Operations on objects
StorageGRID

NetApp
October 03, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-115/s3/using-s3-object-
lock.html on October 03, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Operations on objects
Using S3 Object Lock

Enabling S3 Object Lock for a bucket

Determining if S3 Object Lock is enabled for a bucket
Creating an object with S3 Object Lock settings
Updating S3 Object Lock settings

Using server-side encryption

Using SSE
Using SSE-C
Considerations for using server-side encryption with customer-provided keys (SSE-C)

GET Object

partNumber request parameter is not supported

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)
UTF-8 characters in user metadata

Unsupported request header

Versioning

Behavior of GET Object for Cloud Storage Pool objects

Multipart or segmented objects in a Cloud Storage Pool

HEAD Object

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)
UTF-8 characters in user metadata

Unsupported request header

Response headers for Cloud Storage Pool objects

Multipart or segmented objects in a Cloud Storage Pool

Versioning

POST Object restore

Supported request type
Versioning
Behavior of POST Object restore on Cloud Storage Pool objects

PUT Object

Resolving conflicts

Object size

User metadata size

UTF-8 characters in user metadata
Object tag limits

Object ownership

Supported request headers
Unsupported request headers
Storage class options

Request headers for server-side encryption
Versioning

PUT Object - Copy

Resolving conflicts

© © © 0000 N N O Oor o 01 O =

| NOJR)N Y I G N\ G G O O N L G O U G O G O U G U W G O G
O O ©W © oo O O) OO OO OOl A DB, DM WDNMNDMNMNDMN-_ - OO OO

Object size

UTF-8 characters in user metadata

Supported request headers

Unsupported request headers

Storage class options

Using x-amz-copy-source in PUT Object - Copy
Request headers for server-side encryption
Versioning

20
20
20
21
21
22
22
23

Operations on objects

This section describes how the StorageGRID system implements S3 REST API
operations for objects.

» Using S3 Object Lock

» Using servver-side encryption
GET Object

+ HEAD Object

* POST Object restore

PUT Object

* PUT Obiject - Copy

The following conditions apply to all object operations:
« StorageGRID consistency controls are supported by all operations on objects, with the exception of the
following:
o GET Object ACL
° OPTIONS /
o PUT Object legal hold
o PUT Object retention

 Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins”
basis. The timing for the ""latest-wins "evaluation is based on when the StorageGRID system completes a
given request, and not on when S3 clients begin an operation.

« All objects in a StorageGRID bucket are owned by the bucket owner, including objects created by an
anonymous user, or by another account.

» Data objects ingested to the StorageGRID system through Swift cannot be accessed through S3.

The following table describes how StorageGRID implements S3 REST API object operations.

Operation

DELETE Object

DELETE Multiple Objects

Implementation

Multi-Factor Authentication (MFA) and the response
header x-amz-mfa are not supported.

When processing a DELETE Object request,
StorageGRID attempts to immediately remove all
copies of the object from all stored locations. If
successful, StorageGRID returns a response to the
client immediately. If all copies cannot be removed
within 30 seconds (for example, because a location is
temporarily unavailable), StorageGRID queues the
copies for removal and then indicates success to the
client.

Versioning

To remove a specific version, the requestor must be
the bucket owner and use the versionId
subresource. Using this subresource permanently
deletes the version. If the versionId corresponds to
a delete marker, the response header x-amz-
delete-marker is returned set to true.

* If an object is deleted without the versionId
subresource on a version enabled bucket, it
results in the generation of a delete marker. The
versionId for the delete marker is returned
using the x-amz-version-id response header,
and the x—amz-delete-marker response
header is returned set to true.

* If an object is deleted without the versionId
subresource on a version suspended bucket, it
results in a permanent deletion of an already
existing 'null’ version or a 'null' delete marker, and
the generation of a new 'null’ delete marker. The
x—amz-delete-marker response header is
returned set to true.

Note: In certain cases, multiple delete markers might
exist for an object.

Multi-Factor Authentication (MFA) and the response
header x-amz-mfa are not supported.

Multiple objects can be deleted in the same request
message.

Operation

DELETE Object tagging

GET Object

GET Object ACL

GET Object legal hold

GET Object retention

GET Object tagging

HEAD Object

POST Object restore

PUT Object

PUT Object - Copy

Implementation

Uses the tagging subresource to remove all tags
from an object. Implemented with all Amazon S3
REST API behavior.

