S3 REST API supported operations and
limitations

StorageGRID

NetApp
October 03, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-116/s3/authenticating-
requests.html on October 03, 2025. Always check docs.netapp.com for the latest.

Table of Contents

S3 REST API supported operations and limitations

Date handling
Common request headers
Common response headers
Authenticate requests
Use the HTTP Authorization header
Use query parameters
Operations on the service
Operations on buckets
Create S3 lifecycle configuration
Use S3 Object Lock default bucket retention
Custom operations on buckets
Operations on objects
Use S3 Object Lock
Use S3 Select
Use server-side encryption
GET Object
HEAD Object
POST Object restore
PUT Object
PUT Object - Copy
SelectObjectContent
Operations for multipart uploads
List Multipart Uploads
Initiate Multipart Upload
Upload Part
Upload Part - Copy
Complete Multipart Upload
Error responses
Supported S3 API error codes
StorageGRID custom error codes

W N DNDNDN-_2 2~ A

g o o0 b A DSBS DA DOOOWWOWDNDNDNDNN-=2 22 A A
W =2 =2 O © 00 oo =~ N W =2 00PN OO O w o

S3 REST API supported operations and
limitations

The StorageGRID system implements the Simple Storage Service APl (API Version
2006-03-01) with support for most operations, and with some limitations. You need to
understand the implementation details when you are integrating S3 REST API client
applications.

The StorageGRID system supports both virtual hosted-style requests and path-style requests.

Date handling
The StorageGRID implementation of the S3 REST API only supports valid HTTP date formats.

The StorageGRID system only supports valid HTTP date formats for any headers that accept date values. The
time portion of the date can be specified in Greenwich Mean Time (GMT) format, or in Universal Coordinated
Time (UTC) format with no time zone offset (+0000 must be specified). If you include the x-amz-date header
in your request, it overrides any value specified in the Date request header. When using AWS Signature
Version 4, the x-amz-date header must be present in the signed request because the date header is not
supported.

Common request headers

The StorageGRID system supports common request headers defined by the Amazon Web Services (AWS)
Documentation: Amazon Simple Storage Service API Reference, with one exception.
Request header Implementation

Authorization Full support for AWS Signature Version 2

Support for AWS Signature Version 4, with the
following exceptions:

* The SHA256 value is not calculated for the body
of the request. The user-submitted value is
accepted without validation, as if the value
UNSIGNED-PAYLOAD had been provided for the
x—amz-content-sha256 header.

X-amz-security-token Not implemented. Returns XNotImplemented.

Common response headers

The StorageGRID system supports all of the common response headers defined by the Simple Storage
Service APl Reference, with one exception.

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Response header Implementation

X-amz-id-2 Not used

Authenticate requests

The StorageGRID system supports both authenticated and anonymous access to objects
using the S3 API.

The S3 API supports Signature version 2 and Signature version 4 for authenticating S3 API requests.
Authenticated requests must be signed using your access key ID and secret access key.

The StorageGRID system supports two authentication methods: the HTTP Authorization header and using
query parameters.

Use the HTTP Authorization header
The HTTP Authorization header is used by all S3 API operations except Anonymous requests where

permitted by the bucket policy. The Authorization header contains all of the required signing information to
authenticate a request.

Use query parameters

You can use query parameters to add authentication information to a URL. This is known as presigning the
URL, which can be used to grant temporary access to specific resources. Users with the presigned URL do not
need to know the secret access key in order to access the resource, which enables you to provide third-party
restricted access to a resource.

Operations on the service

The StorageGRID system supports the following operations on the service.

Operation Implementation
GET Service Implemented with all Amazon S3 REST API behavior.
GET Storage Usage The GET Storage Usage request tells you the total

amount of storage in use by an account, and for each
bucket associated with the account. This is an
operation on the service with a path of / and a custom
query parameter (?x-ntap-sg-usage) added.

OPTIONS / Client applications can issue OPTIONS / requests to
the S3 port on a Storage Node, without providing S3
authentication credentials, to determine whether the
Storage Node is available. You can use this request
for monitoring, or to allow external load balancers to
identify when a Storage Node is down.

Related information
GET Storage Usage request

Operations on buckets

The StorageGRID system supports a maximum of 1,000 buckets for each S3 tenant
account.

Bucket name restrictions follow the AWS US Standard region restrictions, but you should further restrict them
to DNS naming conventions in order to support S3 virtual hosted-style requests.

Amazon Web Services (AWS) Documentation: Bucket Restrictions and Limitations
Configure S3 API endpoint domain names

The GET Bucket (List Objects) and GET Bucket versions operations support StorageGRID consistency
controls.

You can check whether updates to last access time are enabled or disabled for individual buckets.

The following table describes how StorageGRID implements S3 REST API bucket operations. To perform any
of these operations, the necessary access credentials must be provided for the account.

Operation Implementation

DELETE Bucket Implemented with all Amazon S3 REST API behavior.

DELETE Bucket cors This operation deletes the CORS configuration for the bucket.

DELETE Bucket This operation deletes the default encryption from the bucket. Existing encrypted

encryption objects remain encrypted, but any new objects added to the bucket are not
encrypted.

DELETE Bucket lifecycle This operation deletes the lifecycle configuration from the bucket.
DELETE Bucket policy This operation deletes the policy attached to the bucket.

DELETE Bucket This operation deletes the replication configuration attached to the bucket.
replication

DELETE Bucket tagging This operation uses the tagging subresource to remove all tags from a bucket.

https://docs.netapp.com/us-en/storagegrid-116/s3/get-storage-usage-request.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.netapp.com/us-en/storagegrid-116/admin/configuring-s3-api-endpoint-domain-names.html

Operation

GET Bucket (List
Objects), version 1 and
version 2

GET Bucket acl

GET Bucket cors

GET Bucket encryption

GET Bucket lifecycle

GET Bucket location

GET Bucket notification

GET Bucket Object
versions

GET Bucket policy

GET Bucket replication

GET Bucket tagging

GET Bucket versioning

Implementation

This operation returns some or all (up to 1,000) of the objects in a bucket. The
Storage Class for objects can have either of two values, even if the object was
ingested with the REDUCED REDUNDANCY storage class option:

* STANDARD, which indicates the object is stored in a storage pool consisting of
Storage Nodes.

* GLACIER, which indicates that the object has been moved to the external
bucket specified by the Cloud Storage Pool.

If the bucket contains large numbers of deleted keys that have the same prefix,
the response might include some CommonPrefixes that do not contain keys.

This operation returns a positive response and the ID, DisplayName, and
Permission of the bucket owner, indicating that the owner has full access to the
bucket.

This operation returns the cors configuration for the bucket.

This operation returns the default encryption configuration for the bucket.

This operation returns the lifecycle configuration for the bucket.

This operation returns the region that was set using the LocationConstraint
element in the PUT Bucket request. If the bucket’s region is us-east-1, an
empty string is returned for the region.

This operation returns the notification configuration attached to the bucket.

With READ access on a bucket, this operation with the versions subresource
lists metadata of all of the versions of objects in the bucket.

This operation returns the policy attached to the bucket.

This operation returns the replication configuration attached to the bucket.

This operation uses the tagging subresource to return all tags for a bucket.

This implementation uses the versioning subresource to return the versioning
state of a bucket.

* blank: Versioning has never been enabled (bucket is “Unversioned”)

» Enabled: Versioning is enabled

» Suspended: Versioning was previously enabled and is suspended

Operation

GET Object Lock
Configuration

HEAD Bucket

PUT Bucket

Implementation

This operation returns the bucket default retention mode and default retention
period, if configured.

See GET Object Lock Configuration for detailed information.

This operation determines if a bucket exists and you have permission to access it.
This operation returns:

* x-ntap-sg-bucket-id: The UUID of the bucket in UUID format.

* x-ntap-sg-trace-id: The unique trace ID of the associated request.

This operation creates a new bucket. By creating the bucket, you become the
bucket owner.
* Bucket names must comply with the following rules:

o Must be unique across each StorageGRID system (not just unique within
the tenant account).

Must be DNS compliant.

o

o Must contain at least 3 and no more than 63 characters.

o Can be a series of one or more labels, with adjacent labels separated by
a period. Each label must start and end with a lowercase letter or a
number and can only use lowercase letters, numbers, and hyphens.

o Must not look like a text-formatted IP address.

> Should not use periods in virtual hosted style requests. Periods will cause
problems with server wildcard certificate verification.

* By default, buckets are created in the us-east-1 region; however, you can
use the LocationConstraint request element in the request body to
specify a different region. When using the LocationConstraint element,
you must specify the exact name of a region that has been defined using the
Grid Manager or the Grid Management API. Contact your system
administrator if you do not know the region name you should use.

