Use S3 REST API
StorageGRID

NetApp
October 03, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-115/s3/changes-to-s3-rest-api-
support.html on October 03, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Use S3
Support for the S3 REST API

Changes to S3 REST API support
Supported versions
Support for StorageGRID platform services

Configuring tenant accounts and connections

Creating and configuring S3 tenant accounts
How client connections can be configured
Endpoint domain names for S3 requests
Testing your S3 REST API configuration

How StorageGRID implements the S3 REST API

Conflicting client requests

Consistency controls

How StorageGRID ILM rules manage objects

Object versioning

Recommendations for implementing the S3 REST API

S3 REST API supported operations and limitations

Date handling

Common request headers
Common response headers
Authenticating requests
Operations on the service
Operations on buckets

Custom operations on buckets
Operations on objects
Operations for multipart uploads
Error responses

StorageGRID S3 REST API operations

GET Bucket consistency request

PUT Bucket consistency request

GET Bucket last access time request

PUT Bucket last access time request

DELETE Bucket metadata notification configuration request
GET Bucket metadata notification configuration request
PUT Bucket metadata notification configuration request
GET Storage Usage request

Deprecated bucket requests for legacy Compliance

Bucket and group access policies

Access policy overview

Consistency control settings for policies
Using the ARN in policy statements
Specifying resources in a policy
Specifying principals in a policy

O 0 oo O A W~ A

© © © © 00 00 00 0 N N N O O O O O O O W W = = 22 A A A A A A A a2 a
N - = O 0 NN =201 O ©O© O NOO WO WN O OWWOwWwWOoWwWSNSNSNO OO WwOo o o

Specifying permissions in a policy
Using the PutOverwriteObject permission
Specifying conditions in a policy
Specifying variables in a policy
Creating policies requiring special handling
Write-once-read-many (WORM) protection
S3 policy examples
Configuring security for the REST API
How StorageGRID provides security for the REST API
Supported hashing and encryption algorithms for TLS libraries
Monitoring and auditing operations
Monitoring object ingest and retrieval rates
Accessing and reviewing audit logs
Benefits of active, idle, and concurrent HTTP connections
Benefits of keeping idle HTTP connections open
Benefits of active HTTP connections
Benefits of concurrent HTTP connections
Separation of HTTP connection pools for read and write operations

93

97

97
100
101
102
103
112
112
114
115
115
117
118
119
119
120
121

Use S3

Learn how client applications can use the S3 API to interface with the StorageGRID
system.

» Support for the S3 REST API

+ Configuring tenant accounts and connections

* How StorageGRID implements the S3 REST API

» S3 REST API supported operations and limitations
+ StorageGRID S3 REST API operations

» Bucket and group access policies

» Configuring security for the REST API

* Monitoring and auditing operations

» Benefits of active, idle, and concurrent HTTP connections

Support for the S3 REST API

StorageGRID supports the Simple Storage Service (S3) API, which is implemented as a
set of Representational State Transfer (REST) web services. Support for the S3 REST
API enables you to connect service-oriented applications developed for S3 web services
with on-premises object storage that uses the StorageGRID system. This requires
minimal changes to a client application’s current use of S3 REST API calls.

* Changes to S3 REST API support
* Supported versions

* Support for StorageGRID platform services

Changes to S3 REST API support

You should be aware of changes to the StorageGRID system’s support for the S3 REST
API.

Release Comments
11.5 » Added support for managing bucket encryption.

» Added support for S3 Object Lock and deprecated
legacy Compliance requests.

» Added support for using DELETE Multiple Objects
on versioned buckets.

* The Content-MD5 request header is now
correctly supported.

Release

11.4

11.3

Comments

» Added support for DELETE Bucket tagging, GET
Bucket tagging, and PUT Bucket tagging. Cost
allocation tags are not supported.

 For buckets created in StorageGRID 11.4,
restricting object key names to meet performance
best practices is no longer required.

» Added support for bucket notifications on the
s3:0bjectRestore:Post event type.

* AWS size limits for multipart parts are now
enforced. Each part in a multipart upload must be
between 5 MiB and 5 GiB. The last part can be
smaller than 5 MiB.

» Added support for TLS 1.3, and updated list of
supported TLS cipher suites.

* The CLB service is deprecated.

» Added support for server-side encryption of object
data with customer-provided keys (SSE-C).

* Added support for DELETE, GET, and PUT
Bucket lifecycle operations (Expiration action
only) and for the x-amz-expiration response
header.

» Updated PUT Object, PUT Object - Copy, and
Multipart Upload to describe the impact of ILM
rules that use synchronous placement at ingest.

» Updated list of supported TLS cipher suites. TLS
1.1 ciphers are no longer supported.

Added support for POST Object restore for use with
Cloud Storage Pools. Added support for using the
AWS syntax for ARN, policy condition keys, and
policy variables in group and bucket policies. Existing
group and bucket policies that use the StorageGRID
syntax will continue to be supported.

Note: Uses of ARN/URN in other configuration
JSON/XML, including those used in custom
StorageGRID features, have not changed.

Added support for Cross-Origin Resource Sharing
(CORS), HTTP for S3 client connections to grid
nodes, and compliance settings on buckets.

Release

11.0

10.4

10.3

10.2

10.1

10.0

Supported versions

Comments

Added support for configuring platform services
(CloudMirror replication, notifications, and
Elasticsearch search integration) for buckets. Also
added support for object tagging location constraints
for buckets, and the Available consistency control
setting.

Added support for ILM scanning changes to
versioning, Endpoint Domain Names page updates,
conditions and variables in policies, policy examples,
and the PutOverwriteObject permission.

Added support for versioning.

Added support for group and bucket access policies,
and for multipart copy (Upload Part - Copy).

Added support for multipart upload, virtual hosted-
style requests, and v4 authentication.

Initial support of the S3 REST API by the
StorageGRID system.The currently supported version
of the Simple Storage Service API Reference is 2006-
03-01.

StorageGRID supports the following specific versions of S3 and HTTP.

Item

S3 specification

HTTP

Related information

Version
Simple Storage Service API Reference 2006-03-01
1.1

For more information about HTTP, see HTTP/1.1
(RFCs 7230-35).

Note: StorageGRID does not support HTTP/1.1
pipelining.

IETF RFC 2616: Hypertext Transfer Protocol (HTTP/1.1)

Amazon Web Services (AWS) Documentation: Amazon Simple Storage Service API Reference

http://tools.ietf.org/html/rfc2616
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Support for StorageGRID platform services

StorageGRID platform services enable StorageGRID tenant accounts to leverage
external services such as a remote S3 bucket, a Simple Notification Service (SNS)
endpoint, or an Elasticsearch cluster to extend the services provided by a grid.

The following table summarizes the available platform services and the S3 APIs used to configure them.

Platform service Purpose S3 API used to configure the
service
CloudMiirror replication Replicates objects from a source PUT Bucket replication

StorageGRID bucket to the
configured remote S3 bucket.

Notifications Sends notifications about events in PUT Bucket notification
a source StorageGRID bucket to a
configured Simple Notification
Service (SNS) endpoint.

Search integration Sends object metadata for objects PUT Bucket metadata notification
stored in a StorageGRID bucket to
a configured Elasticsearch index. Note: This is a StorageGRID
custom S3 API.

A grid administrator must enable the use of platform services for a tenant account before they can be used.
Then, a tenant administrator must create an endpoint that represents the remote service in the tenant account.
This step is required before a service can be configured.

Recommendations for using platform services

Before using platform services, you must be aware of the following recommendations:

* NetApp recommends that you allow no more than 100 active tenants with S3 requests requiring
CloudMirror replication, notifications, and search integration. Having more than 100 active tenants can
result in slower S3 client performance.

« If an S3 bucket in theStorageGRID system has both versioning and CloudMirror replication enabled,
NetApp recommends that the destination endpoint also have S3 bucket versioning enabled. This allows
CloudMirror replication to generate similar object versions on the endpoint.

 CloudMirror replication is not supported if the source bucket has S3 Object Lock enabled.

 CloudMirror replication will fail with an AccessDenied error if the destination bucket has legacy Compliance
enabled.

Related information
Use a tenant account

Administer StorageGRID
Operations on buckets

PUT Bucket metadata notification configuration request

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

Configuring tenant accounts and connections

Configuring StorageGRID to accept connections from client applications requires creating
one or more tenant accounts and setting up the connections.

Creating and configuring S3 tenant accounts

An S3 tenant account is required before S3 API clients can store and retrieve objects on StorageGRID. Each
tenant account has its own account ID, groups and users, and containers and objects.

S3 tenant accounts are created by a StorageGRID grid administrator using the Grid Manager or the Grid
Management API. When creating an S3 tenant account, the grid administrator specifies the following
information:

 Display name for the tenant (the tenant’s account ID is assigned automatically and cannot be changed).

» Whether the tenant account is allowed to use platform services. If the use of platform services is allowed,
the grid must be configured to support their use.

« Optionally, a storage quota for the tenant account—the maximum number of gigabytes, terabytes, or
petabytes available for the tenant’s objects. A tenant’s storage quota represents a logical amount (object
size), not a physical amount (size on disk).

« If identity federation is enabled for the StorageGRID system, which federated group has Root Access
permission to configure the tenant account.

* If single sign-on (SSO) is not in use for the StorageGRID system, whether the tenant account will use its
own identity source or share the grid’s identity source, and the initial password for the tenant’s local root
user.

After an S3 tenant account is created, tenant users can access the Tenant Manager to perform tasks such as
the following:

« Set up identity federation (unless the identity source is shared with the grid), and create local groups and
users

* Manage S3 access keys

» Create and manage S3 buckets, including buckets that have S3 Object Lock enabled

» Use platform services (if enabled)

* Monitor storage usage

@ S3 tenant users can create and manage S3 buckets with the Tenant Manager, but they must
have S3 access keys and use the S3 REST API to ingest and manage objects.

Related information
Administer StorageGRID

Use a tenant account

How client connections can be configured

A grid administrator makes configuration choices that affect how S3 clients connect to StorageGRID to store
and retrieve data. The specific information you need to make a connection depends upon the configuration that
was chosen.

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

Client applications can store or retrieve objects by connecting to any of the following:

» The Load Balancer service on Admin Nodes or Gateway Nodes, or optionally, the virtual IP address of a
high availability (HA) group of Admin Nodes or Gateway Nodes

» The CLB service on Gateway Nodes, or optionally, the virtual IP address of a high availability group of
Gateway Nodes

The CLB service is deprecated. Clients configured before the StorageGRID 11.3 release can
@ continue to use the CLB service on Gateway Nodes. All other client applications that depend
on StorageGRID to provide load balancing should connect using the Load Balancer service.

» Storage Nodes, with or without an external load balancer

When configuring StorageGRID, a grid administrator can use the Grid Manager or the Grid Management API
to perform the following steps, all of which are optional:

1. Configure endpoints for the Load Balancer service.

You must configure endpoints to use the Load Balancer service. The Load Balancer service on Admin
Nodes or Gateway Nodes distributes incoming network connections from client applications to Storage
Nodes. When creating a load balancer endpoint, the StorageGRID administrator specifies a port number,
whether the endpoint accepts HTTP or HTTPS connections, the type of client (S3 or Swift) that will use the
endpoint, and the certificate to be used for HTTPS connections (if applicable).

2. Configure Untrusted Client Networks.

If a StorageGRID administrator configures a node’s Client Network to be untrusted, the node only accepts
inbound connections on the Client Network on ports that are explicitly configured as load balancer
endpoints.

3. Configure high availability groups.

If an administrator creates an HA group, the network interfaces of multiple Admin Nodes or Gateway
Nodes are placed into an active-backup configuration. Client connections are made using the virtual IP
address of the HA group.

For more information about each option, see the instructions for administering StorageGRID.

Related information
Administer StorageGRID

Summary: IP addresses and ports for client connections

Client applications connect to StorageGRID using the IP address of a grid node and the port number of a
service on that node. If high availability (HA) groups are configured, client applications can connect using the
virtual IP address of the HA group.

Information required to make client connections

The table summarizes the different ways that clients can connect to StorageGRID and the IP addresses and
ports that are used for each type of connection. Contact your StorageGRID administrator for more information,
or see the instructions for administering StorageGRID for a description of how to find this information in the
Grid Manager.

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

Where connection is Service that client IP address Port
made connects to

HA group Load Balancer Virtual IP address of an * Load balancer
HA group endpoint port
HA group CLB Virtual IP address of an Default S3 ports:
HA group
Note: The CLB service is « HTTPS: 8082
deprecated. « HTTP: 8084
Admin Node Load Balancer IP address of the Admin * Load balancer
Node endpoint port
Gateway Node Load Balancer IP address of the Load balancer
Gateway Node endpoint port
Gateway Node CLB IP address of the Default S3 ports:
Gateway Node
Note: The CLB service is * HTTPS: 8082
deprecated. Note: By default, HTTP . .
ports for CLB and LDR HTTP: 8084
are not enabled.
Storage Node LDR IP address of Storage Default S3 ports:

Node
« HTTPS: 18082

« HTTP: 18084

Example

To connect an S3 client to the Load Balancer endpoint of an HA group of Gateway Nodes, use a URL
structured as shown below:

° https://VIP-of-HA-group: LB-endpoint-port

For example, if the virtual IP address of the HA group is 192.0.2.5 and the port number of an S3 Load Balancer
endpoint is 10443, then an S3 client could use the following URL to connect to StorageGRID:

* https://192.0.2.5:10443

It is possible to configure a DNS name for the IP address that clients use to connect to StorageGRID. Contact
your local network administrator.

Related information
Administer StorageGRID
Deciding to use HTTPS or HTTP connections

When client connections are made using a Load Balancer endpoint, connections must be made using the
protocol (HTTP or HTTPS) that was specified for that endpoint. To use HTTP for client connections to Storage

https://192.0.2.5:10443
https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

Nodes or to the CLB service on Gateway Nodes, you must enable its use.
By default, when client applications connect to Storage Nodes or the CLB service on Gateway Nodes, they
must use encrypted HTTPS for all connections. Optionally, you can enable less-secure HTTP connections by

selecting the Enable HTTP Connection grid option in the Grid Manager. For example, a client application
might use HTTP when testing the connection to a Storage Node in a non-production environment.

@ Be careful when enabling HTTP for a production grid since requests will be sent unencrypted.

@ The CLB service is deprecated.

If the Enable HTTP Connection option is selected, clients must use different ports for HTTP than they use for
HTTPS. See the instructions for administering StorageGRID.

Related information
Administer StorageGRID

Benefits of active, idle, and concurrent HTTP connections

Endpoint domain names for S3 requests

Before you can use S3 domain names for client requests, a StorageGRID administrator must configure the
system to accept connections that use S3 domain names in S3 path-style and S3 virtual hosted-style requests.

About this task
To enable you to use S3 virtual hosted style-requests, a grid administrator must perform the following tasks:

» Use the Grid Manager to add the S3 endpoint domain names to the StorageGRID system.

* Ensure that the certificate the client uses for HTTPS connections to StorageGRID is signed for all domain
names that the client requires.

For example, if the endpoint is s3. company . com, the grid administrator must ensure that the certificate
used for HTTPS connections includes the s3. company.com endpoint and the endpoint’s wildcard Subject
Alternative Name (SAN): * . s3.company.com.

« Configure the DNS server used by the client to include DNS records that match the endpoint domain
names, including any required wildcard records.

If the client connects using the Load Balancer service, the certificate that the grid administrator configures is
the certificate for the load balancer endpoint that the client uses.

@ Each load balancer endpoint has its own certificate, and each endpoint can be configured to
recognize different endpoint domain names.

If the client connects Storage Nodes or to the CLB service on Gateway Nodes, the certificate that the grid
administrator configures is the single custom server certificate used for the grid.

@ The CLB service is deprecated.

See the instructions for administering StorageGRID for more information.

After these steps have been completed, you can use virtual hosted-style requests (for example,

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

bucket.s3.company.com).

Related information
Administer StorageGRID

Configuring security for the REST API

Testing your S3 REST API configuration

You can use the Amazon Web Services Command Line Interface (AWS CLI) to test your connection to the
system and to verify that you can read and write objects to the system.

What you’ll need

* You must have downloaded and installed the AWS CLI from aws.amazon.com/cli.

* You must have created an S3 tenant account in the StorageGRID system.

Steps

1. Configure the Amazon Web Services settings to use the account you created in the StorageGRID system:

a.
b.
C.
d.

e.

Enter configuration mode: aws configure

Enter the AWS Access Key ID for the account you created.
Enter the AWS Secret Access key for the account you created.
Enter the default region to use, for example, us-east-1.

Enter the default output format to use, or press Enter to select JSON.

2. Create a bucket.

aws s3apil --endpoint-url https://10.96.101.17:10443
--no-verify-ssl create-bucket --bucket testbucket

If the bucket is created successfully, the location of the bucket is returned, as seen in the following
example:

"Location": "/testbucket"

3. Upload an object.

aws s3api --endpoint-url https://10.96.101.17:10443 --no-verify-ssl

put-object --bucket testbucket --key s3.pdf --body C:\s3-

test\upload\s3.pdf

If the object is uploaded successfully, an Etag is returned which is a hash of the object data.

4. List the contents of the bucket to verify that the object was uploaded.

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html
https://aws.amazon.com/cli

aws s3apil --endpoint-url https://10.96.101.17:10443 --no-verify-ssl
list-objects —--bucket testbucket

5. Delete the object.

aws s3api --endpoint-url https://10.96.101.17:10443 --no-verify-ssl
delete-object --bucket testbucket --key s3.pdf

6. Delete the bucket.

aws s3apil --endpoint-url https://10.96.101.17:10443 --no-verify-ssl
delete-bucket --bucket testbucket

How StorageGRID implements the S3 REST API

A client application can use S3 REST API calls to connect to StorageGRID to create,
delete, and modify buckets, as well a storing and retrieving objects.

+ Conflicting client requests

+ Consistency controls

* How StorageGRID ILM rules manage objects
» Object versioning

+ Recommendations for implementing the S3 REST API

Conflicting client requests

Conflicting client requests, such as a two clients writing to the same key, are resolved on
a “latest-wins” basis.

The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Consistency controls

Consistency controls provide a trade-off between the availability of the objects and the
consistency of those objects across different Storage Nodes and sites, as required by
your application.

By default, StorageGRID guarantees read-after-write consistency for newly created objects. Any GET following
a successfully completed PUT will be able to read the newly written data. Overwrites of existing objects,
metadata updates, and deletes are eventually consistent. Overwrites generally take seconds or minutes to
propagate, but can take up to 15 days.

If you want to perform object operations at a different consistency level, you can specify a consistency control

10

for each bucket or for each API operation.

Consistency controls

The consistency control affects how the metadata that StorageGRID uses to track objects is distributed
between nodes, and therefore the availability of objects for client requests.

You can set the consistency control for a bucket or an API operation to one of the following values:

Consistency control

all

strong-global

strong-site

read-after-new-write

available (eventual consistency for HEAD operations)

Description

All nodes receive the data immediately, or the request
will fail.

Guarantees read-after-write consistency for all client
requests across all sites.

Guarantees read-after-write consistency for all client
requests within a site.

(Default) Provides read-after-write consistency for
new objects and eventual consistency for object
updates. Offers high availability and data protection
guarantees. Matches Amazon S3 consistency
guarantees.

Note: If your application uses HEAD requests on
objects that do not exist, you might receive a high
number of 500 Internal Server errors if one or more
Storage Nodes are unavailable. To prevent these
errors, set the consistency control to “available”
unless you require consistency guarantees similar to
Amazon S3.

Behaves the same as the “read-after-new-write”
consistency level, but only provides eventual
consistency for HEAD operations. Offers higher
availability for HEAD operations than “read-after-new-
write” if Storage Nodes are unavailable. Differs from
Amazon S3 consistency guarantees for HEAD
operations only.

Using the “read-after-new-write” and “available” consistency controls

When a HEAD or GET operation uses the “read-after-new-write” consistency control or a GET operation uses
the “available” consistency control, StorageGRID performs the lookup in multiple steps, as follows:

* It first looks up the object using a low consistency.

« If that lookup fails, it repeats the lookup at the next consistency level until it reaches the highest
consistency level, “all,” which requires all copies of the object metadata to be available.

If a HEAD or GET operation uses the “read-after-new-write” consistency control but the object does not exist,

11

the object lookup will always reach the “all” consistency level. Because this consistency level requires all
copies of the object metadata to be available, you can receive a high number of 500 Internal Server errors if
one or more Storage Nodes are unavailable.

Unless you require consistency guarantees similar to Amazon S3, you can prevent these errors for HEAD
operations by setting the consistency control to “available.” When a HEAD operation uses the “available”
consistency control, StorageGRID provides eventual consistency only. It does not retry a failed operation until it
reaches the “all” consistency level, so it does not require that all copies of the object metadata be available.