Versioning

If the versionId query parameter is not specified in
the request, the operation deletes all tags from the
most recent version of the object in a versioned
bucket. If the current version of the object is a delete
marker, a “MethodNotAllowed” status is returned with
the x-amz-delete-marker response header set to
true.

GET Object

If the necessary access credentials are provided for
the account, the operation returns a positive response
and the ID, DisplayName, and Permission of the
object owner, indicating that the owner has full access
to the object.

Using S3 Object Lock

Using S3 Object Lock

Uses the tagging subresource to return all tags for
an object. Implemented with all Amazon S3 REST
API behavior

Versioning

If the versionId query parameter is not specified in
the request, the operation returns all tags from the
most recent version of the object in a versioned
bucket. If the current version of the object is a delete
marker, a “MethodNotAllowed” status is returned with

the x-amz-delete-marker response header set to
true.

HEAD Object

POST Object restore

PUT Object

PUT Object - Copy

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html

Operation

PUT Object legal hold

PUT Object retention

PUT Object tagging

Related information
Consistency controls

S3 operations tracked in the audit logs

Implementation

Using S3 Object Lock
Using S3 Object Lock

Uses the tagging subresource to add a set of tags
to an existing object. Implemented with all Amazon S3
REST API behavior

Tag updates and ingest behavior

When you use PUT Object tagging to update an
object’s tags, StorageGRID does not re-ingest the
object. This means that the option for Ingest Behavior
specified in the matching ILM rule is not used. Any
changes to object placement that are triggered by the
update are made when ILM is re-evaluated by normal
background ILM processes.

This means that if the ILM rule uses the Strict option
for ingest behavior, no action is taken if the required
object placements cannot be made (for example,
because a newly required location is unavailable).
The updated object retains its current placement until
the required placement is possible.

Resolving conflicts

Conflicting client requests, such as two clients writing
to the same key, are resolved on a “latest-wins” basis.
The timing for the ""latest-wins™"evaluation is based
on when the StorageGRID system completes a given
request, and not on when S3 clients begin an
operation.

Versioning

If the versionId query parameter is not specified in
the request, the operation add tags to the most recent
version of the object in a versioned bucket. If the
current version of the object is a delete marker, a
“MethodNotAllowed” status is returned with the x-
amz-delete-marker response header set to true.

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/consistency-controls.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

Using S3 Object Lock

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can
create buckets with S3 Object Lock enabled and then specify retain-until-date and legal
hold settings for each object version you add to that bucket.

S3 Object Lock allows you to specify object-level settings to prevent objects from being deleted or overwritten
for a fixed amount of time or indefinitely.

The StorageGRID S3 Object Lock feature provides a single retention mode that is equivalent to the Amazon
S3 compliance mode. By default, a protected object version cannot be overwritten or deleted by any user. The

StorageGRID S3 Object Lock feature does not support a governance mode, and it does not allow users with
special permissions to bypass retention settings or to delete protected objects.

Enabling S3 Object Lock for a bucket

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can optionally enable S3
Object Lock when you create each bucket. You can use either of these methods:

» Create the bucket using the Tenant Manager.
Use a tenant account

* Create the bucket using a PUT Bucket request with the x-amz-bucket-object-lock enabled
request header.

Operations on buckets

You cannot add or disable S3 Object Lock after the bucket is created. S3 Object Lock requires bucket
versioning, which is enabled automatically when you create the bucket.

A bucket with S3 Object Lock enabled can contain a combination of objects with and without S3 Object Lock
settings. StorageGRID does not support default retention for the objects in S3 Object Lock buckets, so the PUT
Object Lock Configuration bucket operation is not supported.

Determining if S3 Object Lock is enabled for a bucket

To determine if S3 Object Lock is enabled, use the GET Object Lock Configuration request.

Operations on buckets

Creating an object with S3 Object Lock settings

To specify S3 Object Lock settings when adding an object version to a bucket that has S3 Object Lock
enabled, issue a PUT Object, PUT Object - Copy, or Initiate Multipart Upload request. Use the following
request headers.

@ You must enable S3 Object Lock when you create a bucket. You cannot add or disable S3
Object Lock after a bucket is created.