Note: An error will occur if your PUT Bucket request uses a region that has
not been defined in StorageGRID.

* You can include the x-amz-bucket-object-lock-enabled request
header to create a bucket with S3 Object Lock enabled. See Use S3 Object
Lock.

You must enable S3 Object Lock when you create the bucket. You cannot add
or disable S3 Object Lock after a bucket is created. S3 Object Lock requires
bucket versioning, which is enabled automatically when you create the
bucket.

Operation

PUT Bucket cors

PUT Bucket encryption

PUT Bucket lifecycle

Implementation

This operation sets the CORS configuration for a bucket so that the bucket can
service cross-origin requests. Cross-origin resource sharing (CORS) is a security
mechanism that allows client web applications in one domain to access resources
in a different domain. For example, suppose you use an S3 bucket named
images to store graphics. By setting the CORS configuration for the images
bucket, you can allow the images in that bucket to be displayed on the website
http://www.example.comn.

This operation sets the default encryption state of an existing bucket. When
bucket-level encryption is enabled, any new objects added to the bucket are
encrypted.StorageGRID supports server-side encryption with StorageGRID-
managed keys. When specifying the server-side encryption configuration rule, set
the SSEA1gorithm parameter to AES256, and do not use the KMSMasterKeyID
parameter.

Bucket default encryption configuration is ignored if the object upload request
already specifies encryption (that is, if the request includes the x-amz-server-
side-encryption-* request header).

This operation creates a new lifecycle configuration for the bucket or replaces an
existing lifecycle configuration. StorageGRID supports up to 1,000 lifecycle rules
in a lifecycle configuration. Each rule can include the following XML elements:

» Expiration (Days, Date)

* NoncurrentVersionExpiration (NoncurrentDays)
Filter (Prefix, Tag)

» Status
* ID

StorageGRID does not support these actions:

» AbortincompleteMultipartUpload
» ExpiredObjectDeleteMarker
* Transition
To understand how the Expiration action in a bucket lifecycle interacts with ILM

placement instructions, see “How ILM operates throughout an object’s life” in the
instructions for managing objects with information lifecycle management.

Note: Bucket lifecycle configuration can be used with buckets that have S3 Object
Lock enabled, but bucket lifecycle configuration is not supported for legacy
Compliant buckets.

Operation

PUT Bucket notification

PUT Bucket policy

Implementation

This operation configures notifications for the bucket using the notification
configuration XML included in the request body. You should be aware of the
following implementation details:

StorageGRID supports Simple Notification Service (SNS) topics as
destinations. Simple Queue Service (SQS) or Amazon Lambda endpoints are
not supported.

The destination for notifications must be specified as the URN of an
StorageGRID endpoint. Endpoints can be created using the Tenant Manager
or the Tenant Management API.

The endpoint must exist for notification configuration to succeed. If the
endpoint does not exist, a 400 Bad Request error is returned with the code
InvalidArgument.

You cannot configure a notification for the following event types. These event
types are not supported.

° s3:ReducedRedundancylLostObject
° s3:0bjectRestore:Completed

Event notifications sent from StorageGRID use the standard JSON format
except that they do not include some keys and use specific values for others,
as shown in the following listing:

eventSource
sgws:s3
awsRegion
not included
Xx-amz-id-2
not included
arn

urn:sgws:s3:::bucket name

This operation sets the policy attached to the bucket.

Operation

PUT Bucket replication

PUT Bucket tagging

Implementation

This operation configures StorageGRID CloudMirror replication for the bucket
using the replication configuration XML provided in the request body. For
CloudMirror replication, you should be aware of the following implementation
details:

» StorageGRID only supports V1 of the replication configuration. This means
that StorageGRID does not support the use of the Filter element for rules,
and follows V1 conventions for deletion of object versions. For details, see the
Amazon S3 documentation on replication configuration.

» Bucket replication can be configured on versioned or unversioned buckets.

* You can specify a different destination bucket in each rule of the replication
configuration XML. A source bucket can replicate to more than one
destination bucket.

+ Destination buckets must be specified as the URN of StorageGRID endpoints
as specified in the Tenant Manager or the Tenant Management API.

The endpoint must exist for replication configuration to succeed. If the
endpoint does not exist, the request fails as a 400 Bad Request. The error
message states: Unable to save the replication policy. The
specified endpoint URN does not exist: URN.

* You do not need to specify a Role in the configuration XML. This value is not
used by StorageGRID and will be ignored if submitted.

* If you omit the storage class from the configuration XML, StorageGRID uses
the STANDARD storage class by default.

* If you delete an object from the source bucket or you delete the source bucket
itself, the cross-region replication behavior is as follows:

o If you delete the object or bucket before it has been replicated, the
object/bucket is not replicated and you are not notified.

o If you delete the object or bucket after it has been replicated,
StorageGRID follows standard Amazon S3 delete behavior for V1 of
cross-region replication.

This operation uses the tagging subresource to add or update a set of tags for a
bucket. When adding bucket tags, be aware of the following limitations:

» Both StorageGRID and Amazon S3 support up to 50 tags for each bucket.

» Tags associated with a bucket must have unique tag keys. A tag key can be
up to 128 Unicode characters in length.

» Tag values can be up to 256 Unicode characters in length.

» Key and values are case sensitive.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-add-config.html

Operation Implementation

PUT Bucket versioning This implementation uses the versioning subresource to set the versioning
state of an existing bucket. You can set the versioning state with one of the
following values:

» Enabled: Enables versioning for the objects in the bucket. All objects added to
the bucket receive a unique version ID.

» Suspended: Disables versioning for the objects in the bucket. All objects
added to the bucket receive the version ID null.

PUT Object Lock This operation configures or removes the bucket default retention mode and
Configuration default retention period.

If the default retention period is modified, the retain-until-date of existing object
versions remains the same and is not recalculated using the new default retention
period.

See PUT Object Lock Configuration for detailed information.

Related information

Consistency controls

GET Bucket last access time request
Bucket and group access policies

S3 operations tracked in audit logs
Manage objects with ILM

Use tenant account

Create S3 lifecycle configuration

You can create an S3 lifecycle configuration to control when specific objects are deleted
from the StorageGRID system.

The simple example in this section illustrates how an S3 lifecycle configuration can control when certain
objects are deleted (expired) from specific S3 buckets. The example in this section is for illustration purposes
only. For complete details on creating S3 lifecycle configurations, see Amazon Simple Storage Service
Developer Guide: Object lifecycle management. Note that StorageGRID only supports Expiration actions; it
does not support Transition actions.

What lifecycle configuration is

A lifecycle configuration is a set of rules that are applied to the objects in specific S3 buckets. Each rule
specifies which objects are affected and when those objects will expire (on a specific date or after some
number of days).

StorageGRID supports up to 1,000 lifecycle rules in a lifecycle configuration. Each rule can include the
following XML elements:

https://docs.netapp.com/us-en/storagegrid-116/s3/consistency-controls.html
https://docs.netapp.com/us-en/storagegrid-116/s3/get-bucket-last-access-time-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/bucket-and-group-access-policies.html
https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-116/tenant/index.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

« Expiration: Delete an object when a specified date is reached or when a specified number of days is
reached, starting from when the object was ingested.

* NoncurrentVersionExpiration: Delete an object when a specified number of days is reached, starting from
when the object became noncurrent.

* Filter (Prefix, Tag)
» Status
*ID
If you apply a lifecycle configuration to a bucket, the lifecycle settings for the bucket always override

StorageGRID ILM settings. StorageGRID uses the Expiration settings for the bucket, not ILM, to determine
whether to delete or retain specific objects.

As a result, an object might be removed from the grid even though the placement instructions in an ILM rule
still apply to the object. Or, an object might be retained on the grid even after any ILM placement instructions
for the object have lapsed. For details, see How ILM operates throughout an object’s life.

@ Bucket lifecycle configuration can be used with buckets that have S3 Object Lock enabled, but
bucket lifecycle configuration is not supported for legacy Compliant buckets.

StorageGRID supports the use of the following bucket operations to manage lifecycle configurations:

* DELETE Bucket lifecycle
* GET Bucket lifecycle
» PUT Bucket lifecycle

Create lifecycle configuration

As the first step in creating a lifecycle configuration, you create a JSON file that includes one or more rules. For
example, this JSON file includes three rules, as follows:

1. Rule 1 applies only to objects that match the prefix categoryl/ and that have a key2 value of tag2. The
Expiration parameter specifies that objects matching the filter will expire at midnight on 22 August 2020.

2. Rule 2 applies only to objects that match the prefix category2/. The Expiration parameter specifies
that objects matching the filter will expire 100 days after they are ingested.

Rules that specify a number of days are relative to when the object was ingested. If the
current date exceeds the ingest date plus the number of days, some objects might be
removed from the bucket as soon as the lifecycle configuration is applied.

