
S3 REST API supported operations and
limitations
StorageGRID
NetApp
October 03, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-115/s3/authenticating-
requests.html on October 03, 2025. Always check docs.netapp.com for the latest.

Table of Contents

S3 REST API supported operations and limitations . 1

Date handling . 1

Common request headers . 1

Common response headers. 2

Authenticating requests . 2

Using the HTTP Authorization header . 2

Using query parameters. 2

Operations on the service . 2

Operations on buckets . 3

Creating an S3 lifecycle configuration . 11

Custom operations on buckets. 16

Operations on objects . 17

Using S3 Object Lock. 22

Using server-side encryption . 24

GET Object . 26

HEAD Object . 28

POST Object restore . 30

PUT Object. 32

PUT Object - Copy . 36

Operations for multipart uploads . 40

List Multipart Uploads. 41

Initiate Multipart Upload . 41

Upload Part . 44

Upload Part - Copy. 45

Complete Multipart Upload. 46

Error responses . 47

Supported S3 API error codes . 47

StorageGRID custom error codes . 49

S3 REST API supported operations and
limitations

The StorageGRID system implements the Simple Storage Service API (API Version

2006-03-01) with support for most operations, and with some limitations. You need to

understand the implementation details when you are integrating S3 REST API client

applications.

The StorageGRID system supports both virtual hosted-style requests and path-style requests.

• Authenticating requests

• Operations on the service

• Operations on buckets

• Custom operations on buckets

• Operations on objects

• Operations for multipart uploads

• Error responses

Date handling

The StorageGRID implementation of the S3 REST API only supports valid HTTP date formats.

The StorageGRID system only supports valid HTTP date formats for any headers that accept date values. The

time portion of the date can be specified in Greenwich Mean Time (GMT) format, or in Universal Coordinated

Time (UTC) format with no time zone offset (+0000 must be specified). If you include the x-amz-date header

in your request, it overrides any value specified in the Date request header. When using AWS Signature

Version 4, the x-amz-date header must be present in the signed request because the date header is not

supported.

Common request headers

The StorageGRID system supports common request headers defined by the Simple Storage Service API

Reference, with one exception.

Request header Implementation

Authorization Full support for AWS Signature Version 2

Support for AWS Signature Version 4, with the

following exceptions:

• The SHA256 value is not calculated for the body

of the request. The user-submitted value is

accepted without validation, as if the value

UNSIGNED-PAYLOAD had been provided for the

x-amz-content-sha256 header.

1

Request header Implementation

x-amz-security-token Not implemented. Returns XNotImplemented.

Common response headers

The StorageGRID system supports all of the common response headers defined by the Simple Storage

Service API Reference, with one exception.

Response header Implementation

x-amz-id-2 Not used

Related information

Amazon Web Services (AWS) Documentation: Amazon Simple Storage Service API Reference

Authenticating requests

The StorageGRID system supports both authenticated and anonymous access to objects

using the S3 API.

The S3 API supports Signature version 2 and Signature version 4 for authenticating S3 API requests.

Authenticated requests must be signed using your access key ID and secret access key.

The StorageGRID system supports two authentication methods: the HTTP Authorization header and using

query parameters.

Using the HTTP Authorization header

The HTTP Authorization header is used by all S3 API operations except Anonymous requests where

permitted by the bucket policy. The Authorization header contains all of the required signing information to

authenticate a request.

Using query parameters

You can use query parameters to add authentication information to a URL. This is known as presigning the

URL, which can be used to grant temporary access to specific resources. Users with the presigned URL do not

need to know the secret access key in order to access the resource, which enables you to provide third-party

restricted access to a resource.

Operations on the service

The StorageGRID system supports the following operations on the service.

Operation Implementation

GET Service Implemented with all Amazon S3 REST API behavior.

2

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Operation Implementation

GET Storage Usage The GET Storage Usage request tells you the total

amount of storage in use by an account, and for each

bucket associated with the account. This is an

operation on the service with a path of / and a custom

query parameter (?x-ntap-sg-usage) added.

OPTIONS / Client applications can issue OPTIONS / requests to

the S3 port on a Storage Node, without providing S3

authentication credentials, to determine whether the

Storage Node is available. You can use this request

for monitoring, or to allow external load balancers to

identify when a Storage Node is down.

Related information

GET Storage Usage request

Operations on buckets

The StorageGRID system supports a maximum of 1,000 buckets for each S3 tenant

account.

Bucket name restrictions follow the AWS US Standard region restrictions, but you should further restrict them

to DNS naming conventions in order to support S3 virtual hosted-style requests.

Amazon Web Services (AWS) Documentation: Bucket Restrictions and Limitations

Endpoint domain names for S3 request

The GET Bucket (List Objects) and GET Bucket versions operations support StorageGRID consistency

controls.

You can check whether updates to last access time are enabled or disabled for individual buckets.

The following table describes how StorageGRID implements S3 REST API bucket operations. To perform any

of these operations, the necessary access credentials must be provided for the account.

Operation Implementation

DELETE Bucket Implemented with all Amazon S3 REST API behavior.

DELETE Bucket cors This operation deletes the CORS configuration for the

bucket.

DELETE Bucket encryption This operation deletes the default encryption from the

bucket. Existing encrypted objects remain encrypted,

but any new objects added to the bucket are not

encrypted.

3

https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.netapp.com/us-en/storagegrid-115/s3/configuring-tenant-accounts-and-connections.html

Operation Implementation

DELETE Bucket lifecycle This operation deletes the lifecycle configuration from

the bucket.

DELETE Bucket policy This operation deletes the policy attached to the

bucket.

DELETE Bucket replication This operation deletes the replication configuration

attached to the bucket.

DELETE Bucket tagging This operation uses the tagging subresource to

remove all tags from a bucket.

GET Bucket (List Objects), version 1 and version 2 This operation returns some or all (up to 1,000) of the

objects in a bucket. The Storage Class for objects can

have either of two values, even if the object was

ingested with the REDUCED_REDUNDANCY storage

class option:

• STANDARD, which indicates the object is stored in

a storage pool consisting of Storage Nodes.

• GLACIER, which indicates that the object has

been moved to the external bucket specified by

the Cloud Storage Pool.

If the bucket contains large numbers of deleted keys

that have the same prefix, the response might include

some CommonPrefixes that do not contain keys.

GET Bucket acl This operation returns a positive response and the ID,

DisplayName, and Permission of the bucket owner,

indicating that the owner has full access to the bucket.

GET Bucket cors This operation returns the cors configuration for the

bucket.

GET Bucket encryption This operation returns the default encryption

configuration for the bucket.

GET Bucket lifecycle This operation returns the lifecycle configuration for

the bucket.

GET Bucket location This operation returns the region that was set using

the LocationConstraint element in the PUT

Bucket request. If the bucket’s region is us-east-1,

an empty string is returned for the region.

4

Operation Implementation

GET Bucket notification This operation returns the notification configuration

attached to the bucket.

GET Bucket Object versions With READ access on a bucket, this operation with

the versions subresource lists metadata of all of the

versions of objects in the bucket.

GET Bucket policy This operation returns the policy attached to the

bucket.

GET Bucket replication This operation returns the replication configuration

attached to the bucket.

GET Bucket tagging This operation uses the tagging subresource to

return all tags for a bucket.

GET Bucket versioning This implementation uses the versioning

subresource to return the versioning state of a bucket.

The versioning state returned indicates if the bucket is

“Unversioned” or if the bucket is version “Enabled” or

“Suspended.”

GET Object Lock Configuration This operation determines if S3 Object Lock is

enabled for a bucket. Using S3 Object Lock

HEAD Bucket This operation determines if a bucket exists and you

have permission to access it.

5

Operation Implementation

PUT Bucket This operation creates a new bucket. By creating the

bucket, you become the bucket owner.

• Bucket names must comply with the following

rules:

◦ Must be unique across each StorageGRID

system (not just unique within the tenant

account).

◦ Must be DNS compliant.

◦ Must contain at least 3 and no more than 63

characters.

◦ Can be a series of one or more labels, with

adjacent labels separated by a period. Each

label must start and end with a lowercase

letter or a number and can only use lowercase

letters, numbers, and hyphens.

◦ Must not look like a text-formatted IP address.

◦ Should not use periods in virtual hosted style

requests. Periods will cause problems with

server wildcard certificate verification.