Specifying the consistency control for an APl operation

To set the consistency control for an individual API operation, consistency controls must be supported for the
operation, and you must specify the consistency control in the request header. This example sets the
consistency control to “strong-site” for a GET Object operation.

GET /bucket/object HTTP/1.1

Date: date

Authorization: authorization name
Host: host

Consistency-Control: strong-site

@ You must use the same consistency control for both the PUT Object and GET Object operations.

Specifying the consistency control for a bucket

To set the consistency control for bucket, you can use the StorageGRID PUT Bucket consistency request and
the GET Bucket consistency request. Or you can use the Tenant Manager or the Tenant Management API.

When setting the consistency controls for a bucket, be aware of the following:

« Setting the consistency control for a bucket determines which consistency control is used for S3 operations
performed on the objects in the bucket or on the bucket configuration. It does not affect operations on the
bucket itself.

* The consistency control for an individual API operation overrides the consistency control for the bucket.

* In general, buckets should use the default consistency control, “read-after-new-write.” If requests are not
working correctly, change the application client behavior if possible. Or, configure the client to specify the
consistency control for each API request. Set the consistency control at the bucket level only as a last
resort.

How consistency controls and ILM rules interact to affect data protection

Both your choice of consistency control and your ILM rule affect how objects are protected. These settings can
interact.

For example, the consistency control used when an object is stored affects the initial placement of object
metadata, while the ingest behavior selected for the ILM rule affects the initial placement of object copies.
Because StorageGRID requires access to both an object’'s metadata and its data to fulfill client requests,
selecting matching levels of protection for the consistency level and ingest behavior can provide better initial
data protection and more predictable system responses.

The following ingest behaviors are available for ILM rules:

12

« Strict: All copies specified in the ILM rule must be made before success is returned to the client.

» Balanced: StorageGRID attempts to make all copies specified in the ILM rule at ingest; if this is not
possible, interim copies are made and success is returned to the client. The copies specified in the ILM rule
are made when possible.

* Dual Commit: StorageGRID immediately makes interim copies of the object and returns success to the
client. Copies specified in the ILM rule are made when possible.

@ Before selecting the ingest behavior for an ILM rule, read the full description of these settings in
the instructions for managing objects with information lifecycle management.

Example of how the consistency control and ILM rule can interact

Suppose you have a two-site grid with the following ILM rule and the following consistency level setting:

* ILM rule: Create two object copies, one at the local site and one at a remote site. The Strict ingest
behavior is selected.

» Consistency level: “strong-global” (Object metadata is immediately distributed to all sites.)

When a client stores an object to the grid, StorageGRID makes both object copies and distributes metadata to
both sites before returning success to the client.

The object is fully protected against loss at the time of the ingest successful message. For example, if the local
site is lost shortly after ingest, copies of both the object data and the object metadata still exist at the remote
site. The object is fully retrievable.

If you instead used the same ILM rule and the “strong-site” consistency level, the client might receive a
success message after object data is replicated to the remote sitge but before object metadata is distributed
there. In this case, the level of protection of object metadata does not match the level of protection for object
data. If the local site is lost shortly after ingest, object metadata is lost. The object cannot be retrieved.

The inter-relationship between consistency levels and ILM rules can be complex. Contact NetApp if you require
assistance.

Related information

Manage objects with ILM
GET Bucket consistency request

PUT Bucket consistency request

How StorageGRID ILM rules manage objects

The grid administrator creates information lifecycle management (ILM) rules to manage
object data ingested into the StorageGRID system from S3 REST API client applications.
These rules are then added to the ILM policy to determine how and where object data is
stored over time.

ILM settings determine the following aspects of an object:
» Geography

The location of an object’s data, either within the StorageGRID system (storage pool) or in a Cloud Storage

13

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Pool.
» Storage grade

The type of storage used to store object data: for example flash or spinning disk.
* Loss protection

How many copies are made and the types of copies that are created: replication, erasure coding, or both.
* Retention

The changes over time to how an object’s data is managed, where it is stored, and how it is protected from
loss.

* Protection during ingest

The method used to protect object data during ingest: synchronous placement (using the Balanced or Strict
options for Ingest Behavior), or making interim copies (using the Dual commit option).

ILM rules can filter and select objects. For objects ingested using S3, ILM rules can filter objects based on the
following metadata:

« Tenant Account

* Bucket Name

* Ingest Time

* Key

e Last Access Time

By default, updates to last access time are disabled for all S3 buckets. If your StorageGRID
system includes an ILM rule that uses the Last Access Time option, you must enable
updates to last access time for the S3 buckets specified in that rule. You can enable last

@ access time updates using the PUT Bucket last access time request, the S3 > Buckets >
Configure Last Access Time check box in the Tenant Manager, or using the Tenant
Management APl. When enabling last access time updates, be aware that StorageGRID
performance might be reduced, especially in systems with small objects.

* Location Constraint
* Object Size

* User Metadata

* Object Tag

For more information about ILM, see the instructions for managing objects with information lifecycle
management.

Related information
Use a tenant account

Manage objects with ILM

PUT Bucket last access time request

14

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Object versioning

You can use versioning to retain multiple versions of an object, which protects against
accidental deletion of objects, and enables you to retrieve and restore earlier versions of
an object.

The StorageGRID system implements versioning with support for most features, and with some limitations.
StorageGRID supports up to 1,000 versions of each object.

Object versioning can be combined with StorageGRID information lifecycle management (ILM) or with S3
bucket lifecycle configuration. You must explicitly enable versioning for each bucket to turn on this functionality
for the bucket. Each object in your bucket is assigned a version ID, which is generated by the StorageGRID
system.

Using MFA (multi-factor authentication) Delete is not supported.

@ Versioning can be enabled only on buckets created with StorageGRID version 10.3 or later.

ILM and versioning

ILM policies are applied to each version of an object. An ILM scanning process continuously scans all objects
and re-evaluates them against the current ILM policy. Any changes you make to ILM policies are applied to all
previously ingested objects. This includes previously ingested versions if versioning is enabled. ILM scanning
applies new ILM changes to previously ingested objects.

For S3 objects in versioning-enabled buckets, versioning support allows you to create ILM rules that use
Noncurrent Time as the Reference Time. When an object is updated, its previous versions become noncurrent.
Using a noncurrent time filter allows you to create policies that reduce the storage impact of previous versions
of objects.

When you upload a new version of an object using a multipart upload operation, the noncurrent

@ time for the original version of the object reflects when the multipart upload was created for the
new version, not when the multipart upload was completed. In limited cases, the noncurrent time
for the original version might be hours or days earlier than the time for the current version.

See the instructions for managing objects with information lifecycle management for an example ILM policy for
S3 versioned objects.

Related information
Manage objects with ILM

Recommendations for implementing the S3 REST API

You should follow these recommendations when implementing the S3 REST API for use
with StorageGRID.
Recommendations for HEADs to non-existent objects

If your application routinely checks to see if an object exists at a path where you do not expect the object to
actually exist, you should use the “Available” consistency control. For example, you should use the “Available”
consistency control if your application HEADs a location before PUT-ing to it.

15

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Otherwise, if the HEAD operation does not find the object, you might receive a high number of 500 Internal
Server errors if one or more Storage Nodes are unavailable.

You can set the “Available” consistency control for each bucket using the PUT Bucket consistency request, or
you can specify the consistency control in the request header for an individual API operation.

Recommendations for object keys

For buckets that are created in StorageGRID 11.4 or later, restricting object key names to meet performance
best practices is no longer required. For example, you can now use random values for the first four characters
of object key names.

For buckets that were created in releases earlier than StorageGRID 11.4, continue to follow these
recommendations for object key names:

* You should not use random values as the first four characters of object keys. This is in contrast to the
former AWS recommendation for key prefixes. Instead, you should use non-random, non-unique prefixes,
such as image.

« If you do follow the former AWS recommendation to use random and unique characters in key prefixes,
you should prefix the object keys with a directory name. That is, use this format:

mybucket/mydir/f8e3-image3132.jpg
Instead of this format:

mybucket/f8e3-image3132. jpg

Recommendations for “range reads”

If the Compress Stored Objects option is selected (Configuration > Grid Options), S3 client applications
should avoid performing GET Object operations that specify a range of bytes be returned. These “range read”
operations are inefficient because StorageGRID must effectively uncompress the objects to access the
requested bytes. GET Object operations that request a small range of bytes from a very large object are
especially inefficient; for example, it is very inefficient to read a 10 MB range from a 50 GB compressed object.

If ranges are read from compressed objects, client requests can time out.

@ If you need to compress objects and your client application must use range reads, increase the
read timeout for the application.

Related information

Consistency controls
PUT Bucket consistency request

Administer StorageGRID

16

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

S3 REST API supported operations and limitations

The StorageGRID system implements the Simple Storage Service API (API Version
2006-03-01) with support for most operations, and with some limitations. You need to
understand the implementation details when you are integrating S3 REST AP client
applications.

The StorageGRID system supports both virtual hosted-style requests and path-style requests.

» Authenticating requests

« Operations on the service

» Operations on buckets

* Custom operations on buckets

* Operations on objects

* Operations for multipart uploads

* Error responses

Date handling
The StorageGRID implementation of the S3 REST API only supports valid HTTP date formats.

The StorageGRID system only supports valid HTTP date formats for any headers that accept date values. The
time portion of the date can be specified in Greenwich Mean Time (GMT) format, or in Universal Coordinated
Time (UTC) format with no time zone offset (+0000 must be specified). If you include the x-amz-date header
in your request, it overrides any value specified in the Date request header. When using AWS Signature
Version 4, the x-amz-date header must be present in the signed request because the date header is not
supported.

Common request headers

The StorageGRID system supports common request headers defined by the Simple Storage Service API
Reference, with one exception.
Request header Implementation

Authorization Full support for AWS Signature Version 2

Support for AWS Signature Version 4, with the
following exceptions:

» The SHA256 value is not calculated for the body
of the request. The user-submitted value is
accepted without validation, as if the value
UNSIGNED-PAYLOAD had been provided for the
x-amz-content-sha256 header.

X-amz-security-token Not implemented. Returns XNotImplemented.

17

Common response headers

The StorageGRID system supports all of the common response headers defined by the Simple Storage
Service API Reference, with one exception.

Response header Implementation

X-amz-id-2 Not used

Related information
Amazon Web Services (AWS) Documentation: Amazon Simple Storage Service API Reference

Authenticating requests

The StorageGRID system supports both authenticated and anonymous access to objects
using the S3 API.

The S3 API supports Signature version 2 and Signature version 4 for authenticating S3 API requests.
Authenticated requests must be signed using your access key ID and secret access key.

The StorageGRID system supports two authentication methods: the HTTP Authorization header and using
query parameters.

Using the HTTP Authorization header

The HTTP Authorization header is used by all S3 API operations except Anonymous requests where
permitted by the bucket policy. The Authorization header contains all of the required signing information to
authenticate a request.

Using query parameters

You can use query parameters to add authentication information to a URL. This is known as presigning the
URL, which can be used to grant temporary access to specific resources. Users with the presigned URL do not
need to know the secret access key in order to access the resource, which enables you to provide third-party
restricted access to a resource.

Operations on the service

The StorageGRID system supports the following operations on the service.

Operation Implementation
GET Service Implemented with all Amazon S3 REST API behavior.
GET Storage Usage The GET Storage Usage request tells you the total

amount of storage in use by an account, and for each
bucket associated with the account. This is an
operation on the service with a path of / and a custom
query parameter (?x-ntap-sg-usage) added.

18

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Operation Implementation

OPTIONS / Client applications can issue OPTIONS / requests to
the S3 port on a Storage Node, without providing S3
authentication credentials, to determine whether the
Storage Node is available. You can use this request
for monitoring, or to allow external load balancers to
identify when a Storage Node is down.

Related information
GET Storage Usage request

Operations on buckets

The StorageGRID system supports a maximum of 1,000 buckets for each S3 tenant
account.

Bucket name restrictions follow the AWS US Standard region restrictions, but you should further restrict them
to DNS naming conventions in order to support S3 virtual hosted-style requests.

Amazon Web Services (AWS) Documentation: Bucket Restrictions and Limitations
Endpoint domain names for S3 request

The GET Bucket (List Objects) and GET Bucket versions operations support StorageGRID consistency
controls.

You can check whether updates to last access time are enabled or disabled for individual buckets.

The following table describes how StorageGRID implements S3 REST API bucket operations. To perform any
of these operations, the necessary access credentials must be provided for the account.

Operation Implementation

DELETE Bucket Implemented with all Amazon S3 REST API behavior.

DELETE Bucket cors This operation deletes the CORS configuration for the
bucket.

DELETE Bucket encryption This operation deletes the default encryption from the

bucket. Existing encrypted objects remain encrypted,
but any new objects added to the bucket are not

encrypted.

DELETE Bucket lifecycle This operation deletes the lifecycle configuration from
the bucket.

DELETE Bucket policy This operation deletes the policy attached to the
bucket.

19

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

Operation

DELETE Bucket replication

DELETE Bucket tagging

GET Bucket (List Objects), version 1 and version 2

GET Bucket acl

GET Bucket cors

GET Bucket encryption

GET Bucket lifecycle

GET Bucket location

GET Bucket notification

GET Bucket Object versions

20

Implementation

This operation deletes the replication configuration
attached to the bucket.

This operation uses the tagging subresource to
remove all tags from a bucket.

This operation returns some or all (up to 1,000) of the
objects in a bucket. The Storage Class for objects can
have either of two values, even if the object was
ingested with the REDUCED REDUNDANCY storage
class option:

* STANDARD, which indicates the object is stored in
a storage pool consisting of Storage Nodes.

* GLACIER, which indicates that the object has
been moved to the external bucket specified by
the Cloud Storage Pool.

If the bucket contains large numbers of deleted keys
that have the same prefix, the response might include
some CommonPrefixes that do not contain keys.

This operation returns a positive response and the ID,
DisplayName, and Permission of the bucket owner,
indicating that the owner has full access to the bucket.

This operation returns the cors configuration for the
bucket.

This operation returns the default encryption
configuration for the bucket.

This operation returns the lifecycle configuration for
the bucket.

This operation returns the region that was set using
the LocationConstraint elementin the PUT
Bucket request. If the bucket’s region is us-east-1,
an empty string is returned for the region.

This operation returns the notification configuration
attached to the bucket.

With READ access on a bucket, this operation with
the versions subresource lists metadata of all of the
versions of objects in the bucket.

Operation

GET Bucket policy

GET Bucket replication

GET Bucket tagging

GET Bucket versioning

GET Object Lock Configuration

HEAD Bucket

Implementation

This operation returns the policy attached to the
bucket.

This operation returns the replication configuration
attached to the bucket.

This operation uses the tagging subresource to
return all tags for a bucket.

This implementation uses the versioning
subresource to return the versioning state of a bucket.
The versioning state returned indicates if the bucket is
“Unversioned” or if the bucket is version “Enabled” or
“Suspended.”

This operation determines if S3 Object Lock is
enabled for a bucket. Using S3 Object Lock

This operation determines if a bucket exists and you
have permission to access it.

21

Operation Implementation

PUT Bucket This operation creates a new bucket. By creating the
bucket, you become the bucket owner.

* Bucket names must comply with the following
rules:

o Must be unique across each StorageGRID
system (not just unique within the tenant
account).

o Must be DNS compliant.

o Must contain at least 3 and no more than 63
characters.

o Can be a series of one or more labels, with
adjacent labels separated by a period. Each
label must start and end with a lowercase
letter or a number and can only use lowercase
letters, numbers, and hyphens.

o Must not look like a text-formatted IP address.

> Should not use periods in virtual hosted style
requests. Periods will cause problems with
server wildcard certificate verification.

* By default, buckets are created in the us-east-1
region; however, you can use the
LocationConstraint request elementin the
request body to specify a different region. When
using the LocationConstraint element, you
must specify the exact name of a region that has
been defined using the Grid Manager or the Grid
Management API. Contact your system
administrator if you do not know the region name
you should use. Note: An error will occur if your
PUT Bucket request uses a region that has not
been defined in StorageGRID.

* You can include the x-amz-bucket-object-
lock-enabled request header to create a
bucket with S3 Object Lock enabled.

You must enable S3 Object Lock when you create
the bucket. You cannot add or disable S3 Object
Lock after a bucket is created. S3 Object Lock
requires bucket versioning, which is enabled
automatically when you create the bucket.

Using S3 Object Lock

22

Operation

PUT Bucket cors

PUT Bucket encryption

Implementation

This operation sets the CORS configuration for a
bucket so that the bucket can service cross-origin
requests. Cross-origin resource sharing (CORS) is a
security mechanism that allows client web
applications in one domain to access resources in a
different domain. For example, suppose you use an
S3 bucket named images to store graphics. By
setting the CORS configuration for the images
bucket, you can allow the images in that bucket to be
displayed on the website
http://www.example.com.

This operation sets the default encryption state of an
existing bucket. When bucket-level encryption is
enabled, any new objects added to the bucket are
encrypted.StorageGRID supports server-side
encryption with StorageGRID-managed keys. When
specifying the server-side encryption configuration
rule, set the SSEAlgorithm parameter to AES256,
and do not use the KMSMasterKeyID parameter.

Bucket default encryption configuration is ignored if
the object upload request already specifies encryption
(that is, if the request includes the x-amz-server-
side-encryption-* request header).

23

Operation

PUT Bucket lifecycle

24

Implementation

This operation creates a new lifecycle configuration
for the bucket or replaces an existing lifecycle
configuration. StorageGRID supports up to 1,000
lifecycle rules in a lifecycle configuration. Each rule
can include the following XML elements:

» Expiration (Days, Date)
* NoncurrentVersionExpiration (NoncurrentDays)
Filter (Prefix, Tag)

 Status
* ID

StorageGRID does not support these actions:

* AbortincompleteMultipartUpload
» ExpiredObjectDeleteMarker

* Transition

To understand how the Expiration action in a bucket
lifecycle interacts with ILM placement instructions,
see “How ILM operates throughout an object’s life” in
the instructions for managing objects with information
lifecycle management.

Note: Bucket lifecycle configuration can be used with
buckets that have S3 Object Lock enabled, but bucket
lifecycle configuration is not supported for legacy
Compliant buckets.

Operation Implementation

PUT Bucket notification This operation configures notifications for the bucket
using the notification configuration XML included in
the request body. You should be aware of the
following implementation details:

» StorageGRID supports Simple Notification
Service (SNS) topics as destinations. Simple
Queue Service (SQS) or Amazon Lambda
endpoints are not supported.

» The destination for notifications must be specified
as the URN of an StorageGRID endpoint.
Endpoints can be created using the Tenant
Manager or the Tenant Management API.

The endpoint must exist for notification
configuration to succeed. If the endpoint does not
exist,a 400 Bad Request error is returned with
the code InvalidArgument.

* You cannot configure a notification for the
following event types. These event types are not
supported.

° s3:ReducedRedundancylLostObject

° s3:0bjectRestore:Completed

Event notifications sent from StorageGRID use
the standard JSON format except that they do not
include some keys and use specific values for
others, as shown in the following listing:

» eventSource
sgws:s3
+ awsRegion

not included

X-amz-id-2
not included
e arn

urn:sgws:s3:::bucket name

PUT Bucket policy This operation sets the policy attached to the bucket.

25

Operation

PUT Bucket replication

26

Implementation

This operation configures StorageGRID CloudMirror
replication for the bucket using the replication
configuration XML provided in the request body. For
CloudMirror replication, you should be aware of the
following implementation details:

» StorageGRID only supports V1 of the replication
configuration. This means that StorageGRID does
not support the use of the Filter element for
rules, and follows V1 conventions for deletion of
object versions. See the Amazon documentation
on replication configuration for details.

» Bucket replication can be configured on versioned
or unversioned buckets.

* You can specify a different destination bucket in
each rule of the replication configuration XML. A
source bucket can replicate to more than one
destination bucket.

* Destination buckets must be specified as the URN
of StorageGRID endpoints as specified in the
Tenant Manager or the Tenant Management API.

The endpoint must exist for replication
configuration to succeed. If the endpoint does not
exist, the request fails as a 400 Bad Request.
The error message states: Unable to save
the replication policy. The specified
endpoint URN does not exist: URN.

* You do not need to specify a Role in the
configuration XML. This value is not used by
StorageGRID and will be ignored if submitted.

* If you omit the storage class from the
configuration XML, StorageGRID uses the
STANDARD storage class by default.

* If you delete an object from the source bucket or
you delete the source bucket itself, the cross-
region replication behavior is as follows:

o If you delete the object or bucket before it has
been replicated, the object/bucket is not
replicated and you are not notified.

o If you delete the object or bucket after it has
been replicated, StorageGRID follows
standard Amazon S3 delete behavior for V1 of
cross-region replication.

