Use Swift REST API
StorageGRID

NetApp
October 03, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-115/swift/history-of-swift-api-
support-in-storagegrid.html on October 03, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Use Swift
OpenStack Swift APl support in StorageGRID
History of Swift API support in StorageGRID
How StorageGRID implements the Swift REST API
Recommendations for implementing the Swift REST API
Configuring tenant accounts and connections
Creating and configuring Swift tenant accounts
How client connections can be configured
Testing your connection in the Swift API configuration
Swift REST API supported operations
Operations supported in StorageGRID
Common response headers for all operations
Supported Swift APl endpoints
Account operations
Container operations
Object operations
OPTIONS request
Error responses to Swift API operations
StorageGRID Swift REST API operations
GET container consistency request
PUT container consistency request
Configuring security for the REST API
How StorageGRID provides security for the REST API
Supported hashing and encryption algorithms for TLS libraries
Monitoring and auditing operations
Monitoring object ingest and retrieval rates
Accessing and reviewing audit logs

© © © ©O N o b~ B ON-_2 2

W N DN DNDNDNDNDDNDNDNDDN=22 2 2
O 00 NN OOl W =~ =~ O O OoN =~

Use Swift

Learn how client applications can use the OpenStack Swift API to interface with the
StorageGRID system.

* OpenStack Swift API support in StorageGRID
» Configuring tenant accounts and connections
» Swift REST API supported operations

+ StorageGRID Swift REST API operations

+ Configuring security for the REST API

* Monitoring and auditing operations

OpenStack Swift APl support in StorageGRID
StorageGRID supports the following specific versions of Swift and HTTP.

Item Version

Swift specification OpenStack Swift Object Storage API v1 as of
November 2015

HTTP 1.1 For more information about HTTP, see HTTP/1.1

(RFCs 7230-35).

Note: StorageGRID does not support HTTP/1.1
pipelining.

Related information
OpenStack: Object Storage API

History of Swift APl support in StorageGRID

You should be aware of changes to the StorageGRID system’s support for the Swift
REST API.

Release Comments

11.5 Removed Weak consistency control. The Available
consistency level will be used instead.

1.4 Added support for TLS 1.3 and updated list of
supported TLS cipher suites. CLB is deprecated.
Added description of interrelationship between ILM
and consistency setting.

http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html

Release Comments

11.3 Updated PUT Object operations to describe the
impact of ILM rules that use synchronous placement
at ingest (the Balanced and Strict options for Ingest
Behavior). Added description of client connections
that use load balancer endpoints or high availability
groups. Updated list of supported TLS cipher suites.
TLS 1.1 ciphers are no longer supported.

11.2 Minor editorial changes to document.

1.1 Added support for using HTTP for Swift client
connections to grid nodes. Updated the definitions of
consistency controls.

11.0 Added support for 1,000 containers for each tenant
account.
10.3 Administrative updates and corrections to the

document. Removed sections for configuring custom
server certificates.

10.2 Initial support of the Swift API by the StorageGRID
system. The currently supported version is
OpenStack Swift Object Storage API v1.

How StorageGRID implements the Swift REST API

A client application can use Swift REST API calls to connect to Storage Nodes and
Gateway Nodes to create containers and to store and retrieve objects. This enables
service-oriented applications developed for OpenStack Swift to connect with on-premise
object storage provided by the StorageGRID system.

Swift object management

After Swift objects have been ingested in the StorageGRID system, they are managed by the information
lifecycle management (ILM) rules in the system’s active ILM policy. The ILM rules and policy determine how
StorageGRID creates and distributes copies of object data and how it manages those copies over time. For
example, an ILM rule might apply to objects in specific Swift containers and might specify that multiple object
copies be saved to several data centers for a certain number of years.

Contact your StorageGRID administrator if you need to understand how the grid’s ILM rules and policies will
affect the objects in your Swift tenant account.

Conflicting client requests

Conflicting client requests, such as a two clients writing to the same key, are resolved on a “latest-wins” basis.
The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a given
request, and not on when Swift clients begin an operation.

Consistency guarantees and controls

By default, StorageGRID provides read-after-write consistency for newly created objects and eventual
consistency for object updates and HEAD operations. Any GET following a successfully completed PUT will be
able to read the newly written data. Overwrites of existing objects, metadata updates, and deletes are
eventually consistent. Overwrites generally take seconds or minutes to propagate, but can take up to 15 days.

StorageGRID also allows you to control consistency on a per container basis. You can change the consistency
control to make a trade-off between the availability of the objects and the consistency of those objects across
different Storage Nodes and sites, as required by your application.

Related information
Manage objects with ILM

GET container consistency request

PUT container consistency request

Recommendations for implementing the Swift REST API

You should follow these recommendations when implementing the Swift REST API for
use with StorageGRID.
Recommendations for HEADs to non-existent objects

If your application routinely checks to see if an object exists at a path where you do not expect the object to
actually exist, you should use the “Available” consistency control. For example, you should use the “Available”
consistency control if your application performs a HEAD operation to a location before performing a PUT
operation to that location.

Otherwise, if the HEAD operation does not find the object, you might receive a high number of 500 Internal
Server errors if one or more Storage Nodes are unavailable.

You can set the “Available” consistency control for each container using the PUT container consistency
request.

Recommendations for object names

You should not use random values as the first four characters of object names. Instead, you should use non-
random, non-unique prefixes, such as image.