* x-amz-object-lock-mode, which must be COMPLIANCE (case sensitive).

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html

(:) If you specify x-amz-object-lock-mode, you must also specify x—amz-object-lock-
retain-until-date.

* x—amz-object-lock-retain-until-date

° The retain-until-date value must be in the format 2020-08-10T21:46:00%. Fractional seconds are
allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are
not allowed.

o The retain-until-date must be in the future.
* x—amz-object-lock-legal-hold

If legal hold is ON (case-sensitive), the object is placed under a legal hold. If legal hold is OFF, no legal
hold is placed. Any other value results in a 400 Bad Request (InvalidArgument) error.

If you use any of these request headers, be aware of these restrictions:

* The Content-MD5 request header is required if any x-amz-object-lock-* request header is present
in the PUT Object request. Content-MD5 is not required for PUT Object - Copy or Initiate Multipart
Upload.

* If the bucket does not have S3 Object Lock enabled and a x-amz-object-lock-* request header is
present, a 400 Bad Request (InvalidRequest) error is returned.

* The PUT Object request supports the use of x-amz-storage-class: REDUCED REDUNDANCY to match
AWS behavior. However, when an object is ingested into a bucket with S3 Object Lock enabled,
StorageGRID will always perform a dual-commit ingest.

* A subsequent GET or HEAD Object version response will include the headers x-amz-object-lock-
mode, x-amz-object-lock-retain-until-date, and x-amz-object-lock-legal-hold, if
configured and if the request sender has the correct s3:Get* permissions.

* A subsequent DELETE Object version or DELETE Objects versions request will fail if it is before the retain-
until-date or if a legal hold is on.

Updating S3 Object Lock settings

If you need to update the legal hold or retention settings for an existing object version, you can perform the
following object subresource operations:

°* PUT Object legal-hold

If the new legal-hold value is ON, the object is placed under a legal hold. If the legal-hold value is OFF, the
legal hold is lifted.
®* PUT Object retention
o The mode value must be COMPLIANCE (case sensitive).

° The retain-until-date value must be in the format 2020-08-10T21:46:00Z. Fractional seconds are
allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are
not allowed.

o If an object version has an existing retain-until-date, you can only increase it. The new value must be in
the future.

Related information

Manage objects with ILM
Use a tenant account
PUT Object

PUT Object - Copy
Initiate Multipart Upload
Object versioning

Amazon Simple Storage Service User Guide: Using S3 Object Lock

Using server-side encryption

Server-side encryption allows you to protect your object data at rest. StorageGRID
encrypts the data as it writes the object and decrypts the data when you access the
object.

If you want to use server-side encryption, you can choose either of two mutually exclusive options, based on
how the encryption keys are managed:

» SSE (server-side encryption with StorageGRID-managed keys): When you issue an S3 request to
store an object, StorageGRID encrypts the object with a unique key. When you issue an S3 request to
retrieve the object, StorageGRID uses the stored key to decrypt the object.

+ SSE-C (server-side encryption with customer-provided keys): When you issue an S3 request to store
an object, you provide your own encryption key. When you retrieve an object, you provide the same
encryption key as part of your request. If the two encryption keys match, the object is decrypted and your
object data is returned.

While StorageGRID manages all object encryption and decryption operations, you must manage the
encryption keys you provide.

@ The encryption keys you provide are never stored. If you lose an encryption key, you lose
the corresponding object.

@ If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption
settings are ignored.

Using SSE

To encrypt an object with a unique key managed by StorageGRID, you use the following request header:
x—amz-server-side-encryption

The SSE request header is supported by the following object operations:

* PUT Object
* PUT Object - Copy

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/object-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lock.html

* Initiate Multipart Upload

Using SSE-C

To encrypt an object with a unique key that you manage, you use three request headers:

Request header Description
x-amz-server-side—-encryption-customer Specify the encryption algorithm. The header value
-algorithm must be AES256.
x-amz-server-side—-encryption-customer Specify the encryption key that will be used to encrypt
-key or decrypt the object. The value for the key must be

256-bit, baseb64-encoded.

x-amz-server-side-encryption-customer Specify the MD5 digest of the encryption key

-key-MD5 according to RFC 1321, which is used to ensure the
encryption key was transmitted without error. The
value for the MD5 digest must be base64-encoded
128-bit.