Operation

PUT Bucket tagging

PUT Bucket versioning

Related information

Implementation

This operation uses the tagging subresource to add
or update a set of tags for a bucket. When adding
bucket tags, be aware of the following limitations:

* Both StorageGRID and Amazon S3 support up to
50 tags for each bucket.

» Tags associated with a bucket must have unique
tag keys. A tag key can be up to 128 Unicode
characters in length.

» Tag values can be up to 256 Unicode characters
in length.

* Key and values are case sensitive.

This implementation uses the versioning
subresource to set the versioning state of an existing
bucket. You can set the versioning state with one of
the following values:

» Enabled: Enables versioning for the objects in the
bucket. All objects added to the bucket receive a
unique version ID.

» Suspended: Disables versioning for the objects in
the bucket. All objects added to the bucket
receive the version ID null.

Amazon Web Services (AWS) Documentation: Cross-Region Replication

Consistency controls

GET Bucket last access time request
Bucket and group access policies
Using S3 Object Lock

S3 operations tracked in the audit logs
Manage objects with ILM

Use a tenant account

Creating an S3 lifecycle configuration

You can create an S3 lifecycle configuration to control when specific objects are deleted from the StorageGRID

system.

The simple example in this section illustrates how an S3 lifecycle configuration can control when certain
objects are deleted (expired) from specific S3 buckets. The example in this section is for illustration purposes

27

http://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

only. For complete details on creating S3 lifecycle configurations, see the section on object lifecycle
management in the Amazon Simple Storage Service Developer Guide. Note that StorageGRID only supports
Expiration actions; it does not support Transition actions.

Amazon Simple Storage Service Developer Guide: Object lifecycle management

What a lifecycle configuration is

A lifecycle configuration is a set of rules that are applied to the objects in specific S3 buckets. Each rule
specifies which objects are affected and when those objects will expire (on a specific date or after some
number of days).

StorageGRID supports up to 1,000 lifecycle rules in a lifecycle configuration. Each rule can include the
following XML elements:

» Expiration: Delete an object when a specified date is reached or when a specified number of days is
reached, starting from when the object was ingested.

* NoncurrentVersionExpiration: Delete an object when a specified number of days is reached, starting from
when the object became noncurrent.

* Filter (Prefix, Tag)
 Status
«ID
If you apply a lifecycle configuration to a bucket, the lifecycle settings for the bucket always override

StorageGRID ILM settings. StorageGRID uses the Expiration settings for the bucket, not ILM, to determine
whether to delete or retain specific objects.

As a result, an object might be removed from the grid even though the placement instructions in an ILM rule
still apply to the object. Or, an object might be retained on the grid even after any ILM placement instructions
for the object have lapsed. For details, see “How ILM operates throughout an object’s life” in the instructions for
managing objects with information lifecycle management.

@ Bucket lifecycle configuration can be used with buckets that have S3 Object Lock enabled, but
bucket lifecycle configuration is not supported for legacy Compliant buckets.

StorageGRID supports the use of the following bucket operations to manage lifecycle configurations:

* DELETE Bucket lifecycle
* GET Bucket lifecycle
* PUT Bucket lifecycle

Creating the lifecycle configuration

As the first step in creating a lifecycle configuration, you create a JSON file that includes one or more rules. For
example, this JSON file includes three rules, as follows:

1. Rule 1 applies only to objects that match the prefix categoryl/ and that have a key?2 value of tag2. The
Expiration parameter specifies that objects matching the filter will expire at midnight on 22 August 2020.

2. Rule 2 applies only to objects that match the prefix category2/. The Expiration parameter specifies
that objects matching the filter will expire 100 days after they are ingested.

28

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Rules that specify a number of days are relative to when the object was ingested. If the
current date exceeds the ingest date plus the number of days, some objects might be
removed from the bucket as soon as the lifecycle configuration is applied.

3. Rule 3 applies only to objects that match the prefix category3/. The Expiration parameter specifies
that any noncurrent versions of matching objects will expire 50 days after they become noncurrent.

29

30

"Rules": [

{

"ID": "rulel",
"Filter": {
"And": |
"Prefix": "categoryl/",
"Tags": [
{
"Key": "key2",
"Value": "tag2"
}
]
}
by
"Expiration": {
"Date": "2020-08-22T00:00:002"
by
"Status": "Enabled"
by
{
"ID": "rule2",
"Filter": {

"Prefix": "category2/"
b
"Expiration": {
"Days": 100
b
"Status": "Enabled"

"ID": "rule3",

"Filter": {
"Prefix": "category3/"

by

"NoncurrentVersionExpiration":
"NoncurrentDays": 50

bo

"Status": "Enabled"

Applying a lifecycle configuration to a bucket

After you have created the lifecycle configuration file, you apply it to a bucket by issuing a PUT Bucket lifecycle
request.

This request applies the lifecycle configuration in the example file to objects in a bucket named
testbucket:bucket

aws s3api --endpoint-url <StorageGRID endpoint> put-bucket-lifecycle-
configuration

--bucket testbucket --lifecycle-configuration file://bktjson.json

To validate that a lifecycle configuration was successfully applied to the bucket, issue a GET Bucket lifecycle
request. For example:

aws s3api —--endpoint-url <StorageGRID endpoint> get-bucket-lifecycle-
configuration
—--bucket testbucket

A successful response lists the lifecycle configuration you just applied.

Validating that bucket lifecycle expiration applies to an object

You can determine if an expiration rule in the lifecycle configuration applies to a specific object when issuing a
PUT Object, HEAD Object, or GET Object request. If a rule applies, the response includes an Expiration
parameter that indicates when the object expires and which expiration rule was matched.

Because bucket lifecycle overrides ILM, the expiry-date shown is the actual date the object
will be deleted. For details, see “How object retention is determined” in the instructions for
performing StorageGRID administration.

For example, this PUT Object request was issued on 22 Jun 2020 and places an object in the testbucket
bucket.

aws s3api --endpoint-url <StorageGRID endpoint> put-object
--bucket testbucket --key obj2test2 --body bktjson.json

The success response indicates that the object will expire in 100 days (01 Oct 2020) and that it matched Rule
2 of the lifecycle configuration.

*"Expiration": "expiry-date=\"Thu, 01 Oct 2020 09:07:49 GMT\", rule-
id=\"rule2\"",
"ETag": "\"9762f8a803bc34£5340579d4446076£7\""

31

For example, this HEAD Object request was used to get metadata for the same object in the testbucket bucket.

aws s3apl --endpoint-url <StorageGRID endpoint> head-object
--bucket testbucket --key obj2test2

The success response includes the object’s metadata and indicates that the object will expire in 100 days and
that it matched Rule 2.

"AcceptRanges": "bytes",

*"Expiration”: "expiry-date=\"Thu, 01 Oct 2020 09:07:48 GMT\", rule-
id=\"rule2\"",

"LastModified": "2020-06-23T09:07:48+00:00",

"ContentLength": 921,

"ETag": "\"9762f8a803bc34£5340579d4446076£7\""

"ContentType": "binary/octet-stream",

"Metadata": {}

Related information

Operations on buckets

Manage objects with ILM

Custom operations on buckets

The StorageGRID system supports custom bucket operations that are added on to the S3
REST API and are specific to the system.

The following table lists the custom bucket operations supported by StorageGRID.

Operation Description For more information

GET Bucket consistency Returns the consistency level being GET Bucket consistency request
applied to a particular bucket.

PUT Bucket consistency Sets the consistency level applied PUT Bucket consistency request
to a particular bucket.

GET Bucket last access time Returns whether last access time GET Bucket last access time
updates are enabled or disabled for request
a particular bucket.

PUT Bucket last access time Allows you to enable or disable last PUT Bucket last access time
access time updates for a particular request
bucket.

32

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Operation

DELETE Bucket metadata
notification configuration

GET Bucket metadata notification
configuration

PUT Bucket metadata notification
configuration
PUT Bucket modifications for

compliance

GET Bucket compliance

PUT Bucket compliance

Related information

Description

Deletes the metadata notification
configuration XML associated with
a particular bucket.

Returns the metadata notification
configuration XML associated with
a particular bucket.

Configures the metadata
notification service for a bucket.

Deprecated and not supported: You

can no longer create new buckets
with Compliance enabled.

Deprecated but supported: Returns

the compliance settings currently in
effect for an existing legacy
Compliant bucket.

Deprecated but supported: Allows
you to modify the compliance
settings for an existing legacy
Compliant bucket.

S3 operations tracked in the audit logs

Operations on objects

For more information

DELETE Bucket metadata
notification configuration request

GET Bucket metadata notification
configuration request

PUT Bucket metadata notification
configuration request

Deprecated: PUT Bucket request
modifications for compliance

Deprecated: GET Bucket
compliance request

Deprecated: PUT Bucket
compliance request

This section describes how the StorageGRID system implements S3 REST API

operations for objects.

* Using S3 Object Lock

» Using servver-side encryption
* GET Object

+ HEAD Object

* POST Object restore

* PUT Object

* PUT Object - Copy

The following conditions apply to all object operations:

» StorageGRID consistency controls are supported by all operations on objects, with the exception of the

following:

33

o GET Object ACL

° OPTIONS /

o PUT Object legal hold
o PUT Object retention

» Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins”
basis. The timing for the " latest-wins "evaluation is based on when the StorageGRID system completes a
given request, and not on when S3 clients begin an operation.

« All objects in a StorageGRID bucket are owned by the bucket owner, including objects created by an
anonymous user, or by another account.

» Data objects ingested to the StorageGRID system through Swift cannot be accessed through S3.

The following table describes how StorageGRID implements S3 REST API object operations.

34

Operation

DELETE Object

DELETE Multiple Objects

Implementation

Multi-Factor Authentication (MFA) and the response
header x-amz-mfa are not supported.

When processing a DELETE Object request,
StorageGRID attempts to immediately remove all
copies of the object from all stored locations. If
successful, StorageGRID returns a response to the
client immediately. If all copies cannot be removed
within 30 seconds (for example, because a location is
temporarily unavailable), StorageGRID queues the
copies for removal and then indicates success to the
client.

Versioning

To remove a specific version, the requestor must be
the bucket owner and use the versionId
subresource. Using this subresource permanently
deletes the version. If the versionId corresponds to
a delete marker, the response header x-amz-
delete-marker is returned set to true.

* If an object is deleted without the versionId
subresource on a version enabled bucket, it
results in the generation of a delete marker. The
versionId for the delete marker is returned
using the x-amz-version-id response header,
and the x—amz-delete-marker response
header is returned set to true.

* If an object is deleted without the versionId
subresource on a version suspended bucket, it
results in a permanent deletion of an already
existing 'null’ version or a 'null' delete marker, and
the generation of a new 'null’ delete marker. The
x—amz-delete-marker response header is
returned set to true.

Note: In certain cases, multiple delete markers might
exist for an object.

Multi-Factor Authentication (MFA) and the response
header x-amz-mfa are not supported.

Multiple objects can be deleted in the same request
message.

35

Operation

DELETE Object tagging

GET Object

GET Object ACL

GET Object legal hold

GET Object retention

GET Object tagging

HEAD Object

POST Object restore

PUT Object

PUT Object - Copy

36

Implementation

Uses the tagging subresource to remove all tags
from an object. Implemented with all Amazon S3
REST API behavior.

Versioning

If the versionId query parameter is not specified in
the request, the operation deletes all tags from the
most recent version of the object in a versioned
bucket. If the current version of the object is a delete
marker, a “MethodNotAllowed” status is returned with
the x-amz-delete-marker response header set to
true.

GET Object

If the necessary access credentials are provided for
the account, the operation returns a positive response
and the ID, DisplayName, and Permission of the
object owner, indicating that the owner has full access
to the object.

Using S3 Object Lock

Using S3 Object Lock

Uses the tagging subresource to return all tags for
an object. Implemented with all Amazon S3 REST
API behavior

Versioning

If the versionId query parameter is not specified in
the request, the operation returns all tags from the
most recent version of the object in a versioned
bucket. If the current version of the object is a delete
marker, a “MethodNotAllowed” status is returned with

the x-amz-delete-marker response header set to
true.

HEAD Object

POST Object restore

PUT Object

PUT Object - Copy

Operation

PUT Object legal hold

PUT Object retention

PUT Object tagging

Related information
Consistency controls

S3 operations tracked in the audit logs

Implementation

Using S3 Object Lock
Using S3 Object Lock

Uses the tagging subresource to add a set of tags
to an existing object. Implemented with all Amazon S3
REST API behavior

Tag updates and ingest behavior

When you use PUT Object tagging to update an
object’s tags, StorageGRID does not re-ingest the
object. This means that the option for Ingest Behavior
specified in the matching ILM rule is not used. Any
changes to object placement that are triggered by the
update are made when ILM is re-evaluated by normal
background ILM processes.

This means that if the ILM rule uses the Strict option
for ingest behavior, no action is taken if the required
object placements cannot be made (for example,
because a newly required location is unavailable).
The updated object retains its current placement until
the required placement is possible.

Resolving conflicts

Conflicting client requests, such as two clients writing
to the same key, are resolved on a “latest-wins” basis.
The timing for the ""latest-wins™"evaluation is based
on when the StorageGRID system completes a given
request, and not on when S3 clients begin an
operation.

Versioning

If the versionId query parameter is not specified in
the request, the operation add tags to the most recent
version of the object in a versioned bucket. If the
current version of the object is a delete marker, a
“MethodNotAllowed” status is returned with the x-
amz-delete-marker response header set to true.

37

Using S3 Object Lock

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can
create buckets with S3 Object Lock enabled and then specify retain-until-date and legal
hold settings for each object version you add to that bucket.

S3 Object Lock allows you to specify object-level settings to prevent objects from being deleted or overwritten
for a fixed amount of time or indefinitely.

The StorageGRID S3 Object Lock feature provides a single retention mode that is equivalent to the Amazon
S3 compliance mode. By default, a protected object version cannot be overwritten or deleted by any user. The

StorageGRID S3 Object Lock feature does not support a governance mode, and it does not allow users with
special permissions to bypass retention settings or to delete protected objects.

Enabling S3 Object Lock for a bucket

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can optionally enable S3
Object Lock when you create each bucket. You can use either of these methods:

 Create the bucket using the Tenant Manager.
Use a tenant account

* Create the bucket using a PUT Bucket request with the x—amz-bucket-object-lock enabled
request header.

Operations on buckets

You cannot add or disable S3 Object Lock after the bucket is created. S3 Object Lock requires bucket
versioning, which is enabled automatically when you create the bucket.

A bucket with S3 Object Lock enabled can contain a combination of objects with and without S3 Object Lock

settings. StorageGRID does not support default retention for the objects in S3 Object Lock buckets, so the PUT
Object Lock Configuration bucket operation is not supported.

Determining if S3 Object Lock is enabled for a bucket
To determine if S3 Object Lock is enabled, use the GET Object Lock Configuration request.
Operations on buckets

Creating an object with S3 Object Lock settings

To specify S3 Object Lock settings when adding an object version to a bucket that has S3 Object Lock
enabled, issue a PUT Object, PUT Object - Copy, or Initiate Multipart Upload request. Use the following
request headers.

@ You must enable S3 Object Lock when you create a bucket. You cannot add or disable S3
Object Lock after a bucket is created.

* x—amz-object-lock-mode, which must be COMPLIANCE (case sensitive).

38

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

@ If you specify x-amz-object-lock-mode, you must also specify x—amz-object-lock-
retain-until-date.

* x—amz-object-lock-retain-until-date

° The retain-until-date value must be in the format 2020-08-10T21:46:00%. Fractional seconds are
allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are
not allowed.

o The retain-until-date must be in the future.
* x—amz-object-lock-legal-hold

If legal hold is ON (case-sensitive), the object is placed under a legal hold. If legal hold is OFF, no legal
hold is placed. Any other value results in a 400 Bad Request (InvalidArgument) error.

If you use any of these request headers, be aware of these restrictions:

* The Content-MD5 request header is required if any x-amz-object-lock-* request header is present
in the PUT Object request. Content-MD5 is not required for PUT Object - Copy or Initiate Multipart
Upload.

* If the bucket does not have S3 Object Lock enabled and a x-amz-object-lock-* request header is
present, a 400 Bad Request (InvalidRequest) error is returned.

* The PUT Object request supports the use of x-amz-storage-class: REDUCED REDUNDANCY to match
AWS behavior. However, when an object is ingested into a bucket with S3 Object Lock enabled,
StorageGRID will always perform a dual-commit ingest.

* A subsequent GET or HEAD Object version response will include the headers x-amz-object-lock-
mode, x-amz-object-lock-retain-until-date, and x-amz-object-lock-legal-hold, if
configured and if the request sender has the correct s3:Get* permissions.

* A subsequent DELETE Object version or DELETE Objects versions request will fail if it is before the retain-
until-date or if a legal hold is on.

Updating S3 Object Lock settings

If you need to update the legal hold or retention settings for an existing object version, you can perform the
following object subresource operations:

®* PUT Object legal-hold

If the new legal-hold value is ON, the object is placed under a legal hold. If the legal-hold value is OFF, the
legal hold is lifted.
®* PUT Object retention
o The mode value must be COMPLIANCE (case sensitive).

° The retain-until-date value must be in the format 2020-08-10T21:46:00%. Fractional seconds are
allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are
not allowed.

o If an object version has an existing retain-until-date, you can only increase it. The new value must be in
the future.

Related information

39

Manage objects with ILM
Use a tenant account
PUT Object

PUT Object - Copy
Initiate Multipart Upload
Object versioning

Amazon Simple Storage Service User Guide: Using S3 Object Lock

Using server-side encryption

Server-side encryption allows you to protect your object data at rest. StorageGRID
encrypts the data as it writes the object and decrypts the data when you access the
object.

If you want to use server-side encryption, you can choose either of two mutually exclusive options, based on
how the encryption keys are managed:

+ SSE (server-side encryption with StorageGRID-managed keys): When you issue an S3 request to
store an object, StorageGRID encrypts the object with a unique key. When you issue an S3 request to
retrieve the object, StorageGRID uses the stored key to decrypt the object.

+ SSE-C (server-side encryption with customer-provided keys): When you issue an S3 request to store
an object, you provide your own encryption key. When you retrieve an object, you provide the same
encryption key as part of your request. If the two encryption keys match, the object is decrypted and your
object data is returned.

While StorageGRID manages all object encryption and decryption operations, you must manage the
encryption keys you provide.

@ The encryption keys you provide are never stored. If you lose an encryption key, you lose
the corresponding object.

@ If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption
settings are ignored.

Using SSE

To encrypt an object with a unique key managed by StorageGRID, you use the following request header:
x—amz-server-side-encryption

The SSE request header is supported by the following object operations:

* PUT Object
* PUT Object - Copy
* Initiate Multipart Upload

40

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lock.html

Using SSE-C

To encrypt an object with a unique key that you manage, you use three request headers:

Request header
Xx—amz-server-side-encryption-customer

—algorithm

Xx—amz-server-side-encryption-customer
-key

x—amz-server-side-encryption-customer
-key-MD5

Description

Specify the encryption algorithm. The header value
must be AES256.

Specify the encryption key that will be used to encrypt
or decrypt the object. The value for the key must be
256-bit, base64-encoded.

Specify the MD5 digest of the encryption key
according to RFC 1321, which is used to ensure the
encryption key was transmitted without error. The
value for the MD5 digest must be base64-encoded
128-bit.

The SSE-C request headers are supported by the following object operations:

* GET Object

« HEAD Object

* PUT Object

* PUT Object - Copy

* Initiate Multipart Upload
» Upload Part

* Upload Part - Copy

Considerations for using server-side encryption with customer-provided keys (SSE-C)

Before using SSE-C, be aware of the following considerations:

* You must use https.

StorageGRID rejects any requests made over http when using SSE-C. For security
considerations, you should consider any key you send accidentally using http to be
compromised. Discard the key, and rotate as appropriate.

* The ETag in the response is not the MD5 of the object data.

* You must manage the mapping of encryption keys to objects. StorageGRID does not store encryption keys.
You are responsible for tracking the encryption key you provide for each object.

« If your bucket is versioning-enabled, each object version should have its own encryption key. You are
responsible for tracking the encryption key used for each object version.

* Because you manage encryption keys on the client side, you must also manage any additional safeguards,

such as key rotation, on the client side.

41

@ The encryption keys you provide are never stored. If you lose an encryption key, you lose
the corresponding object.

« If CloudMirror replication is configured for the bucket, you cannot ingest SSE-C objects. The ingest
operation will fail.

