenter Server and plug-ins

The resources available through the SnapCenter REST API are organized in categories,
as displayed on the SnapCenter APl documentation page. A brief description of each of
the resources with the base resource paths is presented below, along with additional
usage considerations where appropriate.

Auth

You can use this API to log into the SnapCenter Server. This API returns a user authorization token that is
used to authenticate subsequent requests.

Domains

You can use APIs to perform different operations.

* retrieve all the domains in SnapCenter
* retrieve details of a specific domain
* register or unregister a domain

* modify a domain

Jobs

You can use APIs to perform different operations.

« retrieve all the jobs in SnapCenter
* retrieve status of a job

» cancel or stop a job

Settings
You can use APIs to perform different operations.

* register, modify, or remove a credential
« displays the credential information registered in the SnapCenter Server
« configure notification settings

* retrieves information about the SMTP server currently configured to send email notifications and displays
the name of the SMTP server, the name of the recipients, and the name of the sender

« displays multi-factor authentication (MFA) configuration of the SnapCenter Server login
* enable or disable and configure MFA for the SnapCenter Server login

» create the configuration file required to setup MFA

Hosts
You can use APlIs to perform different operations.

* query all SnapCenter hosts

10

* remove one or more hosts from SnapCenter

* retrieve a host by name

* retrieve all resources on a host

* retrieve a resource using the resource 1D

« retrieve the plug-in configuration details

« configure the plug-in host

* retrieve all resources of the plug-in for Microsoft SQL Server host
« retrieve all resources of the plug-in for Oracle database host

* retrieve all resources of the plug-in for custom application host
« retrieve all resources of the plug-in for SAP HANA host

« retrieve the plug-ins installed

« install plug-ins on an existing host

* upgrade host package

* remove plug-ins from an existing host

* add plug-in on a host

* add or modify host

« get the signature of the Linux host

« register the signature of the Linux host

* put the host to maintenance or production mode

« start or restart the plug-in services on the host

* rename a host

Resources

You can use APlIs to perform different operations.

* retrieve all resources

* retrieve a resource using the resource 1D

* retrieve all resources of the plug-in for Microsoft SQL Server host
« retrieve all resources of the plug-in for Oracle database host

* retrieve all resources of the plug-in for custom application host

* retrieve all resources of the plug-in for SAP HANA host

« retrieve a Microsoft SQL Server resource using a key

* retrieve a custom resource using a key

« modify a resource of the plug-in for custom application host

* remove a resource of the plug-in for custom application host using a key
* retrieve a SAP HANA resource using a key

» modify a resource of the plug-in for SAP HANA host

* remove a resource of the plug-in for SAP HANA host using a key

« retrieve an Oracle resource using a key

« create an Oracle application volume resource

» modify an Oracle application volume resource

» remove an Oracle application volume resource using a key

« retrieve the secondary details of the Oracle resource

» backup the Microsoft SQL Server resource using plug-in for Microsoft SQL Server
 backup the Oracle resource using plug-in for Oracle database

 backup the custom resource using plug-in for custom application

+ configure the SAP HANA database

« configure the Oracle database

* restore a SQL database backup

* restore an Oracle database backup

* restore a custom application backup

* create a SAP HANA resource

« protect a custom resource using plug-in for custom application

* protect a Microsoft SQL Server resource using plug-in for Microsoft SQL Server

» modify a protected Microsoft SQL Server resource

» remove protection for Microsoft SQL Server resource

« protect an Oracle resource using plug-in for Oracle database

» modify a protected Oracle resource

» remove protection from Oracle resource

« clone a resource from the backup using plug-in for custom application

« clone an Oracle application volume from the backup using plug-in for Oracle database
* clone a Microsoft SQL Server resource from the backup using plug-in for Microsoft SQL Server
« create a clone life cycle of a Microsoft SQL Server resource

« modify clone life cycle of a Microsoft SQL Server resource

« delete clone life cycle of a Microsoft SQL Server resource

* move an existing Microsoft SQL Server database from a local disk to a NetApp LUN
« create a clone specification file for an Oracle database

« initiate an on-demand clone refresh job of an Oracle resource

« create an Oracle resource from the backup using the clone specification file

* restores the database to the secondary replica and joins the database back to the availability group

« create an Oracle application volume resource

Backups
You can use APIs to perform different operations.