• By default, buckets are created in the us-east-1

region; however, you can use the

LocationConstraint request element in the

request body to specify a different region. When

using the LocationConstraint element, you

must specify the exact name of a region that has

been defined using the Grid Manager or the Grid

Management API. Contact your system

administrator if you do not know the region name

you should use. Note: An error will occur if your

PUT Bucket request uses a region that has not

been defined in StorageGRID.

• You can include the x-amz-bucket-object-

lock-enabled request header to create a

bucket with S3 Object Lock enabled.

You must enable S3 Object Lock when you create

the bucket. You cannot add or disable S3 Object

Lock after a bucket is created. S3 Object Lock

requires bucket versioning, which is enabled

automatically when you create the bucket.

Using S3 Object Lock

6

Operation Implementation

PUT Bucket cors This operation sets the CORS configuration for a

bucket so that the bucket can service cross-origin

requests. Cross-origin resource sharing (CORS) is a

security mechanism that allows client web

applications in one domain to access resources in a

different domain. For example, suppose you use an

S3 bucket named images to store graphics. By

setting the CORS configuration for the images

bucket, you can allow the images in that bucket to be

displayed on the website

http://www.example.com.

PUT Bucket encryption This operation sets the default encryption state of an

existing bucket. When bucket-level encryption is

enabled, any new objects added to the bucket are

encrypted.StorageGRID supports server-side

encryption with StorageGRID-managed keys. When

specifying the server-side encryption configuration

rule, set the SSEAlgorithm parameter to AES256,

and do not use the KMSMasterKeyID parameter.

Bucket default encryption configuration is ignored if

the object upload request already specifies encryption

(that is, if the request includes the x-amz-server-

side-encryption-* request header).

7

Operation Implementation

PUT Bucket lifecycle This operation creates a new lifecycle configuration

for the bucket or replaces an existing lifecycle

configuration. StorageGRID supports up to 1,000

lifecycle rules in a lifecycle configuration. Each rule

can include the following XML elements:

• Expiration (Days, Date)

• NoncurrentVersionExpiration (NoncurrentDays)

• Filter (Prefix, Tag)

• Status

• ID

StorageGRID does not support these actions:

• AbortIncompleteMultipartUpload

• ExpiredObjectDeleteMarker

• Transition

To understand how the Expiration action in a bucket

lifecycle interacts with ILM placement instructions,

see “How ILM operates throughout an object’s life” in

the instructions for managing objects with information

lifecycle management.

Note: Bucket lifecycle configuration can be used with

buckets that have S3 Object Lock enabled, but bucket

lifecycle configuration is not supported for legacy

Compliant buckets.

8

Operation Implementation

PUT Bucket notification This operation configures notifications for the bucket

using the notification configuration XML included in

the request body. You should be aware of the

following implementation details:

• StorageGRID supports Simple Notification

Service (SNS) topics as destinations. Simple

Queue Service (SQS) or Amazon Lambda

endpoints are not supported.

• The destination for notifications must be specified

as the URN of an StorageGRID endpoint.

Endpoints can be created using the Tenant

Manager or the Tenant Management API.

The endpoint must exist for notification

configuration to succeed. If the endpoint does not

exist, a 400 Bad Request error is returned with

the code InvalidArgument.

• You cannot configure a notification for the

following event types. These event types are not

supported.

◦ s3:ReducedRedundancyLostObject

◦ s3:ObjectRestore:Completed

• Event notifications sent from StorageGRID use

the standard JSON format except that they do not

include some keys and use specific values for

others, as shown in the following listing:

• eventSource

sgws:s3

• awsRegion

not included

• x-amz-id-2

not included

• arn

urn:sgws:s3:::bucket_name

PUT Bucket policy This operation sets the policy attached to the bucket.

9

Operation Implementation

PUT Bucket replication This operation configures StorageGRID CloudMirror

replication for the bucket using the replication

configuration XML provided in the request body. For

CloudMirror replication, you should be aware of the

following implementation details:

• StorageGRID only supports V1 of the replication

configuration. This means that StorageGRID does

not support the use of the Filter element for

rules, and follows V1 conventions for deletion of

object versions. See the Amazon documentation

on replication configuration for details.

• Bucket replication can be configured on versioned

or unversioned buckets.

• You can specify a different destination bucket in

each rule of the replication configuration XML. A

source bucket can replicate to more than one

destination bucket.

• Destination buckets must be specified as the URN

of StorageGRID endpoints as specified in the

Tenant Manager or the Tenant Management API.

The endpoint must exist for replication

configuration to succeed. If the endpoint does not

exist, the request fails as a 400 Bad Request.

The error message states: Unable to save

the replication policy. The specified

endpoint URN does not exist: URN.

• You do not need to specify a Role in the

configuration XML. This value is not used by

StorageGRID and will be ignored if submitted.

• If you omit the storage class from the

configuration XML, StorageGRID uses the

STANDARD storage class by default.

• If you delete an object from the source bucket or

you delete the source bucket itself, the cross-

region replication behavior is as follows:

◦ If you delete the object or bucket before it has

been replicated, the object/bucket is not

replicated and you are not notified.

◦ If you delete the object or bucket after it has

been replicated, StorageGRID follows

standard Amazon S3 delete behavior for V1 of

cross-region replication.

10

Operation Implementation

PUT Bucket tagging This operation uses the tagging subresource to add

or update a set of tags for a bucket. When adding

bucket tags, be aware of the following limitations:

• Both StorageGRID and Amazon S3 support up to

50 tags for each bucket.

• Tags associated with a bucket must have unique

tag keys. A tag key can be up to 128 Unicode

characters in length.

• Tag values can be up to 256 Unicode characters

in length.

• Key and values are case sensitive.

PUT Bucket versioning This implementation uses the versioning

subresource to set the versioning state of an existing

bucket. You can set the versioning state with one of

the following values:

• Enabled: Enables versioning for the objects in the

bucket. All objects added to the bucket receive a

unique version ID.

• Suspended: Disables versioning for the objects in

the bucket. All objects added to the bucket

receive the version ID null.

Related information

Amazon Web Services (AWS) Documentation: Cross-Region Replication

Consistency controls

GET Bucket last access time request

Bucket and group access policies

Using S3 Object Lock

S3 operations tracked in the audit logs

Manage objects with ILM

Use a tenant account

Creating an S3 lifecycle configuration

You can create an S3 lifecycle configuration to control when specific objects are deleted from the StorageGRID

system.

The simple example in this section illustrates how an S3 lifecycle configuration can control when certain

objects are deleted (expired) from specific S3 buckets. The example in this section is for illustration purposes

11

http://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.netapp.com/us-en/storagegrid-115/s3/consistency-controls.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/bucket-and-group-access-policies.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

only. For complete details on creating S3 lifecycle configurations, see the section on object lifecycle

management in the Amazon Simple Storage Service Developer Guide. Note that StorageGRID only supports

Expiration actions; it does not support Transition actions.

Amazon Simple Storage Service Developer Guide: Object lifecycle management

What a lifecycle configuration is

A lifecycle configuration is a set of rules that are applied to the objects in specific S3 buckets. Each rule

specifies which objects are affected and when those objects will expire (on a specific date or after some

number of days).

StorageGRID supports up to 1,000 lifecycle rules in a lifecycle configuration. Each rule can include the

following XML elements:

• Expiration: Delete an object when a specified date is reached or when a specified number of days is

reached, starting from when the object was ingested.

• NoncurrentVersionExpiration: Delete an object when a specified number of days is reached, starting from

when the object became noncurrent.

• Filter (Prefix, Tag)

• Status

• ID

If you apply a lifecycle configuration to a bucket, the lifecycle settings for the bucket always override

StorageGRID ILM settings. StorageGRID uses the Expiration settings for the bucket, not ILM, to determine

whether to delete or retain specific objects.

As a result, an object might be removed from the grid even though the placement instructions in an ILM rule

still apply to the object. Or, an object might be retained on the grid even after any ILM placement instructions

for the object have lapsed. For details, see “How ILM operates throughout an object’s life” in the instructions for

managing objects with information lifecycle management.

Bucket lifecycle configuration can be used with buckets that have S3 Object Lock enabled, but

bucket lifecycle configuration is not supported for legacy Compliant buckets.