The SSE-C request headers are supported by the following object operations:

* GET Object

« HEAD Object

* PUT Object

* PUT Object - Copy

* Initiate Multipart Upload
» Upload Part

* Upload Part - Copy

Considerations for using server-side encryption with customer-provided keys
(SSE-C)

Before using SSE-C, be aware of the following considerations:

* You must use https.

StorageGRID rejects any requests made over http when using SSE-C. For security
considerations, you should consider any key you send accidentally using http to be
compromised. Discard the key, and rotate as appropriate.

* The ETag in the response is not the MD5 of the object data.

* You must manage the mapping of encryption keys to objects. StorageGRID does not store encryption keys.
You are responsible for tracking the encryption key you provide for each object.

« If your bucket is versioning-enabled, each object version should have its own encryption key. You are
responsible for tracking the encryption key used for each object version.

* Because you manage encryption keys on the client side, you must also manage any additional safeguards,
such as key rotation, on the client side.

@ The encryption keys you provide are never stored. If you lose an encryption key, you lose
the corresponding object.

« If CloudMirror replication is configured for the bucket, you cannot ingest SSE-C objects. The ingest
operation will fail.

Related information
GET Object

HEAD Object

PUT Object

PUT Object - Copy
Initiate Multipart Upload
Upload Part

Upload Part - Copy

Amazon S3 Developer Guide: Protecting Data Using Server-Side Encryption with Customer-Provided
Encryption Keys (SSE-C)

GET Object

You can use the S3 GET Object request to retrieve an object from an S3 bucket.

partNumber request parameter is not supported

The partNumber request parameter is not supported for GET Object requests. You cannot perform a GET
request to retrieve a specific part of a multipart object. A 501 Not Implemented error is returned with the
following message:

GET Object by partNumber is not implemented

Request headers for server-side encryption with customer-provided encryption
keys (SSE-C)

Use all three of the headers if the object is encrypted with a unique key that you provided.

* x-amz-server-side-encryption-customer-algorithm: Specify AES256.
* x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

* x-—amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s
encryption key.

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Using server-side encryption.”

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. GET requests
for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-
meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XxNotImplemented:

* x—amz-website-redirect-location

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with
the x-amz-delete-marker response header set to true.

Behavior of GET Object for Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with
information lifecycle management), the behavior of a GET Object request depends on the state of the object.
See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on
@ the grid, GET Object requests will attempt to retrieve data from the grid, before retrieving it from
the Cloud Storage Pool.

State of object Behavior of GET Object
Object ingested into StorageGRID but not yet 200 OK

evaluated by ILM, or object stored in a traditional

storage pool or using erasure coding A copy of the object is retrieved.

Object in Cloud Storage Pool but not yet transitioned 200 ok
to a non-retrievable state
A copy of the object is retrieved.

Object transitioned to a non-retrievable state 403 Forbidden, InvalidObjectState

Use a POST Object restore request to restore the
object to a retrievable state.

10

State of object Behavior of GET Object

Object in process of being restored from a non- 403 Forbidden, InvalidObjectState
retrievable state

Wait for the POST Object restore request to complete.

Object fully restored to the Cloud Storage Pool 200 OK

A copy of the object is retrieved.

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID

determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts

or segments. In some cases, a GET Object request might incorrectly return 200 0K when some parts of the

object have already been transitioned to a non-retrievable state or when some parts of the object have not yet

been restored.
In these cases:

* The GET Object request might return some data but stop midway through the transfer.

* A subsequent GET Object request might return 403 Forbidden.

Related information

Using server-side encryption
Manage objects with ILM
POST Object restore

S3 operations tracked in the audit logs

HEAD Object

You can use the S3 HEAD Object request to retrieve metadata from an object without
returning the object itself. If the object is stored in a Cloud Storage Pool, you can use
HEAD Object to determine the object’s transition state.

Request headers for server-side encryption with customer-provided encryption
keys (SSE-C)

Use all three of these headers if the object is encrypted with a unique key that you provided.

* x-amz-server-side-encryption-customer-algorithm: Specify AES256.
* x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

* x—amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s
encryption key.

11

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Using server-side encryption.”