If you do need to use random and unique characters in object name prefixes, you should prefix the object
names with a directory name. That is, use this format:
mycontainer/mydir/f8e3-image3132.jpg

Instead of this format:

mycontainer/f8e3-image3132.jpg

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-115/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-115/swift/put-container-consistency-request.html

Recommendations for “range reads”

If the Compress Stored Objects option is selected (Configuration > System Settings > Grid Options),
Swift client applications should avoid performing GET object operations that specify a range of bytes be
returned. These “range read” operations are inefficient because StorageGRID must effectively uncompress the
objects to access the requested bytes. GET Object operations that request a small range of bytes from a very
large object are especially inefficient; for example, it is very inefficient to read a 10 MB range from a 50 GB
compressed object.

If ranges are read from compressed objects, client requests can time out.

@ If you need to compress objects and your client application must use range reads, increase the
read timeout for the application.

Related information
GET container consistency request

PUT container consistency request

Administer StorageGRID

Configuring tenant accounts and connections

Configuring StorageGRID to accept connections from client applications requires creating
one or more tenant accounts and setting up the connections.

Creating and configuring Swift tenant accounts

A Swift tenant account is required before Swift API clients can store and retrieve objects on StorageGRID.
Each tenant account has its own account ID, groups and users, and containers and objects.

Swift tenant accounts are created by a StorageGRID grid administrator using the Grid Manager or the Grid
Management API.

When creating a Swift tenant account, the grid administrator specifies the following information:

 Display name for the tenant (the tenant’s account ID is assigned automatically and cannot be changed)

» Optionally, a storage quota for the tenant account—the maximum number of gigabytes, terabytes, or
petabytes available for the tenant’s objects. A tenant’s storage quota represents a logical amount (object
size), not a physical amount (size on disk).

* If single sign-on (SSO) is not in use for the StorageGRID system, whether the tenant account will use its
own identity source or share the grid’s identity source, and the initial password for the tenant’s local root
user.

 If SSO is enabled, which federated group has Root Access permission to configure the tenant account.

After a Swift tenant account is created, users with the Root Access permission can access the Tenant Manager
to perform tasks such as the following:

« Setting up identity federation (unless the identity source is shared with the grid), and creating local groups
and users

* Monitoring storage usage

https://docs.netapp.com/us-en/storagegrid-115/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-115/swift/put-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

Swift users must have the Root Access permission to access the Tenant Manager. However, the

@ Root Access permission does not allow users to authenticate into the Swift REST API to create
containers and ingest objects. Users must have the Swift Administrator permission to
authenticate into the Swift REST API.

Related information
Administer StorageGRID

Use a tenant account

Supported Swift APl endpoints

How client connections can be configured

A grid administrator makes configuration choices that affect how Swift clients connect to StorageGRID to store
and retrieve data. The specific information you need to make a connection depends upon the configuration that
was chosen.

Client applications can store or retrieve objects by connecting to any of the following:

» The Load Balancer service on Admin Nodes or Gateway Nodes, or optionally, the virtual IP address of a
high availability (HA) group of Admin Nodes or Gateway Nodes

» The CLB service on Gateway Nodes, or optionally, the virtual IP address of a high availability group of
Gateway Nodes

The CLB service is deprecated. Clients configured before the StorageGRID 11.3 release can
continue to use the CLB service on Gateway Nodes. All other client applications that depend
on StorageGRID to provide load balancing should connect using the Load Balancer service.

» Storage Nodes, with or without an external load balancer

When configuring StorageGRID, a grid administrator can use the Grid Manager or the Grid Management API
to perform the following steps, all of which are optional:

1. Configure endpoints for the Load Balancer service.

You must configure endpoints to use the Load Balancer service. The Load Balancer service on Admin
Nodes or Gateway Nodes distributes incoming network connections from client applications to Storage
Nodes. When creating a load balancer endpoint, the StorageGRID administrator specifies a port number,
whether the endpoint accepts HTTP or HTTPS connections, the type of client (S3 or Swift) that will use the
endpoint, and the certificate to be used for HTTPS connections (if applicable).

2. Configure Untrusted Client Networks.
If a StorageGRID administrator configures a node’s Client Network to be untrusted, the node only accepts
inbound connections on the Client Network on ports that are explicitly configured as load balancer
endpoints.

3. Configure high availability groups.
If an administrator creates an HA group, the network interfaces of multiple Admin Nodes or Gateway

Nodes are placed into an active-backup configuration. Client connections are made using the virtual IP
address of the HA group.

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html
https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

For more information about each option, see the instructions for administering StorageGRID.

Summary: IP addresses and ports for client connections

Client applications connect to StorageGRID using the IP address of a grid node and the port number of a
service on that node. If high availability (HA) groups are configured, client applications can connect using the
virtual IP address of the HA group.

Information required to make client connections

The table summarizes the different ways that clients can connect to StorageGRID and the IP addresses and
ports that are used for each type of connection. Contact your StorageGRID administrator for more information,
or see the instructions for administering StorageGRID for a description of how to find this information in the

Grid Manager.

Where connection is
made

HA group

HA group

Admin Node

Gateway Node

Gateway Node

Storage Node

Example

Service that client
connects to

Load Balancer

CLB
Note: The CLB service is

deprecated.

Load Balancer

Load Balancer

CLB

Note: The CLB service is
deprecated.

LDR

IP address

Virtual IP address of an
HA group

Virtual IP address of an
HA group

IP address of the Admin
Node

IP address of the
Gateway Node

IP address of the
Gateway Node

Note: By default, HTTP
ports for CLB and LDR
are not enabled.