StorageGRID supports the use of the following bucket operations to manage lifecycle configurations:

• DELETE Bucket lifecycle

• GET Bucket lifecycle

• PUT Bucket lifecycle

Creating the lifecycle configuration

As the first step in creating a lifecycle configuration, you create a JSON file that includes one or more rules. For

example, this JSON file includes three rules, as follows:

1. Rule 1 applies only to objects that match the prefix category1/ and that have a key2 value of tag2. The

Expiration parameter specifies that objects matching the filter will expire at midnight on 22 August 2020.

2. Rule 2 applies only to objects that match the prefix category2/. The Expiration parameter specifies

that objects matching the filter will expire 100 days after they are ingested.

12

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Rules that specify a number of days are relative to when the object was ingested. If the

current date exceeds the ingest date plus the number of days, some objects might be

removed from the bucket as soon as the lifecycle configuration is applied.

3. Rule 3 applies only to objects that match the prefix category3/. The Expiration parameter specifies

that any noncurrent versions of matching objects will expire 50 days after they become noncurrent.

13

{

 "Rules": [

 {

 "ID": "rule1",

 "Filter": {

 "And": {

 "Prefix": "category1/",

 "Tags": [

 {

 "Key": "key2",

 "Value": "tag2"

 }

]

 }

 },

 "Expiration": {

 "Date": "2020-08-22T00:00:00Z"

 },

 "Status": "Enabled"

 },

 {

 "ID": "rule2",

 "Filter": {

 "Prefix": "category2/"

 },

 "Expiration": {

 "Days": 100

 },

 "Status": "Enabled"

 },

 {

 "ID": "rule3",

 "Filter": {

 "Prefix": "category3/"

 },

 "NoncurrentVersionExpiration": {

 "NoncurrentDays": 50

 },

 "Status": "Enabled"

 }

]

}

14

Applying a lifecycle configuration to a bucket

After you have created the lifecycle configuration file, you apply it to a bucket by issuing a PUT Bucket lifecycle

request.

This request applies the lifecycle configuration in the example file to objects in a bucket named

testbucket:bucket

aws s3api --endpoint-url <StorageGRID endpoint> put-bucket-lifecycle-

configuration

--bucket testbucket --lifecycle-configuration file://bktjson.json

To validate that a lifecycle configuration was successfully applied to the bucket, issue a GET Bucket lifecycle

request. For example:

aws s3api --endpoint-url <StorageGRID endpoint> get-bucket-lifecycle-

configuration

 --bucket testbucket

A successful response lists the lifecycle configuration you just applied.

Validating that bucket lifecycle expiration applies to an object

You can determine if an expiration rule in the lifecycle configuration applies to a specific object when issuing a

PUT Object, HEAD Object, or GET Object request. If a rule applies, the response includes an Expiration

parameter that indicates when the object expires and which expiration rule was matched.

Because bucket lifecycle overrides ILM, the expiry-date shown is the actual date the object

will be deleted. For details, see “How object retention is determined” in the instructions for

performing StorageGRID administration.

For example, this PUT Object request was issued on 22 Jun 2020 and places an object in the testbucket

bucket.

aws s3api --endpoint-url <StorageGRID endpoint> put-object

--bucket testbucket --key obj2test2 --body bktjson.json

The success response indicates that the object will expire in 100 days (01 Oct 2020) and that it matched Rule

2 of the lifecycle configuration.

{

 *"Expiration": "expiry-date=\"Thu, 01 Oct 2020 09:07:49 GMT\", rule-

id=\"rule2\"",

 "ETag": "\"9762f8a803bc34f5340579d4446076f7\""

}

15

For example, this HEAD Object request was used to get metadata for the same object in the testbucket bucket.

aws s3api --endpoint-url <StorageGRID endpoint> head-object

--bucket testbucket --key obj2test2

The success response includes the object’s metadata and indicates that the object will expire in 100 days and

that it matched Rule 2.

{

 "AcceptRanges": "bytes",

 *"Expiration": "expiry-date=\"Thu, 01 Oct 2020 09:07:48 GMT\", rule-

id=\"rule2\"",

 "LastModified": "2020-06-23T09:07:48+00:00",

 "ContentLength": 921,

 "ETag": "\"9762f8a803bc34f5340579d4446076f7\""

 "ContentType": "binary/octet-stream",

 "Metadata": {}

}

Related information

Operations on buckets

Manage objects with ILM

Custom operations on buckets

The StorageGRID system supports custom bucket operations that are added on to the S3

REST API and are specific to the system.

The following table lists the custom bucket operations supported by StorageGRID.

Operation Description For more information

GET Bucket consistency Returns the consistency level being

applied to a particular bucket.

GET Bucket consistency request

PUT Bucket consistency Sets the consistency level applied

to a particular bucket.

PUT Bucket consistency request

GET Bucket last access time Returns whether last access time

updates are enabled or disabled for

a particular bucket.

GET Bucket last access time

request

PUT Bucket last access time Allows you to enable or disable last

access time updates for a particular

bucket.

PUT Bucket last access time

request

16

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html

Operation Description For more information

DELETE Bucket metadata

notification configuration

Deletes the metadata notification

configuration XML associated with

a particular bucket.

DELETE Bucket metadata

notification configuration request

GET Bucket metadata notification

configuration

Returns the metadata notification

configuration XML associated with

a particular bucket.

GET Bucket metadata notification

configuration request

PUT Bucket metadata notification

configuration

Configures the metadata

notification service for a bucket.

PUT Bucket metadata notification

configuration request

PUT Bucket modifications for

compliance

Deprecated and not supported: You

can no longer create new buckets

with Compliance enabled.

Deprecated: PUT Bucket request

modifications for compliance

GET Bucket compliance Deprecated but supported: Returns

the compliance settings currently in

effect for an existing legacy

Compliant bucket.

Deprecated: GET Bucket

compliance request

PUT Bucket compliance Deprecated but supported: Allows

you to modify the compliance

settings for an existing legacy

Compliant bucket.

Deprecated: PUT Bucket

compliance request

Related information

S3 operations tracked in the audit logs

Operations on objects

This section describes how the StorageGRID system implements S3 REST API

operations for objects.

• Using S3 Object Lock

• Using servver-side encryption

• GET Object

• HEAD Object

• POST Object restore

• PUT Object

• PUT Object - Copy

The following conditions apply to all object operations:

• StorageGRID consistency controls are supported by all operations on objects, with the exception of the

following:

17

https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/storagegrid-s3-rest-api-operations.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

◦ GET Object ACL

◦ OPTIONS /

◦ PUT Object legal hold

◦ PUT Object retention

• Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins”

basis. The timing for the "`latest-wins`"evaluation is based on when the StorageGRID system completes a

given request, and not on when S3 clients begin an operation.

• All objects in a StorageGRID bucket are owned by the bucket owner, including objects created by an

anonymous user, or by another account.

• Data objects ingested to the StorageGRID system through Swift cannot be accessed through S3.

The following table describes how StorageGRID implements S3 REST API object operations.

18

Operation Implementation

DELETE Object Multi-Factor Authentication (MFA) and the response

header x-amz-mfa are not supported.

When processing a DELETE Object request,

StorageGRID attempts to immediately remove all

copies of the object from all stored locations. If

successful, StorageGRID returns a response to the

client immediately. If all copies cannot be removed

within 30 seconds (for example, because a location is

temporarily unavailable), StorageGRID queues the

copies for removal and then indicates success to the

client.

Versioning

To remove a specific version, the requestor must be

the bucket owner and use the versionId

subresource. Using this subresource permanently

deletes the version. If the versionId corresponds to

a delete marker, the response header x-amz-

delete-marker is returned set to true.

• If an object is deleted without the versionId

subresource on a version enabled bucket, it

results in the generation of a delete marker. The

versionId for the delete marker is returned

using the x-amz-version-id response header,

and the x-amz-delete-marker response

header is returned set to true.

• If an object is deleted without the versionId

subresource on a version suspended bucket, it

results in a permanent deletion of an already

existing 'null' version or a 'null' delete marker, and

the generation of a new 'null' delete marker. The

x-amz-delete-marker response header is

returned set to true.

Note: In certain cases, multiple delete markers might

exist for an object.

DELETE Multiple Objects Multi-Factor Authentication (MFA) and the response

header x-amz-mfa are not supported.

Multiple objects can be deleted in the same request

message.