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. HEAD requests
for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-
meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XxNotImplemented:

* x—amz-website-redirect-location

Response headers for Cloud Storage Pool objects

If the object is stored in a Cloud Storage Pool (see the instructions for managing objects with information
lifecycle management), the following response headers are returned:

* x—amz-storage-class: GLACIER

®* x—amz-restore

The response headers provide information about the state of an object as it is moved to a Cloud Storage Pool,
optionally transitioned to a non-retrievable state, and restored.

State of object Response to HEAD object

Object ingested into StorageGRID but not yet 200 OK (No special response header is returned.)
evaluated by ILM, or object stored in a traditional
storage pool or using erasure coding

Object in Cloud Storage Pool but not yet transitioned 200 oK
to a non-retrievable state

x—-amz-storage-class: GLACIER

x—amz-restore: ongoing-request="false",
expiry-date="Sat, 23 July 20 2030
00:00:00 GMT"

Until the object is transitioned to a non-retrievable
state, the value for expiry-date is set to some
distant time in the future. The exact time of transition
is not controlled by the StorageGRID system.

12

State of object Response to HEAD object

Object has transitioned to non-retrievable state, butat 200 ok
least one copy also exists on the grid

x-amz-storage-class: GLACIER

x—amz-restore: ongoing-request="false",
expiry-date="Sat, 23 July 20 2030
00:00:00 GMT"

The value for expiry-date is set to some distant
time in the future.

Note: If the copy on the grid is not available (for
example, a Storage Node is down), you must issue a
POST Object restore request to restore the copy from
the Cloud Storage Pool before you can successfully
retrieve the object.

Object transitioned to a non-retrievable state, andno 200 oK
copy exists on the grid

x—-amz-storage-class: GLACIER

Object in process of being restored from a non- 200 OK
retrievable state

x—-amz-storage-class: GLACIER

Xx—amz-restore: ongoing-request="true"

Object fully restored to the Cloud Storage Pool 200 OK
x—amz-storage-class: GLACIER

x—amz-restore: ongoing-request="false",
expiry-date="Sat, 23 July 20 2018
00:00:00 GMT"

The expiry-date indicates when the object in the
Cloud Storage Pool will be returned to a non-
retrievable state.

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID
determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts
or segments. In some cases, a HEAD Object request might incorrectly return x—-amz-restore: ongoing-
request="false" when some parts of the object have already been transitioned to a non-retrievable state or
when some parts of the object have not yet been restored.

13

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with
the x-amz-delete-marker response header set to true.

Related information
Using server-side encryption

Manage objects with ILM
POST Object restore

S3 operations tracked in the audit logs

POST Obiject restore

You can use the S3 POST Object restore request to restore an object that is stored in a
Cloud Storage Pool.
Supported request type

StorageGRID only supports POST Object restore requests to restore an object. It does not support the SELECT
type of restoration. Select requests return XxXNotImplemented.

Versioning

Optionally, specify versionId to restore a specific version of an object in a versioned bucket. If you do not
specify versionId, the most recent version of the object is restored

Behavior of POST Object restore on Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with
information lifecycle management), a POST Object restore request has the following behavior, based on the
state of the object. See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on
the grid, there is no need to restore the object by issuing a POST Object restore request.
Instead, the local copy can be retrieved directly, using a GET Object request.

State of object Behavior of POST Object restore

Object ingested into StorageGRID but not yet 403 Forbidden, InvalidObjectState
evaluated by ILM, or object is not in a Cloud Storage

Pool

14

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

State of object

Object in Cloud Storage Pool but not yet transitioned
to a non-retrievable state

Object transitioned to a non-retrievable state

Object in process of being restored from a non-
retrievable state

Object fully restored to the Cloud Storage Pool

Related information
Manage objects with ILM

HEAD Object

S3 operations tracked in the audit logs

PUT Object

Behavior of POST Object restore

200 OK No changes are made.

Note: Before an object has been transitioned to a
non-retrievable state, you cannot change its expiry-
date.

202 Accepted Restores a retrievable copy of the
object to the Cloud Storage Pool for the number of
days specified in the request body. At the end of this
period, the object is returned to a non-retrievable
state.

Optionally, use the Tier request element to
determine how long the restore job will take to finish
(Expedited, Standard, or Bulk). If you do not
specify Tier, the Standard tier is used.