IP address of Storage
Node

Port

* Load balancer
endpoint port

Default Swift ports:
« HTTPS: 8083
« HTTP: 8085

* Load balancer
endpoint port

» Load balancer
endpoint port

Default Swift ports:

+ HTTPS: 8083
» HTTP: 8085

Default Swift ports:

+ HTTPS: 18083
* HTTP: 18085

To connect a Swift client to the Load Balancer endpoint of an HA group of Gateway Nodes, use a URL

structured as shown below:

* https://VIP-of-HA-group:LB-endpoint—-port

For example, if the virtual IP address of the HA group is 192.0.2.6 and the port number of a Swift Load
Balancer endpoint is 10444, then a Swift client could use the following URL to connect to StorageGRID:

° https://192.0.2.6:10444

It is possible to configure a DNS name for the IP address that clients use to connect to StorageGRID. Contact
your local network administrator.

Deciding to use HTTPS or HTTP connections

When client connections are made using a Load Balancer endpoint, connections must be made using the
protocol (HTTP or HTTPS) that was specified for that endpoint. To use HTTP for client connections to Storage
Nodes or to the CLB service on Gateway Nodes, you must enable its use.

By default, when client applications connect to Storage Nodes or the CLB service on Gateway Nodes, they
must use encrypted HTTPS for all connections. Optionally, you can enable less-secure HTTP connections by
selecting the Enable HTTP Connection grid option in the Grid Manager. For example, a client application
might use HTTP when testing the connection to a Storage Node in a non-production environment.

@ Be careful when enabling HTTP for a production grid since requests will be sent unencrypted.

@ The CLB service is deprecated.

If the Enable HTTP Connection option is selected, clients must use different ports for HTTP than they use for
HTTPS. See the instructions for administering StorageGRID.

Related information
Administer StorageGRID

Testing your connection in the Swift APl configuration

You can use the Swift CLI to test your connection to the StorageGRID system and to verify that you can read
and write objects to the system.

What you’ll need
* You must have downloaded and installed python-swiftclient, the Swift command-line client.

* You must have a Swift tenant account in the StorageGRID system.

About this task
If you have not configured security, you must add the --insecure flag to each of these commands.

Steps
1. Query the info URL for your StorageGRID Swift deployment:

swift

-U <Tenant Account ID:Account User Name>
-K <User Password>

-A https://<FQDN | IP>:<Port>/info
capabilities

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

This is sufficient to test that your Swift deployment is functional. To further test account configuration by
storing an object, continue with the additional steps.

2. Put an object in the container:

touch test object

swift

-U <Tenant Account ID:Account User Name>
-K <User Password>

-A https://<FQDN | IP>:<Port>/auth/v1.0
upload test container test object
-—object-name test object

3. Get the container to verify the object:

swift

-U <Tenant Account ID:Account User Name>
-K <User Password>

-A https://<FQDN | IP>:<Port>/auth/v1.0
list test container

4. Delete the object:

swift

-U <Tenant Account ID:Account User Name>
-K <User Password>

-A https://<FQDN | IP>:<Port>/auth/v1.0
delete test container test object

5. Delete the container:

swift

-U "< Tenant Account ID:Account User Name >°

-K "< User Password >

-A “\https://< FQDN_ | IP >:< Port >/auth/v1.0'
delete test container

Related information

Creating and configuring Swift tenant accounts

Configuring security for the REST API

Swift REST API supported operations

The StorageGRID system supports most operations in the OpenStack Swift API. Before
integrating Swift REST API clients with StorageGRID, review the implementation details
for account, container, and object operations.

Operations supported in StorageGRID

The following Swift APl operations are supported:

» Account operations
» Container operations
* Object operations
Common response headers for all operations

The StorageGRID system implements all common headers for supported operations as defined by the
OpenStack Swift Object Storage API v1.

Related information
OpenStack: Object Storage API
Supported Swift APl endpoints

StorageGRID supports the following Swift APl endpoints: the info URL, the auth URL, and
the storage URL.

info URL

You can determine the capabilities and limitations of the StorageGRID Swift implementation by issuing a GET
request to the Swift base URL with the /info path.

https://FODN | Node IP:Swift Port/info/
In the request:

* FODN is the fully qualified domain name.
* Node IPisthe IP address for the Storage Node or the Gateway Node on the StorageGRID network.

* Swift Port is the port number used for Swift APl connections on the Storage Node or Gateway Node.

For example, the following info URL would request information from a Storage Node with the IP address of
10.99.106.103 and using port 18083.

https://10.99.106.103:18083/info/
The response includes the capabilities of the Swift implementation as a JSON dictionary. A client tool can
parse the JSON response to determine the capabilities of the implementation and use them as constraints for

subsequent storage operations.

The StorageGRID implementation of Swift allows unauthenticated access to the info URL.

http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html

auth URL

A client can use the Swift auth URL to authenticate as a tenant account user.
https://FODN | Node IP:Swift Port/auth/v1.0/

You must provide the tenant account ID, user name, and password as parameters in the Xx-Auth-User and
X-Auth-Key request headers, as follows:

X-Auth-User: Tenant Account ID:Username
X-Auth-Key: Password
In the request headers:

* Tenant Account_IDis the account ID assigned by StorageGRID when the Swift tenant was created.
This is the same tenant account ID used on the Tenant Manager sign-in page.

* Username is the name of a tenant user that has been created in the Tenant Manager. This user must
belong to a group that has the Swift Administrator permission. The tenant’s root user cannot be configured
to use the Swift REST API.

If Identity Federation is enabled for the tenant account, provide the username and password of the
federated user from the LDAP server. Alternatively, provide the LDAP user’s domain name. For example:

X-Auth-User: Tenant Account ID:Username@Domain Name

* pPassword is the password for the tenant user. User passwords are created and managed in the Tenant
Manager.