19

Operation Implementation

DELETE Object tagging Uses the tagging subresource to remove all tags

from an object. Implemented with all Amazon S3

REST API behavior.

Versioning

If the versionId query parameter is not specified in

the request, the operation deletes all tags from the

most recent version of the object in a versioned

bucket. If the current version of the object is a delete

marker, a “MethodNotAllowed” status is returned with

the x-amz-delete-marker response header set to

true.

GET Object GET Object

GET Object ACL If the necessary access credentials are provided for

the account, the operation returns a positive response

and the ID, DisplayName, and Permission of the

object owner, indicating that the owner has full access

to the object.

GET Object legal hold Using S3 Object Lock

GET Object retention Using S3 Object Lock

GET Object tagging Uses the tagging subresource to return all tags for

an object. Implemented with all Amazon S3 REST

API behavior

Versioning

If the versionId query parameter is not specified in

the request, the operation returns all tags from the

most recent version of the object in a versioned

bucket. If the current version of the object is a delete

marker, a “MethodNotAllowed” status is returned with

the x-amz-delete-marker response header set to

true.

HEAD Object HEAD Object

POST Object restore POST Object restore

PUT Object PUT Object

PUT Object - Copy PUT Object - Copy

20

Operation Implementation

PUT Object legal hold Using S3 Object Lock

PUT Object retention Using S3 Object Lock

PUT Object tagging Uses the tagging subresource to add a set of tags

to an existing object. Implemented with all Amazon S3

REST API behavior

Tag updates and ingest behavior

When you use PUT Object tagging to update an

object’s tags, StorageGRID does not re-ingest the

object. This means that the option for Ingest Behavior

specified in the matching ILM rule is not used. Any

changes to object placement that are triggered by the

update are made when ILM is re-evaluated by normal

background ILM processes.

This means that if the ILM rule uses the Strict option

for ingest behavior, no action is taken if the required

object placements cannot be made (for example,

because a newly required location is unavailable).

The updated object retains its current placement until

the required placement is possible.

Resolving conflicts

Conflicting client requests, such as two clients writing

to the same key, are resolved on a “latest-wins” basis.

The timing for the "`latest-wins`"evaluation is based

on when the StorageGRID system completes a given

request, and not on when S3 clients begin an

operation.

Versioning

If the versionId query parameter is not specified in

the request, the operation add tags to the most recent

version of the object in a versioned bucket. If the

current version of the object is a delete marker, a

“MethodNotAllowed” status is returned with the x-

amz-delete-marker response header set to true.

Related information

Consistency controls

S3 operations tracked in the audit logs

21

https://docs.netapp.com/us-en/storagegrid-115/s3/consistency-controls.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

Using S3 Object Lock

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can

create buckets with S3 Object Lock enabled and then specify retain-until-date and legal

hold settings for each object version you add to that bucket.

S3 Object Lock allows you to specify object-level settings to prevent objects from being deleted or overwritten

for a fixed amount of time or indefinitely.

The StorageGRID S3 Object Lock feature provides a single retention mode that is equivalent to the Amazon

S3 compliance mode. By default, a protected object version cannot be overwritten or deleted by any user. The

StorageGRID S3 Object Lock feature does not support a governance mode, and it does not allow users with

special permissions to bypass retention settings or to delete protected objects.

Enabling S3 Object Lock for a bucket

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can optionally enable S3

Object Lock when you create each bucket. You can use either of these methods:

• Create the bucket using the Tenant Manager.

Use a tenant account

• Create the bucket using a PUT Bucket request with the x-amz-bucket-object-lock_enabled

request header.

Operations on buckets

You cannot add or disable S3 Object Lock after the bucket is created. S3 Object Lock requires bucket

versioning, which is enabled automatically when you create the bucket.

A bucket with S3 Object Lock enabled can contain a combination of objects with and without S3 Object Lock

settings. StorageGRID does not support default retention for the objects in S3 Object Lock buckets, so the PUT

Object Lock Configuration bucket operation is not supported.

Determining if S3 Object Lock is enabled for a bucket

To determine if S3 Object Lock is enabled, use the GET Object Lock Configuration request.

Operations on buckets

Creating an object with S3 Object Lock settings

To specify S3 Object Lock settings when adding an object version to a bucket that has S3 Object Lock

enabled, issue a PUT Object, PUT Object - Copy, or Initiate Multipart Upload request. Use the following

request headers.

You must enable S3 Object Lock when you create a bucket. You cannot add or disable S3

Object Lock after a bucket is created.

• x-amz-object-lock-mode, which must be COMPLIANCE (case sensitive).

22

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

If you specify x-amz-object-lock-mode, you must also specify x-amz-object-lock-

retain-until-date.

• x-amz-object-lock-retain-until-date

◦ The retain-until-date value must be in the format 2020-08-10T21:46:00Z. Fractional seconds are

allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are

not allowed.

◦ The retain-until-date must be in the future.

• x-amz-object-lock-legal-hold

If legal hold is ON (case-sensitive), the object is placed under a legal hold. If legal hold is OFF, no legal

hold is placed. Any other value results in a 400 Bad Request (InvalidArgument) error.

If you use any of these request headers, be aware of these restrictions:

• The Content-MD5 request header is required if any x-amz-object-lock-* request header is present

in the PUT Object request. Content-MD5 is not required for PUT Object - Copy or Initiate Multipart

Upload.

• If the bucket does not have S3 Object Lock enabled and a x-amz-object-lock-* request header is

present, a 400 Bad Request (InvalidRequest) error is returned.

• The PUT Object request supports the use of x-amz-storage-class: REDUCED_REDUNDANCY to match

AWS behavior. However, when an object is ingested into a bucket with S3 Object Lock enabled,

StorageGRID will always perform a dual-commit ingest.

• A subsequent GET or HEAD Object version response will include the headers x-amz-object-lock-

mode, x-amz-object-lock-retain-until-date, and x-amz-object-lock-legal-hold, if

configured and if the request sender has the correct s3:Get* permissions.

• A subsequent DELETE Object version or DELETE Objects versions request will fail if it is before the retain-

until-date or if a legal hold is on.

Updating S3 Object Lock settings

If you need to update the legal hold or retention settings for an existing object version, you can perform the

following object subresource operations:

• PUT Object legal-hold

If the new legal-hold value is ON, the object is placed under a legal hold. If the legal-hold value is OFF, the

legal hold is lifted.

• PUT Object retention

◦ The mode value must be COMPLIANCE (case sensitive).

◦ The retain-until-date value must be in the format 2020-08-10T21:46:00Z. Fractional seconds are

allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are

not allowed.

◦ If an object version has an existing retain-until-date, you can only increase it. The new value must be in

the future.

Related information

23

Manage objects with ILM

Use a tenant account

PUT Object

PUT Object - Copy

Initiate Multipart Upload

Object versioning

Amazon Simple Storage Service User Guide: Using S3 Object Lock

Using server-side encryption

Server-side encryption allows you to protect your object data at rest. StorageGRID

encrypts the data as it writes the object and decrypts the data when you access the

object.

If you want to use server-side encryption, you can choose either of two mutually exclusive options, based on

how the encryption keys are managed:

• SSE (server-side encryption with StorageGRID-managed keys): When you issue an S3 request to

store an object, StorageGRID encrypts the object with a unique key. When you issue an S3 request to

retrieve the object, StorageGRID uses the stored key to decrypt the object.

• SSE-C (server-side encryption with customer-provided keys): When you issue an S3 request to store

an object, you provide your own encryption key. When you retrieve an object, you provide the same

encryption key as part of your request. If the two encryption keys match, the object is decrypted and your

object data is returned.

While StorageGRID manages all object encryption and decryption operations, you must manage the

encryption keys you provide.

The encryption keys you provide are never stored. If you lose an encryption key, you lose

the corresponding object.

If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption

settings are ignored.

Using SSE

To encrypt an object with a unique key managed by StorageGRID, you use the following request header:

x-amz-server-side-encryption

The SSE request header is supported by the following object operations:

• PUT Object

• PUT Object - Copy

• Initiate Multipart Upload

24

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/object-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lock.html

Using SSE-C

To encrypt an object with a unique key that you manage, you use three request headers:

Request header Description

x-amz-server-side-encryption-customer

-algorithm

Specify the encryption algorithm. The header value

must be AES256.

x-amz-server-side-encryption-customer

-key

Specify the encryption key that will be used to encrypt

or decrypt the object. The value for the key must be

256-bit, base64-encoded.

x-amz-server-side-encryption-customer

-key-MD5

Specify the MD5 digest of the encryption key

according to RFC 1321, which is used to ensure the

encryption key was transmitted without error. The

value for the MD5 digest must be base64-encoded

128-bit.