3. Rule 3 applies only to objects that match the prefix category3/. The Expiration parameter specifies
that any noncurrent versions of matching objects will expire 50 days after they become noncurrent.

10

https://docs.netapp.com/us-en/storagegrid-116/ilm/how-ilm-operates-throughout-objects-life.html

"Rules": [

{

"ID": "rulel",
"Filter": {
"And": |
"Prefix": "categoryl/",
"Tags": [
{
"Key": "key2",
"Value": "tag2"
}
]
}
by
"Expiration": {
"Date": "2020-08-22T00:00:002"
by
"Status": "Enabled"
by
{
"ID": "rule2",
"Filter": {

"Prefix": "category2/"
b
"Expiration": {
"Days": 100
b
"Status": "Enabled"

"ID": "rule3",

"Filter": {
"Prefix": "category3/"

by

"NoncurrentVersionExpiration": {
"NoncurrentDays": 50

bo

"Status": "Enabled"

11

Apply lifecycle configuration to bucket

After you have created the lifecycle configuration file, you apply it to a bucket by issuing a PUT Bucket lifecycle
request.

This request applies the lifecycle configuration in the example file to objects in a bucket named testbucket.

aws s3api --endpoint-url <StorageGRID endpoint> put-bucket-lifecycle-
configuration
--bucket testbucket --lifecycle-configuration file://bktjson.json

To validate that a lifecycle configuration was successfully applied to the bucket, issue a GET Bucket lifecycle
request. For example:

aws s3api --endpoint-url <StorageGRID endpoint> get-bucket-lifecycle-
configuration
—--bucket testbucket

A successful response lists the lifecycle configuration you just applied.

Validate that bucket lifecycle expiration applies to object

You can determine if an expiration rule in the lifecycle configuration applies to a specific object when issuing a
PUT Object, HEAD Object, or GET Object request. If a rule applies, the response includes an Expiration
parameter that indicates when the object expires and which expiration rule was matched.

(D Because bucket lifecycle overrides ILM, the expiry-date shown is the actual date the object
will be deleted. For details, see How object retention is determined.

For example, this PUT Object request was issued on 22 Jun 2020 and places an object in the testbucket
bucket.

aws s3apl --endpoint-url <StorageGRID endpoint> put-object
--bucket testbucket --key obj2test2 --body bktjson.json

The success response indicates that the object will expire in 100 days (01 Oct 2020) and that it matched Rule
2 of the lifecycle configuration.

*"Expiration™: "expiry-date=\"Thu, 01 Oct 2020 09:07:49 GMT\", rule-
id=\"rule2\"",
"ETag": "\"9762f8a803bc34f5340579d4446076£7\""

For example, this HEAD Object request was used to get metadata for the same object in the testbucket bucket.

12

https://docs.netapp.com/us-en/storagegrid-116/ilm/how-object-retention-is-determined.html

aws s3apli --endpoint-url <StorageGRID endpoint> head-object
--bucket testbucket --key obj2test?2

The success response includes the object’'s metadata and indicates that the object will expire in 100 days and
that it matched Rule 2.

"AcceptRanges": "bytes",

*"Expiration": "expiry-date=\"Thu, 01 Oct 2020 09:07:48 GMT\", rule-
id=\"rule2\"",

"LastModified": "2020-06-23T09:07:48+00:00",

"ContentLength": 921,

"ETag": "\"9762f8a803bc34£f5340579d4446076£7\""

"ContentType": "binary/octet-stream",

"Metadata": {}

Use S3 Object Lock default bucket retention

If a bucket has S3 Object Lock enabled, you can specify a default retention mode and
default retention period that is applied to each object added to the bucket.

» S3 Object Lock can be enabled or disabled for a bucket during bucket creation.
* If S3 Object Lock is enabled for a bucket, you can configure default retention for the bucket.
 Default retention configuration specifies:

o Default retention mode: StorageGRID supports only “COMPLIANCE” mode.

o Default retention period in days or years.

GET Object Lock Configuration

The GET Object Lock Configuration request allows you to determine if Object Lock is enabled for a bucket
and, if it is enabled, see if there is a default retention mode and retention period configured for the bucket.

When new object versions are ingested to the bucket, the default retention mode is applied if x-amz-object-
lock-mode is not specified. The default retention period is used to calculate the retain-until-date if x—amz-

object-lock-retain-until-date is not specified.

You must have the s3:GetBucketObjectLockConfiguration permission, or be account root, to complete this
operation.

Request example

13

GET /bucket?object-lock HTTP/1.1

Host: host

Accept-Encoding: identity

User-Agent: aws-cli/1.18.106 Python/3.8.2 Linux/4.4.0-18362-Microsoft
botocore/1.17.29

x—amz-date: date

x—amz-content-sha256: authorization string

Authorization: authorization string

Response example

HTTP/1.1 200 OK

x—amz-id-2:

1VmcB70XXJRKkRHIFiVgll51/T24gRfpwpuZrEGL1Bb9TImOMAAe 980xSpX1knabAOLTvBYJIpSIX
k=

x—amz-request-id: B34E94CACB2CEF6D

Date: Fri, 04 Sep 2020 22:47:09 GMT

Transfer-Encoding: chunked

Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<ObjectLockConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<ObjectLockEnabled>Enabled</ObjectLockEnabled>
<Rule>
<DefaultRetention>
<Mode>COMPLIANCE</Mode>
<Years>6</Years>
</DefaultRetention>
</Rule>
</ObjectLockConfiguration>

PUT Object Lock Configuration

The PUT Object Lock Configuration request allows you to modify the default retention mode and default
retention period for a bucket that has Object Lock enabled. You can also remove previously configured default
retention settings.

When new object versions are ingested to the bucket, the default retention mode is applied if x-amz-object-
lock-mode is not specified. The default retention period is used to calculate the retain-until-date if x-amz-
object-lock-retain-until-date is not specified.

If the default retention period is modified after ingest of an object version, the retain-until-date of the object
version remains the same and is not recalculated using the new default retention period.

You must have the s3:PutBucketObjectLockConfiguration permission, or be account root, to complete this
operation.

14

The Content-MD5 request header must be specified in the PUT request.

Request example

PUT /bucket?object-lock H
Accept-Encoding: identity
Content-Length: 308

Host: host

TTP/1.1

Content-MD5: request header
User-Agent: s3sign/1.0.0 requests/2.24.0 python/3.8.2

X-Amz-Date: date
X-Amz-Content-SHA256: aut
Authorization: authorizat

<ObjectLockConfiguration>

<ObjectLockEnabled>En
<Rule>

<DefaultRetention

horization string

ion string

abled</ObjectLockEnabled>

>

<Mode>COMPLIANCE</Mode>

<Years>6</Yea
</DefaultRetentio
</Rule>

rs>
n>

</ObjectLockConfiguration>

Custom operations on buckets

The StorageGRID system supports custom bucket operations that are added on to the S3

REST API and are specific to t

he system.

The following table lists the custom bucket operations supported by StorageGRID.

Operation

GET Bucket consistency

PUT Bucket consistency

GET Bucket last access time

PUT Bucket last access time

Description

Returns the consistency level being
applied to a particular bucket.

Sets the consistency level applied
to a particular bucket.

Returns whether last access time
updates are enabled or disabled for
a particular bucket.

Allows you to enable or disable last
access time updates for a particular
bucket.

For more information

GET Bucket consistency request

PUT Bucket consistency request

GET Bucket last access time
request

PUT Bucket last access time
request

15

https://docs.netapp.com/us-en/storagegrid-116/s3/get-bucket-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/put-bucket-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/get-bucket-last-access-time-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/get-bucket-last-access-time-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/put-bucket-last-access-time-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/put-bucket-last-access-time-request.html

Operation

DELETE Bucket metadata
notification configuration

GET Bucket metadata notification
configuration

PUT Bucket metadata notification
configuration
PUT Bucket with compliance

settings

GET Bucket compliance

PUT Bucket compliance

Related information

Description

Deletes the metadata notification
configuration XML associated with
a particular bucket.

Returns the metadata notification
configuration XML associated with
a particular bucket.

Configures the metadata
notification service for a bucket.

Deprecated and not supported: You

can no longer create new buckets
with Compliance enabled.

Deprecated but supported: Returns
the compliance settings currently in

effect for an existing legacy
Compliant bucket.

Deprecated but supported: Allows
you to modify the compliance
settings for an existing legacy
Compliant bucket.

S3 operations tracked in the audit logs

Operations on objects

For more information

DELETE Bucket metadata
notification configuration request

GET Bucket metadata notification
configuration request

PUT Bucket metadata notification
configuration request

Deprecated: PUT Bucket with
compliance settings

Deprecated: GET Bucket
compliance request

Deprecated: PUT Bucket
compliance request

This section describes how the StorageGRID system implements S3 REST API

operations for objects.