Attention: If an object has been transitioned to S3
Glacier Deep Archive or the Cloud Storage Pool uses
Azure Blob Storage, you cannot restore it using the
Expedited tier. The following error is returned 403
Forbidden, InvalidTier: Retrieval option
is not supported by this storage class.

409 Conflict, RestoreAlreadyInProgress

200 OK

Note: If an object has been restored to a retrievable
state, you can change its expiry-date by reissuing
the POST Object restore request with a new value for
Days. The restoration date is updated relative to the
time of the request.

You can use the S3 PUT Object request to add an object to a bucket.

15

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.
The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

User metadata size

Amazon S3 limits the size of user-defined metadata within each PUT request header to 2 KB. StorageGRID
limits user metadata to 24 KiB. The size of user-defined metadata is measured by taking the sum of the
number of bytes in the UTF-8 encoding of each key and value.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,
StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-
defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

* PUT, PUT Object-Copy, GET, and HEAD requests succeed if user-defined metadata includes escaped
UTF-8 characters.

* StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name
or value includes unprintable characters.

Object tag limits

You can add tags to new objects when you upload them, or you can add them to existing objects. Both
StorageGRID and Amazon S3 support up to 10 tags for each object. Tags associated with an object must have
unique tag keys. A tag key can be up to 128 Unicode characters in length and tag values can be up to 256
Unicode characters in length. Key and values are case sensitive.

Object ownership

In StorageGRID, all objects are owned by the bucket owner account, including objects created by a non-owner
account or an anonymous user.

Supported request headers

The following request headers are supported:

* Cache-Control
* Content-Disposition

* Content-Encoding

When you specify aws-chunked for Content-EncodingStorageGRID does not verify the following
items:

16

° StorageGRID does not verify the chunk-signature against the chunk data.

° StorageGRID does not verify the value that you provide for x-amz-decoded-content-length
against the object.

* Content-Language
* Content-Length

* Content-MD5

* Content-Type

* Expires

* Transfer-Encoding
Chunked transfer encoding is supported if aws-chunked payload signing is also used.
* x-—amz-meta-, followed by a name-value pair containing user-defined metadata.

When specifying the name-value pair for user-defined metadata, use this general format:

x—amz-meta-name: value

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you
must use creation-time as the name of the metadata that records when the object was created. For
example:

x—amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

An ILM rule cannot use both a User Defined Creation Time for the Reference Time and the
Balanced or Strict options for Ingest Behavior. An error is returned when the ILM rule is
created.
* x-amz-tagging
+ S3 Object Lock request headers
° x—amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x—amz-object-lock-legal-hold
Using S3 Object Lock

» SSE request headers:
° x—amz-server-side-encryption

° x—amz-server-side-encryption-customer-key-MD5

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html

° x—amz-server-side-encryption-customer-key

° x-amz-server-side-encryption-customer-algorithm

S3 REST API supported operations and limitations

Unsupported request headers

The following request headers are not supported:

* The x—amz-ac1 request header is not supported.

* The x-amz-website-redirect-location request header is not supported and returns
XNotImplemented.

Storage class options

The x-amz-storage-class request header is supported. The value submitted for x—-amz-storage-class
affects how StorageGRID protects object data during ingest and not how many persistent copies of the object
are stored in the StorageGRID system (which is determined by ILM).

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-
class header has no effect.

The following values can be used for x-amz-storage-class:

* STANDARD (Default)

o Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object
is ingested a second copy of that object is created and distributed to a different Storage Node (dual
commit). When the ILM is evaluated,StorageGRID determines if these initial interim copies satisfy the
placement instructions in the rule. If they do not, new object copies might need to be made in different
locations and the initial interim copies might need to be deleted.

o Balanced: If the ILM rule specifies the Balanced option and StorageGRID cannot immediately make all
copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous
placement), the x—amz-storage-class header has no effect.

°* REDUCED REDUNDANCY

o Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID
creates a single interim copy as the object is ingested (single commit).

> Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only
if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform
synchronous placement, this header has no effect. The REDUCED REDUNDANCY option is best used
when the ILM rule that matches the object creates a single replicated copy. In this case using
REDUCED_ REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for
every ingest operation.