Related information
GET Object

HEAD Object

PUT Object

PUT Object - Copy
Initiate Multipart Upload
Upload Part

Upload Part - Copy

Amazon S3 Developer Guide: Protecting Data Using Server-Side Encryption with Customer-Provided
Encryption Keys (SSE-C)

GET Object

You can use the S3 GET Object request to retrieve an object from an S3 bucket.

partNumber request parameter is not supported

The partNumber request parameter is not supported for GET Object requests. You cannot perform a GET
request to retrieve a specific part of a multipart object. A 501 Not Implemented error is returned with the
following message:

GET Object by partNumber is not implemented

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)

Use all three of the headers if the object is encrypted with a unique key that you provided.

* x-amz-server-side-encryption-customer-algorithm: Specify AES256.
* x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.
* x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s

encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Using server-side encryption.”

42

https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. GET requests
for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-
meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns xNotImplemented:

* x—amz-website-redirect-location

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with
the x—-amz-delete-marker response header set to true.

Behavior of GET Object for Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with
information lifecycle management), the behavior of a GET Object request depends on the state of the object.
See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on
@ the grid, GET Object requests will attempt to retrieve data from the grid, before retrieving it from
the Cloud Storage Pool.

State of object Behavior of GET Object
Object ingested into StorageGRID but not yet 200 OK

evaluated by ILM, or object stored in a traditional

storage pool or using erasure coding A copy of the object is retrieved.

Object in Cloud Storage Pool but not yet transitioned 200 ok
to a non-retrievable state

A copy of the object is retrieved.

Object transitioned to a non-retrievable state 403 Forbidden, InvalidObjectState

Use a POST Object restore request to restore the
object to a retrievable state.

Object in process of being restored from a non- 403 Forbidden, InvalidObjectState
retrievable state

Wait for the POST Object restore request to complete.

Object fully restored to the Cloud Storage Pool 200 OK

A copy of the object is retrieved.

43

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID
determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts
or segments. In some cases, a GET Object request might incorrectly return 200 OK when some parts of the
object have already been transitioned to a non-retrievable state or when some parts of the object have not yet
been restored.

In these cases:

» The GET Object request might return some data but stop midway through the transfer.

* A subsequent GET Object request might return 403 Forbidden.

Related information
Using server-side encryption

Manage objects with ILM
POST Object restore

S3 operations tracked in the audit logs

HEAD Object

You can use the S3 HEAD Object request to retrieve metadata from an object without
returning the object itself. If the object is stored in a Cloud Storage Pool, you can use
HEAD Object to determine the object’s transition state.

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)
Use all three of these headers if the object is encrypted with a unique key that you provided.
* x-amz-server-side-encryption-customer-algorithm: Specify AES256.

* x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

* x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s
encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Using server-side encryption.”

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. HEAD requests
for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-
meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XNotImplemented:

* x—amz-website-redirect-location

44

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Response headers for Cloud Storage Pool objects

If the object is stored in a Cloud Storage Pool (see the instructions for managing objects with information
lifecycle management), the following response headers are returned:

* x—amz-storage-class: GLACIER

* X—amz-restore

The response headers provide information about the state of an object as it is moved to a Cloud Storage Pool,
optionally transitioned to a non-retrievable state, and restored.

State of object

Object ingested into StorageGRID but not yet
evaluated by ILM, or object stored in a traditional
storage pool or using erasure coding

Object in Cloud Storage Pool but not yet transitioned
to a non-retrievable state

Object has transitioned to non-retrievable state, but at
least one copy also exists on the grid

Object transitioned to a non-retrievable state, and no
copy exists on the grid

Response to HEAD object

200 OK (No special response header is returned.)

200 OK

x-amz-storage-class: GLACIER

x—amz-restore: ongoing-request="false",
expiry-date="Sat, 23 July 20 2030
00:00:00 GMT"

Until the object is transitioned to a non-retrievable
state, the value for expiry-date is set to some
distant time in the future. The exact time of transition
is not controlled by the StorageGRID system.

200 OK
x—-amz-storage-class: GLACIER

ongoing-request="false",
23 July 20 2030

x—amz-restore:
expiry-date="Sat,
00:00:00 GMT"

The value for expiry-date is set to some distant
time in the future.

Note: If the copy on the grid is not available (for
example, a Storage Node is down), you must issue a
POST Object restore request to restore the copy from
the Cloud Storage Pool before you can successfully
retrieve the object.

200 OK

x-amz-storage-class: GLACIER

45

State of object Response to HEAD object

Object in process of being restored from a non- 200 OK
retrievable state

x—amz-storage-class: GLACIER

x—amz-restore: ongoing-request="true"

Object fully restored to the Cloud Storage Pool 200 OK
x-amz-storage-class: GLACIER

x—amz-restore: ongoing-request="false",
expiry-date="Sat, 23 July 20 2018
00:00:00 GMT"

The expiry-date indicates when the object in the
Cloud Storage Pool will be returned to a non-
retrievable state.

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID
determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts
or segments. In some cases, a HEAD Object request might incorrectly return x-amz-restore: ongoing-
request="false" when some parts of the object have already been transitioned to a non-retrievable state or
when some parts of the object have not yet been restored.

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with
the x-amz-delete-marker response header set to true.

Related information
Using server-side encryption

Manage objects with ILM
POST Object restore

S3 operations tracked in the audit logs

POST Object restore

You can use the S3 POST Object restore request to restore an object that is stored in a
Cloud Storage Pool.

Supported request type

StorageGRID only supports POST Object restore requests to restore an object. It does not support the SELECT
type of restoration. Select requests return xNot Implemented.

46

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Versioning

Optionally, specify versionId to restore a specific version of an object in a versioned bucket. If you do not
specify versionId, the most recent version of the object is restored

Behavior of POST Object restore on Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with
information lifecycle management), a POST Object restore request has the following behavior, based on the

state of the object. See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on
the grid, there is no need to restore the object by issuing a POST Object restore request.
Instead, the local copy can be retrieved directly, using a GET Object request.

State of object

Object ingested into StorageGRID but not yet
evaluated by ILM, or object is not in a Cloud Storage
Pool

Object in Cloud Storage Pool but not yet transitioned
to a non-retrievable state

Object transitioned to a non-retrievable state

Object in process of being restored from a non-
retrievable state

Behavior of POST Object restore

403 Forbidden, InvalidObjectState

200 OK No changes are made.

Note: Before an object has been transitioned to a
non-retrievable state, you cannot change its expiry-
date.

202 Accepted Restores a retrievable copy of the
object to the Cloud Storage Pool for the number of
days specified in the request body. At the end of this
period, the object is returned to a non-retrievable
state.

Optionally, use the Tier request element to
determine how long the restore job will take to finish
(Expedited, Standard, or Bulk). If you do not
specify Tier, the Standard tier is used.

Attention: If an object has been transitioned to S3
Glacier Deep Archive or the Cloud Storage Pool uses
Azure Blob Storage, you cannot restore it using the
Expedited tier. The following error is returned 403
Forbidden, InvalidTier: Retrieval option
is not supported by this storage class.

409 Conflict, RestoreAlreadyInProgress

47

State of object Behavior of POST Object restore
Object fully restored to the Cloud Storage Pool 200 OK

Note: If an object has been restored to a retrievable
state, you can change its expiry-date by reissuing
the POST Object restore request with a new value for
Days. The restoration date is updated relative to the
time of the request.

Related information
Manage objects with ILM

HEAD Object

S3 operations tracked in the audit logs

PUT Object

You can use the S3 PUT Object request to add an object to a bucket.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.
The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

User metadata size

Amazon S3 limits the size of user-defined metadata within each PUT request header to 2 KB. StorageGRID
limits user metadata to 24 KiB. The size of user-defined metadata is measured by taking the sum of the
number of bytes in the UTF-8 encoding of each key and value.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,
StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-
defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

» PUT, PUT Object-Copy, GET, and HEAD requests succeed if user-defined metadata includes escaped
UTF-8 characters.

* StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name
or value includes unprintable characters.

Object tag limits

You can add tags to new objects when you upload them, or you can add them to existing objects. Both

48

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

StorageGRID and Amazon S3 support up to 10 tags for each object. Tags associated with an object must have
unique tag keys. A tag key can be up to 128 Unicode characters in length and tag values can be up to 256
Unicode characters in length. Key and values are case sensitive.

Object ownership

In StorageGRID, all objects are owned by the bucket owner account, including objects created by a non-owner
account or an anonymous user.

Supported request headers

The following request headers are supported:

Cache-Control
Content-Disposition

Content-Encoding

When you specify aws-chunked for Content-EncodingStorageGRID does not verify the following
items:

° StorageGRID does not verify the chunk-signature against the chunk data.

° StorageGRID does not verify the value that you provide for x-amz-decoded-content-length
against the object.

Content-Language
Content-Length
Content-MD5
Content-Type
Expires

Transfer-Encoding
Chunked transfer encoding is supported if aws-chunked payload signing is also used.
x-amz-meta-, followed by a name-value pair containing user-defined metadata.

When specifying the name-value pair for user-defined metadata, use this general format:

x—amz-meta-name: value

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you
must use creation-time as the name of the metadata that records when the object was created. For
example:

x—amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

49

An ILM rule cannot use both a User Defined Creation Time for the Reference Time and the
Balanced or Strict options for Ingest Behavior. An error is returned when the ILM rule is
created.
* x-amz-tagging
« S3 Object Lock request headers
° x—amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x—amz-object-lock-legal-hold
Using S3 Object Lock

» SSE request headers:
° x-amz-server-side-encryption
° x—-amz-server-side-encryption-customer-key-MD5
° x—amz-server-side-encryption-customer-key

° x-amz-server-side-encryption-customer-algorithm

S3 REST API supported operations and limitations

Unsupported request headers

The following request headers are not supported:

* The x-amz-acl request header is not supported.

* The x—-amz-website-redirect-location request header is not supported and returns
XNotImplemented.

Storage class options

The x-amz-storage-class request header is supported. The value submitted for x-amz-storage-class
affects how StorageGRID protects object data during ingest and not how many persistent copies of the object
are stored in the StorageGRID system (which is determined by ILM).

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-
class header has no effect.

The following values can be used for x-amz-storage-class:

* STANDARD (Default)

> Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object
is ingested a second copy of that object is created and distributed to a different Storage Node (dual
commit). When the ILM is evaluated,StorageGRID determines if these initial interim copies satisfy the
placement instructions in the rule. If they do not, new object copies might need to be made in different
locations and the initial interim copies might need to be deleted.

o Balanced: If the ILM rule specifies the Balanced option and StorageGRID cannot immediately make all
copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

50

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous
placement), the x—-amz-storage-class header has no effect.

* REDUCED REDUNDANCY

o Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID
creates a single interim copy as the object is ingested (single commit).

o Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only
if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform
synchronous placement, this header has no effect. The REDUCED REDUNDANCY option is best used
when the ILM rule that matches the object creates a single replicated copy. In this case using
REDUCED REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for
every ingest operation.

Using the REDUCED REDUNDANCY option is not recommended in other circumstances.
REDUCED REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose
data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Attention: Having only one replicated copy for any time period puts data at risk of permanent loss. If only one
replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant error. You also
temporarily lose access to the object during maintenance procedures such as upgrades.

Specifying REDUCED REDUNDANCY only affects how many copies are created when an object is first ingested.
It does not affect how many copies of the object are made when the object is evaluated by the active ILM
policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.

Note: If you are ingesting an object into a bucket with S3 Object Lock enabled, the REDUCED REDUNDANCY
option is ignored. If you are ingesting an object into a legacy Compliant bucket, the REDUCED REDUNDANCY
option returns an error. StorageGRID will always perform a dual-commit ingest to ensure that compliance
requirements are satisfied.

Request headers for server-side encryption

You can use the following request headers to encrypt an object with server-side encryption. The SSE and SSE-
C options are mutually exclusive.

» SSE: Use the following header if you want to encrypt the object with a unique key managed by
StorageGRID.
° x—amz-server-side-encryption

+ SSE-C: Use all three of these headers if you want to encrypt the object with a unique key that you provide
and manage.

° x-amz-server-side-encryption-customer-algorithm: Specify AES256.

° x—amz-server-side-encryption-customer-key: Specify your encryption key for the new
object.

° x-—amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new
object’s encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Using server-side encryption.”

51

Note: If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption settings are
ignored.

Versioning

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the
object being stored. This versionId is also returned in the response using the x-amz-version-id
response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already
exists it will be overwritten.

Related information
Manage objects with ILM

Operations on buckets
S3 operations tracked in the audit logs
Using server-side encryption

How client connections can be configured

PUT Object - Copy

You can use the S3 PUT Object - Copy request to create a copy of an object that is
already stored in S3. A PUT Object - Copy operation is the same as performing a GET
and then a PUT.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.
The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,
StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-
defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

* Requests succeed if user-defined metadata includes escaped UTF-8 characters.

* StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name
or value includes unprintable characters.

52

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Supported request headers

The following request headers are supported:

* Content-Type

X—amz-copy-source

* x—amz-copy-source-if-match

* x—amz-copy-source-if-none-match

* x—amz-copy-source-if-unmodified-since

* x—amz-copy-source-if-modified-since

* x—amz-meta-, followed by a name-value pair containing user-defined metadata

* x-amz-metadata-directive: The default value is COPY, which enables you to copy the object and
associated metadata.

You can specify REPLACE to overwrite the existing metadata when copying the object, or to update the
object metadata.

* x—amz-storage-class

* x-amz-tagging-directive: The default value is COPY, which enables you to copy the object and all
tags.

You can specify REPLACE to overwrite the existing tags when copying the object, or to update the tags.

» S3 Object Lock request headers:
° x—-amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x—amz-object-lock-legal-hold
Using S3 Object Lock

» SSE request headers:
° x—amz-copy-source-server-side-encryption-customer-algorithm
° x—amz-copy-source-server-side-encryption-customer-key
° x—amz-copy-source-server-side-encryption-customer-key-MD5
° x—amz-server-side-encryption
° x-amz-server-side-encryption-customer-key-MD5
° x—-amz-server-side-encryption-customer-key

° x—amz-server-side-encryption-customer-algorithm

Request headers for server-side encryption

53

Unsupported request headers

The following request headers are not supported:

* Cache-Control

* Content-Disposition
* Content-Encoding

* Content-Language

* Expires

* x—amz-website-redirect-location

Storage class options

The x-amz-storage-class request header is supported, and affects how many object copies StorageGRID
creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

¢ STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when
the Balanced option falls back to creating interim copies.

¢ REDUCED_ REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the
Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

@ REDUCED_ REDUNDANCY option is ignored. If you are ingesting an object into a legacy
Compliant bucket, the REDUCED REDUNDANCY option returns an error. StorageGRID will
always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

Using x-amz-copy-source in PUT Object - Copy

If the source bucket and key, specified in the x-amz-copy-source header, are different from the destination
bucket and key, a copy of the source object data is written to the destination.

If the source and destination match, and the x-amz-metadata-directive header is specified as REPLACE,
the object’s metadata is updated with the metadata values supplied in the request. In this case, StorageGRID
does not re-ingest the object. This has two important consequences:

» You cannot use PUT Object - Copy to encrypt an existing object in place, or to change the encryption of an
existing object in place. If you supply the x-amz-server-side-encryption header or the x-amz-
server-side-encryption-customer-algorithm header, StorageGRID rejects the request and
returns XNotImplemented.

» The option for Ingest Behavior specified in the matching ILM rule is not used. Any changes to object
placement that are triggered by the update are made when ILM is re-evaluated by normal background ILM
processes.

This means that if the ILM rule uses the Strict option for ingest behavior, no action is taken if the required
object placements cannot be made (for example, because a newly required location is unavailable). The

54

updated object retains its current placement until the required placement is possible.

Request headers for server-side encryption

If you use server-side encryption, the request headers you provide depend on whether the source object is
encrypted and on whether you plan to encrypt the target object.

« If the source object is encrypted using a customer-provided key (SSE-C), you must include the following
three headers in the PUT Object - Copy request, so the object can be decrypted and then copied:

° x-amz-copy-source-server-side-encryption-customer-algorithm Specify AES256.

° x—amz-copy-source-server-side-encryption-customer-key Specify the encryption key you
provided when you created the source object.

° x-—amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest
you provided when you created the source object.

* If you want to encrypt the target object (the copy) with a unique key that you provide and manage, include
the following three headers:

° x—amz-server-side-encryption-customer-algorithm: Specify AES256.

° x-amz-server-side-encryption-customer-key: Specify a new encryption key for the target
object.

° x-amz-server-side-encryption-customer-key-MD5: Specify the MDS5 digest of the new
encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Using server-side encryption.”

* If you want to encrypt the target object (the copy) with a unique key managed by StorageGRID (SSE),
include this header in the PUT Object - Copy request:

° x—amz-server-side-encryption

Note: The server-side-encryption value of the object cannot be updated. Instead, make a copy with a
new server—-side-encryption value using x—amz-metadata-directive: REPLACE.

Versioning

If the source bucket is versioned, you can use the x-amz-copy-source header to copy the latest version of
an object. To copy a specific version of an object, you must explicitly specify the version to copy using the
versionId subresource. If the destination bucket is versioned, the generated version is returned in the x-
amz-version-id response header. If versioning is suspended for the target bucket, then x-amz-version-
id returns a “null” value.

Related information
Manage objects with ILM

Using server-side encryption
S3 operations tracked in the audit logs

PUT Object

55

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Operations for multipart uploads
This section describes how StorageGRID supports operations for multipart uploads.

« List multipart uploads

* |nitiate Multipart Upload

» Upload Part

» Upload Part - Copy

* Complete Multipart Upload

The following conditions and notes apply to all multipart upload operations:

* You should not exceed 1,000 concurrent multipart uploads to a single bucket because the results of List
Multipart Uploads queries for that bucket might return incomplete results.

» StorageGRID enforces AWS size limits for multipart parts. S3 clients must follow these guidelines:

o Each part in a multipart upload must be between 5 MiB (5,242,880 bytes) and 5 GiB (5,368,709,120
bytes).

o The last part can be smaller than 5 MiB (5,242,880 bytes).

> In general, part sizes should be as large as possible. For example, use part sizes of 5 GiB for a 100
GiB object. Since each part is considered a unique object, using large part sizes reduces StorageGRID
metadata overhead.

o For objects smaller than 5 GiB, consider using non-multipart upload instead.

* ILM is evaluated for each part of a multipart object as it is ingested and for the object as a whole when the
multipart upload completes, if the ILM rule uses the Strict or Balanced ingest behavior. You should be
aware of how this affects object and part placement:

o If ILM changes while an S3 multipart upload is in progress, when the multipart upload completes some
parts of the object might not meet current ILM requirements. Any part that is not placed correctly is
queued for ILM re-evaluation, and is moved to the correct location later.

o When evaluating ILM for a part, StorageGRID filters on the size of the part, not the size of the object.
This means that parts of an object can be stored in locations that do not meet ILM requirements for the
object as a whole. For example, if a rule specifies that all objects 10 GB or larger are stored at DC1
while all smaller objects are stored at DC2, at ingest each 1 GB part of a 10-part multipart upload is
stored at DC2. When ILM is evaluated for the object as a whole, all parts of the object are moved to
DCH.

« All of the multipart upload operations support StorageGRID consistency controls.

 As required, you can use server-side encryption with multipart uploads. To use SSE (server-side encryption
with StorageGRID-managed keys), you include the x-amz-server-side-encryption request header
in the Initiate Multipart Upload request only. To use SSE-C (server-side encryption with customer-provided
keys), you specify the same three encryption key request headers in the Initiate Multipart Upload request
and in each subsequent Upload Part request.

Operation Implementation
List Multipart Uploads See List Multipart Uploads
Initiate Multipart Upload See Initiate Multipart Upload

56

Operation Implementation

Upload Part See Upload Part

Upload Part - Copy See Upload Part - Copy

Complete Multipart Upload See Complete Multipart Upload

Abort Multipart Upload Implemented with all Amazon S3 REST API behavior
List Parts Implemented with all Amazon S3 REST API behavior

Related information

Consistency controls

Using server-side encryption

List Multipart Uploads
The List Multipart Uploads operation lists in-progress multipart uploads for a bucket.
The following request parameters are supported:

* encoding-type
* max-uploads
* key-marker

prefix

* upload-id-marker
The delimiter request parameter is not supported.

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. When the Complete Multipart Upload operation is
performed, that is the point when objects are created (and versioned if applicable).

Initiate Multipart Upload

The Initiate Multipart Upload operation initiates a multipart upload for an object, and
returns an upload ID.

The x-amz-storage-class request header is supported. The value submitted for x-amz-storage-class
affects how StorageGRID protects object data during ingest and not how many persistent copies of the object

are stored in the StorageGRID system (which is determined by ILM).

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-
class header has no effect.