The following conditions apply to all object operations:

» StorageGRID consistency controls are supported by all operations on objects, with the exception of the

following:
o GET Object ACL
° OPTIONS /
o PUT Object legal hold
o PUT Object retention
o SELECT Object content

 Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins"
basis. The timing for the "latest-wins"evaluation is based on when the StorageGRID system completes a
given request, and not on when S3 clients begin an operation.

16

https://docs.netapp.com/us-en/storagegrid-116/s3/delete-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/delete-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/get-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/get-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/put-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/put-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/deprecated-put-bucket-request-modifications-for-compliance.html
https://docs.netapp.com/us-en/storagegrid-116/s3/deprecated-put-bucket-request-modifications-for-compliance.html
https://docs.netapp.com/us-en/storagegrid-116/s3/deprecated-get-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/deprecated-get-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/deprecated-put-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/deprecated-put-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-116/s3/consistency-controls.html

« All objects in a StorageGRID bucket are owned by the bucket owner, including objects created by an
anonymous user, or by another account.

» Data objects ingested to the StorageGRID system through Swift cannot be accessed through S3.

The following table describes how StorageGRID implements S3 REST API object operations.

Operation

DELETE Object

DELETE Multiple Objects

Implementation

Multi-Factor Authentication (MFA) and the response header x-amz-mfa
are not supported.

When processing a DELETE Object request, StorageGRID attempts to
immediately remove all copies of the object from all stored locations. If
successful, StorageGRID returns a response to the client immediately. If
all copies cannot be removed within 30 seconds (for example, because
a location is temporarily unavailable), StorageGRID queues the copies
for removal and then indicates success to the client.

Versioning

To remove a specific version, the requestor must be the bucket owner
and use the versionId subresource. Using this subresource
permanently deletes the version. If the versionId corresponds to a
delete marker, the response header x-amz-delete-marker is
returned set to true.

* If an object is deleted without the versionId subresource on a
version enabled bucket, it results in the generation of a delete
marker. The versionId for the delete marker is returned using the
x—amz-version-id response header, and the x-amz-delete-
marker response header is returned set to true.

If an object is deleted without the versionId subresource on a
version suspended bucket, it results in a permanent deletion of an
already existing 'null’ version or a 'null' delete marker, and the
generation of a new 'null' delete marker. The x-amz-delete-
marker response header is returned set to true.

Note: In certain cases, multiple delete markers might exist for an object.

Multi-Factor Authentication (MFA) and the response header x-amz-mfa
are not supported.

Multiple objects can be deleted in the same request message.

17

Operation

DELETE Object tagging

GET Object

GET Object ACL

GET Object legal hold

GET Object retention

GET Object tagging

HEAD Object

POST Object restore

PUT Object

PUT Object - Copy

PUT Object legal hold

PUT Object retention

18

Implementation

Uses the tagging subresource to remove all tags from an object.
Implemented with all Amazon S3 REST API behavior.

Versioning

If the versionId query parameter is not specified in the request, the
operation deletes all tags from the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker,

a “MethodNotAllowed” status is returned with the x-amz-delete-
marker response header set to true.

GET Object

If the necessary access credentials are provided for the account, the
operation returns a positive response and the ID, DisplayName, and
Permission of the object owner, indicating that the owner has full access
to the object.

Use S3 Object Lock

Use S3 Object Lock

Uses the tagging subresource to return all tags for an object.
Implemented with all Amazon S3 REST API behavior

Versioning

If the versionId query parameter is not specified in the request, the
operation returns all tags from the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker,
a “MethodNotAllowed” status is returned with the x-amz-delete-
marker response header set to true.

HEAD Object

POST Object restore

PUT Object

PUT Object - Copy

Use S3 Object Lock

Use S3 Object Lock

Operation

PUT Object tagging

Related information

S3 operations tracked in audit logs

Use S3 Object Lock

Implementation

Uses the tagging subresource to add a set of tags to an existing
object. Implemented with all Amazon S3 REST API behavior

Object tag limits

You can add tags to new objects when you upload them, or you can add
them to existing objects. Both StorageGRID and Amazon S3 support up
to 10 tags for each object. Tags associated with an object must have
unique tag keys. A tag key can be up to 128 Unicode characters in
length and tag values can be up to 256 Unicode characters in length.
Key and values are case sensitive.

Tag updates and ingest behavior

When you use PUT Object tagging to update an object’s tags,
StorageGRID does not re-ingest the object. This means that the option
for Ingest Behavior specified in the matching ILM rule is not used. Any
changes to object placement that are triggered by the update are made
when ILM is re-evaluated by normal background ILM processes.

This means that if the ILM rule uses the Strict option for ingest behavior,
no action is taken if the required object placements cannot be made (for
example, because a newly required location is unavailable). The
updated object retains its current placement until the required placement
is possible.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same key,
are resolved on a "latest-wins" basis. The timing for the "latest-
wins"evaluation is based on when the StorageGRID system completes a
given request, and not on when S3 clients begin an operation.

Versioning

If the versionId query parameter is not specified in the request, the
operation add tags to the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker,
a “MethodNotAllowed” status is returned with the x-amz-delete-
marker response header set to true.

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can
create buckets with S3 Object Lock enabled and then specify default retention periods for
each bucket or specific retain-until-date and legal hold settings for each object version

you add to that bucket.

19

https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html

S3 Object Lock allows you to specify object-level settings to prevent objects from being deleted or overwritten
for a fixed amount of time or indefinitely.

The StorageGRID S3 Object Lock feature provides a single retention mode that is equivalent to the Amazon
S3 compliance mode. By default, a protected object version cannot be overwritten or deleted by any user. The
StorageGRID S3 Object Lock feature does not support a governance mode, and it does not allow users with
special permissions to bypass retention settings or to delete protected objects.

Enable S3 Object Lock for bucket

If the global S3 Object Lock setting is enabled for your StorageGRID system, you can optionally enable S3
Object Lock when you create each bucket. You can use either of these methods:

* Create the bucket using the Tenant Manager.

Use tenant account

* Create the bucket using a PUT Bucket request with the x-amz-bucket-object-lock-enabled
request header.

Operations on buckets

You cannot add or disable S3 Object Lock after the bucket is created. S3 Object Lock requires bucket
versioning, which is enabled automatically when you create the bucket.

A bucket with S3 Object Lock enabled can contain a combination of objects with and without S3 Object Lock
settings. StorageGRID supports default retention periods for the objects in S3 Object Lock buckets and
supports the PUT Object Lock Configuration bucket operation. The s3:object-lock-remaining-
retention-days policy condition key sets the minimum and maximum allowable retention periods for your
objects.

Determining if S3 Object Lock is enabled for bucket

To determine if S3 Object Lock is enabled, use the GET Object Lock Configuration request.

Create object with S3 Object Lock settings

To specify S3 Object Lock settings when adding an object version to a bucket that has S3 Object Lock
enabled, issue a PUT Object, PUT Object - Copy, or Initiate Multipart Upload request. Use the following
request headers.

@ You must enable S3 Object Lock when you create a bucket. You cannot add or disable S3
Object Lock after a bucket is created.

* x—amz-object-lock-mode, which must be COMPLIANCE (case sensitive).

(:) If you specify x-—amz-object-lock-mode, you must also specify x—amz-object-lock-
retain-until-date.

* x—amz-object-lock-retain-until-date

° The retain-until-date value must be in the format 2020-08-10T21:46:00%. Fractional seconds are
allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are

20

https://docs.netapp.com/us-en/storagegrid-116/tenant/index.html

not allowed.
o The retain-until-date must be in the future.
* x-—amz-object-lock-legal-hold

If legal hold is ON (case-sensitive), the object is placed under a legal hold. If legal hold is OFF, no legal
hold is placed. Any other value results in a 400 Bad Request (InvalidArgument) error.

If you use any of these request headers, be aware of these restrictions:

* The Content-MD5 request header is required if any x-amz-object-lock-* request header is present
in the PUT Object request. Content-MD5 is not required for PUT Object - Copy or Initiate Multipart
Upload.

* If the bucket does not have S3 Object Lock enabled and a x-amz-object-lock-* request header is
present, a 400 Bad Request (InvalidRequest) error is returned.

* The PUT Object request supports the use of x-amz-storage-class: REDUCED REDUNDANCY to match
AWS behavior. However, when an object is ingested into a bucket with S3 Object Lock enabled,
StorageGRID will always perform a dual-commit ingest.

* A subsequent GET or HEAD Object version response will include the headers x-amz-object-lock-
mode, x—amz-object-lock-retain-until-date, and x-amz-object-lock-legal-hold, if
configured and if the request sender has the correct s3:Get* permissions.