The response to a successful authentication request returns a storage URL and an auth token, as follows:
X-Storage-Url: https://FQDN | Node IP:Swift Port/vl/Tenant Account ID
X-Auth-Token: token

X-Storage-Token: token

By default, the token is valid for 24 hours from generation time.

Tokens are generated for a specific tenant account. A valid token for one account does not authorize a user to
access another account.

storage URL

A client application can issue Swift REST API calls to perform supported account, container, and object
operations against a Gateway Node or Storage Node. Storage requests are addressed to the storage URL
returned in the authentication response. The request must also include the X-Auth-Token header and value
returned from the auth request.

https://FQDN | IP:Swift Port/v1l/Tenant Account ID

[/container] [/object]

10

X-Auth-Token: token

Some storage response headers that contain usage statistics might not reflect accurate numbers for recently
modified objects. It might take a few minutes for accurate numbers to appear in these headers.

The following response headers for account and container operations are examples of those that contain
usage statistics:

¢ X-Account-Bytes-Used
* X-Account-Object-Count
* X-Container-Bytes-Used

* X-Container-0Object-Count

Related information
How client connections can be configured

Creating and configuring Swift tenant accounts
Account operations
Container operations

Object operations

Account operations

The following Swift AP| operations are performed on accounts.

GET account

This operation retrieves the container list associated with the account and account usage statistics.
The following request parameter is required:
®* Account
The following request header is required:
¢ X-Auth-Token
The following supported request query parameters are optional:

* Delimiter
* End marker
¢ Format

° Limit

* Marker

®* Prefix

A successful execution returns the following headers with an “HTTP/1.1 204 No Content” response if the
account is found and has no containers or the container list is empty; or an “HTTP/1.1 200 OK” response if the
account is found and the container list is not empty:

®* Accept-Ranges

* Content-Length

* Content-Type

* Date

* X-Account-Bytes-Used

* X-Account-Container-Count
* X-Account-Object-Count

* X-Timestamp

* X-Trans-Id

HEAD account

This operation retrieves account information and statistics from a Swift account.
The following request parameter is required:
®* Account
The following request header is required:
* X-Auth-Token
A successful execution returns the following headers with an “HTTP/1.1 204 No Content” response:

®* Accept-Ranges

* Content-Length

* Date

®* X-Account-Bytes-Used

* X-Account-Container-Count
* X-Account-0Object-Count

* X-Timestamp

* X-Trans-Id

Related information
Swift operations tracked in the audit logs

Container operations

StorageGRID supports a maximum of 1,000 containers per Swift account. The following
Swift API operations are performed on containers.

12

DELETE container

This operation removes an empty container from a Swift account in a StorageGRID system.
The following request parameters are required:

®* Account

* Container
The following request header is required:
* X-Auth-Token
A successful execution returns the following headers with an "HTTP/1.1 204 No Content" response:

* Content-Length
* Content-Type
* Date

* X-Trans-Id

GET container

This operation retrieves the object list associated with the container along with container statistics and
metadata in a StorageGRID system.

The following request parameters are required:

¢ Account

* Container
The following request header is required:
* X-Auth-Token
The following supported request query parameters are optional:

* Delimiter
* End marker
¢ Format

° Limit

* Marker

* Path

* Prefix

A successful execution returns the following headers with an "HTTP/1.1 200 Success" or a "HTTP/1.1 204 No

Content" response:

®* Accept-Ranges

13

* Content-Length

* Content-Type

* Date

* X-Container-Bytes-Used

* X-Container-Object-Count
* X-Timestamp

* X-Trans-1d
HEAD container
This operation retrieves container statistics and metadata from a StorageGRID system.
The following request parameters are required:

* Account

* Container
The following request header is required:
* X-Auth-Token
A successful execution returns the following headers with an "HTTP/1.1 204 No Content" response:

* Accept-Ranges

* Content-Length

* Date

* X-Container-Bytes-Used

®* X-Container-0Object-Count
* X-Timestamp

* X-Trans-1d
PUT container
This operation creates a container for an account in a StorageGRID system.
The following request parameters are required:

¢* Account

* Container
The following request header is required:
* X-Auth-Token

A successful execution returns the following headers with an "HTTP/1.1 201 Created" or "HTTP/1.1 202

14

Accepted" (if the container already exists under this account) response:

* Content-Length
* Date
* X-Timestamp

* X-Trans-Id

A container name must be unique in the StorageGRID namespace. If the container exists under another
account, the following header is returned: "HTTP/1.1 409 Conflict."

Related information
Swift operations tracked in the audit logs

Object operations

The following Swift API operations are performed on objects.

DELETE object

This operation deletes an object’s content and metadata from the StorageGRID system.
The following request parameters are required:

®* Account
* Container

* Object
The following request header is required:
* X-Auth-Token

A successful execution returns the following response headers with an HTTP/1.1 204 No Content
response:

* Content-Length
* Content-Type
* Date

* X-Trans-Id

When processing a DELETE Object request, StorageGRID attempts to immediately remove all copies of the
object from all stored locations. If successful, StorageGRID returns a response to the client immediately. If all
copies cannot be removed within 30 seconds (for example, because a location is temporarily unavailable),
StorageGRID queues the copies for removal and then indicates success to the client.

For more information on how objects are deleted, see the instructions for managing objects with information
lifecycle management.