57

The following values can be used for x-amz-storage-class:

* STANDARD (Default)

o Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object
is ingested a second copy of that object is created and distributed to a different Storage Node (dual
commit). When the ILM is evaluated,StorageGRID determines if these initial interim copies satisfy the
placement instructions in the rule. If they do not, new object copies might need to be made in different
locations and the initial interim copies might need to be deleted.

o Balanced: If the ILM rule specifies the Balanced option and StorageGRID cannot immediately make all
copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous
placement), the x-amz-storage-class header has no effect.

°* REDUCED REDUNDANCY

o Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID
creates a single interim copy as the object is ingested (single commit).

o Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only
if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform
synchronous placement, this header has no effect. The REDUCED REDUNDANCY option is best used
when the ILM rule that matches the object creates a single replicated copy. In this case using
REDUCED REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for
every ingest operation.

Using the REDUCED_REDUNDANCY option is not recommended in other circumstances.
REDUCED REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose
data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Attention: Having only one replicated copy for any time period puts data at risk of permanent loss. If only one
replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant error. You also
temporarily lose access to the object during maintenance procedures such as upgrades.

Specifying REDUCED REDUNDANCY only affects how many copies are created when an object is first ingested.
It does not affect how many copies of the object are made when the object is evaluated by the active ILM
policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.
Note: If you are ingesting an object into a bucket with S3 Object Lock enabled, the REDUCED REDUNDANCY
option is ignored. If you are ingesting an object into a legacy Compliant bucket, the REDUCED REDUNDANCY

option returns an error. StorageGRID will always perform a dual-commit ingest to ensure that compliance
requirements are satisfied.

The following request headers are supported:

* Content-Type

* x-amz-meta-, followed by a name-value pair containing user-defined metadata

When specifying the name-value pair for user-defined metadata, use this general format:

x-amz-meta- name : "value’

58

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you
must use creation-time as the name of the metadata that records when the object was created. For
example:

x—amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

@ Adding creation-time as user-defined metadata is not allowed if you are adding an object to
a bucket that has legacy Compliance enabled. An error will be returned.

» S3 Object Lock request headers:
° x—amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x—amz-object-lock-legal-hold
Using S3 Object Lock

» SSE request headers:
° x—amz-server-side-encryption
° x—amz-server-side-encryption-customer-key-MD5
° x—amz-server-side-encryption-customer-key

° x—-amz-server-side-encryption-customer-algorithm

S3 REST API supported operations and limitations

@ For information on how StorageGRID handles UTF-8 characters, see the documentation for
PUT Object.

Request headers for server-side encryption

You can use the following request headers to encrypt a multipart object with server-side encryption. The SSE
and SSE-C options are mutually exclusive.

» SSE: Use the following header in the Initiate Multipart Upload request if you want to encrypt the object with
a unique key managed by StorageGRID. Do not specify this header in any of the Upload Part requests.

° x—amz-server-side-encryption

» SSE-C: Use all three of these headers in the Initiate Multipart Upload request (and in each subsequent
Upload Part request) if you want to encrypt the object with a unique key that you provide and manage.

° x-amz-server-side-encryption-customer-algorithm: Specify AES256.

° x-—amz-server-side-encryption-customer-key: Specify your encryption key for the new
object.

° x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new
object’s encryption key.

59

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Using server-side encryption.”

Unsupported request headers

The following request header is not supported and returns XNotImplemented

* x—amz-website-redirect-location

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)
when the Complete Multipart Upload operation is performed.

Related information
Manage objects with ILM

Using server-side encryption

PUT Object

Upload Part

The Upload Part operation uploads a part in a multipart upload for an object.

Supported request headers

The following request headers are supported:

* Content-Length

* Content-MD5

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following
request headers in each Upload Part request:

* x-amz-server-side-encryption-customer-algorithm: Specify AES256.

* x-amz-server-side-encryption-customer-key: Specify the same encryption key that you
provided in the Initiate Multipart Upload request.

* x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you
provided in the Initiate Multipart Upload request.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Using server-side encryption.”

60

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)
when the Complete Multipart Upload operation is performed.

Related information

Using server-side encryption

Upload Part - Copy

The Upload Part - Copy operation uploads a part of an object by copying data from an
existing object as the data source.

The Upload Part - Copy operation is implemented with all Amazon S3 REST API behavior.

This request reads and writes the object data specified in x-amz-copy-source-range within the
StorageGRID system.

The following request headers are supported:

* x—amz-copy-source-if-match
* x—amz-copy-source-if-none-match
* x—amz-copy-source-if-unmodified-since

* x—amz-copy-source-if-modified-since

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following
request headers in each Upload Part - Copy request:
* x-amz-server-side-encryption-customer-algorithm: Specify AES256.

* x-amz-server-side-encryption-customer-key: Specify the same encryption key that you
provided in the Initiate Multipart Upload request.

* x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you
provided in the Initiate Multipart Upload request.

If the source object is encrypted using a customer-provided key (SSE-C), you must include the following three
headers in the Upload Part - Copy request, so the object can be decrypted and then copied:

* x-amz-copy-source-server-side-encryption-customer-algorithm: Specify AES256.

* x—amz-copy-source-server-side-encryption-customer-key: Specify the encryption key you
provided when you created the source object.

* x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest you
provided when you created the source object.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Using server-side encryption.”

61

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)
when the Complete Multipart Upload operation is performed.

Complete Multipart Upload

The Complete Multipart Upload operation completes a multipart upload of an object by
assembling the previously uploaded parts.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a “latest-wins” basis.
The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Object size

StorageGRID supports objects up to 5 TB in size.

Request headers

The x-amz-storage-class request header is supported, and affects how many object copies StorageGRID
creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

¢ STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when
the Balanced option falls back to creating interim copies.

* REDUCED REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the
Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

@ REDUCED REDUNDANCY option is ignored. If you are ingesting an object into a legacy
Compliant bucket, the REDUCED REDUNDANCY option returns an error. StorageGRID will
always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

@ If a multipart upload is not completed within 15 days, the operation is marked as inactive and all
associated data is deleted from the system.

@ The ETag value returned is not an MD5 sum of the data, but follows the Amazon S3 API
implementation of the ETag value for multipart objects.

Versioning

This operation completes a multipart upload. If versioning is enabled for a bucket, the object version is created
upon completion of the multipart upload.

62

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the
object being stored. This versionId is also returned in the response using the x-amz-version-id
response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already
exists it will be overwritten.

When versioning is enabled for a bucket, completing a multipart upload always creates a new
version, even if there are concurrent multipart uploads completed on the same object key. When

@ versioning is not enabled for a bucket, it is possible to initiate a multipart upload and then have
another multipart upload initiate and complete first on the same object key. On non-versioned
buckets, the multipart upload that completes last takes precedence.

Failed replication, notification, or metadata notification

If the bucket where the multipart upload occurs is configured for a platform service, multipart upload succeeds
even if the associated replication or notification action fails.

If this occurs, an alarm is raised in the Grid Manager on Total Events (SMTT). The Last Event message
displays “Failed to publish notifications for bucket-nameobject key” for the last object whose notification failed.
(To see this message, select Nodes > Storage Node > Events. View Last Event at the top of the table.) Event
messages are also listed in /var/local/log/bycast-err.log.

A tenant can trigger the failed replication or notification by updating the object’'s metadata or tags. A tenant can
resubmit the existing values to avoid making unwanted changes.

Related information
Manage objects with ILM

Error responses

The StorageGRID system supports all standard S3 REST API error responses that apply.
In addition, the StorageGRID implementation adds several custom responses.

Supported S3 API error codes

Name HTTP status
AccessDenied 403 Forbidden
BadDigest 400 Bad Request
BucketAlreadyExists 409 Conflict
BucketNotEmpty 409 Conflict
IncompleteBody 400 Bad Request
InternalError 500 Internal Server Error

63

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Name

InvalidAccessKeyld

InvalidArgument

InvalidBucketName

InvalidBucketState

InvalidDigest

InvalidEncryptionAlgorithmError

InvalidPart

InvalidPartOrder

InvalidRange

InvalidRequest

InvalidStorageClass

InvalidTag

InvalidURI

KeyToolLong

Malformed XML

MetadataTooLarge

MethodNotAllowed

MissingContentLength

MissingRequestBodyError

MissingSecurityHeader

NoSuchBucket

NoSuchKey

64

HTTP status
403 Forbidden

400 Bad Request

400 Bad Request

409 Conflict

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

416 Requested Range Not Satisfiable

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

405 Method Not Allowed

411 Length Required

400 Bad Request

400 Bad Request

404 Not Found

404 Not Found

Name

NoSuchUpload

NotImplemented

NoSuchBucketPolicy

ObjectLockConfigurationNotFoundError

PreconditionFailed

RequestTimeTooSkewed

ServiceUnavailable

SignatureDoesNotMatch

TooManyBuckets

UserKeyMustBeSpecified

StorageGRID custom error codes

HTTP status
404 Not Found

501 Not Implemented

404 Not Found

404 Not Found

412 Precondition Failed

403 Forbidden

503 Service Unavailable

403 Forbidden

400 Bad Request

400 Bad Request

Name Description HTTP status

XBucketLifecycleNotAllowed Bucket lifecycle configuration is not 400 Bad Request
allowed in a legacy Compliant
bucket

XBucketPolicyParseException Failed to parse received bucket 400 Bad Request
policy JSON.

XComplianceConflict Operation denied because of 403 Forbidden
legacy Compliance settings.

XComplianceReducedRedundancy Reduced redundancy is not 400 Bad Request

Forbidden allowed in legacy Compliant bucket

XMaxBucketPolicyLengthExceeded Your policy exceeds the maximum 400 Bad Request
allowed bucket policy length.

XMissinglnternalRequestHeader Missing a header of an internal 400 Bad Request

request.

65

Name

XNoSuchBucketCompliance

XNotAcceptable

XNotlmplemented

Description HTTP status

The specified bucket does not have 404 Not Found
legacy Compliance enabled.

The request contains one or more 406 Not Acceptable
accept headers that could not be
satisfied.

The request you provided implies 501 Not Implemented
functionality that is not
implemented.

StorageGRID S3 REST API operations
There are operations added on to the S3 REST API that are specific to StorageGRID

system.

GET Bucket consistency request

The GET Bucket consistency request allows you to determine the consistency level being applied to a

particular bucket.

The default consistency controls are set to guarantee read-after-write for newly created objects.

You must have the s3:GetBucketConsistency permission, or be account root, to complete this operation.

Request example

GET /bucket?x-ntap-sg-consistency HTTP/1.1

Date: date

Authorization: authorization string

Host: host

Response

In the response XML, <Consistency> will return one of the following values:

Consistency control

all

strong-global

66

Description

All nodes receive the data immediately, or the request

will fail.

Guarantees read-after-write consistency for all client

requests across all sites.

Consistency control

strong-site

read-after-new-write

available (eventual consistency for HEAD operations)

Response example

HTTP/1.1 200 OK

Date: 18 Sep 2020 01:02:18 GMT
Connection: CLOSE
StorageGRID/11.5.0
x—amz-request-id: 12345
Content-Length: 127

application/xml

Fri,

Server:

Content-Type:

Description

Guarantees read-after-write consistency for all client
requests within a site.

(Default) Provides read-after-write consistency for
new objects and eventual consistency for object
updates. Offers high availability and data protection
guarantees. Matches Amazon S3 consistency
guarantees.

Note: If your application uses HEAD requests on
objects that do not exist, you might receive a high
number of 500 Internal Server errors if one or more
Storage Nodes are unavailable. To prevent these
errors, set the consistency control to “available”
unless you require consistency guarantees similar to
Amazon S3.

Behaves the same as the “read-after-new-write”
consistency level, but only provides eventual
consistency for HEAD operations. Offers higher
availability for HEAD operations than “read-after-new-
write” if Storage Nodes are unavailable. Differs from
Amazon S3 consistency guarantees for HEAD
operations only.

<?xml version="1.0" encoding="UTF-8"?>
<Consistency xmlns="http://s3.storagegrid.com/doc/2015-02-01/">read-after-

new-write</Consistency>

Related information
Consistency controls

PUT Bucket consistency request

The PUT Bucket consistency request allows you to specify the consistency level to apply to operations

performed on a bucket.

67

The default consistency controls are set to guarantee read-after-write for newly created objects.

You must have the s3:PutBucketConsistency permission, or be account root, to complete this operation.

Request

The x-ntap-sg-consistency parameter must contain one of the following values:

Consistency control

all

strong-global

strong-site

read-after-new-write

available (eventual consistency for HEAD operations)

Description

All nodes receive the data immediately, or the request
will fail.

Guarantees read-after-write consistency for all client
requests across all sites.

Guarantees read-after-write consistency for all client
requests within a site.

(Default) Provides read-after-write consistency for
new objects and eventual consistency for object
updates. Offers high availability and data protection
guarantees. Matches Amazon S3 consistency
guarantees.

Note: If your application uses HEAD requests on
objects that do not exist, you might receive a high
number of 500 Internal Server errors if one or more
Storage Nodes are unavailable. To prevent these
errors, set the consistency control to “available”
unless you require consistency guarantees similar to
Amazon S3.

Behaves the same as the “read-after-new-write”
consistency level, but only provides eventual
consistency for HEAD operations. Offers higher
availability for HEAD operations than “read-after-new-
write” if Storage Nodes are unavailable. Differs from
Amazon S3 consistency guarantees for HEAD
operations only.

Note: In general, you should use the “read-after-new-write” consistency control value. If requests are not
working correctly, change the application client behavior if possible. Or, configure the client to specify the
consistency control for each API request. Set the consistency control at the bucket level only as a last resort.

Request example

68

PUT /bucket?x-ntap-sg-consistency=strong-global HTTP/1.1
Date: date

Authorization: authorization string

Host: host

Related information

Consistency controls

GET Bucket last access time request

The GET Bucket last access time request allows you to determine if last access time updates are enabled or
disabled for individual buckets.

You must have the s3:GetBucketLastAccessTime permission, or be account root, to complete this operation.

Request example

GET /bucket?x-ntap-sg-lastaccesstime HTTP/1.1
Date: date
Authorization: authorization string
Host: host

Response example

This example shows that last access time updates are enabled for the bucket.

HTTP/1.1 200 OK

Date: Sat, 29 Nov 2015 01:02:18 GMT
Connection: CLOSE

Server: StorageGRID/10.3.0
x—amz-request-id: 12345
Content-Length: 127

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<LastAccessTime xmlns="http://s3.storagegrid.com/doc/2015-02-01/">enabled
</LastAccessTime>

PUT Bucket last access time request

The PUT Bucket last access time request allows you to enable or disable last access time updates for
individual buckets. Disabling last access time updates improves performance, and is the default setting for all
buckets created with version 10.3.0, or later.

You must have the s3:PutBucketLastAccessTime permission for a bucket, or be account root, to complete this

69

operation.

Starting with StorageGRID version 10.3, updates to last access time are disabled by default for
all new buckets. If you have buckets that were created using an earlier version of StorageGRID

@ and you want to match the new default behavior, you must explicitly disable last access time
updates for each of those earlier buckets. You can enable or disable updates to last access time
using the PUT Bucket last access time request, the S3 > Buckets > Change Last Access
Setting check box in the Tenant Manager, or the Tenant Management API.

If last access time updates are disabled for a bucket, the following behavior is applied to operations on the
bucket:

* GET Object, GET Object ACL, GET Object Tagging, and HEAD Object requests do not update last access
time. The object is not added to queues for information lifecycle management (ILM) evaluation.

« PUT Object - Copy and PUT Object Tagging requests that update only the metadata also update last
access time. The object is added to queues for ILM evaluation.

« If updates to last access time are disabled for the source bucket, PUT Object - Copy requests do not
update last access time for the source bucket. The object that was copied is not added to queues for ILM
evaluation for the source bucket. However, for the destination, PUT Object - Copy requests always update
last access time. The copy of the object is added to queues for ILM evaluation.

» Complete Multipart Upload requests update last access time. The completed object is added to queues for
ILM evaluation.

Request examples

This example enables last access time for a bucket.

PUT /bucket?x-ntap-sg-lastaccesstime=enabled HTTP/1.1
Date: date

Authorization: authorization string

Host: host

This example disables last access time for a bucket.

PUT /bucket?x-ntap-sg-lastaccesstime=disabled HTTP/1.1
Date: date

Authorization: authorization string

Host: host

Related information
Use a tenant account

DELETE Bucket metadata notification configuration request

The DELETE Bucket metadata notification configuration request allows you to disable the search integration
service for individual buckets by deleting the configuration XML.

You must have the s3:DeleteBucketMetadataNotification permission for a bucket, or be account root, to

70

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

complete this operation.

Request example

This example shows disabling the search integration service for a bucket.

DELETE /testl?x-ntap-sg-metadata-notification HTTP/1.1
Date: date

Authorization: authorization string

Host: host

GET Bucket metadata notification configuration request

The GET Bucket metadata notification configuration request allows you to retrieve the configuration XML used
to configure search integration for individual buckets.

You must have the s3:GetBucketMetadataNotification permission, or be account root, to complete this
operation.
Request example

This request retrieves the metadata notification configuration for the bucket named bucket.

GET /bucket?x-ntap-sg-metadata-notification HTTP/1.1
Date: date

Authorization: authorization string

Host: host

Response

The response body includes the metadata notification configuration for the bucket. The metadata notification
configuration lets you determine how the bucket is configured for search integration. That is, it allows you to
determine which objects are indexed, and which endpoints their object metadata is being sent to.

71

<MetadataNotificationConfiguration>
<Rule>
<ID>Rule-1</ID>
<Status>rule-status</Status>
<Prefix>key-prefix</Prefix>
<Destination>
<Urn>arn:aws:es: region:account-
ID :domain/ mydomain/myindex/mytype </Urn>
</Destination>
</Rule>
<Rule>
<ID>Rule-2</ID>

</Rule>

</MetadataNotificationConfiguration>

Each metadata notification configuration includes one or more rules. Each rule specifies the objects that it
applies to and the destination where StorageGRID should send object metadata. Destinations must be
specified using the URN of a StorageGRID endpoint.

Name Description Required

MetadataNotificationConfiguration Container tag for rules used to Yes
specify the objects and destination
for metadata notifications.

Contains one or more Rule
elements.

Rule Container tag for a rule that Yes
identifies the objects whose
metadata should be added to a
specified index.

Rules with overlapping prefixes are
rejected.

Included in the

MetadataNotificationConfiguration
element.

ID Unique identifier for the rule. No

Included in the Rule element.

72

Name

Status

Prefix

Destination

Description Required

Status can be 'Enabled' or Yes
'Disabled'. No action is taken for
rules that are disabled.

Included in the Rule element.

Objects that match the prefix are Yes
affected by the rule, and their

metadata is sent to the specified
destination.

To match all objects, specify an
empty prefix.

Included in the Rule element.

Container tag for the destination of Yes
arule.

Included in the Rule element.

73

Name Description Required

Urn URN of the destination where Yes
object metadata is sent. Must be
the URN of a StorageGRID
endpoint with the following
properties:

* es must be the third element.

* The URN must end with the
index and type where the
metadata is stored, in the form
domain-
name/myindex/mytype.

Endpoints are configured using the
Tenant Manager or Tenant
Management API. They take the
following form:

* arn:aws:es: region:acco
unt-
ID :domain/mydomain/myi
ndex/mytype

*urn:mysite:es:::mydomai
n/myindex/mytype

The endpoint must be configured
before the configuration XML is
submitted, or configuration will fail
with a 404 error.

Urn is included in the Destination
element.

Response example

The XML included between the
<MetadataNotificationConfiguration></MetadataNotificationConfiguration> tags shows
how integration with a search integration endpoint is configured for the bucket. In this example, object
metadata is being sent to an Elasticsearch index named current and type named 2017 that is hosted in an
AWS domain named records.

74

HTTP/1.1 200 OK

Date: Thu, 20 Jul 2017 18:24:05 GMT
Connection: KEEP-ALIVE

Server: StorageGRID/11.0.0
x—amz-request-id: 3832973499
Content-Length: 264

Content-Type: application/xml

<MetadataNotificationConfiguration>
<Rule>
<ID>Rule-1</ID>
<Status>Enabled</Status>
<Prefix>2017</Prefix>
<Destination>
<Urn>arn:aws:es:us—-east-
1:3333333:domain/records/current/2017</Urn>
</Destination>
</Rule>
</MetadataNotificationConfiguration>

Related information

Use a tenant account

PUT Bucket metadata notification configuration request

The PUT Bucket metadata notification configuration request allows you to enable the search integration
service for individual buckets. The metadata notification configuration XML that you supply in the request body
specifies the objects whose metadata is sent to the destination search index.

You must have the s3:PutBucketMetadataNotification permission for a bucket, or be account root, to complete
this operation.

Request

The request must include the metadata notification configuration in the request body. Each metadata
notification configuration includes one or more rules. Each rule specifies the objects that it applies to, and the
destination where StorageGRID should send object metadata.