» A subsequent DELETE Object version or DELETE Obijects versions request will fail if it is before the retain-
until-date or if a legal hold is on.

Update S3 Object Lock settings

If you need to update the legal hold or retention settings for an existing object version, you can perform the
following object subresource operations:

* PUT Object legal-hold

If the new legal-hold value is ON, the object is placed under a legal hold. If the legal-hold value is OFF, the
legal hold is lifted.

®* PUT Object retention
o The mode value must be COMPLIANCE (case sensitive).

° The retain-until-date value must be in the format 2020-08-10T21:46:00Z. Fractional seconds are
allowed, but only 3 decimal digits are preserved (milliseconds precision). Other ISO 8601 formats are
not allowed.

o If an object version has an existing retain-until-date, you can only increase it. The new value must be in
the future.

Related information
Manage objects with ILM

Use tenant account
PUT Object

PUT Object - Copy

21

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-116/tenant/index.html

Initiate Multipart Upload
Object versioning

Amazon Simple Storage Service User Guide: Using S3 Object Lock

Use S3 Select

StorageGRID supports the following AWS S3 Select clauses, data types, and operators
for the SelectObjectContent command.

@ Any items not listed are not supported.

For syntax, see SelectObjectContent. For more information about S3 Select, see the AWS documentation for
S3 Select.

Only tenant accounts that have S3 Select enabled can issue SelectObjectContent queries. See the
considerations and requirements for using S3 Select.

Clauses

» SELECT list

* FROM clause
 WHERE clause
* LIMIT clause

Data types

* bool

* integer

* string

* float

» decimal, numeric

* timestamp

Operators

Logical operators

* AND
* NOT
* OR

Comparison operators

22

https://docs.netapp.com/us-en/storagegrid-116/s3/object-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lock.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.netapp.com/us-en/storagegrid-116/admin/manage-s3-select-for-tenant-accounts.html

« BETWEEN
* IN

Pattern matching operators

* LIKE

* %
Unitary operators

* IS NULL
* IS NOT NULL

Math operators

* %

StorageGRID follows the AWS S3 Select operator precedence.

Aggregate functions

. AVG()
- COUNT(*)
« MAX()

« MIN()

. SUM()

Conditional functions

» CASE
+ COALESCE
* NULLIF

23

Conversion functions

» CAST (for supported datatype)

Date functions

« DATE_ADD

- DATE_DIFF

« EXTRACT

*+ TO_STRING

* TO_TIMESTAMP
+ UTCNOW

String functions

* CHAR_LENGTH, CHARACTER_LENGTH
« LOWER

SUBSTRING

* TRIM

UPPER

Use server-side encryption

Server-side encryption allows you to protect your object data at rest. StorageGRID
encrypts the data as it writes the object and decrypts the data when you access the
object.

If you want to use server-side encryption, you can choose either of two mutually exclusive options, based on
how the encryption keys are managed:

+ SSE (server-side encryption with StorageGRID-managed keys): When you issue an S3 request to
store an object, StorageGRID encrypts the object with a unique key. When you issue an S3 request to
retrieve the object, StorageGRID uses the stored key to decrypt the object.

+ SSE-C (server-side encryption with customer-provided keys): When you issue an S3 request to store
an object, you provide your own encryption key. When you retrieve an object, you provide the same
encryption key as part of your request. If the two encryption keys match, the object is decrypted and your
object data is returned.

While StorageGRID manages all object encryption and decryption operations, you must manage the
encryption keys you provide.

@ The encryption keys you provide are never stored. If you lose an encryption key, you lose
the corresponding object.

@ If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption
settings are ignored.

24

Use SSE

To encrypt an object with a unique key managed by StorageGRID, you use the following request header:

x—amz-server-side—-encryption

The SSE request header is supported by the following object operations:

* PUT Object
* PUT Object - Copy
* Initiate Multipart Upload

Use SSE-C

To encrypt an object with a unique key that you manage, you use three request headers:

Request header

Xx—amz-server-side-encryption-customer
—algorithm

X—amz-server-side-encryption-customer
-key

X—amz-server-side-encryption-customer
—-key-MD5

Description

Specify the encryption algorithm. The header value
must be AES256.

Specify the encryption key that will be used to encrypt
or decrypt the object. The value for the key must be
256-bit, base64-encoded.

Specify the MD5 digest of the encryption key
according to RFC 1321, which is used to ensure the
encryption key was transmitted without error. The
value for the MD5 digest must be base64-encoded
128-bit.

The SSE-C request headers are supported by the following object operations:

* GET Object

* HEAD Object

* PUT Object

* PUT Object - Copy

* Initiate Multipart Upload
» Upload Part

* Upload Part - Copy

Considerations for using server-side encryption with customer-provided keys (SSE-C)

Before using SSE-C, be aware of the following considerations:

* You must use https.

25

StorageGRID rejects any requests made over http when using SSE-C. For security
considerations, you should consider any key you send accidentally using http to be
compromised. Discard the key, and rotate as appropriate.

» The ETag in the response is not the MD5 of the object data.

* You must manage the mapping of encryption keys to objects. StorageGRID does not store encryption keys.
You are responsible for tracking the encryption key you provide for each object.

« If your bucket is versioning-enabled, each object version should have its own encryption key. You are
responsible for tracking the encryption key used for each object version.

» Because you manage encryption keys on the client side, you must also manage any additional safeguards,
such as key rotation, on the client side.

@ The encryption keys you provide are never stored. If you lose an encryption key, you lose
the corresponding object.

« If CloudMirror replication is configured for the bucket, you cannot ingest SSE-C objects. The ingest
operation will fail.

Related information
GET Object

HEAD Object

PUT Object

PUT Object - Copy
Initiate Multipart Upload
Upload Part

Upload Part - Copy

Amazon S3 Developer Guide: Protecting Data Using Server-Side Encryption with Customer-Provided
Encryption Keys (SSE-C)

GET Object

You can use the S3 GET Object request to retrieve an object from an S3 bucket.

GET object and multipart objects

You can use the partNumber request parameter to retrieve a specific part of a multipart or segmented object.
The x-amz-mp-parts-count response element indicates how many parts the object has.

You can set partNumber to 1 for both segmented/multipart objects and non-segmented/non-multipart objects;
however, the x-amz-mp-parts—-count response element is only returned for segmented or multipart objects.

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)

Use all three of the headers if the object is encrypted with a unique key that you provided.

26

https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html

* x-amz-server-side-encryption-customer-algorithm: Specify AES256.
* x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.
* x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s

encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Use server-side encryption.”

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. GET requests
for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-
meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns xNotImplemented:

* x—amz-website-redirect-location

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with
the x-amz-delete-marker response header set to true.

Behavior of GET Object for Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with
information lifecycle management), the behavior of a GET Object request depends on the state of the object.
See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on
@ the grid, GET Object requests will attempt to retrieve data from the grid, before retrieving it from
the Cloud Storage Pool.

State of object Behavior of GET Object
Object ingested into StorageGRID but not yet 200 OK

evaluated by ILM, or object stored in a traditional

storage pool or using erasure coding A copy of the object is retrieved.

Object in Cloud Storage Pool but not yet transitioned 200 ok
to a non-retrievable state

A copy of the object is retrieved.

27

State of object Behavior of GET Object

Object transitioned to a non-retrievable state 403 Forbidden, InvalidObjectState

Use a POST Object restore request to restore the
object to a retrievable state.

Object in process of being restored from a non- 403 Forbidden, InvalidObjectState
retrievable state
Wait for the POST Object restore request to complete.

Object fully restored to the Cloud Storage Pool 200 OK

A copy of the object is retrieved.

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID
determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts
or segments. In some cases, a GET Object request might incorrectly return 200 OK when some parts of the
object have already been transitioned to a non-retrievable state or when some parts of the object have not yet
been restored.

In these cases:

» The GET Object request might return some data but stop midway through the transfer.

* A subsequent GET Object request might return 403 Forbidden.

Related information
Use server-side encryption

Manage objects with ILM
POST Object restore

S3 operations tracked in audit logs

HEAD Object

You can use the S3 HEAD Object request to retrieve metadata from an object without
returning the object itself. If the object is stored in a Cloud Storage Pool, you can use
HEAD Object to determine the object’s transition state.

HEAD object and multipart objects

You can use the partNumber request parameter to retrieve metadata for a specific part of a multipart or
segmented object. The x-amz-mp-parts-count response element indicates how many parts the object has.

You can set partNumber to 1 for both segmented/multipart objects and non-segmented/non-multipart objects;
however, the x-amz-mp-parts-count response element is only returned for segmented or multipart objects.

28

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)
Use all three of these headers if the object is encrypted with a unique key that you provided.
* x—amz-server-side-encryption-customer-algorithm: Specify AES256.