The SSE-C request headers are supported by the following object operations:

• GET Object

• HEAD Object

• PUT Object

• PUT Object - Copy

• Initiate Multipart Upload

• Upload Part

• Upload Part - Copy

Considerations for using server-side encryption with customer-provided keys (SSE-C)

Before using SSE-C, be aware of the following considerations:

• You must use https.

StorageGRID rejects any requests made over http when using SSE-C. For security

considerations, you should consider any key you send accidentally using http to be

compromised. Discard the key, and rotate as appropriate.

• The ETag in the response is not the MD5 of the object data.

• You must manage the mapping of encryption keys to objects. StorageGRID does not store encryption keys.

You are responsible for tracking the encryption key you provide for each object.

• If your bucket is versioning-enabled, each object version should have its own encryption key. You are

responsible for tracking the encryption key used for each object version.

• Because you manage encryption keys on the client side, you must also manage any additional safeguards,

such as key rotation, on the client side.

25

The encryption keys you provide are never stored. If you lose an encryption key, you lose

the corresponding object.

• If CloudMirror replication is configured for the bucket, you cannot ingest SSE-C objects. The ingest

operation will fail.

Related information

GET Object

HEAD Object

PUT Object

PUT Object - Copy

Initiate Multipart Upload

Upload Part

Upload Part - Copy

Amazon S3 Developer Guide: Protecting Data Using Server-Side Encryption with Customer-Provided

Encryption Keys (SSE-C)

GET Object

You can use the S3 GET Object request to retrieve an object from an S3 bucket.

partNumber request parameter is not supported

The partNumber request parameter is not supported for GET Object requests. You cannot perform a GET

request to retrieve a specific part of a multipart object. A 501 Not Implemented error is returned with the

following message:

GET Object by partNumber is not implemented

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)

Use all three of the headers if the object is encrypted with a unique key that you provided.

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

• x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s

encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in “Using server-side encryption.”

26

https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. GET requests

for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-

meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XNotImplemented:

• x-amz-website-redirect-location

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a

versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with

the x-amz-delete-marker response header set to true.

Behavior of GET Object for Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with

information lifecycle management), the behavior of a GET Object request depends on the state of the object.

See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on

the grid, GET Object requests will attempt to retrieve data from the grid, before retrieving it from

the Cloud Storage Pool.

State of object Behavior of GET Object

Object ingested into StorageGRID but not yet

evaluated by ILM, or object stored in a traditional

storage pool or using erasure coding

200 OK

A copy of the object is retrieved.

Object in Cloud Storage Pool but not yet transitioned

to a non-retrievable state
200 OK

A copy of the object is retrieved.

Object transitioned to a non-retrievable state 403 Forbidden, InvalidObjectState

Use a POST Object restore request to restore the

object to a retrievable state.

Object in process of being restored from a non-

retrievable state
403 Forbidden, InvalidObjectState

Wait for the POST Object restore request to complete.

Object fully restored to the Cloud Storage Pool 200 OK

A copy of the object is retrieved.

27

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID

determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts

or segments. In some cases, a GET Object request might incorrectly return 200 OK when some parts of the

object have already been transitioned to a non-retrievable state or when some parts of the object have not yet

been restored.

In these cases:

• The GET Object request might return some data but stop midway through the transfer.

• A subsequent GET Object request might return 403 Forbidden.

Related information

Using server-side encryption

Manage objects with ILM

POST Object restore

S3 operations tracked in the audit logs

HEAD Object

You can use the S3 HEAD Object request to retrieve metadata from an object without

returning the object itself. If the object is stored in a Cloud Storage Pool, you can use

HEAD Object to determine the object’s transition state.

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)

Use all three of these headers if the object is encrypted with a unique key that you provided.

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

• x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s

encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in “Using server-side encryption.”

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. HEAD requests

for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-

meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XNotImplemented:

28

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

• x-amz-website-redirect-location

Response headers for Cloud Storage Pool objects

If the object is stored in a Cloud Storage Pool (see the instructions for managing objects with information

lifecycle management), the following response headers are returned:

• x-amz-storage-class: GLACIER

• x-amz-restore

The response headers provide information about the state of an object as it is moved to a Cloud Storage Pool,

optionally transitioned to a non-retrievable state, and restored.

State of object Response to HEAD object

Object ingested into StorageGRID but not yet

evaluated by ILM, or object stored in a traditional

storage pool or using erasure coding

200 OK (No special response header is returned.)

Object in Cloud Storage Pool but not yet transitioned

to a non-retrievable state
200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="false",

expiry-date="Sat, 23 July 20 2030

00:00:00 GMT"

Until the object is transitioned to a non-retrievable

state, the value for expiry-date is set to some

distant time in the future. The exact time of transition

is not controlled by the StorageGRID system.

Object has transitioned to non-retrievable state, but at

least one copy also exists on the grid
200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="false",

expiry-date="Sat, 23 July 20 2030

00:00:00 GMT"

The value for expiry-date is set to some distant

time in the future.

Note: If the copy on the grid is not available (for

example, a Storage Node is down), you must issue a

POST Object restore request to restore the copy from

the Cloud Storage Pool before you can successfully

retrieve the object.

29

State of object Response to HEAD object

Object transitioned to a non-retrievable state, and no

copy exists on the grid
200 OK

x-amz-storage-class: GLACIER

Object in process of being restored from a non-

retrievable state
200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="true"

Object fully restored to the Cloud Storage Pool 200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="false",

expiry-date="Sat, 23 July 20 2018

00:00:00 GMT"

The expiry-date indicates when the object in the

Cloud Storage Pool will be returned to a non-

retrievable state.

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID

determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts

or segments. In some cases, a HEAD Object request might incorrectly return x-amz-restore: ongoing-

request="false" when some parts of the object have already been transitioned to a non-retrievable state or

when some parts of the object have not yet been restored.

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a

versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with

the x-amz-delete-marker response header set to true.

Related information

Using server-side encryption

Manage objects with ILM

POST Object restore

S3 operations tracked in the audit logs

POST Object restore

You can use the S3 POST Object restore request to restore an object that is stored in a

Cloud Storage Pool.

30

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

Supported request type

StorageGRID only supports POST Object restore requests to restore an object. It does not support the SELECT

type of restoration. Select requests return XNotImplemented.

Versioning

Optionally, specify versionId to restore a specific version of an object in a versioned bucket. If you do not

specify versionId, the most recent version of the object is restored

Behavior of POST Object restore on Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with

information lifecycle management), a POST Object restore request has the following behavior, based on the

state of the object. See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on

the grid, there is no need to restore the object by issuing a POST Object restore request.

Instead, the local copy can be retrieved directly, using a GET Object request.

State of object Behavior of POST Object restore

Object ingested into StorageGRID but not yet

evaluated by ILM, or object is not in a Cloud Storage

Pool

403 Forbidden, InvalidObjectState

Object in Cloud Storage Pool but not yet transitioned

to a non-retrievable state
200 OK No changes are made.

Note: Before an object has been transitioned to a

non-retrievable state, you cannot change its expiry-

date.

Object transitioned to a non-retrievable state 202 Accepted Restores a retrievable copy of the

object to the Cloud Storage Pool for the number of

days specified in the request body. At the end of this

period, the object is returned to a non-retrievable

state.

Optionally, use the Tier request element to

determine how long the restore job will take to finish

(Expedited, Standard, or Bulk). If you do not

specify Tier, the Standard tier is used.

Attention: If an object has been transitioned to S3

Glacier Deep Archive or the Cloud Storage Pool uses

Azure Blob Storage, you cannot restore it using the

Expedited tier. The following error is returned 403

Forbidden, InvalidTier: Retrieval option

is not supported by this storage class.

31

State of object Behavior of POST Object restore

Object in process of being restored from a non-

retrievable state
409 Conflict, RestoreAlreadyInProgress

Object fully restored to the Cloud Storage Pool 200 OK

Note: If an object has been restored to a retrievable

state, you can change its expiry-date by reissuing

the POST Object restore request with a new value for

Days. The restoration date is updated relative to the

time of the request.