« retrieve backup details by backup name, type, plug-in, resource, or date

12

retrieve all backups
retrieve backup details
rename or delete backups
mount an Oracle backup
unmount an Oracle backup
catalog an Oracle backup

uncatalog an Oracle backup

get all the backups required to be mounted to perform point-in-time recovery

Clones

You can use APIs to perform different operations.

create, display, modify, and delete Oracle database clone specification file
display Oracle database clone hierarchy

retrieve clone details

retrieve all clones

delete clones

retrieve clone details by ID

initiate an on-demand clone refresh job of an Oracle resource

clone an Oracle resource from the backup using the clone specification file

Clone split

You can use APIs to perform different operations.

estimate the clone split operation of the cloned resource
retrieve the status of a clone split operation

start or stop a clone split operation

Resource Groups

You can use APlIs to perform different operations.

retrieve details of all resource groups

retrieve the resource group by name

create a resource group for plug-in for custom application
create a resource group for plug-in for Microsoft SQL Server
create a resource group for plug-in for Oracle database
modify a resource group for plug-in for custom application
modify a resource group for plug-in for Microsoft SQL Server

modify a resource group for plug-in for Oracle database

13

« create, modify, or delete clone life cycle of a resource group for plug-in for Microsoft SQL Server
* back up a resource group
* put the resource group to maintenance or production mode

* remove a resource group

Policies
You can use APIs to perform different operations.

* retrieve policy details

* retrieve policy details by name

 delete a policy

« create a copy of an existing policy

« create or modify policy for plug-in for custom application

« create or modify policy for plug-in for Microsoft SQL Server
« create or modify policy for for plug-in for Oracle database

« create or modify policy for plug-in for SAP HANA database

Storage
You can use APlIs to perform different operations.

* retrieve all the shares

* retrieve a share by name

* create or delete a share

* retrieve storage details

* retrieve storage details by name

« create, modify, or delete a storage

« discover resources on a storage cluster

* retrieve resources on a storage cluster

Share
You can use APIs to perform different operations.

« retrieve the details of a share
* retrieve details of all the shares
« create or delete a share on the storage

* retrieve a share by name

Plugins

You can use APIs to perform different operations.

14

« list all the plug-ins for a host

* retrieve a Microsoft SQL Server resource using a key

» modify a custom resource using a key

* remove a custom resource using a key

« retrieve a SAP HANA resource using a key

+ modify a SAP HANA resource using a key

* remove a SAP HANA resource using a key

« retrieve an Oracle resource using a key

» modify an Oracle application volume resource using a key

« remove an Oracle application volume resource using a key

 backup the Microsoft SQL Server resource using plug-in for Microsoft SQL Server and a key
 backup the Oracle resource using plug-in for Oracle database and a key

 backup the custom application resource using plug-in for custom application and a key
+ configure the SAP HANA database using a key

« configure the Oracle database using a key

* restore a custom application backup using a key

 create a SAP HANA resource

« create an Oracle application volume resource

« protect a custom resource using plug-in for custom application

* protect a Microsoft SQL Server resource using plug-in for Microsoft SQL Server

» modify a protected Microsoft SQL Server resource

» remove protection for Microsoft SQL Server resource

« protect an Oracle resource using plug-in for Oracle database

» modify a protected Oracle resource

» remove protection from Oracle resource

* clone a resource from the backup using plug-in for custom application

« clone an Oracle application volume from the backup using plug-in for Oracle database
+ clone a Microsoft SQL Server resource from the backup using plug-in for Microsoft SQL Server
« create a clone life cycle of a Microsoft SQL Server resource

» modify clone life cycle of a Microsoft SQL Server resource

« delete clone life cycle of a Microsoft SQL Server resource

* create a clone specification file for an Oracle database

* initiate an on-demand clone life cycle of an Oracle resource

* clone an Oracle resource from the backup using the clone specification file

Reports

You can use APIs to perform different operations.

« retrieve reports of backup, restore, and clone operations for respective plug-ins
* add, run, delete, or modify schedules

* retrieve data for the scheduled reports

Alerts
You can use APIs to perform different operations.

« retrieve all the alerts
* retrieve alerts by IDs

* delete multiple alerts or delete an alert by ID

Rbac

You can use APIs to perform different operations.