* x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

* x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s
encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Use server-side encryption.”

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. HEAD requests
for an object with escaped UTF-8 characters in user-defined metadata do not return the x-amz-missing-
meta header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XxNotImplemented:

* x—amz-website-redirect-location

Response headers for Cloud Storage Pool objects

If the object is stored in a Cloud Storage Pool (see the instructions for managing objects with information
lifecycle management), the following response headers are returned:

* x—amz-storage-class: GLACIER

®* x—amz-restore

The response headers provide information about the state of an object as it is moved to a Cloud Storage Pool,
optionally transitioned to a non-retrievable state, and restored.

State of object Response to HEAD object

Object ingested into StorageGRID but not yet 200 OK (No special response header is returned.)
evaluated by ILM, or object stored in a traditional
storage pool or using erasure coding

29

State of object

Object in Cloud Storage Pool but not yet transitioned
to a non-retrievable state

Object has transitioned to non-retrievable state, but at
least one copy also exists on the grid

Object transitioned to a non-retrievable state, and no
copy exists on the grid

Object in process of being restored from a non-
retrievable state

30

Response to HEAD object

200 OK

x-amz-storage-class: GLACIER

x—amz-restore: ongoing-request="false",
expiry-date="Sat, 23 July 20 2030

00:00:00 GMT"

Until the object is transitioned to a non-retrievable
state, the value for expiry-date is set to some
distant time in the future. The exact time of transition
is not controlled by the StorageGRID system.

200 OK
x—-amz-storage-class: GLACIER

ongoing-request="false",
23 July 20 2030

x—amz-restore:
expiry-date="Sat,
00:00:00 GMT"

The value for expiry-date is set to some distant
time in the future.

Note: If the copy on the grid is not available (for
example, a Storage Node is down), you must issue a
POST Object restore request to restore the copy from
the Cloud Storage Pool before you can successfully
retrieve the object.

200 OK
x-amz-storage-class: GLACIER
200 OK
x-amz-storage-class: GLACIER

x—amz-restore: ongoing-request="true"

State of object Response to HEAD object
Object fully restored to the Cloud Storage Pool 200 OK

x—amz-storage-class: GLACIER

x—amz-restore: ongoing-request="false",
expiry-date="Sat, 23 July 20 2018
00:00:00 GMT"

The expiry-date indicates when the object in the
Cloud Storage Pool will be returned to a non-
retrievable state.

Multipart or segmented objects in Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID
determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts
or segments. In some cases, a HEAD Object request might incorrectly return x-amz-restore: ongoing-
request="false" when some parts of the object have already been transitioned to a non-retrievable state or
when some parts of the object have not yet been restored.

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a
versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with
the x-amz-delete-marker response header set to true.

Related information
Use server-side encryption

Manage objects with ILM
POST Object restore

S3 operations tracked in audit logs

POST Object restore

You can use the S3 POST Object restore request to restore an object that is stored in a
Cloud Storage Pool.

Supported request type

StorageGRID only supports POST Object restore requests to restore an object. It does not support the SELECT
type of restoration. Select requests return XxNotImplemented.

Versioning

Optionally, specify versionId to restore a specific version of an object in a versioned bucket. If you do not
specify versionId, the most recent version of the object is restored

31

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html

Behavior of POST Object restore on Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with
information lifecycle management), a POST Object restore request has the following behavior, based on the

state of the object. See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on
the grid, there is no need to restore the object by issuing a POST Object restore request.
Instead, the local copy can be retrieved directly, using a GET Object request.

State of object

Object ingested into StorageGRID but not yet
evaluated by ILM, or object is not in a Cloud Storage
Pool

Object in Cloud Storage Pool but not yet transitioned
to a non-retrievable state

Object transitioned to a non-retrievable state

Object in process of being restored from a non-
retrievable state

Object fully restored to the Cloud Storage Pool

32

Behavior of POST Object restore

403 Forbidden, InvalidObjectState

200 OK No changes are made.

Note: Before an object has been transitioned to a
non-retrievable state, you cannot change its expiry-
date.

202 Accepted Restores a retrievable copy of the
object to the Cloud Storage Pool for the number of
days specified in the request body. At the end of this
period, the object is returned to a non-retrievable
state.

Optionally, use the Tier request element to
determine how long the restore job will take to finish
(Expedited, Standard, or Bulk). If you do not
specify Tier, the Standard tier is used.

Attention: If an object has been transitioned to S3
Glacier Deep Archive or the Cloud Storage Pool uses
Azure Blob Storage, you cannot restore it using the
Expedited tier. The following error is returned 403
Forbidden, InvalidTier: Retrieval option
is not supported by this storage class.

409 Conflict, RestoreAlreadyInProgress

200 OK

Note: If an object has been restored to a retrievable
state, you can change its expiry-date by reissuing
the POST Object restore request with a new value for
Days. The restoration date is updated relative to the
time of the request.

Related information
Manage objects with ILM

HEAD Object

S3 operations tracked in audit logs

PUT Object

You can use the S3 PUT Object request to add an object to a bucket.

Resolve conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.
The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Object size

The maximum recommended size for a single PUT Object operation is 5 GiB (5,368,709,120 bytes). If you
have objects that are larger than 5 GiB, use multipart upload instead.

In StorageGRID 11.6, the maximum supported size for a single PUT Object operation is 5 TiB
(5,497,558,138,880 bytes). However, the S3 PUT Object size too large alert will be triggered if
you attempt to upload an object that exceeds 5 GiB.

User metadata size

Amazon S3 limits the size of user-defined metadata within each PUT request header to 2 KB. StorageGRID
limits user metadata to 24 KiB. The size of user-defined metadata is measured by taking the sum of the
number of bytes in the UTF-8 encoding of each key and value.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,
StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-
defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

* PUT, PUT Object-Copy, GET, and HEAD requests succeed if user-defined metadata includes escaped
UTF-8 characters.

* StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name
or value includes unprintable characters.
Object tag limits

You can add tags to new objects when you upload them, or you can add them to existing objects. Both
StorageGRID and Amazon S3 support up to 10 tags for each object. Tags associated with an object must have
unique tag keys. A tag key can be up to 128 Unicode characters in length and tag values can be up to 256
Unicode characters in length. Key and values are case sensitive.

33

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html

Object ownership

In StorageGRID, all objects are owned by the bucket owner account, including objects created by a non-owner
account or an anonymous user.

Supported request headers

The following request headers are supported:

* Cache-Control
* Content-Disposition

* Content-Encoding

When you specify aws-chunked for Content-EncodingStorageGRID does not verify the following
items:

° StorageGRID does not verify the chunk-signature against the chunk data.

° StorageGRID does not verify the value that you provide for x—-amz-decoded-content-length
against the object.

®* Content-Language
* Content-Length

* Content-MD5

®* Content-Type

* Expires

* Transfer-Encoding
Chunked transfer encoding is supported if aws-chunked payload signing is also used.
* x-amz-meta-, followed by a name-value pair containing user-defined metadata.

When specifying the name-value pair for user-defined metadata, use this general format:

x—amz-meta-name: value

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you
must use creation-time as the name of the metadata that records when the object was created. For
example:

x—amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

An ILM rule cannot use both a User Defined Creation Time for the Reference Time and the
Balanced or Strict options for Ingest Behavior. An error is returned when the ILM rule is
created.

34

* x—amz-tagging
+ S3 Object Lock request headers
° x—amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x—amz-object-lock-legal-hold

If a request is made without these headers, the bucket default retention settings are used to calculate
the object version retain-until-date.

Use S3 Object Lock

» SSE request headers:
° x-amz-server-side-encryption
° x—amz-server-side-encryption-customer-key-MD5
° x—-amz-server-side-encryption-customer-key

° x-amz-server-side-encryption-customer-algorithm

See Request headers for server-side encryption

Unsupported request headers

The following request headers are not supported:

* The x-amz-acl request header is not supported.

* The x-amz-website-redirect-location request header is not supported and returns
XNotImplemented.

Storage class options

The x-amz-storage-class request header is supported. The value submitted for x-amz-storage-class
affects how StorageGRID protects object data during ingest and not how many persistent copies of the object
are stored in the StorageGRID system (which is determined by ILM).

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-
class header has no effect.

The following values can be used for x-amz-storage-class:

* STANDARD (Default)

o Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object
is ingested a second copy of that object is created and distributed to a different Storage Node (dual
commit). When the ILM is evaluated,StorageGRID determines if these initial interim copies satisfy the
placement instructions in the rule. If they do not, new object copies might need to be made in different
locations and the initial interim copies might need to be deleted.

> Balanced: If the ILM rule specifies the Balanced option and StorageGRID cannot immediately make all
copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

35

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous
placement), the x-amz-storage-class header has no effect.