Related information

Manage objects with ILM

HEAD Object

S3 operations tracked in the audit logs

PUT Object

You can use the S3 PUT Object request to add an object to a bucket.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.

The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given

request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

User metadata size

Amazon S3 limits the size of user-defined metadata within each PUT request header to 2 KB. StorageGRID

limits user metadata to 24 KiB. The size of user-defined metadata is measured by taking the sum of the

number of bytes in the UTF-8 encoding of each key and value.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,

StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-

defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

• PUT, PUT Object-Copy, GET, and HEAD requests succeed if user-defined metadata includes escaped

UTF-8 characters.

• StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name

or value includes unprintable characters.

32

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

Object tag limits

You can add tags to new objects when you upload them, or you can add them to existing objects. Both

StorageGRID and Amazon S3 support up to 10 tags for each object. Tags associated with an object must have

unique tag keys. A tag key can be up to 128 Unicode characters in length and tag values can be up to 256

Unicode characters in length. Key and values are case sensitive.

Object ownership

In StorageGRID, all objects are owned by the bucket owner account, including objects created by a non-owner

account or an anonymous user.

Supported request headers

The following request headers are supported:

• Cache-Control

• Content-Disposition

• Content-Encoding

When you specify aws-chunked for Content-EncodingStorageGRID does not verify the following

items:

◦ StorageGRID does not verify the chunk-signature against the chunk data.

◦ StorageGRID does not verify the value that you provide for x-amz-decoded-content-length

against the object.

• Content-Language

• Content-Length

• Content-MD5

• Content-Type

• Expires

• Transfer-Encoding

Chunked transfer encoding is supported if aws-chunked payload signing is also used.

• x-amz-meta-, followed by a name-value pair containing user-defined metadata.

When specifying the name-value pair for user-defined metadata, use this general format:

x-amz-meta-name: value

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you

must use creation-time as the name of the metadata that records when the object was created. For

example:

33

x-amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

An ILM rule cannot use both a User Defined Creation Time for the Reference Time and the

Balanced or Strict options for Ingest Behavior. An error is returned when the ILM rule is

created.

• x-amz-tagging

• S3 Object Lock request headers

◦ x-amz-object-lock-mode

◦ x-amz-object-lock-retain-until-date

◦ x-amz-object-lock-legal-hold

Using S3 Object Lock

• SSE request headers:

◦ x-amz-server-side-encryption

◦ x-amz-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption-customer-key

◦ x-amz-server-side-encryption-customer-algorithm

S3 REST API supported operations and limitations

Unsupported request headers

The following request headers are not supported:

• The x-amz-acl request header is not supported.

• The x-amz-website-redirect-location request header is not supported and returns

XNotImplemented.

Storage class options

The x-amz-storage-class request header is supported. The value submitted for x-amz-storage-class

affects how StorageGRID protects object data during ingest and not how many persistent copies of the object

are stored in the StorageGRID system (which is determined by ILM).

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-

class header has no effect.

The following values can be used for x-amz-storage-class:

• STANDARD (Default)

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object

is ingested a second copy of that object is created and distributed to a different Storage Node (dual

34

commit). When the ILM is evaluated,StorageGRID determines if these initial interim copies satisfy the

placement instructions in the rule. If they do not, new object copies might need to be made in different

locations and the initial interim copies might need to be deleted.

◦ Balanced: If the ILM rule specifies the Balanced option and StorageGRID cannot immediately make all

copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous

placement), the x-amz-storage-class header has no effect.

• REDUCED_REDUNDANCY

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID

creates a single interim copy as the object is ingested (single commit).

◦ Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only

if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform

synchronous placement, this header has no effect. The REDUCED_REDUNDANCY option is best used

when the ILM rule that matches the object creates a single replicated copy. In this case using

REDUCED_REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for

every ingest operation.

Using the REDUCED_REDUNDANCY option is not recommended in other circumstances.

REDUCED_REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose

data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Attention: Having only one replicated copy for any time period puts data at risk of permanent loss. If only one

replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant error. You also

temporarily lose access to the object during maintenance procedures such as upgrades.

Specifying REDUCED_REDUNDANCY only affects how many copies are created when an object is first ingested.

It does not affect how many copies of the object are made when the object is evaluated by the active ILM

policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.

Note: If you are ingesting an object into a bucket with S3 Object Lock enabled, the REDUCED_REDUNDANCY

option is ignored. If you are ingesting an object into a legacy Compliant bucket, the REDUCED_REDUNDANCY

option returns an error. StorageGRID will always perform a dual-commit ingest to ensure that compliance

requirements are satisfied.

Request headers for server-side encryption

You can use the following request headers to encrypt an object with server-side encryption. The SSE and SSE-

C options are mutually exclusive.

• SSE: Use the following header if you want to encrypt the object with a unique key managed by

StorageGRID.

◦ x-amz-server-side-encryption

• SSE-C: Use all three of these headers if you want to encrypt the object with a unique key that you provide

and manage.

◦ x-amz-server-side-encryption-customer-algorithm: Specify AES256.

◦ x-amz-server-side-encryption-customer-key: Specify your encryption key for the new

object.

35

◦ x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new

object’s encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the considerations in

“Using server-side encryption.”

Note: If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption settings are

ignored.

Versioning

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the

object being stored. This versionId is also returned in the response using the x-amz-version-id

response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already

exists it will be overwritten.

Related information

Manage objects with ILM

Operations on buckets

S3 operations tracked in the audit logs

Using server-side encryption

How client connections can be configured

PUT Object - Copy

You can use the S3 PUT Object - Copy request to create a copy of an object that is

already stored in S3. A PUT Object - Copy operation is the same as performing a GET

and then a PUT.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.

The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given

request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,

StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-

defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

36

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-115/s3/configuring-tenant-accounts-and-connections.html

• Requests succeed if user-defined metadata includes escaped UTF-8 characters.

• StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name

or value includes unprintable characters.

Supported request headers

The following request headers are supported:

• Content-Type

• x-amz-copy-source

• x-amz-copy-source-if-match

• x-amz-copy-source-if-none-match

• x-amz-copy-source-if-unmodified-since

• x-amz-copy-source-if-modified-since

• x-amz-meta-, followed by a name-value pair containing user-defined metadata

• x-amz-metadata-directive: The default value is COPY, which enables you to copy the object and

associated metadata.

You can specify REPLACE to overwrite the existing metadata when copying the object, or to update the

object metadata.

• x-amz-storage-class

• x-amz-tagging-directive: The default value is COPY, which enables you to copy the object and all

tags.

You can specify REPLACE to overwrite the existing tags when copying the object, or to update the tags.

• S3 Object Lock request headers:

◦ x-amz-object-lock-mode

◦ x-amz-object-lock-retain-until-date

◦ x-amz-object-lock-legal-hold

Using S3 Object Lock

• SSE request headers:

◦ x-amz-copy-source-server-side-encryption-customer-algorithm

◦ x-amz-copy-source-server-side-encryption-customer-key

◦ x-amz-copy-source-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption

◦ x-amz-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption-customer-key

◦ x-amz-server-side-encryption-customer-algorithm

37

Request headers for server-side encryption

Unsupported request headers

The following request headers are not supported:

• Cache-Control

• Content-Disposition

• Content-Encoding

• Content-Language

• Expires

• x-amz-website-redirect-location

Storage class options

The x-amz-storage-class request header is supported, and affects how many object copies StorageGRID

creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

• STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when

the Balanced option falls back to creating interim copies.

• REDUCED_REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the

Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

REDUCED_REDUNDANCY option is ignored. If you are ingesting an object into a legacy

Compliant bucket, the REDUCED_REDUNDANCY option returns an error. StorageGRID will

always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

Using x-amz-copy-source in PUT Object - Copy

If the source bucket and key, specified in the x-amz-copy-source header, are different from the destination

bucket and key, a copy of the source object data is written to the destination.

If the source and destination match, and the x-amz-metadata-directive header is specified as REPLACE,

the object’s metadata is updated with the metadata values supplied in the request. In this case, StorageGRID

does not re-ingest the object. This has two important consequences:

• You cannot use PUT Object - Copy to encrypt an existing object in place, or to change the encryption of an

existing object in place. If you supply the x-amz-server-side-encryption header or the x-amz-

server-side-encryption-customer-algorithm header, StorageGRID rejects the request and

returns XNotImplemented.