Objects can be filtered on the prefix of the object name. For example, you could send metadata for objects with
the prefix /images to one destination, and objects with the prefix /videos to another.

Configurations that have overlapping prefixes are not valid, and are rejected when they are submitted. For
example, a configuration that included one rule for for objects with the prefix test and a second rule for
objects with the prefix test2 would not be allowed.

Destinations must be specified using the URN of a StorageGRID endpoint. The endpoint must exist when the
metadata notification configuration is submitted, or the request fails as a 400 Bad Request. The error
message states: Unable to save the metadata notification (search) policy. The
specified endpoint URN does not exist: URN.

75

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

<MetadataNotificationConfiguration>
<Rule>
<ID>Rule-1</ID>
<Status>rule-status</Status>
<Prefix>key-prefix</Prefix>
<Destination>
<Urn>arn:aws:es:region:account-
ID:domain/mydomain/myindex/mytype</Urn>
</Destination>
</Rule>
<Rule>
<ID>Rule-2</ID>

</Rule>

</MetadataNotificationConfiguration>

The table describes the elements in the metadata notification configuration XML.

Name Description Required

MetadataNotificationConfiguration = Container tag for rules used to Yes

specify the objects and destination
for metadata notifications.

Contains one or more Rule
elements.

Rule Container tag for a rule that Yes

identifies the objects whose
metadata should be added to a
specified index.

Rules with overlapping prefixes are
rejected.

Included in the
MetadataNotificationConfiguration
element.

ID Unique identifier for the rule. No

76

Included in the Rule element.

Name

Status

Prefix

Destination

Description Required

Status can be 'Enabled' or Yes
'Disabled'. No action is taken for
rules that are disabled.

Included in the Rule element.

Objects that match the prefix are Yes
affected by the rule, and their

metadata is sent to the specified
destination.

To match all objects, specify an
empty prefix.

Included in the Rule element.

Container tag for the destination of Yes
arule.

Included in the Rule element.

77

Name Description Required

Urn URN of the destination where Yes
object metadata is sent. Must be
the URN of a StorageGRID
endpoint with the following
properties:

* es must be the third element.

* The URN must end with the
index and type where the
metadata is stored, in the form
domain-
name/myindex/mytype.

Endpoints are configured using the
Tenant Manager or Tenant
Management API. They take the
following form:

®* arn:aws:es:region:accou
nt-
ID:domain/mydomain/myin
dex/mytype

*urn:mysite:es:::mydomai

n/myindex/mytype

The endpoint must be configured
before the configuration XML is
submitted, or configuration will fail
with a 404 error.

Urn is included in the Destination
element.

Request examples

This example shows enabling search integration for a bucket. In this example, object metadata for all objects is
sent to the same destination.

78

PUT /testl?x-ntap-sg-metadata-notification HTTP/1.1
Date: date

Authorization: authorization string

Host: host

<MetadataNotificationConfiguration>
<Rule>
<ID>Rule-1</ID>
<Status>Enabled</Status>
<Prefix></Prefix>
<Destination>
<Urn>urn:sgws:es:::sgws-notifications/testl/all</Urn>
</Destination>
</Rule>
</MetadataNotificationConfiguration>

In this example, object metadata for objects that match the prefix /images is sent to one destination, while
object metadata for objects that match the prefix /videos is sent to a second destination.

PUT /graphics?x-ntap-sg-metadata-notification HTTP/1.1
Date: date

Authorization: authorization string

Host: host

<MetadataNotificationConfiguration>
<Rule>
<ID>Images-rule</ID>
<Status>Enabled</Status>
<Prefix>/images</Prefix>
<Destination>
<Urn>arn:aws:es:us-east-1:3333333:domain/es-
domain/graphics/imagetype</Urn>
</Destination>
</Rule>
<Rule>
<ID>Videos-rule</ID>
<Status>Enabled</Status>
<Prefix>/videos</Prefix>
<Destination>
<Urn>arn:aws:es:us-west-1:22222222:domain/es-
domain/graphics/videotype</Urn>
</Destination>
</Rule>
</MetadataNotificationConfiguration>

79

Related information
Use a tenant account

JSON generated by the search integration service

When you enable the search integration service for a bucket, a JSON document is generated and sent to the
destination endpoint each time object metadata or tags are added, updated, or deleted.

This example shows an example of the JSON that could be generated when an object with the key
SGWS/Tagging.txt is created in a bucket named test. The test bucket is not versioned, so the
versionId tag is empty.

"bucket": "test",

"key": "SGWS/Tagging.txt",
"versionId": "",

"accountId": "86928401983529626822",
"size": 38,

"md5": "3d6c7634a85436eee06d43415012855",
"region":"us-east-1"

"metadata": {
"age": "25"

by

"tags": {
"color": "yellow"

Object metadata included in metadata notifications

The table lists all the fields that are included in the JSON document that is sent to the destination endpoint
when search integration is enabled.

The document name includes the bucket name, object name, and version ID if present.

Type Item name Description

Bucket and object information bucket Name of the bucket

Bucket and object information key Object key name

Bucket and object information versionl|D Object version, for objects in

versioned buckets

Bucket and object information region Bucket region, for example us-
east-1

80

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

Type Item name Description

System metadata size Object size (in bytes) as visible to
an HTTP client

System metadata md5 Object hash

User metadata metadata key:value All user metadata for the object, as
key-value pairs

Tags tags key:value All object tags defined for the
object, as key-value pairs

Note: For tags and user metadata, StorageGRID passes dates and numbers to Elasticsearch as strings or as
S3 event notifications. To configure Elasticsearch to interpret these strings as dates or numbers, follow the
Elasticsearch instructions for dynamic field mapping and for mapping date formats. You must enable the
dynamic field mappings on the index before you configure the search integration service. After a document is
indexed, you cannot edit the document’s field types in the index.

GET Storage Usage request

The GET Storage Usage request tells you the total amount of storage in use by an account, and for each
bucket associated with the account.

The amount of storage used by an account and its buckets can be obtained by a modified GET Service
request with the x-ntap-sg-usage query parameter. Bucket storage usage is tracked separately from the
PUT and DELETE requests processed by the system. There might be some delay before the usage values
match the expected values based on the processing of requests, particularly if the system is under heavy load.

By default, StorageGRID attempts to retrieve usage information using strong-global consistency. If strong-
global consistency cannot be achieved, StorageGRID attempts to retrieve the usage information at a strong-
site consistency.

You must have the s3:ListAllIMyBuckets permission, or be account root, to complete this operation.

Request example

GET /?x-ntap-sg-usage HTTP/1.1

Date: date

Authorization: authorization string
Host: host

Response example

This example shows an account that has four objects and 12 bytes of data in two buckets. Each bucket
contains two objects and six bytes of data.

81

HTTP/1.1 200 OK

Date: Sat, 29 Nov 2015 00:49:05 GMT
Connection: KEEP-ALIVE

Server: StorageGRID/10.2.0
x—amz-request-id: 727237123
Content-Length: 427

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<UsageResult xmlns="http://s3.storagegrid.com/doc/2015-02-01">
<CalculationTime>2014-11-19T05:30:11.000000Z</CalculationTime>
<ObjectCount>4</0ObjectCount>

<DataBytes>12</DataBytes>

<Buckets>

<Bucket>

<Name>bucketl</Name>

<ObjectCount>2</ObjectCount>

<DataBytes>6</DataBytes>

</Bucket>

<Bucket>

<Name>bucket2</Name>

<ObjectCount>2</ObjectCount>

<DataBytes>6</DataBytes>

</Bucket>

</Buckets>

</UsageResult>

Versioning

Every object version stored will contribute to the ObjectCount and DataBytes values in the response.
Delete markers are not added to the ObjectCount total.

Related information
Consistency controls
Deprecated bucket requests for legacy Compliance

You might need to use the StorageGRID S3 REST API to manage buckets that were created using the legacy
Compliance feature.

Compliance feature deprecated

The StorageGRID Compliance feature that was available in previous StorageGRID versions is deprecated and
has been replaced by S3 Object Lock.

If you previously enabled the global Compliance setting, the global S3 Object Lock setting is enabled
automatically when you upgrade to StorageGRID 11.5. You can no longer create new buckets with Compliance

82

enabled; however, as required, you can use the StorageGRID S3 REST API to manage any existing legacy
Compliant buckets.

Using S3 Object Lock
Manage objects with ILM

NetApp Knowledge Base: How to manage legacy Compliant buckets in StorageGRID 11.5

Deprecated: PUT Bucket request modifications for compliance

The SGCompliance XML element is deprecated. Previously, you could include this StorageGRID custom
element in the optional XML request body of PUT Bucket requests to create a Compliant bucket.

@ The StorageGRID Compliance feature that was available in previous StorageGRID versions is
deprecated and has been replaced by S3 Object Lock.

Using S3 Object Lock

Manage objects with ILM

NetApp Knowledge Base: How to manage legacy Compliant buckets in StorageGRID 11.5

You can no longer create new buckets with Compliance enabled. The following error message is returned if

you attempt to use the PUT Bucket request modifications for compliance to create a new Compliant bucket:

The Compliance feature is deprecated.
Contact your StorageGRID administrator if you need to create new Compliant
buckets.

Related information

Manage objects with ILM

Use a tenant account

Deprecated: GET Bucket compliance request

The GET Bucket compliance request is deprecated. However, you can continue to use this request to
determine the compliance settings currently in effect for an existing legacy Compliant bucket.

@ The StorageGRID Compliance feature that was available in previous StorageGRID versions is
deprecated and has been replaced by S3 Object Lock.

Using S3 Object Lock
Manage objects with ILM
NetApp Knowledge Base: How to manage legacy Compliant buckets in StorageGRID 11.5

You must have the s3:GetBucketCompliance permission, or be account root, to complete this operation.

83

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://kb.netapp.com/Advice_and_Troubleshooting/Hybrid_Cloud_Infrastructure/StorageGRID/How_to_manage_legacy_Compliant_buckets_in_StorageGRID_11.5
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://kb.netapp.com/Advice_and_Troubleshooting/Hybrid_Cloud_Infrastructure/StorageGRID/How_to_manage_legacy_Compliant_buckets_in_StorageGRID_11.5
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://kb.netapp.com/Advice_and_Troubleshooting/Hybrid_Cloud_Infrastructure/StorageGRID/How_to_manage_legacy_Compliant_buckets_in_StorageGRID_11.5

Request example

This example request allows you to determine the compliance settings for the bucket named mybucket.

GET /mybucket/?x-ntap-sg-compliance HTTP/1.1
Date: date
Authorization: authorization string
Host: host

Response example

In the response XML, <SGCompliance> lists the compliance settings in effect for the bucket. This example
response shows the compliance settings for a bucket in which each object will be retained for one year
(525,600 minutes), starting from when the object is ingested into the grid. There is currently no legal hold on
this bucket. Each object will be automatically deleted after one year.

HTTP/1.1 200 OK

Date: date

Connection: connection
Server: StorageGRID/11.1.0
x—amz-request-id: request ID
Content-Length: length
Content-Type: application/xml

<SGCompliance>
<RetentionPeriodMinutes>525600</RetentionPeriodMinutes>
<LegalHold>false</LegalHold>
<AutoDelete>true</AutoDelete>

</SGCompliance>
Name Description
RetentionPeriodMinutes The length of the retention period for objects added to
this bucket, in minutes. The retention period starts
when the object is ingested into the grid.
LegalHold » True: This bucket is currently under a legal hold.

Objects in this bucket cannot be deleted until the
legal hold is lifted, even if their retention period
has expired.

+ False: This bucket is not currently under a legal
hold. Objects in this bucket can be deleted when
their retention period expires.

84

Name Description

AutoDelete » True: The objects in this bucket will be deleted
automatically when their retention period expires,
unless the bucket is under a legal hold.

 False: The objects in this bucket will not be
deleted automatically when the retention period
expires. You must delete these objects manually if
you need to delete them.

Error responses

If the bucket was not created to be compliant, the HTTP status code for the response is 404 Not Found, with
an S3 error code of XNoSuchBucketCompliance.

Related information
Manage objects with ILM

Use a tenant account

Deprecated: PUT Bucket compliance request

The PUT Bucket compliance request is deprecated. However, you can continue to use this request to modify
the compliance settings for an existing legacy Compliant bucket. For example, you can place an existing
bucket on legal hold or increase its retention period.

@ The StorageGRID Compliance feature that was available in previous StorageGRID versions is
deprecated and has been replaced by S3 Object Lock.

Using S3 Object Lock

Manage objects with ILM

NetApp Knowledge Base: How to manage legacy Compliant buckets in StorageGRID 11.5

You must have the s3:PutBucketCompliance permission, or be account root, to complete this operation.

You must specify a value for every field of the compliance settings when issuing a PUT Bucket compliance
request.

Request example

This example request modifies the compliance settings for the bucket named mybucket. In this example,
objects in mybucket will now be retained for two years (1,051,200 minutes) instead of one year, starting from
when the object is ingested into the grid. There is no legal hold on this bucket. Each object will be automatically
deleted after two years.

85

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://kb.netapp.com/Advice_and_Troubleshooting/Hybrid_Cloud_Infrastructure/StorageGRID/How_to_manage_legacy_Compliant_buckets_in_StorageGRID_11.5

PUT /mybucket/?x-ntap-sg-compliance HTTP/1.1
Date: date

Authorization: authorization name
Host: host

Content-Length: 152

<SGCompliance>
<RetentionPeriodMinutes>1051200</RetentionPeriodMinutes>
<LegalHold>false</LegalHold>
<AutoDelete>true</AutoDelete>

</SGCompliance>

Name Description

RetentionPeriodMinutes The length of the retention period for objects added to
this bucket, in minutes. The retention period starts
when the object is ingested into the grid.

Attention: When specifying a new value for
RetentionPeriodMinutes, you must specify a value
that is equal to or greater than the bucket’s current
retention period. After the bucket’s retention period is
set, you cannot decrease that value; you can only
increase it.

LegalHold » True: This bucket is currently under a legal hold.
Objects in this bucket cannot be deleted until the
legal hold is lifted, even if their retention period
has expired.

 False: This bucket is not currently under a legal
hold. Objects in this bucket can be deleted when
their retention period expires.

AutoDelete » True: The objects in this bucket will be deleted
automatically when their retention period expires,
unless the bucket is under a legal hold.

» False: The objects in this bucket will not be
deleted automatically when the retention period
expires. You must delete these objects manually if
you need to delete them.

Consistency level for compliance settings

When you update the compliance settings for an S3 bucket with a PUT Bucket compliance request,
StorageGRID attempts to update the bucket’'s metadata across the grid. By default, StorageGRID uses the
strong-global consistency level to guarantee that all data center sites and all Storage Nodes that contain
bucket metadata have read-after-write consistency for the changed compliance settings.

86

If StorageGRID cannot achieve the strong-global consistency level because a data center site or multiple
Storage Nodes at a site are unavailable, the HTTP status code for the response is 503 Service
Unavailable.

If you receive this response, you must contact the grid administrator to ensure that the required storage
services are made available as soon as possible. If the grid administrator is unable to make enough of the
Storage Nodes at each site available, technical support might direct you to retry the failed request by forcing
the strong-site consistency level.

Never force the strong-site consistency level for PUT bucket compliance unless you have been
directed to do so by technical support and unless you understand the potential consequences of
using this level.

When the consistency level is reduced to strong-site, StorageGRID guarantees that updated compliance
settings will have read-after-write consistency only for client requests within a site. This means that the
StorageGRID system might temporarily have multiple, inconsistent settings for this bucket until all sites and
Storage Nodes are available. The inconsistent settings can result in unexpected and undesired behavior. For
example, if you are placing a bucket under a legal hold and you force a lower consistency level, the bucket’s
previous compliance settings (that is, legal hold off) might continue to be in effect at some data center sites. As
a result, objects that you think are on legal hold might be deleted when their retention period expires, either by
the user or by AutoDelete, if enabled.

To force the use of the strong-site consistency level, reissue the PUT Bucket compliance request and include
the Consistency-Control HTTP request header, as follows:

PUT /mybucket/?x-ntap-sg-compliance HTTP/1.1
Consistency-Control: strong-site

Error responses

* If the bucket was not created to be compliant, the HTTP status code for the response is 404 Not Found.

* If RetentionPeriodMinutes in the request is less than the bucket’s current retention period, the HTTP
status code is 400 Bad Request.

Related information

Deprecated: PUT Bucket request modifications for compliance
Use a tenant account

Manage objects with ILM

Bucket and group access policies

StorageGRID uses the Amazon Web Services (AWS) policy language to allow S3 tenants
to control access to buckets and objects within those buckets. The StorageGRID system

implements a subset of the S3 REST API policy language. Access policies for the S3 API
are written in JSON.

87

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html
https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

Access policy overview
There are two kinds of access policies supported by StorageGRID.

» Bucket policies, which are configured using the GET Bucket policy, PUT Bucket policy, and DELETE
Bucket policy S3 API operations. Bucket policies are attached to buckets, so they are configured to control
access by users in the bucket owner account or other accounts to the bucket and the objects in it. A bucket
policy applies to only one bucket and possibly multiple groups.

* Group policies, which are configured using the Tenant Manager or Tenant Management API. Group
policies are attached to a group in the account, so they are configured to allow that group to access
specific resources owned by that account. A group policy applies to only one group and possibly multiple
buckets.

StorageGRID bucket and group policies follow a specific grammar defined by Amazon. Inside each policy is an
array of policy statements, and each statement contains the following elements:

 Statement ID (Sid) (optional)
« Effect

* Principal/NotPrincipal

» Resource/NotResource
 Action/NotAction
 Condition (optional)

Policy statements are built using this structure to specify permissions: Grant <Effect> to allow/deny <Principal>
to perform <Action> on <Resource> when <Condition> applies.

Each policy element is used for a specific function:

Element Description

Sid The Sid element is optional. The Sid is only intended
as a description for the user. It is stored but not
interpreted by the StorageGRID system.

Effect Use the Effect element to establish whether the
specified operations are allowed or denied. You must
identify operations you allow (or deny) on buckets or
objects using the supported Action element keywords.

Principal/NotPrincipal You can allow users, groups, and accounts to access
specific resources and perform specific actions. If no
S3 signature is included in the request, anonymous
access is allowed by specifying the wildcard character
(*) as the principal. By default, only the account root
has access to resources owned by the account.

You only need to specify the Principal element in a

bucket policy. For group policies, the group to which
the policy is attached is the implicit Principal element.

88

Element Description

Resource/NotResource The Resource element identifies buckets and objects.
You can allow or deny permissions to buckets and
objects using the Amazon Resource Name (ARN) to
identify the resource.

Action/NotAction The Action and Effect elements are the two
components of permissions. When a group requests a
resource, they are either granted or denied access to
the resource. Access is denied unless you specifically
assign permissions, but you can use explicit deny to
override a permission granted by another policy.

Condition The Condition element is optional. Conditions allow
you to build expressions to determine when a policy
should be applied.

In the Action element, you can use the wildcard character (*) to specify all operations, or a subset of
operations. For example, this Action matches permissions such as s3:GetObject, s3:PutObject, and
s3:DeleteObject.

s3:*0Object
In the Resource element, you can use the wildcard characters (*) and (?). While the asterisk (*) matches 0 or
more characters, the question mark (?) matches any single character.
In the Principal element, wildcard characters are not supported except to set anonymous access, which grants
permission to everyone. For example, you set the wildcard (*) as the Principal value.

"Principal":"*"

In the following example, the statement is using the Effect, Principal, Action, and Resource elements. This
example shows a complete bucket policy statement that uses the Effect "Allow" to give the Principals, the
admin group federated-group/admin and the finance group federated-group/finance, permissions
to perform the Action s3:ListBucket on the bucket named mybucket and the Action s3:GetObject on all
objects inside that bucket.

89

"Statement": |

{

"Effect": "Allow",
"Principal": {
"AWS": [

"arn:aws:iam::27233906934684427525: federated-group/admin",
"arn:aws:iam::27233906934684427525: federated-group/finance"
]
by
"Action": [
"s3:ListBucket",
"s3:GetObject"
1,
"Resource": [
"arn:aws:iam:s3:: :mybucket",

"arn:aws:iam:s3:::mybucket/*"

The bucket policy has a size limit of 20,480 bytes, and the group policy has a size limit of 5,120 bytes.

Related information
Use a tenant account

Consistency control settings for policies

By default, any updates you make to group policies are eventually consistent. Once a group policy becomes
consistent, the changes can take an additional 15 minutes to take effect, because of policy caching. By default,
any updates you make to bucket policies are also eventually consistent.

As required, you can change the consistency guarantees for bucket policy updates. For example, you might
want a change to a bucket policy to become effective as soon as possible for security reasons.