15

GET object

This operation retrieves the object content and gets the object metadata from a StorageGRID system.
The following request parameters are required:

®* Account
* Container

* Object
The following request header is required:
¢ X-Auth-Token
The following request headers are optional:

®* Accept-Encoding

* If-Match

* If-Modified-Since

* If-None-Match

* If-Unmodified-Since

* Range
A successful execution returns the following headers with an HTTP/1.1 200 OK response:

®* Accept-Ranges

* Content-Disposition, returned only if Content-Disposition metadata was set
* Content-Encoding, returned only if Content-Encoding metadata was set

* Content-Length

* Content-Type

* Date

* ETag

* Last-Modified

* X-Timestamp

* X-Trans-Id

HEAD object
This operation retrieves metadata and properties of an ingested object from a StorageGRID system.

The following request parameters are required:

®* Account

* Container

16

* Object
The following request header is required:
* X-Auth-Token
A successful execution returns the following headers with an "HTTP/1.1 200 OK" response:
®* Accept-Ranges
* Content-Disposition, returned only if Content-Disposition metadata was set
* Content-Encoding, returned only if Content-Encoding metadata was set
* Content-Length
* Content-Type
* Date
* ETag
* Last-Modified
* X-Timestamp

* X-Trans-Id

PUT object

This operation creates a new object with data and metadata, or replaces an existing object with data and
metadata in a StorageGRID system.

StorageGRID supports objects up to 5 TB in size.

Conflicting client requests, such as a two clients writing to the same key, are resolved on a

@ “latest-wins” basis. The timing for the “latest-wins” evaluation is based on when the
StorageGRID system completes a given request, and not on when Swift clients begin an
operation.

The following request parameters are required:

®* Account
®* Container

* Object
The following request header is required:
¢ X-Auth-Token
The following request headers are optional:

* Content-Disposition

* Content-Encoding

17

Do not use chunked Content-Encoding if the ILM rule that applies to an object filters objects based on
size and uses synchronous placement on ingest (the Balanced or Strict options for Ingest Behavior).

Transfer-Encoding

Do not use compressed or chunked Transfer-Encoding if the ILM rule that applies to an object filters
objects based on size and uses synchronous placement on ingest (the Balanced or Strict options for Ingest
Behavior).

Content-Length

If an ILM rule filters objects by size and uses synchronous placement on ingest, you must specify
Content-Length.

If you do not follow these guidelines for Content-Encoding, Transfer-Encoding, and
Content-Length, StorageGRID must save the object before it can determine object size

@ and apply the ILM rule. In other words, StorageGRID must default to creating interim copies
of an object on ingest. That is, StorageGRID must use the Dual Commit option for Ingest
Behavior.

For more information about synchronous placement and ILM rules, see the instructions for managing
objects with information lifecycle management.

Content-Type
ETag

X-Object-Meta-<name\> (object-related metadata)

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you
must store the value in a user-defined header named x-0Object-Meta-Creation-Time. For example:

X-Object-Meta-Creation-Time: 1443399726

This field is evaluated as seconds since January 1, 1970.
X-Storage-Class: reduced redundancy

This header affects how many object copies StorageGRID creates if the ILM rule that matches an ingested
object specifies an Ingest Behavior of Dual Commit or Balanced.

> Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID
creates a single interim copy as the object is ingested (single commit).

- Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only
if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform
synchronous placement, this header has no effect.

The reduced_redundancy header is best used when the ILM rule that matches the object creates a
single replicated copy. In this case using reduced redundancy eliminates the unnecessary creation

and deletion of an extra object copy for every ingest operation.

Using the reduced redundancy header is not recommended in other circumstances because it

increases the risk the loss of object data during ingest. For example, you might lose data if the single
copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Having only one replicated copy for any time period puts data at risk of permanent loss.

@ If only one replicated copy of an object exists, that object is lost if a Storage Node fails or
has a significant error. You also temporarily lose access to the object during
maintenance procedures such as upgrades.

Note that specifying reduced_redundancy only affects how many copies are created when an object is
first ingested. It does not affect how many copies of the object are made when the object is evaluated by
the active ILM policy and does not result in data being stored at lower levels of redundancy in the
StorageGRID system.

A successful execution returns the following headers with an "HTTP/1.1 201 Created" response:

* Content-Length
* Content-Type

* Date

* ETag

®* Last-Modified
* X-Trans-Id

Related information
Manage objects with ILM

Swift operations tracked in the audit logs

OPTIONS request

The OPTIONS request checks the availability of an individual Swift service. The
OPTIONS request is processed by the Storage Node or Gateway Node specified in the
URL.

OPTIONS method

For example, client applications can issue an OPTIONS request to the Swift port on a Storage Node, without
providing Swift authentication credentials, to determine whether the Storage Node is available. You can use
this request for monitoring or to allow external load balancers to identify when a Storage Node is down.

When used with the info URL or the storage URL, the OPTIONS method returns a list of supported verbs for
the given URL (for example, HEAD, GET, OPTIONS, and PUT). The OPTIONS method cannot be used with
the auth URL.

The following request parameter is required:

®* Account

The following request parameters are optional:

19

https://docs.netapp.com/us-en/storagegrid-115/ilm/index.html

®* Container

* Object

A successful execution returns the following headers with an “HTTP/1.1 204 No Content” response. The
OPTIONS request to the storage URL does not require that the target exists.

* Allow (a list of supported verbs for the given URL, for example, HEAD, GET, OPTIONS, and PUT)
* Content-Length

®* Content-Type

* Date

* X-Trans-Id

Related information
Supported Swift APl endpoints

Error responses to Swift APl operations
Understanding the possible error responses can help you troubleshoot operations.