°* REDUCED REDUNDANCY

> Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID
creates a single interim copy as the object is ingested (single commit).

> Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only
if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform
synchronous placement, this header has no effect. The REDUCED REDUNDANCY option is best used
when the ILM rule that matches the object creates a single replicated copy. In this case using
REDUCED REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for
every ingest operation.

Using the REDUCED_ REDUNDANCY option is not recommended in other circumstances.
REDUCED REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose
data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Attention: Having only one replicated copy for any time period puts data at risk of permanent loss. If only one
replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant error. You also
temporarily lose access to the object during maintenance procedures such as upgrades.

Specifying REDUCED REDUNDANCY only affects how many copies are created when an object is first ingested.
It does not affect how many copies of the object are made when the object is evaluated by the active ILM
policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.

Note: If you are ingesting an object into a bucket with S3 Object Lock enabled, the REDUCED REDUNDANCY
option is ignored. If you are ingesting an object into a legacy Compliant bucket, the REDUCED REDUNDANCY
option returns an error. StorageGRID will always perform a dual-commit ingest to ensure that compliance
requirements are satisfied.

Request headers for server-side encryption

You can use the following request headers to encrypt an object with server-side encryption. The SSE and SSE-
C options are mutually exclusive.

» SSE: Use the following header if you want to encrypt the object with a unique key managed by
StorageGRID.

° x—amz-server-side-encryption

+ SSE-C: Use all three of these headers if you want to encrypt the object with a unique key that you provide
and manage.

° x-amz-server-side-encryption-customer-algorithm: Specify AES256.

° x-amz-server-side-encryption-customer-key: Specify your encryption key for the new
object.

° x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new
object’s encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Use server-side encryption.”

36

Note: If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption settings are
ignored.

Versioning

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the
object being stored. This versionId is also returned in the response using the x-amz-version-id
response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already
exists it will be overwritten.

Related information
Manage objects with ILM

Operations on buckets
S3 operations tracked in audit logs
Use server-side encryption

How client connections can be configured

PUT Object - Copy

You can use the S3 PUT Object - Copy request to create a copy of an object that is
already stored in S3. A PUT Object - Copy operation is the same as performing a GET
and then a PUT.

Resolve conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.
The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Object size

The maximum recommended size for a single PUT Object operation is 5 GiB (5,368,709,120 bytes). If you
have objects that are larger than 5 GiB, use multipart upload instead.

In StorageGRID 11.6, the maximum supported size for a single PUT Object operation is 5 TiB
(5,497,558,138,880 bytes). However, the S3 PUT Object size too large alert will be triggered if
you attempt to upload an object that exceeds 5 GiB.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,
StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-
defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

* Requests succeed if user-defined metadata includes escaped UTF-8 characters.

37

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-116/s3/configuring-tenant-accounts-and-connections.html

* StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name
or value includes unprintable characters.

Supported request headers

The following request headers are supported:

* Content-Type

® X—amz-copy-source

* x—amz-copy-source-if-match

* x—amz-copy-source-if-none-match

* x—amz-copy-source-if-unmodified-since

* x—amz-copy-source-if-modified-since

* x—amz-meta-, followed by a name-value pair containing user-defined metadata

* x-amz-metadata-directive: The default value is COPY, which enables you to copy the object and
associated metadata.

You can specify REPLACE to overwrite the existing metadata when copying the object, or to update the
object metadata.

* x—amz-storage-class

* x-amz-tagging-directive: The default value is COPY, which enables you to copy the object and all
tags.

You can specify REPLACE to overwrite the existing tags when copying the object, or to update the tags.

* S3 Object Lock request headers:
° x—-amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x-—amz-object-lock-legal-hold

If a request is made without these headers, the bucket default retention settings are used to calculate
the object version retain-until-date.

Use S3 Object Lock

» SSE request headers:
° x—amz-copy-source-server-side-encryption-customer-algorithm
° Xx-—amz-copy-source-server-side-encryption-customer-key
° Xx-—amz-copy-source-server-side-encryption-customer-key-MD5
° x—amz-server-side-encryption
° x—amz-server-side-encryption-customer-key-MD5

° x—amz-server-side-encryption-customer-key

38

° x—amz-server-side-encryption-customer-algorithm

See Request headers for server-side encryption

Unsupported request headers

The following request headers are not supported:

* Cache-Control

* Content-Disposition
* Content-Encoding

¢ Content-Language

* Expires

* x—amz-website-redirect-location

Storage class options

The x-amz-storage-class request header is supported, and affects how many object copies StorageGRID
creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

* STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when
the Balanced option falls back to creating interim copies.

°* REDUCED REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the
Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

@ REDUCED_ REDUNDANCY option is ignored. If you are ingesting an object into a legacy
Compliant bucket, the REDUCED REDUNDANCY option returns an error. StorageGRID will
always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

Using x-amz-copy-source in PUT Object - Copy

If the source bucket and key, specified in the x-amz-copy-source header, are different from the destination
bucket and key, a copy of the source object data is written to the destination.

If the source and destination match, and the x-amz-metadata-directive header is specified as REPLACE,
the object’s metadata is updated with the metadata values supplied in the request. In this case, StorageGRID
does not re-ingest the object. This has two important consequences:

* You cannot use PUT Object - Copy to encrypt an existing object in place, or to change the encryption of an
existing object in place. If you supply the x-amz-server-side-encryption header or the x-amz-
server—-side-encryption-customer-algorithm header, StorageGRID rejects the request and
returns XNotImplemented.

39

* The option for Ingest Behavior specified in the matching ILM rule is not used. Any changes to object
placement that are triggered by the update are made when ILM is re-evaluated by normal background ILM
processes.

This means that if the ILM rule uses the Strict option for ingest behavior, no action is taken if the required
object placements cannot be made (for example, because a newly required location is unavailable). The
updated object retains its current placement until the required placement is possible.

Request headers for server-side encryption

If you use server-side encryption, the request headers you provide depend on whether the source object is
encrypted and on whether you plan to encrypt the target object.

« If the source object is encrypted using a customer-provided key (SSE-C), you must include the following
three headers in the PUT Object - Copy request, so the object can be decrypted and then copied:

° x-—amz-copy-source-server-side-encryption-customer-algorithm Specify AES256.

° x-amz-copy-source-server-side-encryption-customer-key Specify the encryption key you
provided when you created the source object.

° x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest
you provided when you created the source object.

« If you want to encrypt the target object (the copy) with a unique key that you provide and manage, include
the following three headers:

° x-amz-server-side-encryption-customer-algorithm: Specify AES256.

° x-amz-server-side-encryption-customer-key: Specify a new encryption key for the target
object.

° x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new
encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Use server-side encryption.”

« If you want to encrypt the target object (the copy) with a unique key managed by StorageGRID (SSE),
include this header in the PUT Object - Copy request:

° x—-amz-server-side-encryption

Note: The server-side-encryption value of the object cannot be updated. Instead, make a copy with a
new server-side-encryption value using x-amz-metadata-directive: REPLACE.

Versioning

If the source bucket is versioned, you can use the x-amz-copy-source header to copy the latest version of
an object. To copy a specific version of an object, you must explicitly specify the version to copy using the
versionId subresource. If the destination bucket is versioned, the generated version is returned in the x-
amz-version-id response header. If versioning is suspended for the target bucket, then x-amz-version-
id returns a “null” value.

Related information
Manage objects with ILM

40

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html

Use server-side encryption
S3 operations tracked in audit logs

PUT Object

SelectObjectContent

You can use the S3 SelectObjectContent request to filter the contents of an S3 object
based on a simple SQL statement.

For more information see the AWS documentation for SelectObjectContent.

What you’ll need
* The tenant account has the S3 Select permission.

* You have s3:GetObject permission for the object you want to query.

* The object you want to query is in CSV format, or is a GZIP or BZIP2 compressed file containing a CSV
formatted file.

* Your SQL expression has a maximum length of 256 KB.

» Any record in the input or results has a maximum length of 1 MiB.