In this case, you can either set the Consistency-Control header in the PUT Bucket policy request, or you
can use the PUT Bucket consistency request. When changing the consistency control for this request, you
must use the value all, which provides the highest guarantee of read-after-write consistency. If you specify any
other consistency control value in a header for the PUT Bucket consistency request, the request will be
rejected. If you specify any other value for a PUT Bucket policy request, the value will be ignored. Once a
bucket policy becomes consistent, the changes can take an additional 8 seconds to take effect, because of
policy caching.

If you set the consistency level to all to force a new bucket policy to become effective sooner, be
sure to set the bucket-level control back to its original value when you are done. Otherwise, all
future bucket requests will use the all setting.

90

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

Using the ARN in policy statements

In policy statements, the ARN is used in Principal and Resource elements.

» Use this syntax to specify the S3 resource ARN:

arn:aws:s3:::bucket-name
arn:aws:s3:::bucket-name/object key

» Use this syntax to specify the identity resource ARN (users and groups):

arn:aws:iam::account id:root
arn:aws:iam::account id:user/user name
arn:aws:iam::account id:group/group name
arn:aws:iam::account id:federated-user/user name

arn:aws:iam::account id:federated-group/group name

Other considerations:

* You can use the asterisk (*) as a wildcard to match zero or more characters inside the object key.

* International characters, which can be specified in the object key, should be encoded using JSON UTF-8 or
using JSON \u escape sequences. Percent-encoding is not supported.

RFC 2141 URN Syntax

The HTTP request body for the PUT Bucket policy operation must be encoded with charset=UTF-8.

Specifying resources in a policy

In policy statements, you can use the Resource element to specify the bucket or object for which permissions
are allowed or denied.

« Each policy statement requires a Resource element. In a policy, resources are denoted by the element
Resource, or alternatively, NotResource for exclusion.

* You specify resources with an S3 resource ARN. For example:

"Resource": "arn:aws:s3:::mybucket/*"

* You can also use policy variables inside the object key. For example:

"Resource": "arn:aws:s3:::mybucket/home/${aws:username}/*"

* The resource value can specify a bucket that does not yet exist when a group policy is created.

Related information

91

https://www.ietf.org/rfc/rfc2141.txt

Specifying variables in a policy

Specifying principals in a policy

Use the Principal element to identity the user, group, or tenant account that is allowed/denied access to the
resource by the policy statement.

» Each policy statement in a bucket policy must include a Principal element. Policy statements in a group
policy do not need the Principal element because the group is understood to be the principal.

* In a policy, principals are denoted by the element “Principal,” or alternatively “NotPrincipal” for exclusion.

» Account-based identities must be specified using an ID or an ARN:

"Principal”: { "AWS": "account id"}
"Principal": { "AWS": "identity arn" }

» This example uses the tenant account ID 27233906934684427525, which includes the account root and all
users in the account:

"Principal”: { "AWS": "27233906934684427525" }

* You can specify just the account root:

"Principal": { "AWS": "arn:aws:iam::27233906934684427525:root" }

* You can specify a specific federated user ("Alex"):

"Principal": { "AWS": "arn:aws:1iam::27233906934684427525:federated-
user/Alex" }

* You can specify a specific federated group ("Managers"):

"Principal": { "AWS": "arn:aws:iam::27233906934684427525:federated-
group/Managers" }

* You can specify an anonymous principal:

"Principal": "*"

» To avoid ambiguity, you can use the user UUID instead of the username:

92

arn:aws:iam::27233906934684427525:user-uuid/de305d54-75b4-431b-adb2-

eb6b9%9e546013

For example, suppose Alex leaves the organization and the username 2Alex is deleted. If a new Alex joins
the organization and is assigned the same Alex username, the new user might unintentionally inherit the
permissions granted to the original user.

» The principal value can specify a group/user name that does not yet exist when a bucket policy is created.

Specifying permissions in a policy

In a policy, the Action element is used to allow/deny permissions to a resource. There are a set of permissions
that you can specify in a policy, which are denoted by the element "Action," or alternatively, "NotAction" for
exclusion. Each of these elements maps to specific S3 REST API operations.

The tables lists the permissions that apply to buckets and the permissions that apply to objects.

Amazon S3 now uses the s3:PutReplicationConfiguration permission for both the PUT and
@ DELETE Bucket replication actions. StorageGRID uses separate permissions for each action,
which matches the original Amazon S3 specification.

@ A DELETE is performed when a PUT is used to overwrite an existing value.

Permissions that apply to buckets

Permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteBucketMetadataNotificati
on

s3:DeleteBucketPolicy

s3:DeleteReplicationConfiguration

s3:GetBucketAcl

s3:GetBucketCompliance

s3:GetBucketConsistency

s3:GetBucketCORS

S3 REST API operations
PUT Bucket

DELETE Bucket

DELETE Bucket metadata
notification configuration

DELETE Bucket policy

DELETE Bucket replication

GET Bucket ACL

GET Bucket compliance
(deprecated)

GET Bucket consistency

GET Bucket cors

Custom for StorageGRID

Yes

Yes, separate permissions for PUT
and DELETE*

Yes

Yes

93

Permissions S3 REST API operations Custom for StorageGRID

s3:GetEncryptionConfiguration GET Bucket encryption
s3:GetBucketLastAccessTime GET Bucket last access time Yes
s3:GetBucketLocation GET Bucket location

s3:GetBucketMetadataNotification = GET Bucket metadata notification Yes
configuration

s3:GetBucketNotification GET Bucket notification

s3:GetBucketObjectLockConfigurat GET Object Lock Configuration

ion
s3:GetBucketPolicy GET Bucket policy
s3:GetBucketTagging GET Bucket tagging
s3:GetBucketVersioning GET Bucket versioning
s3:GetLifecycleConfiguration GET Bucket lifecycle

s3:GetReplicationConfiguration GET Bucket replication

s3:ListAllIMyBuckets * GET Service Yes, for GET Storage Usage
» GET Storage Usage

s3:ListBucket » GET Bucket (List Objects)
* HEAD Bucket
» POST Object restore

s3:ListBucketMultipartUploads * List Multipart Uploads
» POST Object restore

s3:ListBucketVersions GET Bucket versions

s3:PutBucketCompliance PUT Bucket compliance Yes
(deprecated)

s3:PutBucketConsistency PUT Bucket consistency Yes

94

Permissions S3 REST API operations Custom for StorageGRID

s3:PutBucketCORS * DELETE Bucket corst
* PUT Bucket cors

s3:PutEncryptionConfiguration * DELETE Bucket encryption
» PUT Bucket encryption

s3:PutBucketLastAccessTime PUT Bucket last access time Yes

s3:PutBucketMetadataNotification PUT Bucket metadata notification Yes
configuration

s3:PutBucketNotification PUT Bucket notification

s3:PutBucketObjectLockConfigurati PUT Bucket with the x-amz-

on bucket-object-lock-
enabled: true request header
(also requires the s3:CreateBucket

permission)
s3:PutBucketPolicy PUT Bucket policy
s3:PutBucketTagging * DELETE Bucket taggingt

* PUT Bucket tagging

s3:PutBucketVersioning PUT Bucket versioning

s3:PutLifecycleConfiguration * DELETE Bucket lifecyclet
» PUT Bucket lifecycle

s3:PutReplicationConfiguration PUT Bucket replication Yes, separate permissions for PUT

and DELETE*

Permissions that apply to objects

Permissions S3 REST API operations Custom for StorageGRID

s3:AbortMultipartUpload * Abort Multipart Upload
* POST Object restore

s3:DeleteObject

DELETE Object
» DELETE Multiple Objects
* POST Object restore

95

Permissions

s3:DeleteObjectTagging

s3:DeleteObjectVersionTagging

s3:DeleteObjectVersion

s3:GetObject

s3:GetObjectAcl

s3:GetObjectLegalHold

s3:GetObjectRetention

s3:GetObjectTagging

s3:GetObjectVersionTagging

s3:GetObjectVersion

s3:ListMultipartUploadParts

s3:PutObject

s3:PutObjectLegalHold

s3:PutObjectRetention

s3:PutObjectTagging

96

S3 REST API operations
DELETE Object Tagging

DELETE Object Tagging (a specific

version of the object)

DELETE Object (a specific version
of the object)

» GET Object
» HEAD Object
* POST Object restore

GET Object ACL

GET Object legal hold

GET Object retention

GET Object Tagging

GET Object Tagging (a specific
version of the object)

GET Object (a specific version of
the object)

List Parts, POST Obiject restore

* PUT Object

* PUT Object - Copy

* POST Object restore

¢ Initiate Multipart Upload

» Complete Multipart Upload
» Upload Part

* Upload Part - Copy

PUT Object legal hold

PUT Object retention

PUT Object Tagging

Custom for StorageGRID

Permissions S3 REST API operations Custom for StorageGRID

s3:PutObjectVersionTagging PUT Object Tagging (a specific
version of the object)

s3:PutOverwriteObject * PUT Object Yes
PUT Object - Copy

PUT Object tagging

DELETE Object tagging

« Complete Multipart Upload

s3:RestoreObject POST Object restore

Using the PutOverwriteObject permission

The s3:PutOverwriteObject permission is a custom StorageGRID permission that applies to operations that
create or update objects. The setting of this permission determines whether the client can overwrite an object’s
data, user-defined metadata, or S3 object tagging.

Possible settings for this permission include:

» Allow: The client can overwrite an object. This is the default setting.

* Deny: The client cannot overwrite an object. When set to Deny, the PutOverwriteObject permission works
as follows:

o If an existing object is found at the same path:
= The object’s data, user-defined metadata, or S3 object tagging cannot be overwritten.
= Any ingest operations in progress are cancelled, and an error is returned.

= If S3 versioning is enabled, the Deny setting prevents PUT Object tagging or DELETE Object
tagging operations from modifying the TagSet for an object and its noncurrent versions.

o If an existing object is not found, this permission has no effect.

* When this permission is not present, the effect is the same as if Allow were set.

If the current S3 policy allows overwrite, and the PutOverwriteObject permission is set to Deny,

@ the client cannot overwrite an object’s data, user-defined metadata, or object tagging. In
addition, if the Prevent Client Modification check box is selected (Configuration > Grid
Options), that setting overrides the setting of the PutOverwriteObject permission.

Related information

S3 group policy examples

Specifying conditions in a policy
Conditions define when a policy will be in effect. Conditions consist of operators and key-value pairs.

Conditions use key-value pairs for evaluation. A Condition element can contain multiple conditions, and each
condition can contain multiple key-value pairs. The condition block uses the following format:

97

Condition: {
condition type: {

condition key: condition values

In the following example, the IpAddress condition uses the Sourcelp condition key.

"Condition": {
"IpAddress": {

"aws:Sourcelp": "54.240.143.0/24"

by

Supported condition operators

Condition operators are categorized as follows:

 String

* Numeric

* Boolean
 IP address
* Null check

Condition operators

StringEquals

StringNotEquals

StringEqualsignoreCase

StringNotEqualsignoreCase

StringLike

StringNotLike

98

Description

Compares a key to a string value based on exact
matching (case sensitive).

Compares a key to a string value based on negated
matching (case sensitive).

Compares a key to a string value based on exact
matching (ignores case).

Compares a key to a string value based on negated
matching (ignores case).

Compares a key to a string value based on exact
matching (case sensitive). Can include * and ?
wildcard characters.

Compares a key to a string value based on negated
matching (case sensitive). Can include * and ?
wildcard characters.

Condition operators

NumericEquals

NumericNotEquals

NumericGreaterThan

NumericGreaterThanEquals

NumericLessThan

NumericLessThanEquals

Bool

IpAddress

NotlpAddress

Null

Supported condition keys

Description

Compares a key to a numeric value based on exact
matching.

Compares a key to a numeric value based on
negated matching.

Compares a key to a numeric value based on “greater
than” matching.

Compares a key to a numeric value based on “greater
than or equals” matching.

Compares a key to a numeric value based on “less
than” matching.

Compares a key to a numeric value based on “less
than or equals” matching.

Compares a key to a Boolean value based on “true or
false” matching.

Compares a key to an IP address or range of IP
addresses.

Compares a key to an IP address or range of IP
addresses based on negated matching.

Checks if a condition key is present in the current
request context.

99

Category

IP operators

Resource/ldentity

S3:ListBucket and

S3:ListBucketVersions permissions

S3:ListBucket and

S3:ListBucketVersions permissions

S3:ListBucket and

S3:ListBucketVersions permissions

Applicable condition keys

aws:Sourcelp

aws:username

s3:delimiter

s3:max-keys

s3:prefix

Specifying variables in a policy

Description

Will compare to the IP address
from which the request was sent.
Can be used for bucket or object
operations.

Note: If the S3 request was sent
through the Load Balancer service
on Admin Nodes and Gateways
Nodes, this will compare to the IP
address upstream of the Load
Balancer service.

Note: If a third-party, non-
transparent load balancer is used,
this will compare to the IP address
of that load balancer. Any X-
Forwarded-For header will be
ignored since its validity cannot be
ascertained.

Will compare to the sender’s
username from which the request
was sent. Can be used for bucket
or object operations.

Will compare to the delimiter
parameter specified in a GET
Bucket or GET Bucket Object
versions request.

Will compare to the max-keys
parameter specified in a GET
Bucket or GET Bucket Object
versions request.

Will compare to the prefix
parameter specified in a GET
Bucket or GET Bucket Object
versions request.

You can use variables in policies to populate policy information when it is available. You can use policy
variables in the Resource element and in string comparisons in the Condition element.

In this example, the variable $ {aws:username} is part of the Resource element:

"Resource": "arn:aws:s3::: bucket-name/home /${aws:username}/*"

100

In this example, the variable $ {aws:username} is part of the condition value in the condition block:

"Condition": {
"StringLike": {

"s3:prefix": "${aws:username}/*"

I

Variable

S{aws:Sourcelp}

S{aws:username}

${s3:prefix}

${s3:max-keys}

${*}

${?}

${s}

Description

Uses the Sourcelp key as the provided variable.

Uses the username key as the provided variable.

Uses the service-specific prefix key as the provided
variable.

Uses the service-specific max-keys key as the
provided variable.

Special character. Uses the character as a literal *
character.

Special character. Uses the character as a literal ?
character.

Special character. Uses the character as a literal $
character.

Creating policies requiring special handling

Sometimes a policy can grant permissions that are dangerous for security or dangerous for continued
operations, such as locking out the root user of the account. The StorageGRID S3 REST API implementation is
less restrictive during policy validation than Amazon, but equally strict during policy evaluation.

Policy description Policy type

Deny self any permissions Bucket
to the root account

Deny self any permissions Group
to user/group

Amazon behavior StorageGRID behavior

Valid and enforced, but Same
root user account retains
permission for all S3

bucket policy operations

Valid and enforced Same

101

Policy description

Allow a foreign account
group any permission

Allow a foreign account
root or user any
permission

Allow everyone
permissions to all actions

Deny everyone
permissions to all actions

Principal is a non-existent
user or group

Resource is a non-
existent S3 bucket

Principal is a local group

Policy type
Bucket

Bucket

Bucket

Bucket

Bucket

Group

Bucket

Policy grants a non-owner Bucket

account (including
anonymous accounts)
permissions to PUT
objects

Write-once-read-many (WORM) protection

Amazon behavior

Invalid principal

Valid, but permissions for
all S3 bucket policy
operations return a 405
Method Not Allowed error
when allowed by a policy

Valid, but permissions for
all S3 bucket policy
operations return a 405
Method Not Allowed error
for the foreign account
root and users

Valid and enforced, but
root user account retains
permission for all S3
bucket policy operations

Invalid principal

Valid

Invalid principal

Valid. Objects are owned
by the creator account,
and the bucket policy
does not apply. The
creator account must
grant access permissions
for the object using object
ACLs.

StorageGRID behavior

Valid, but permissions for
all S3 bucket policy
operations return a 405
Method Not Allowed error
when allowed by a policy

Same

Same

Same

Valid

Same

Valid

Valid. Objects are owned
by the bucket owner
account. Bucket policy
applies.

You can create write-once-read-many (WORM) buckets to protect data, user-defined object metadata, and S3
object tagging. You configure the WORM buckets to allow the creation of new objects and to prevent
overwrites or deletion of existing content. Use one of the approaches described here.

To ensure that overwrites are always denied, you can:

102

* From the Grid Manager, go to Configuration > Grid Options, and select the Prevent Client Modification

check box.

» Apply the following rules and S3 policies:

o Add a PutOverwriteObject DENY operation to the S3 policy.

o Add a DeleteObject DENY operation to the S3 policy.
o Add a PUT Object ALLOW operation to the S3 policy.

@ Setting DeleteObject to DENY in an S3 policy does not prevent ILM from deleting objects when

a rule such as “zero copies after 30 days” exists.

Even when all of these rules and policies are applied, they do not guard against concurrent
@ writes (see Situation A). They do guard against sequential completed overwrites (see Situation

B).

Situation A: Concurrent writes (not guarded against)

/mybucket/important.doc
PUT#1 ---> OK
PUT#2 —-—-—-———- > OK

Situation B: Sequential completed overwrites (guarded against)

/mybucket/important.doc
PUT#1 —-—-————- > PUT#2 ---X (denied)

Related information
Manage objects with ILM

Creating policies requiring special handling
How StorageGRID ILM rules manage objects

S3 group policy examples

S3 policy examples

Use the examples in this section to build StorageGRID access policies for buckets and groups.

S3 bucket policy examples

Bucket policies specify the access permissions for the bucket that the policy is attached to. Bucket policies are

configured using the S3 PutBucketPolicy API.

A bucket policy can be configured using the AWS CLI as per the following command:

103

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

> aws s3api put-bucket-policy --bucket examplebucket --policy
file://policy.json

Example: Allow everyone read-only access to a bucket

In this example, everyone, including anonymous, is allowed to list objects in the bucket and perform Get Object
operations on all objects in the bucket. All other operations will be denied. Note that this policy might not be
particularly useful since no one except the account root has permissions to write to the bucket.

"Statement": [

{

"Sid": "AllowEveryoneReadOnlyAccess",
"Effect": "Allow",
"Principal": "*",
"Action": ["s3:GetObject", "s3:ListBucket"],
"Resource":
["arn:aws:s3:::examplebucket", "arn:aws:s3:::examplebucket/*"]

Example: Allow everyone in one account full access, and everyone in another account read-only access to a bucket

In this example, everyone in one specified account is allowed full access to a bucket, while everyone in
another specified account is only permitted to List the bucket and perform GetObject operations on objects in
the bucket beginning with the shared/ object key prefix.

@ In StorageGRID, objects created by a non-owner account (including anonymous accounts) are
owned by the bucket owner account. The bucket policy applies to these objects.

104

"Statement": |

{

"Effect": "Allow",

"Principal": {

"AWS": "95390887230002558202"
by

"Action": "s3:*",

"Resource": |
"arn:aws:s3:::examplebucket",
"arn:aws:s3:::examplebucket/*"

]

by
{

"Effect": "Allow",

"Principal": {

"AWS": "31181711887329436680"
by

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::examplebucket/shared/*"

by

{
"Effect": "Allow",
"Principal": {

"AWS": "31181711887329436680"
by

"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::examplebucket",
"Condition": {

"StringLike": {
"s3:prefix": "shared/*"

Example: Allow everyone read-only access to a bucket and full access by specified group

In this example, everyone including anonymous, is allowed to List the bucket and perform GET Object
operations on all objects in the bucket, while only users belonging the group Marketing in the specified
account are allowed full access.

105

"Statement": |

{

"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::95390887230002558202:federated-
group/Marketing"
by
"Action": "s3:*",
"Resource": |
"arn:aws:s3:::examplebucket",
"arn:aws:s3:::examplebucket/*"
]
by
{
"Effect": "Allow",
"Principal": "*",
"Action": ["s3:ListBucket","s3:GetObject"],
"Resource": |
"arn:aws:s3:::examplebucket",
"arn:aws:s3:::examplebucket/*"

Example: Allow everyone read and write access to a bucket if client in IP range

In this example, everyone, including anonymous, is allowed to List the bucket and perform any Object
operations on all objects in the bucket, provided that the requests come from a specified IP range
(54.240.143.0 to 54.240.143.255, except 54.240.143.188). All other operations will be denied, and all requests
outside of the IP range will be denied.

106

"Statement": |
{
"Sid": "AllowEveryoneReadWriteAccessIfInSourcelIpRange",
"Effect": "Allow",
"Principal": "*",
"Action": ["s3:*Object", "s3:ListBucket"],
"Resource":
["arn:aws:s3:::examplebucket", "arn:aws:s3:::examplebucket/*"],
"Condition": {
"IpAddress": {"aws:SourcelIp": "54.240.143.0/24"},
"NotIpAddress": {"aws:SourcelIp": "54.240.143.188"}

Example: Allow full access to a bucket exclusively by a specified federated user

In this example, the federated user Alex is allowed full access to the examplebucket bucket and its objects.