Using the REDUCED REDUNDANCY option is not recommended in other circumstances.
REDUCED_REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose
data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

18

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html

Attention: Having only one replicated copy for any time period puts data at risk of permanent loss. If only one
replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant error. You also
temporarily lose access to the object during maintenance procedures such as upgrades.

Specifying REDUCED REDUNDANCY only affects how many copies are created when an object is first ingested.
It does not affect how many copies of the object are made when the object is evaluated by the active ILM
policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.

Note: If you are ingesting an object into a bucket with S3 Object Lock enabled, the REDUCED REDUNDANCY
option is ignored. If you are ingesting an object into a legacy Compliant bucket, the REDUCED REDUNDANCY
option returns an error. StorageGRID will always perform a dual-commit ingest to ensure that compliance
requirements are satisfied.

Request headers for server-side encryption

You can use the following request headers to encrypt an object with server-side encryption. The SSE and SSE-
C options are mutually exclusive.

« SSE: Use the following header if you want to encrypt the object with a unique key managed by
StorageGRID.

° x-—amz-server-side-encryption

» SSE-C: Use all three of these headers if you want to encrypt the object with a unique key that you provide
and manage.

° x-—amz-server-side-encryption-customer-algorithm: Specify AES256.

° x-—amz-server-side-encryption-customer-key: Specify your encryption key for the new
object.

° x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new
object’s encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Using server-side encryption.”

Note: If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption settings are
ignored.

Versioning

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the
object being stored. This versionId is also returned in the response using the x-amz-version-id
response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already
exists it will be overwritten.

Related information
Manage objects with ILM

Operations on buckets

S3 operations tracked in the audit logs

19

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

Using server-side encryption

How client connections can be configured

PUT Object - Copy

You can use the S3 PUT Object - Copy request to create a copy of an object that is
already stored in S3. A PUT Object - Copy operation is the same as performing a GET
and then a PUT.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.
The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,
StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-
defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

* Requests succeed if user-defined metadata includes escaped UTF-8 characters.

* StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name
or value includes unprintable characters.

Supported request headers

The following request headers are supported:

* Content-Type

® X—amz-copy-source

* x-amz-copy-source-if-match

* x—amz-copy-source-if-none-match

* x—amz-copy-source-if-unmodified-since

* x—amz-copy-source-if-modified-since

* x-amz-meta-, followed by a name-value pair containing user-defined metadata

* x-—amz-metadata-directive: The default value is COPY, which enables you to copy the object and
associated metadata.

You can specify REPLACE to overwrite the existing metadata when copying the object, or to update the

20

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/configuring-tenant-accounts-and-connections.html

object metadata.

* x—amz-storage-class

* x-—amz-tagging-directive: The default value is COPY, which enables you to copy the object and all
tags.

You can specify REPLACE to overwrite the existing tags when copying the object, or to update the tags.

» S3 Object Lock request headers:
° x—amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x—amz-object-lock-legal-hold
Using S3 Object Lock

+ SSE request headers:
° x-amz-copy-source-server-side-encryption-customer-algorithm
° x—amz-copy-source-server-side-encryption-customer-key
° x—amz-copy-source-server-side-encryption-customer-key-MD5
° x—amz-server-side-encryption
° x—amz-server-side-encryption-customer-key-MD5
° x—amz-server-side-encryption-customer-key

° x—amz-server-side-encryption-customer-algorithm

Request headers for server-side encryption

Unsupported request headers
The following request headers are not supported:
* Cache-Control
* Content-Disposition
* Content-Encoding
®* Content-Language
* Expires

* x—amz-website-redirect-location

Storage class options

The x-amz-storage—-class request header is supported, and affects how many object copies StorageGRID
creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

¢ STANDARD

21

https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when
the Balanced option falls back to creating interim copies.

°* REDUCED REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the
Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

@ REDUCED_ REDUNDANCY option is ignored. If you are ingesting an object into a legacy
Compliant bucket, the REDUCED REDUNDANCY option returns an error. StorageGRID will
always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

Using x-amz-copy-source in PUT Object - Copy

If the source bucket and key, specified in the x-amz-copy-source header, are different from the destination
bucket and key, a copy of the source object data is written to the destination.