* retrieve details of users, groups, and roles
* add or delete users

* assign user to role

* unassign user from role

« create, modify, or delete roles

* assign group to a role

* unassign group from a role

+ add or delete groups

* create a copy of an existing role

« assign or unassign resources to user or group

Configuration

You can use APlIs to perform different operations.
* view the configuration settings

» modify the configuration settings

CertificateSettings
You can use APIs to perform different operations.
* view the certificate status for the SnapCenter Server or plug-in host
« modify the certificate settings for the SnapCenter Server or plug-in host
Repository
You can use APlIs to perform different operations.

* retrieve the repository backups

16

« view the configuration information about the repository
» protect and restore the SnapCenter repository
 unprotect the SnapCenter repository

* rebuild and failover the repository

Version

You can use this API to view the SnapCenter version.

How to access REST APIs using the Swagger APl web page

REST APIs are exposed through the Swagger web page. You can access the Swagger
web page to display the SnapCenter Server REST APls, as well as to manually issue an
API call. You can use REST APIs to help manage your SnapCenter Server or to perform
data protection operations.

You should know the management IP address or domain name of the SnapCenter Server on which you want to
execute the REST APlIs.

You do not need special permissions to run the REST API client. Any user can access the Swagger web page.
The respective permissions on the objects that are accessed via the REST API are based on the user who

generates the token to login to the REST API.

Steps

1. From a browser, enter the URL to access the Swagger web page in the format
https://<SnapCenter_ IP_address or_name>:<SnapCenter_port>/swagger/.

@ Ensure that the REST APl URL does not have the following characters: +, ., %, and &.

2. In the Swagger Explore field, if the Swagger APl documentation does not display automatically, type:
https://<SnapCenter_IP_address_or_name>:<SnapCenter_port>/Content/swagger/SnapCenter.yaml|

3. Click Explore.
A list of API resource types or categories are displayed.
4. Click an API resource type to display the APlIs in that resource type.
If you encounter unexpected behavior when executing SnapCenter REST APlIs, you can use the log files to

identify the cause and resolve the problem. You can download the log files from the SnapCenter user interface
by clicking Monitor > Logs > Download.

Get started with the REST API

You can quickly get started using the SnapCenter REST API. Accessing the API provides
some perspective before you begin using it with the more complex workflow processes
on a live setup.

17

Hello World

You can run a simple command on your system to get started using the SnapCenter REST API and confirm its
availability.

Before you begin
* Ensure that the Curl utility is available on your system.
* |IP address or host name of the SnapCenter Server

» User name and password for an account with authority to access the SnapCenter REST API.

If your credentials include special characters, you need to format them in a way that is
@ acceptable to Curl based on the shell you are using. For example, you can insert a backslash
before each special character or wrap the entire username : password string in single quotes.

Step
At the command line interface, run the following to retrieve the plug-in information:

curl -X GET -u username:password -k
"https://<ip_ address>/api/hosts?fields=IncludePluginInfo"

Example:

curl -X GET -u admin:password -k
"'https://10.225.87.97/api/hosts?fields=IncludePluginInfo"

18

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

19

http://www.netapp.com/TM

	Automate using REST APIs : SnapCenter software
	Table of Contents
	Automate using REST APIs
	SnapCenter automation using REST APIs
	How to access SnapCenter REST API natively
	REST web services foundation
	Resources and state representation
	URI endpoints
	HTTP messages
	JSON formatting

	Basic operational characteristics
	Request and response API transaction
	Support for CRUD operations
	Object identifiers
	Object instances and collections
	Synchronous and asynchronous operations
	Security

	Input variables controlling an API request
	HTTP methods
	Request headers
	Request body
	Filtering objects
	Requesting specific object fields
	Sorting objects in the output set
	Pagination when retrieving objects in a collection
	Size properties

	Interpretation of an API response
	HTTP status code
	Response headers
	Response body
	Errors

	REST APIs supported for SnapCenter Server and plug-ins
	Auth
	Domains
	Jobs
	Settings
	Hosts
	Resources
	Backups
	Clones
	Clone split
	Resource Groups
	Policies
	Storage
	Share
	Plugins
	Reports
	Alerts
	Rbac
	Configuration
	CertificateSettings
	Repository
	Version

	How to access REST APIs using the Swagger API web page
	Get started with the REST API
	Hello World