All other users, including ‘root’, are explicitly denied all operations. Note however that ‘root’ is never denied
permissions to Put/Get/DeleteBucketPolicy.

107

"Statement": |

{

"Effect": "Allow",

"Principal":

{

"AWS": "arn:aws:iam::95390887230002558202

}o

"Action": [
1153:*u

1,

"Resource": |

"arn:aws:s3

:::examplebucket",

"arn:aws:s3:::examplebucket/*"
]
"Effect": "Deny",
"NotPrincipal": {
"AWS": "arn:aws:iam::95390887230002558202
by
"Action": [
"s3:x"
1,
"Resource": |

"arn:aws:s3

"arn:aws:s3

:::examplebucket",
:::examplebucket/*"

Example: PutOverwriteObject permission

In this example, the Deny Effect for PutOverwriteObject and DeleteObject ensures that no one can overwrite or

delete the object’s data, user-defined metadata, and S3 object tagging.

108

:federated-user/Alex"

:federated-user/Alex"

"Statement": |

{

"Effect": "Deny",
"Principal": "*",
"Action": [

"s3:PutOverwriteObject",

"s3:DeleteObject",

"s3:DeleteObjectVersion”
1y

"Resource": "arn:aws:s3:::wormbucket/*"
by
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::95390887230002558202:federated-
group/SomeGroup"
by
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::wormbucket"
by
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::95390887230002558202: federated-
group/SomeGroup"
by
"Action": "s3:*",
"Resource": "arn:aws:s3:::wormbucket/*"

Related information
Operations on buckets
S3 group policy examples

Group policies specify the access permissions for the group that the policy is attached to. There is no
Principal elementin the policy since it is implicit. Group policies are configured using the Tenant Manager
or the API.

109

Example: Setting the group policy using the Tenant Manager

When using the Tenant Manager to add or edit a group, you can select how you want to create the group policy
that defines which S3 access permissions members of this group will have, as follows:

* No S3 Access: Default option. Users in this group do not have access to S3 resources, unless access is
granted with a bucket policy. If you select this option, only the root user will have access to S3 resources by
default.

* Read Only Access: Users in this group have read-only access to S3 resources. For example, users in this
group can list objects and read object data, metadata, and tags. When you select this option, the JSON
string for a read-only group policy appears in the text box. You cannot edit this string.

* Full Access: Users in this group have full access to S3 resources, including buckets. When you select this
option, the JSON string for a full-access group policy appears in the text box. You cannot edit this string.

» Custom: Users in the group are granted the permissions you specify in the text box.

In this example, members of the group are only permitted to list and access their specific folder (key prefix)
in the specified bucket.

Mo 53 Access £ ~

"Statement"; |
Read Only Access .

Full Access "Effect”: "Allow”.
"Action”: "s3:ListBucket”,
"Resource": "armaws.s3::department-bucket”,
"Condition": {
"s3:prefix”: "S{aws:username}/*"

(i_;'l Custom

(Must be avalid JSON formatted string.)

"5id": "AllowUserSpecificActionsOnlyinTheSpecificFolder”,
"Effect”: "aAllow",

"Action™: "s3:"0bject”,
"Resource”; "arm:aws:s3:department-bucket/S{aws:username}/*"
l
|
l

Example: Allow group full access to all buckets

In this example, all members of the group are permitted full access to all buckets owned by the tenant account
unless explicitly denied by bucket policy.

110

"Statement": |

{

"Action": "s3:*",
"Effect": "Allow",
"Resource": "arn:aws:s3:::*"

Example: Allow group read-only access to all buckets

In this example, all members of the group have read-only access to S3 resources, unless explicitly denied by

the bucket policy. For example, users in this group can list objects and read object data, metadata, and tags.

"Statement": [

{
"Sid":

"AllowGroupReadOnlyAccess",

"Effect": "Allow",
"Action": [

"s3:
"s3:
"s3:
"s3
"s3:
"s3:
"s3:

1,

ListAllMyBuckets",
ListBucket",
ListBucketVersions",

:GetObject",

GetObjectTagging",
GetObjectVersion",
GetObjectVersionTagging"

"Resource": "arn:aws:s3:::*"

Example: Allow group members full access to only their “folder” in a bucket

In this example, members of the group are only permitted to list and access their specific folder (key prefix) in
the specified bucket. Note that access permissions from other group policies and the bucket policy should be

considered when determining the privacy of these folders.

1M

"Statement": |

{
"Sid": "AllowListBucketOfASpecificUserPrefix",

"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::department-bucket",
"Condition": {
"StringLike": {

"s3:prefix": "S${aws:username}/*"

"Sid": "AllowUserSpecificActionsOnlyInTheSpecificUserPrefix",
"Effect": "Allow",

"Action": "s3:*Object",

"Resource": "arn:aws:s3:::department-bucket/S${aws:username}/*"

Related information
Use a tenant account

Using the PutOverwriteObject permission

Write-once-read-many (WORM) protection

Configuring security for the REST API

You should review the security measures implemented for the REST API and understand
how to secure your system.

How StorageGRID provides security for the REST API

You should understand how the StorageGRID system implements security, authentication, and authorization
for the REST APIL.

StorageGRID uses the following security measures.

 Client communications with the Load Balancer service use HTTPS if HTTPS is configured for the load
balancer endpoint.

When you configure a load balancer endpoint, HTTP can optionally be enabled. For example, you might

want to use HTTP for testing or other non-production purposes. See the instructions for administering
StorageGRID for more information.

112

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

» By default, StorageGRID uses HTTPS for client communications with Storage Nodes and the CLB service
on Gateway Nodes.

HTTP can optionally be enabled for these connections. For example, you might want to use HTTP for
testing or other non-production purposes. See the instructions for administering StorageGRID for more
information.

@ The CLB service is deprecated.

« Communications between StorageGRID and the client are encrypted using TLS.

« Communications between the Load Balancer service and Storage Nodes within the grid are encrypted
whether the load balancer endpoint is configured to accept HTTP or HTTPS connections.

* Clients must supply HTTP authentication headers to StorageGRID to perform REST API operations.

Security certificates and client applications

Clients can connect to the Load Balancer service on Gateway Nodes or Admin Nodes, directly to Storage
Nodes, or to the CLB service on Gateway Nodes.

In all cases, client applications can make TLS connections using either a custom server certificate uploaded by
the grid administrator or a certificate generated by the StorageGRID system:

* When client applications connect to the Load Balancer service, they do so using the certificate that was
configured for the specific load balancer endpoint used to make the connection. Each endpoint has its own
certificate, which is either a custom server certificate uploaded by the grid administrator or a certificate that
the grid administrator generated in StorageGRID when configuring the endpoint.

* When client applications connect directly to a Storage Node or to the CLB service on Gateway Nodes, they
use either the system-generated server certificates that were generated for Storage Nodes when the
StorageGRID system was installed (which are signed by the system certificate authority), or a single
custom server certificate that is supplied for the grid by a grid administrator.

Clients should be configured to trust the certificate authority that signed whichever certificate they use to
establish TLS connections.

See the instructions for administering StorageGRID for information on configuring load balancer endpoints, and
for instructions on adding a single custom server certificate for TLS connections directly to Storage Nodes or to
the CLB service on Gateway Nodes.

Summary

The following table shows how security issues are implemented in the S3 and Swift REST APIs:

Security issue Implementation for REST API
Connection security TLS
Server authentication X.509 server certificate signed by system CA or

custom server certificate supplied by administrator

113

Security issue Implementation for REST API

Client authentication » S3: S3 account (access key ID and secret access
key)

+ Swift: Swift account (user name and password)

Client authorization » S3: Bucket ownership and all applicable access
control policies

« Swift: Administrator role access

Related information
Administer StorageGRID

Supported hashing and encryption algorithms for TLS libraries

The StorageGRID system supports a limited set of cipher suites that client applications can use when
establishing a Transport Layer Security (TLS) session.

Supported versions of TLS

StorageGRID supports TLS 1.2 and TLS 1.3.

@ SSLv3 and TLS 1.1 (or earlier versions) are no longer supported.

Supported cipher suites

TLS version IANA name of cipher suite

1.2 TLS_ECDHE_RSA_WITH_AES 256_GCM_SHA384

1.2 TLS ECDHE_RSA WITH_CHACHA20 POLY1305
SHA256

1.2 TLS ECDHE_RSA WITH_AES 128 GCM_SHA256

1.3 TLS_AES 256 _GCM_SHA384

1.3 TLS_CHACHA20_POLY1305_SHA256

1.3 TLS_AES_128 GCM_SHA256

Deprecated cipher suites

The following cipher suites are deprecated. Support for these ciphers will be removed in a future release.

114

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

IANA Name
TLS RSA WITH_AES 128 GCM_SHA256

TLS_RSA WITH_AES 256 _GCM_SHA384

Related information

How client connections can be configured

Monitoring and auditing operations

You can monitor workloads and efficiencies for client operations by viewing transaction
trends for the entire grid, or for specific nodes. You can use audit messages to monitor
client operations and transactions.

* Monitoring object ingest and retrieval rates

* Accessing and reviewing audit logs

Monitoring object ingest and retrieval rates

You can monitor object ingest and retrieval rates as well as metrics for object counts,
queries, and verification. You can view the number of successful and failed attempts by
client applications to read, write, and modify objects in the StorageGRID system.

Steps

1.
2.

Sign in to the Grid Manager using a supported browser.

On the Dashboard, locate the Protocol Operations section.

This section summarizes the number of client operations performed by your StorageGRID system. Protocol
rates are averaged over the last two minutes.

3. Select Nodes.

From the Nodes home page (deployment level), click the Load Balancer tab.

The charts show trends for all client traffic directed to load balancer endpoints within the grid. You can
select a time interval in hours, days, weeks, months, or years, or you can apply a custom interval.

. From the Nodes home page (deployment level), click the Objects tab.

The chart shows ingest and retrieve rates for your entire StorageGRID system in bytes per second and
total bytes. You can select a time interval in hours, days, weeks, months, or years, or you can apply a
custom interval.

. To see information for a particular Storage Node, select the node from the list on the left, and click the

Objects tab.

The chart shows the object ingest and retrieval rates for this Storage Node. The tab also includes metrics
for object counts, queries, and verification. You can click the labels to see the definitions of these metrics.

115

DCA-532 (Storage Mode)

Overview Hardware MNetwork Storage Objects
1 hour 1 day 1 week
53 Ingest and Retrieve

1.00 Bps
0.75 Bps
0.50 Bps
0.25 Bps

0 Bps

08:00 0310 08:20 03:30 0E:40 08:50
== |ngest rate Retrieve rate

Object Counts

Total Objects s

Lost Objects i |

53 Buckets and Swift Containers 0

53 Buckets and Swift Containers

The total number of 53 budkets and Swift
containers known by this grid node.

Queries - Successful
Queries - Failed (timed-out)

Queries - Failed (consistency level unmet)

Verification
Status No Errors
Rate Setting Adaptive
Percent Complete 0.00%
Average Stat Time 0.00 microseconds
Objects Verified 0
Object Verification Rate 0.00 objects / second
Data Verified 0 bytes
Data Verification Rate 0.00 bytes / second
Missing Objects 0
Corrupt Objects 0

Quarantined Objects 0

7. If you want even more detail:

116

a. Select Support > Tools > Grid Topology.

b. Select site > Overview > Main.

The API Operations section displays summary information for the entire grid.

12,364
0
0

B

Il

e

5

.44 milizeconds

8
B
B

1L

Events Tasks

1 month 1 year

1.00 Bps
0.75 Bps
0.50 Bps
0.25 Bps

0Bp=

QE:00

== |ngest rate

Custom

Swift Ingest and Retrieve

0210 0E:20

Retrieve rate

c. Select Storage Node > LDR > client application > Overview > Main

0&:30

02:40

The Operations section displays summary information for the selected Storage Node.

Accessing and reviewing audit logs

Audit messages are generated by StorageGRID services and stored in text log files. API-
specific audit messages in the audit logs provide critical security, operation, and
performance monitoring data that can help you evaluate the health of your system.

What you’ll need
* You must have specific access permissions.
* You must have the Passwords. txt file.

* You must know the IP address of an Admin Node.

About this task

The active audit log file is named audit.log, and it is stored on Admin Nodes.

Once a day, the active audit.log file is saved, and a new audit. log file is started. The name of the saved file
indicates when it was saved, in the format yyyy-mm-dd. txt.

After a day, the saved file is compressed and renamed, in the format yyyy-mm-dd. txt. gz, which preserves
the original date.

This example shows the active audit. log file, the previous day’s file (2018-04-15. txt), and the
compressed file for the prior day (2018-04-14.txt.gz).

audit.log
2018-04-15.txt
2018-04-14.txt.gz

Steps
1. Log in to an Admin Node:

a. Enter the following command:
ssh admin@primary Admin Node IP

b. Enter the password listed in the Passwords. txt file.

2. Go to the directory containing the audit log files:
cd /var/local/audit/export

3. View the current or a saved audit log file, as required.

S3 operations tracked in the audit logs

Several bucket operations and object operations are tracked in the StorageGRID audit
logs.

117

Bucket operations tracked in the audit logs

* DELETE Bucket

« DELETE Bucket tagging

* DELETE Multiple Objects

* GET Bucket (List Objects)

* GET Bucket Object versions
» GET Bucket tagging

* HEAD Bucket

* PUT Bucket

* PUT Bucket compliance

* PUT Bucket tagging

* PUT Bucket versioning

Object operations tracked in the audit logs

» Complete Multipart Upload

* Upload Part (when the ILM rule uses the Strict or Balanced ingest behaviors)

* Upload Part - Copy (when the ILM rule uses the Strict or Balanced ingest behaviors)
* DELETE Object

* GET Object

« HEAD Object

* POST Object restore

PUT Object

PUT Object - Copy

Related information
Operations on buckets

Operations on objects

Benefits of active, idle, and concurrent HTTP connections

How you configure HTTP connections can impact the performance of the StorageGRID
system. Configurations differ depending on whether the HTTP connection is active or idle
or you have concurrent multiple connections.

You can identify the performance benefits for the following types of HTTP connections:

 |dle HTTP connections
* Active HTTP connections

» Concurrent HTTP connections

Related information

118

* Benefits of keeping idle HTTP connections open
» Benefits of active HTTP connections
» Benefits of concurrent HTTP connections

» Separation of HTTP connection pools for read and write operations

Benefits of keeping idle HTTP connections open

You should keep HTTP connections open even when client applications are idle to allow
client applications to perform subsequent transactions over the open connection. Based
on system measurements and integration experience, you should keep an idle HTTP
connection open for a maximum of 10 minutes. StorageGRID might automatically close
an HTTP connection that is kept open and idle for longer than 10 minutes.

Open and idle HTTP connections provide the following benefits:

* Reduced latency from the time that the StorageGRID system determines it has to perform an HTTP
transaction to the time that the StorageGRID system can perform the transaction

Reduced latency is the main advantage, especially for the amount of time required to establish TCP/IP and
TLS connections.

* Increased data transfer rate by priming the TCP/IP slow-start algorithm with previously performed transfers
* Instantaneous notification of several classes of fault conditions that interrupt connectivity between the client

application and the StorageGRID system

Determining how long to keep an idle connection open is a trade-off between the benefits of slow start that is
associated with the existing connection and the ideal allocation of the connection to internal system resources.

Benefits of active HTTP connections

For connections directly to Storage Nodes or to the CLB service (deprecated) on
Gateway Nodes, you should limit the duration of an active HTTP connection to a
maximum of 10 minutes, even if the HTTP connection continuously performs
transactions.

Determining the maximum duration that a connection should be held open is a trade-off between the benefits of
connection persistence and the ideal allocation of the connection to internal system resources.

For client connections to Storage Nodes or to the CLB service, limiting active HTTP connections provides the
following benefits:

» Enables optimal load balancing across the StorageGRID system.

When using the CLB service, you should prevent long-lived TCP/IP connections to optimize load balancing
across the StorageGRID system. You should configure client applications to track the duration of each
HTTP connection and close the HTTP connection after a set time so that the HTTP connection can be
reestablished and rebalanced.

The CLB service balances load across the StorageGRID system at the time that a client application
establishes an HTTP connection. Over time, an HTTP connection might no longer be optimal as load

119

balancing requirements change. The system performs its best load balancing when client applications
establish a separate HTTP connection for each transaction, but this negates the much more valuable gains
associated with persistent connections.

@ The CLB service is deprecated.

 Allows client applications to direct HTTP transactions to LDR services that have available space.

* Allows maintenance procedures to start.

Some maintenance procedures start only after all the in-progress HTTP connections are complete.

For client connections to the Load Balancer service, limiting the duration of open connections can be useful for
allowing some maintenance procedures to start promptly. If the duration of client connections is not limited, it
may take several minutes for active connections to be automatically terminated.

Benefits of concurrent HTTP connections

You should keep multiple TCP/IP connections to the StorageGRID system open to allow
parallelism, which increases performance. The optimal number of parallel connections
depends on a variety of factors.

Concurrent HTTP connections provide the following benefits:
* Reduced latency
Transactions can start immediately instead of waiting for other transactions to be completed.
* Increased throughput

The StorageGRID system can perform parallel transactions and increase aggregate transaction
throughput.

Client applications should establish multiple HTTP connections. When a client application has to perform a
transaction, it can select and immediately use any established connection that is not currently processing a
transaction.

Each StorageGRID system’s topology has different peak throughput for concurrent transactions and
connections before performance begins to degrade. Peak throughput depends on factors such as computing
resources, network resources, storage resources, and WAN links. The number of servers and services and the
number of applications that the StorageGRID system supports are also factors.

StorageGRID systems often support multiple client applications. You should keep this in mind when you
determine the maximum number of concurrent connections used by a client application. If the client application
consists of multiple software entities that each establish connections to the StorageGRID system, you should
add up all the connections across the entities. You might have to adjust the maximum number of concurrent
connections in the following situations:

* The StorageGRID system’s topology affects the maximum number of concurrent transactions and
connections that the system can support.

+ Client applications that interact with the StorageGRID system over a network with limited bandwidth might
have to reduce the degree of concurrency to ensure that individual transactions are completed in a
reasonable time.

120

* When many client applications share the StorageGRID system, you might have to reduce the degree of
concurrency to avoid exceeding the limits of the system.

Separation of HTTP connection pools for read and write operations

You can use separate pools of HTTP connections for read and write operations and
control how much of a pool to use for each. Separate pools of HTTP connections enable
you to better control transactions and balance loads.

Client applications can create loads that are retrieve-dominant (read) or store-dominant (write). With separate

pools of HTTP connections for read and write transactions, you can adjust how much of each pool to dedicate
for read or write transactions.

121

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

122

http://www.netapp.com/TM

	Use S3 REST API : StorageGRID
	Table of Contents
	Use S3
	Support for the S3 REST API
	Changes to S3 REST API support
	Supported versions
	Support for StorageGRID platform services

	Configuring tenant accounts and connections
	Creating and configuring S3 tenant accounts
	How client connections can be configured
	Endpoint domain names for S3 requests
	Testing your S3 REST API configuration

	How StorageGRID implements the S3 REST API
	Conflicting client requests
	Consistency controls
	How StorageGRID ILM rules manage objects
	Object versioning
	Recommendations for implementing the S3 REST API

	S3 REST API supported operations and limitations
	Date handling
	Common request headers
	Common response headers
	Authenticating requests
	Operations on the service
	Operations on buckets
	Custom operations on buckets
	Operations on objects
	Operations for multipart uploads
	Error responses

	StorageGRID S3 REST API operations
	GET Bucket consistency request
	PUT Bucket consistency request
	GET Bucket last access time request
	PUT Bucket last access time request
	DELETE Bucket metadata notification configuration request
	GET Bucket metadata notification configuration request
	PUT Bucket metadata notification configuration request
	GET Storage Usage request
	Deprecated bucket requests for legacy Compliance

	Bucket and group access policies
	Access policy overview
	Consistency control settings for policies
	Using the ARN in policy statements
	Specifying resources in a policy
	Specifying principals in a policy
	Specifying permissions in a policy
	Using the PutOverwriteObject permission
	Specifying conditions in a policy
	Specifying variables in a policy
	Creating policies requiring special handling
	Write-once-read-many (WORM) protection
	S3 policy examples

	Configuring security for the REST API
	How StorageGRID provides security for the REST API
	Supported hashing and encryption algorithms for TLS libraries

	Monitoring and auditing operations
	Monitoring object ingest and retrieval rates
	Accessing and reviewing audit logs

	Benefits of active, idle, and concurrent HTTP connections
	Benefits of keeping idle HTTP connections open
	Benefits of active HTTP connections
	Benefits of concurrent HTTP connections
	Separation of HTTP connection pools for read and write operations