If the source and destination match, and the x-amz-metadata-directive header is specified as REPLACE,
the object’s metadata is updated with the metadata values supplied in the request. In this case, StorageGRID
does not re-ingest the object. This has two important consequences:

* You cannot use PUT Object - Copy to encrypt an existing object in place, or to change the encryption of an
existing object in place. If you supply the x-amz-server-side-encryption header or the x-amz-
server-side-encryption-customer-algorithm header, StorageGRID rejects the request and
returns XNotImplemented.

» The option for Ingest Behavior specified in the matching ILM rule is not used. Any changes to object
placement that are triggered by the update are made when ILM is re-evaluated by normal background ILM
processes.

This means that if the ILM rule uses the Strict option for ingest behavior, no action is taken if the required
object placements cannot be made (for example, because a newly required location is unavailable). The
updated object retains its current placement until the required placement is possible.

Request headers for server-side encryption

If you use server-side encryption, the request headers you provide depend on whether the source object is
encrypted and on whether you plan to encrypt the target object.

« If the source object is encrypted using a customer-provided key (SSE-C), you must include the following
three headers in the PUT Object - Copy request, so the object can be decrypted and then copied:

° x—amz-copy-source-server-side-encryption-customer-algorithm Specify AES256.

° x—amz-copy-source-server-side-encryption-customer-key Specify the encryption key you
provided when you created the source object.

° x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest
you provided when you created the source object.

« If you want to encrypt the target object (the copy) with a unique key that you provide and manage, include
the following three headers:

° x-—amz-server-side-encryption-customer-algorithm: Specify AES256.

22

° x-amz-server-side-encryption-customer-key: Specify a new encryption key for the target
object.

° x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new
encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Using server-side encryption.”

* If you want to encrypt the target object (the copy) with a unique key managed by StorageGRID (SSE),
include this header in the PUT Object - Copy request:

° x—amz-server-side-encryption

Note: The server-side-encryption value of the object cannot be updated. Instead, make a copy with a
new server-side-encryption value using x—amz-metadata-directive: REPLACE.

Versioning

If the source bucket is versioned, you can use the x-amz-copy-source header to copy the latest version of
an object. To copy a specific version of an object, you must explicitly specify the version to copy using the
versionId subresource. If the destination bucket is versioned, the generated version is returned in the x-
amz-version-id response header. If versioning is suspended for the target bucket, then x-amz-version-
id returns a “null” value.

Related information
Manage objects with ILM

Using server-side encryption
S3 operations tracked in the audit logs

PUT Object

23

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-rest-api-supported-operations-and-limitations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

24

http://www.netapp.com/TM

	Operations on objects : StorageGRID
	Table of Contents
	Operations on objects
	Using S3 Object Lock
	Enabling S3 Object Lock for a bucket
	Determining if S3 Object Lock is enabled for a bucket
	Creating an object with S3 Object Lock settings
	Updating S3 Object Lock settings

	Using server-side encryption
	Using SSE
	Using SSE-C
	Considerations for using server-side encryption with customer-provided keys (SSE-C)

	GET Object
	partNumber request parameter is not supported
	Request headers for server-side encryption with customer-provided encryption keys (SSE-C)
	UTF-8 characters in user metadata
	Unsupported request header
	Versioning
	Behavior of GET Object for Cloud Storage Pool objects
	Multipart or segmented objects in a Cloud Storage Pool

	HEAD Object
	Request headers for server-side encryption with customer-provided encryption keys (SSE-C)
	UTF-8 characters in user metadata
	Unsupported request header
	Response headers for Cloud Storage Pool objects
	Multipart or segmented objects in a Cloud Storage Pool
	Versioning

	POST Object restore
	Supported request type
	Versioning
	Behavior of POST Object restore on Cloud Storage Pool objects

	PUT Object
	Resolving conflicts
	Object size
	User metadata size
	UTF-8 characters in user metadata
	Object tag limits
	Object ownership
	Supported request headers
	Unsupported request headers
	Storage class options
	Request headers for server-side encryption
	Versioning

	PUT Object - Copy
	Resolving conflicts
	Object size
	UTF-8 characters in user metadata
	Supported request headers
	Unsupported request headers
	Storage class options
	Using x-amz-copy-source in PUT Object - Copy
	Request headers for server-side encryption
	Versioning