• The option for Ingest Behavior specified in the matching ILM rule is not used. Any changes to object

placement that are triggered by the update are made when ILM is re-evaluated by normal background ILM

processes.

38

This means that if the ILM rule uses the Strict option for ingest behavior, no action is taken if the required

object placements cannot be made (for example, because a newly required location is unavailable). The

updated object retains its current placement until the required placement is possible.

Request headers for server-side encryption

If you use server-side encryption, the request headers you provide depend on whether the source object is

encrypted and on whether you plan to encrypt the target object.

• If the source object is encrypted using a customer-provided key (SSE-C), you must include the following

three headers in the PUT Object - Copy request, so the object can be decrypted and then copied:

◦ x-amz-copy-source-server-side-encryption-customer-algorithm Specify AES256.

◦ x-amz-copy-source-server-side-encryption-customer-key Specify the encryption key you

provided when you created the source object.

◦ x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest

you provided when you created the source object.

• If you want to encrypt the target object (the copy) with a unique key that you provide and manage, include

the following three headers:

◦ x-amz-server-side-encryption-customer-algorithm: Specify AES256.

◦ x-amz-server-side-encryption-customer-key: Specify a new encryption key for the target

object.

◦ x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new

encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the considerations in

“Using server-side encryption.”

• If you want to encrypt the target object (the copy) with a unique key managed by StorageGRID (SSE),

include this header in the PUT Object - Copy request:

◦ x-amz-server-side-encryption

Note: The server-side-encryption value of the object cannot be updated. Instead, make a copy with a

new server-side-encryption value using x-amz-metadata-directive: REPLACE.

Versioning

If the source bucket is versioned, you can use the x-amz-copy-source header to copy the latest version of

an object. To copy a specific version of an object, you must explicitly specify the version to copy using the

versionId subresource. If the destination bucket is versioned, the generated version is returned in the x-

amz-version-id response header. If versioning is suspended for the target bucket, then x-amz-version-

id returns a “null” value.

Related information

Manage objects with ILM

Using server-side encryption

S3 operations tracked in the audit logs

39

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/s3/s3-operations-tracked-in-audit-logs.html

PUT Object

Operations for multipart uploads

This section describes how StorageGRID supports operations for multipart uploads.

• List multipart uploads

• Initiate Multipart Upload

• Upload Part

• Upload Part - Copy

• Complete Multipart Upload

The following conditions and notes apply to all multipart upload operations:

• You should not exceed 1,000 concurrent multipart uploads to a single bucket because the results of List

Multipart Uploads queries for that bucket might return incomplete results.

• StorageGRID enforces AWS size limits for multipart parts. S3 clients must follow these guidelines:

◦ Each part in a multipart upload must be between 5 MiB (5,242,880 bytes) and 5 GiB (5,368,709,120

bytes).

◦ The last part can be smaller than 5 MiB (5,242,880 bytes).

◦ In general, part sizes should be as large as possible. For example, use part sizes of 5 GiB for a 100

GiB object. Since each part is considered a unique object, using large part sizes reduces StorageGRID

metadata overhead.

◦ For objects smaller than 5 GiB, consider using non-multipart upload instead.

• ILM is evaluated for each part of a multipart object as it is ingested and for the object as a whole when the

multipart upload completes, if the ILM rule uses the Strict or Balanced ingest behavior. You should be

aware of how this affects object and part placement:

◦ If ILM changes while an S3 multipart upload is in progress, when the multipart upload completes some

parts of the object might not meet current ILM requirements. Any part that is not placed correctly is

queued for ILM re-evaluation, and is moved to the correct location later.

◦ When evaluating ILM for a part, StorageGRID filters on the size of the part, not the size of the object.

This means that parts of an object can be stored in locations that do not meet ILM requirements for the

object as a whole. For example, if a rule specifies that all objects 10 GB or larger are stored at DC1

while all smaller objects are stored at DC2, at ingest each 1 GB part of a 10-part multipart upload is

stored at DC2. When ILM is evaluated for the object as a whole, all parts of the object are moved to

DC1.

• All of the multipart upload operations support StorageGRID consistency controls.

• As required, you can use server-side encryption with multipart uploads. To use SSE (server-side encryption

with StorageGRID-managed keys), you include the x-amz-server-side-encryption request header

in the Initiate Multipart Upload request only. To use SSE-C (server-side encryption with customer-provided

keys), you specify the same three encryption key request headers in the Initiate Multipart Upload request

and in each subsequent Upload Part request.

Operation Implementation

List Multipart Uploads See List Multipart Uploads

40

Operation Implementation

Initiate Multipart Upload See Initiate Multipart Upload

Upload Part See Upload Part

Upload Part - Copy See Upload Part - Copy

Complete Multipart Upload See Complete Multipart Upload

Abort Multipart Upload Implemented with all Amazon S3 REST API behavior

List Parts Implemented with all Amazon S3 REST API behavior

Related information

Consistency controls

Using server-side encryption

List Multipart Uploads

The List Multipart Uploads operation lists in-progress multipart uploads for a bucket.

The following request parameters are supported:

• encoding-type

• max-uploads

• key-marker

• prefix

• upload-id-marker

The delimiter request parameter is not supported.

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. When the Complete Multipart Upload operation is

performed, that is the point when objects are created (and versioned if applicable).

Initiate Multipart Upload

The Initiate Multipart Upload operation initiates a multipart upload for an object, and

returns an upload ID.

The x-amz-storage-class request header is supported. The value submitted for x-amz-storage-class

affects how StorageGRID protects object data during ingest and not how many persistent copies of the object

are stored in the StorageGRID system (which is determined by ILM).

41

https://docs.netapp.com/us-en/storagegrid-115/s3/consistency-controls.html

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-

class header has no effect.

The following values can be used for x-amz-storage-class:

• STANDARD (Default)

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object

is ingested a second copy of that object is created and distributed to a different Storage Node (dual

commit). When the ILM is evaluated,StorageGRID determines if these initial interim copies satisfy the

placement instructions in the rule. If they do not, new object copies might need to be made in different

locations and the initial interim copies might need to be deleted.

◦ Balanced: If the ILM rule specifies the Balanced option and StorageGRID cannot immediately make all

copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous

placement), the x-amz-storage-class header has no effect.

• REDUCED_REDUNDANCY

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID

creates a single interim copy as the object is ingested (single commit).

◦ Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only

if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform

synchronous placement, this header has no effect. The REDUCED_REDUNDANCY option is best used

when the ILM rule that matches the object creates a single replicated copy. In this case using

REDUCED_REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for

every ingest operation.

Using the REDUCED_REDUNDANCY option is not recommended in other circumstances.

REDUCED_REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose

data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Attention: Having only one replicated copy for any time period puts data at risk of permanent loss. If only one

replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant error. You also

temporarily lose access to the object during maintenance procedures such as upgrades.

Specifying REDUCED_REDUNDANCY only affects how many copies are created when an object is first ingested.

It does not affect how many copies of the object are made when the object is evaluated by the active ILM

policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.

Note: If you are ingesting an object into a bucket with S3 Object Lock enabled, the REDUCED_REDUNDANCY

option is ignored. If you are ingesting an object into a legacy Compliant bucket, the REDUCED_REDUNDANCY

option returns an error. StorageGRID will always perform a dual-commit ingest to ensure that compliance

requirements are satisfied.

The following request headers are supported:

• Content-Type

• x-amz-meta-, followed by a name-value pair containing user-defined metadata

When specifying the name-value pair for user-defined metadata, use this general format:

42

x-amz-meta-_name_: `value`

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you

must use creation-time as the name of the metadata that records when the object was created. For

example:

x-amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

Adding creation-time as user-defined metadata is not allowed if you are adding an object to

a bucket that has legacy Compliance enabled. An error will be returned.

• S3 Object Lock request headers:

◦ x-amz-object-lock-mode

◦ x-amz-object-lock-retain-until-date

◦ x-amz-object-lock-legal-hold

Using S3 Object Lock

• SSE request headers:

◦ x-amz-server-side-encryption

◦ x-amz-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption-customer-key

◦ x-amz-server-side-encryption-customer-algorithm

S3 REST API supported operations and limitations

For information on how StorageGRID handles UTF-8 characters, see the documentation for

PUT Object.