The following HTTP status codes might be returned when errors occur during an operation:

Swift error name HTTP status

AccountNameToolong, ContainerNameToolLong, 400 Bad Request
HeaderTooBig, InvalidContainerName,

InvalidRequest, InvalidURI, MetadataNameToolLong,
MetadataValueTooBig, MissingSecurityHeader,

ObjectNameToolLong, TooManyContainers,

TooManyMetadataltems, TotalMetadataToolLarge

AccessDenied 403 Forbidden

ContainerNotEmpty, ContainerAlreadyExists 409 Conflict

InternalError 500 Internal Server Error
InvalidRange 416 Requested Range Not Satisfiable
MethodNotAllowed 405 Method Not Allowed
MissingContentLength 411 Length Required

NotFound 404 Not Found

NotImplemented 501 Not Implemented

20

Swift error name HTTP status

PreconditionFailed 412 Precondition Failed
ResourceNotFound 404 Not Found
Unauthorized 401 Unauthorized
UnprocessableEntity 422 Unprocessable Entity

StorageGRID Swift REST API operations

There are operations added on to the Swift REST API that are specific to StorageGRID
system.

GET container consistency request

Consistency level makes a trade-off between the availability of the objects and the consistency of those objects
across different Storage Nodes and sites. The GET container consistency request allows you to determine the
consistency level being applied to a particular container.

Request

Request HTTP Header Description

X-Auth-Token Specifies the Swift authentication token for the
account to use for the request.

x-ntap-sg-consistency Specifies the type of request, where true = GET
container consistency, and false = GET container.

Host The hostname to which the request is directed.

Request example

GET /v1/28544923908243208806/Swift container
X-Auth-Token: SGRD 3a877009a2d24cb1801587b£fa%9050£29
x-ntap-sg-consistency: true

Host: test.com

Response
Response HTTP Header Description
Date The date and time of the response.

21

Response HTTP Header Description

Connection Whether the connection to the server is open or
closed.

X-Trans-1Id The unique transaction identifier for the request.

Content-Length The length of the response body.

x-ntap-sg-consistency The consistency control level being applied to the

container. The following values are supported:

« all: All nodes receive the data immediately or the
request will fail.

 strong-global: Guarantees read-after-write
consistency for all client requests across all sites.

* strong-site: Guarantees read-after-write
consistency for all client requests within a site.

* read-after-new-write: Provides read-after-write
consistency for new objects and eventual
consistency for object updates. Offers high
availability and data protection guarantees.

Note: If your application uses HEAD requests on
objects that do not exist, you might receive a high
number of 500 Internal Server errors if one or
more Storage Nodes are unavailable. To prevent
these errors, use the “available” level.

+ available (eventual consistency for HEAD
operations): Behaves the same as the “read-after-
new-write” consistency level, but only provides
eventual consistency for HEAD operations. Offers
higher availability for HEAD operations than
“read-after-new-write” if Storage Nodes are
unavailable.

Response example

HTTP/1.1 204 No Content

Date: Sat, 29 Nov 2015 01:02:18 GMT
Connection: CLOSE

X-Trans-Id: 1936575373
Content-Length: 0
x-ntap-sg-consistency: strong-site

Related information

Use a tenant account

22

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

PUT container consistency request

The PUT container consistency request allows you to specify the consistency level to apply to operations
performed on a container. By default, new containers are created using the “read-after-new-write” consistency
level.

Request

Request HTTP Header Description

X-Auth-Token The Swift authentication token for the account to use
for the request.

x-ntap-sg-consistency The consistency control level to apply to operations
on the container. The following values are supported:

« all: All nodes receive the data immediately or the
request will fail.

 strong-global: Guarantees read-after-write
consistency for all client requests across all sites.

 strong-site: Guarantees read-after-write
consistency for all client requests within a site.

* read-after-new-write: Provides read-after-write
consistency for new objects and eventual
consistency for object updates. Offers high
availability and data protection guarantees.

Note: If your application uses HEAD requests on
objects that do not exist, you might receive a high
number of 500 Internal Server errors if one or
more Storage Nodes are unavailable. To prevent
these errors, use the “available” level.

+ available (eventual consistency for HEAD
operations): Behaves the same as the “read-after-
new-write” consistency level, but only provides
eventual consistency for HEAD operations. Offers
higher availability for HEAD operations than
“read-after-new-write” if Storage Nodes are
unavailable.

Host The hostname to which the request is directed.

How consistency controls and ILM rules interact to affect data protection

Both your choice of consistency control and your ILM rule affect how objects are protected. These settings can
interact.

For example, the consistency control used when an object is stored affects the initial placement of object

metadata, while the ingest behavior selected for the ILM rule affects the initial placement of object copies.
Because StorageGRID requires access to both an object's metadata and its data to fulfill client requests,

23

selecting matching levels of protection for the consistency level and ingest behavior can provide better initial
data protection and more predictable system responses.

The following ingest behaviors are available for ILM rules:

« Strict: All copies specified in the ILM rule must be made before success is returned to the client.

» Balanced: StorageGRID attempts to make all copies specified in the ILM rule at ingest; if this is not
possible, interim copies are made and success is returned to the client. The copies specified in the ILM rule
are made when possible.

* Dual Commit: StorageGRID immediately makes interim copies of the object and returns success to the
client. Copies specified in the ILM rule are made when possible.

@ Before selecting the ingest behavior for an ILM rule, read the full description of these settings in
the instructions for managing objects with information lifecycle management.

Example of how the consistency control and ILM rule can interact

Suppose you have a two-site grid with the following ILM rule and the following consistency level setting:

* ILM rule: Create two object copies, one at the local site and one at a remote site. The Strict ingest
behavior is selected.

» Consistency level: “strong-global’ (Object metadata is immediately distributed to all sites.)

When a client stores an object to the grid, StorageGRID makes both object copies and distributes metadata to
both sites before returning success to the client.

The object is fully protected against loss at the time of the ingest successful message. For example, if the local
site is lost shortly after ingest, copies of both the object data and the object metadata still exist at the remote
site. The object is fully retrievable.

If you instead used the same ILM rule and the “strong-site” consistency level, the client might receive a
success message after object data is replicated to the remote site but before object metadata is distributed
there. In this case, the level of protection of object metadata does not match the level of protection for object
data. If the local site is lost shortly after ingest, object metadata is lost. The object cannot be retrieved.

The inter-relationship between consistency levels and ILM rules can be complex. Contact NetApp if you require
assistance.

Request example

PUT /v1/28544923908243208806/ Swift container
X-Auth-Token: SGRD 3a877009a2d24cb1801587b£fa%9050£29
x-ntap-sg-consistency: strong-site

Host: test.com

Response

24

Response HTTP Header

Date

Connection

X-Trans-Id

Content-Length

Response example

HTTP/1.1 204 No Content

Date: Sat, 29 Nov 2015 01:02:18 GMT
Connection: CLOSE

X-Trans-Id: 1936575373

Content-Length: 0

Related information
Use a tenant account

Description

The date and time of the response.

Whether the connection to the server is open or
closed.

The unique transaction identifier for the request.

The length of the response body.

Configuring security for the REST API

You should review the security measures implemented for the REST API and understand

how to secure your system.

How StorageGRID provides security for the REST API

You should understand how the StorageGRID system implements security, authentication, and authorization

for the REST API.

StorageGRID uses the following security measures.

+ Client communications with the Load Balancer service use HTTPS if HTTPS is configured for the load

balancer endpoint.

When you configure a load balancer endpoint, HTTP can optionally be enabled. For example, you might
want to use HTTP for testing or other non-production purposes. See the instructions for administering
StorageGRID for more information.

on Gateway Nodes.

HTTP can optionally be enabled for these connections. For example, you might want to use HTTP for
testing or other non-production purposes. See the instructions for administering StorageGRID for more

information.

By default, StorageGRID uses HTTPS for client communications with Storage Nodes and the CLB service

25

https://docs.netapp.com/us-en/storagegrid-115/tenant/index.html

@ The CLB service is deprecated.

« Communications between StorageGRID and the client are encrypted using TLS.

« Communications between the Load Balancer service and Storage Nodes within the grid are encrypted
whether the load balancer endpoint is configured to accept HTTP or HTTPS connections.

* Clients must supply HTTP authentication headers to StorageGRID to perform REST API operations.

Security certificates and client applications

Clients can connect to the Load Balancer service on Gateway Nodes or Admin Nodes, directly to Storage
Nodes, or to the CLB service on Gateway Nodes.

In all cases, client applications can make TLS connections using either a custom server certificate uploaded by
the grid administrator or a certificate generated by the StorageGRID system:

* When client applications connect to the Load Balancer service, they do so using the certificate that was
configured for the specific load balancer endpoint used to make the connection. Each endpoint has its own
certificate, which is either a custom server certificate uploaded by the grid administrator or a certificate that
the grid administrator generated in StorageGRID when configuring the endpoint.

* When client applications connect directly to a Storage Node or to the CLB service on Gateway Nodes, they
use either the system-generated server certificates that were generated for Storage Nodes when the
StorageGRID system was installed (which are signed by the system certificate authority), or a single
custom server certificate that is supplied for the grid by a grid administrator.

Clients should be configured to trust the certificate authority that signed whichever certificate they use to
establish TLS connections.

See the instructions for administering StorageGRID for information on configuring load balancer endpoints, and
for instructions on adding a single custom server certificate for TLS connections directly to Storage Nodes or to
the CLB service on Gateway Nodes.

Summary

The following table shows how security issues are implemented in the S3 and Swift REST APIs:

Security issue Implementation for REST API
Connection security TLS
Server authentication X.509 server certificate signed by system CA or

custom server certificate supplied by administrator

Client authentication » S3: S3 account (access key ID and secret access
key)

 Swift: Swift account (user name and password)
Client authorization + S3: Bucket ownership and all applicable access

control policies

« Swift: Administrator role access

26

Related information
Administer StorageGRID

Supported hashing and encryption algorithms for TLS libraries

The StorageGRID system supports a limited set of cipher suites that client applications can use when
establishing a Transport Layer Security (TLS) session.

Supported versions of TLS
StorageGRID supports TLS 1.2 and TLS 1.3.

@ SSLv3 and TLS 1.1 (or earlier versions) are no longer supported.

Supported cipher suites

TLS version IANA name of cipher suite

1.2 TLS_ECDHE_RSA WITH_AES 256_GCM_SHA384

TLS_ECDHE_RSA_WITH_CHACHA20 POLY1305_
SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
1.3 TLS_AES_256_GCM_SHA384
TLS_CHACHA20 POLY1305 SHA256

TLS_AES_128_GCM_SHA256

Deprecated cipher suites

The following cipher suites are deprecated. Support for these ciphers will be removed in a future release.

IANA Name
TLS RSA WITH_AES 128 GCM_SHA256

TLS_RSA WITH_AES 256 _GCM_SHA384

Related information
How client connections can be configured

Monitoring and auditing operations

You can monitor workloads and efficiencies for client operations by viewing transaction
trends for the entire grid, or for specific nodes. You can use audit messages to monitor

27

https://docs.netapp.com/us-en/storagegrid-115/admin/index.html

client operations and transactions.

Monitoring object ingest and retrieval rates

You can monitor object ingest and retrieval rates as well as metrics for object counts, queries, and verification.
You can view the number of successful and failed attempts by client applications to read, write, and modify
objects in the StorageGRID system.