Request headers for server-side encryption

You can use the following request headers to encrypt a multipart object with server-side encryption. The SSE

and SSE-C options are mutually exclusive.

• SSE: Use the following header in the Initiate Multipart Upload request if you want to encrypt the object with

a unique key managed by StorageGRID. Do not specify this header in any of the Upload Part requests.

◦ x-amz-server-side-encryption

• SSE-C: Use all three of these headers in the Initiate Multipart Upload request (and in each subsequent

Upload Part request) if you want to encrypt the object with a unique key that you provide and manage.

◦ x-amz-server-side-encryption-customer-algorithm: Specify AES256.

43

◦ x-amz-server-side-encryption-customer-key: Specify your encryption key for the new

object.

◦ x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new

object’s encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the considerations in

“Using server-side encryption.”

Unsupported request headers

The following request header is not supported and returns XNotImplemented

• x-amz-website-redirect-location

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)

when the Complete Multipart Upload operation is performed.

Related information

Manage objects with ILM

Using server-side encryption

PUT Object

Upload Part

The Upload Part operation uploads a part in a multipart upload for an object.

Supported request headers

The following request headers are supported:

• Content-Length

• Content-MD5

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following

request headers in each Upload Part request:

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify the same encryption key that you

provided in the Initiate Multipart Upload request.

• x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you

provided in the Initiate Multipart Upload request.

44

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in “Using server-side encryption.”

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)

when the Complete Multipart Upload operation is performed.

Related information

Using server-side encryption

Upload Part - Copy

The Upload Part - Copy operation uploads a part of an object by copying data from an

existing object as the data source.

The Upload Part - Copy operation is implemented with all Amazon S3 REST API behavior.

This request reads and writes the object data specified in x-amz-copy-source-range within the

StorageGRID system.

The following request headers are supported:

• x-amz-copy-source-if-match

• x-amz-copy-source-if-none-match

• x-amz-copy-source-if-unmodified-since

• x-amz-copy-source-if-modified-since

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following

request headers in each Upload Part - Copy request:

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify the same encryption key that you

provided in the Initiate Multipart Upload request.

• x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you

provided in the Initiate Multipart Upload request.

If the source object is encrypted using a customer-provided key (SSE-C), you must include the following three

headers in the Upload Part - Copy request, so the object can be decrypted and then copied:

• x-amz-copy-source-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-copy-source-server-side-encryption-customer-key: Specify the encryption key you

provided when you created the source object.

• x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest you

provided when you created the source object.

45

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in “Using server-side encryption.”

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)

when the Complete Multipart Upload operation is performed.

Complete Multipart Upload

The Complete Multipart Upload operation completes a multipart upload of an object by

assembling the previously uploaded parts.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.

The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given

request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

Request headers

The x-amz-storage-class request header is supported, and affects how many object copies StorageGRID

creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

• STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when

the Balanced option falls back to creating interim copies.

• REDUCED_REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the

Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

REDUCED_REDUNDANCY option is ignored. If you are ingesting an object into a legacy

Compliant bucket, the REDUCED_REDUNDANCY option returns an error. StorageGRID will

always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

If a multipart upload is not completed within 15 days, the operation is marked as inactive and all

associated data is deleted from the system.

The ETag value returned is not an MD5 sum of the data, but follows the Amazon S3 API

implementation of the ETag value for multipart objects.

46

Versioning

This operation completes a multipart upload. If versioning is enabled for a bucket, the object version is created

upon completion of the multipart upload.

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the

object being stored. This versionId is also returned in the response using the x-amz-version-id

response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already

exists it will be overwritten.

When versioning is enabled for a bucket, completing a multipart upload always creates a new

version, even if there are concurrent multipart uploads completed on the same object key. When

versioning is not enabled for a bucket, it is possible to initiate a multipart upload and then have

another multipart upload initiate and complete first on the same object key. On non-versioned

buckets, the multipart upload that completes last takes precedence.

Failed replication, notification, or metadata notification

If the bucket where the multipart upload occurs is configured for a platform service, multipart upload succeeds

even if the associated replication or notification action fails.

If this occurs, an alarm is raised in the Grid Manager on Total Events (SMTT). The Last Event message

displays “Failed to publish notifications for bucket-nameobject key” for the last object whose notification failed.

(To see this message, select Nodes > Storage Node > Events. View Last Event at the top of the table.) Event

messages are also listed in /var/local/log/bycast-err.log.

A tenant can trigger the failed replication or notification by updating the object’s metadata or tags. A tenant can

resubmit the existing values to avoid making unwanted changes.

Related information

Manage objects with ILM

Error responses

The StorageGRID system supports all standard S3 REST API error responses that apply.

In addition, the StorageGRID implementation adds several custom responses.

Supported S3 API error codes

Name HTTP status

AccessDenied 403 Forbidden

BadDigest 400 Bad Request

BucketAlreadyExists 409 Conflict

BucketNotEmpty 409 Conflict

47

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Name HTTP status

IncompleteBody 400 Bad Request

InternalError 500 Internal Server Error

InvalidAccessKeyId 403 Forbidden

InvalidArgument 400 Bad Request

InvalidBucketName 400 Bad Request

InvalidBucketState 409 Conflict

InvalidDigest 400 Bad Request

InvalidEncryptionAlgorithmError 400 Bad Request

InvalidPart 400 Bad Request

InvalidPartOrder 400 Bad Request

InvalidRange 416 Requested Range Not Satisfiable

InvalidRequest 400 Bad Request

InvalidStorageClass 400 Bad Request

InvalidTag 400 Bad Request

InvalidURI 400 Bad Request

KeyTooLong 400 Bad Request

MalformedXML 400 Bad Request

MetadataTooLarge 400 Bad Request

MethodNotAllowed 405 Method Not Allowed

MissingContentLength 411 Length Required

MissingRequestBodyError 400 Bad Request

MissingSecurityHeader 400 Bad Request

48

Name HTTP status

NoSuchBucket 404 Not Found

NoSuchKey 404 Not Found

NoSuchUpload 404 Not Found

NotImplemented 501 Not Implemented

NoSuchBucketPolicy 404 Not Found

ObjectLockConfigurationNotFoundError 404 Not Found

PreconditionFailed 412 Precondition Failed

RequestTimeTooSkewed 403 Forbidden

ServiceUnavailable 503 Service Unavailable

SignatureDoesNotMatch 403 Forbidden

TooManyBuckets 400 Bad Request

UserKeyMustBeSpecified 400 Bad Request

StorageGRID custom error codes

Name Description HTTP status

XBucketLifecycleNotAllowed Bucket lifecycle configuration is not

allowed in a legacy Compliant

bucket

400 Bad Request

XBucketPolicyParseException Failed to parse received bucket

policy JSON.

400 Bad Request

XComplianceConflict Operation denied because of

legacy Compliance settings.

403 Forbidden

XComplianceReducedRedundancy

Forbidden

Reduced redundancy is not

allowed in legacy Compliant bucket

400 Bad Request

XMaxBucketPolicyLengthExceeded Your policy exceeds the maximum

allowed bucket policy length.

400 Bad Request

49

Name Description HTTP status

XMissingInternalRequestHeader Missing a header of an internal

request.

400 Bad Request

XNoSuchBucketCompliance The specified bucket does not have

legacy Compliance enabled.

404 Not Found

XNotAcceptable The request contains one or more

accept headers that could not be

satisfied.

406 Not Acceptable

XNotImplemented The request you provided implies

functionality that is not

implemented.

501 Not Implemented

50

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

51

http://www.netapp.com/TM

	S3 REST API supported operations and limitations : StorageGRID
	Table of Contents
	S3 REST API supported operations and limitations
	Date handling
	Common request headers
	Common response headers
	Authenticating requests
	Using the HTTP Authorization header
	Using query parameters

	Operations on the service
	Operations on buckets
	Creating an S3 lifecycle configuration

	Custom operations on buckets
	Operations on objects
	Using S3 Object Lock
	Using server-side encryption
	GET Object
	HEAD Object
	POST Object restore
	PUT Object
	PUT Object - Copy

	Operations for multipart uploads
	List Multipart Uploads
	Initiate Multipart Upload
	Upload Part
	Upload Part - Copy
	Complete Multipart Upload

	Error responses
	Supported S3 API error codes
	StorageGRID custom error codes