Steps

1.
2.

Sign in to the Grid Manager using a supported browser.

On the Dashboard, locate the Protocol Operations section.

This section summarizes the number of client operations performed by your StorageGRID system. Protocol
rates are averaged over the last two minutes.

3. Select Nodes.

28

From the Nodes home page (deployment level), click the Load Balancer tab.

The charts show trends for all client traffic directed to load balancer endpoints within the grid. You can
select a time interval in hours, days, weeks, months, or years, or you can apply a custom interval.

. From the Nodes home page (deployment level), click the Objects tab.

The chart shows ingest and retrieve rates for your entire StorageGRID system in bytes per second and
total bytes. You can select a time interval in hours, days, weeks, months, or years, or you can apply a
custom interval.

. To see information for a particular Storage Node, select the node from the list on the left, and click the

Objects tab.

The chart shows the object ingest and retrieval rates for this Storage Node. The tab also includes metrics
for object counts, queries, and verification. You can click the labels to see the definitions of these metrics.

DCA-532 (Storage Mode)

Overview Hardware MNetwork Storage Objects
1 hour 1 day 1 week
53 Ingest and Retrieve

1.00 Bps
0.75 Bps
0.50 Bps
0.25 Bps

0 Bps

08:00 0310 08:20 03:30 0E:40 08:50
== |ngest rate Retrieve rate

Object Counts

Total Objects s

Lost Objects i |

53 Buckets and Swift Containers 0

53 Buckets and Swift Containers

The total number of 53 budkets and Swift
containers known by this grid node.

Queries - Successful
Queries - Failed (timed-out)

Queries - Failed (consistency level unmet)

Verification
Status No Errors
Rate Setting Adaptive
Percent Complete 0.00%
Average Stat Time 0.00 microseconds
Objects Verified 0
Object Verification Rate 0.00 objects / second
Data Verified 0 bytes
Data Verification Rate 0.00 bytes / second
Missing Objects 0
Corrupt Objects 0

Quarantined Objects 0

7. If you want even more detail:

a. Select Support > Tools > Grid Topology.

b. Select site > Overview > Main.

The API Operations section displays summary information for the entire grid.

12,364
0
0

B

Il

e

5

.44 milizeconds

8
B
B

1L

Events Tasks

1 month 1 year

1.00 Bps
0.75 Bps
0.50 Bps
0.25 Bps

0Bp=

QE:00

== |ngest rate

Custom

Swift Ingest and Retrieve

0210 0E:20

Retrieve rate

c. Select Storage Node > LDR > client application > Overview > Main

0&:30

02:40

29

The Operations section displays summary information for the selected Storage Node.

Accessing and reviewing audit logs

Audit messages are generated by StorageGRID services and stored in text log files. API-specific audit
messages in the audit logs provide critical security, operation, and performance monitoring data that can help
you evaluate the health of your system.

What you’ll need
* You must have specific access permissions.
* You must have the Passwords. txt file.
* You must know the IP address of an Admin Node.

About this task

The active audit log file is named audit.log, and it is stored on Admin Nodes.

Once a day, the active audit.log file is saved, and a new audit.log file is started. The name of the saved file
indicates when it was saved, in the format yyyy-mm-dd. txt.

After a day, the saved file is compressed and renamed, in the format yyyy-mm-dd. txt. gz, which preserves
the original date.

This example shows the active audit.log file, the previous day’s file (2018-04-15.txt), and the compressed file
for the prior day (2018-04-14.txt.gz).

audit.log
2018-04-15.txt
2018-04-14.txt.gz

Steps
1. Log in to an Admin Node:

a. Enter the following command: ssh admin@primary Admin Node IP
b. Enter the password listed in the Passwords . txt file.
2. Go to the directory containing the audit log files:cd /var/local/audit/export

3. View the current or a saved audit log file, as required.

Related information

Review audit logs

Swift operations tracked in the audit logs

All successful storage DELETE, GET, HEAD, POST, and PUT operations are tracked in the StorageGRID audit
log. Failures are not logged, nor are info, auth, or OPTIONS requests.

See Understanding audit messages for details about the information tracked for the following Swift operations.

30

https://docs.netapp.com/us-en/storagegrid-115/audit/index.html

Account operations

* GET account
« HEAD account

Container operations

 DELETE container
e GET container
« HEAD container

e PUT container

Object operations

» DELETE object
* GET object

* HEAD object

* PUT object

Related information

Review audit logs
Account operations
Container operations

Object operations

31

https://docs.netapp.com/us-en/storagegrid-115/audit/index.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

32

http://www.netapp.com/TM

	Use Swift REST API : StorageGRID
	Table of Contents
	Use Swift
	OpenStack Swift API support in StorageGRID
	History of Swift API support in StorageGRID
	How StorageGRID implements the Swift REST API
	Recommendations for implementing the Swift REST API

	Configuring tenant accounts and connections
	Creating and configuring Swift tenant accounts
	How client connections can be configured
	Testing your connection in the Swift API configuration

	Swift REST API supported operations
	Operations supported in StorageGRID
	Common response headers for all operations
	Supported Swift API endpoints
	Account operations
	Container operations
	Object operations
	OPTIONS request
	Error responses to Swift API operations

	StorageGRID Swift REST API operations
	GET container consistency request
	PUT container consistency request

	Configuring security for the REST API
	How StorageGRID provides security for the REST API
	Supported hashing and encryption algorithms for TLS libraries

	Monitoring and auditing operations
	Monitoring object ingest and retrieval rates
	Accessing and reviewing audit logs