Request syntax example

41

https://docs.netapp.com/us-en/storagegrid-116/s3/s3-operations-tracked-in-audit-logs.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_SelectObjectContent.html

POST /{Key+}?select&select-type=2 HTTP/1.1
Host: Bucket.s3.abc-company.com
x—amz-expected-bucket-owner: ExpectedBucketOwner
<?xml version="1.0" encoding="UTF-8"7?>
<SelectObjectContentRequest xmlns="http://s3.amazonaws.com/doc/2006-03-
01/">
<Expression>string</Expression>
<ExpressionType>string</ExpressionType>
<RequestProgress>
<Enabled>boolean</Enabled>
</RequestProgress>
<InputSerialization>
<CompressionType>GZIP</CompressionType>
<CSV>
<AllowQuotedRecordDelimiter>boolean</AllowQuotedRecordDelimiter>
<Comments>#</Comments>
<FieldDelimiter>\t</FieldDelimiter>
<FileHeaderInfo>USE</FileHeaderInfo>
<QuoteCharacter>"'</QuoteCharacter>
<QuoteEscapeCharacter>\\</QuoteEscapeCharacter>
<RecordDelimiter>\n</RecordDelimiter>
</CSV>
</InputSerialization>
<OutputSerialization>
<CSVv>
<FieldDelimiter>string</FieldDelimiter>
<QuoteCharacter>string</QuoteCharacter>
<QuoteEscapeCharacter>string</QuoteEscapeCharacter>
<QuoteFields>string</QuoteFields>
<RecordDelimiter>string</RecordDelimiter>
</CS8V>
</OutputSerialization>
<ScanRange>
<End>long</End>
<Start>long</Start>
</ScanRange>
</SelectObjectContentRequest>

SQL query example

This query gets the state name, 2010 populations, estimated 2015 populations, and the percentage of change
from US census data. Records in the file that are not states are ignored.

42

SELECT STNAME, CENSUS2010POP, POPESTIMATE2015, CAST((POPESTIMATE2015 -
CENSUS2010POP) AS DECIMAL) / CENSUS2010POP * 100.0 FROM S30Object WHERE
NAME = STNAME

The first few lines of the file to be queried, SUB-EST2020 ALL. csv, look like this:

SUMLEV, STATE, COUNTY , PLACE, COUSUB, CONCIT, PRIMGEO FLAG, FUNCSTAT, NAME, STNAME,
CENSUS2010POP,

ESTIMATESBASE2010, POPESTIMATE2010, POPESTIMATEZ2011, POPESTIMATE2012, POPESTIM
ATE2013, POPESTIMATE2014,

POPESTIMATE2015, POPESTIMATE2016, POPESTIMATE2017, POPESTIMATE2018, POPESTIMAT
E2019, POPESTIMATEQ042020,

POPESTIMATE2020

040,01,000,00000,00000,00000,0,A,Alabama,Alabama, 4779736,4780118,4785514, 4
799642,4816632,4831586,
4843737,4854803,4866824,4877989,4891628,4907965,4920706,4921532
162,01,000,00124,00000,00000,0,A, Abbeville
city,Alabama,2688,2705,2699,2694,2645,2629,2610,2602,
2587,2578,2565,2555,2555, 2553

162,01,000,00460,00000,00000,0,A,Adamsville

city,Alabama, 4522,4487,4481,4474,4453,4430,4399,4371,
4335,4304,4285,4254,4224,4211

162,01,000,00484,00000,00000,0,A,Addison

town,Alabama, 758,754,751,750,745,744,742,734,734,728,

725,723,719, 717

AWS-CLI usage example

aws s3api select-object-content --endpoint-url https://10.224.7.44:10443
-—-no-verify-ssl -—--bucket 619c0755-9e38-42e0-a614-05064£f74126d --key SUB-
EST2020 ALL.csv --expression-type SQL --input-serialization '{"CSV":

{"FileHeaderInfo": "USE", "Comments": "#", "QuoteEscapeCharacter": "\"",
"RecordDelimiter": "\n", "FieldDelimiter": ",", "QuoteCharacter": "\"",
"AllowQuotedRecordDelimiter": false}, "CompressionType": "NONE"}' --output
-serialization '{"CSV": {"QuoteFields": "ASNEEDED",
"QuoteEscapeCharacter": "#", "RecordDelimiter": "\n", "FieldDelimiter":
",", "QuoteCharacter": "\""}}' --expression "SELECT STNAME, CENSUS2010POP,

POPESTIMATE2015, CAST ((POPESTIMATE2015 - CENSUS2010POP) AS DECIMAL) /
CENSUS2010POP * 100.0 FROM S30Object WHERE NAME = STNAME" changes.csv

The first few lines of the output file, changes . csv, look like this:

Alabama, 4779736,4854803,1.5705260708959658022953568983726297854
Alaska,710231,738430,3.9703983633493891424057806544631253775
Arizona, 6392017, 6832810,6.8959922978928247531256565807005832431
Arkansas, 2915918,2979732,2.1884703204959810255295244928012378949
California, 37253956,38904296,4.4299724839960620557988526104449148971
Colorado,5029196,5454328,8.4532796097030221132761578590295546246

Operations for multipart uploads

This section describes how StorageGRID supports operations for multipart uploads.
The following conditions and notes apply to all multipart upload operations:

* You should not exceed 1,000 concurrent multipart uploads to a single bucket because the results of List
Multipart Uploads queries for that bucket might return incomplete results.

» StorageGRID enforces AWS size limits for multipart parts. S3 clients must follow these guidelines:

o Each part in a multipart upload must be between 5 MiB (5,242,880 bytes) and 5 GiB (5,368,709,120
bytes).

o The last part can be smaller than 5 MiB (5,242,880 bytes).

o In general, part sizes should be as large as possible. For example, use part sizes of 5 GiB for a 100
GiB object. Since each part is considered a unique object, using large part sizes reduces StorageGRID
metadata overhead.

> For objects smaller than 5 GiB, consider using non-multipart upload instead.

* ILM is evaluated for each part of a multipart object as it is ingested and for the object as a whole when the
multipart upload completes, if the ILM rule uses the Strict or Balanced ingest behavior. You should be
aware of how this affects object and part placement:

o If ILM changes while an S3 multipart upload is in progress, when the multipart upload completes some
parts of the object might not meet current ILM requirements. Any part that is not placed correctly is
queued for ILM re-evaluation, and is moved to the correct location later.

> When evaluating ILM for a part, StorageGRID filters on the size of the part, not the size of the object.
This means that parts of an object can be stored in locations that do not meet ILM requirements for the
object as a whole. For example, if a rule specifies that all objects 10 GB or larger are stored at DC1
while all smaller objects are stored at DC2, at ingest each 1 GB part of a 10-part multipart upload is
stored at DC2. When ILM is evaluated for the object as a whole, all parts of the object are moved to
DC1.

« All of the multipart upload operations support StorageGRID consistency controls.

* As required, you can use server-side encryption with multipart uploads. To use SSE (server-side encryption
with StorageGRID-managed keys), you include the x-amz-server-side-encryption request header
in the Initiate Multipart Upload request only. To use SSE-C (server-side encryption with customer-provided
keys), you specify the same three encryption key request headers in the Initiate Multipart Upload request
and in each subsequent Upload Part request.

Operation Implementation

List Multipart Uploads See List Multipart Uploads

44

Operation Implementation

Initiate Multipart Upload See Initiate Multipart Upload

Upload Part See Upload Part

Upload Part - Copy See Upload Part - Copy

Complete Multipart Upload See Complete Multipart Upload

Abort Multipart Upload Implemented with all Amazon S3 REST API behavior
List Parts Implemented with all Amazon S3 REST API behavior

Related information

» Consistency controls

» Use server-side encryption

List Multipart Uploads
The List Multipart Uploads operation lists in-progress multipart uploads for a bucket.
The following request parameters are supported:

* encoding-type
* max-uploads
* key-marker

prefix

* upload-id-marker
The delimiter request parameter is not supported.

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. When the Complete Multipart Upload operation is
performed, that is the point when objects are created (and versioned if applicable).

Initiate Multipart Upload

The Initiate Multipart Upload operation initiates a multipart upload for an object, and
returns an upload ID.

The x-amz-storage-class request header is supported. The value submitted for x—-amz-storage-class
affects how StorageGRID protects object data during ingest and not how many persistent copies of the object
are stored in the StorageGRID system (which is determined by ILM).

45

https://docs.netapp.com/us-en/storagegrid-116/s3/consistency-controls.html

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-
class header has no effect.

The following values can be used for x-amz-storage-class:

* STANDARD (Default)

> Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object
is ingested a second copy of that object is created and distributed to a different Storage Node (dual
commit). When the ILM is evaluated,StorageGRID determines if these initial interim copies satisfy the
placement instructions in the rule. If they do not, new object copies might need to be made in different
locations and the initial interim copies might need to be deleted.

o Balanced: If the ILM rule specifies the Balanced option and StorageGRID cannot immediately make all
copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous
placement), the x—amz-storage-class header has no effect.

¢ REDUCED_ REDUNDANCY

o Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID
creates a single interim copy as the object is ingested (single commit).

> Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only
if the system cannot immediately make all copies specified in the rule. If StorageGRID can perform
synchronous placement, this header has no effect. The REDUCED REDUNDANCY option is best used
when the ILM rule that matches the object creates a single replicated copy. In this case using
REDUCED_ REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for
every ingest operation.

Using the REDUCED REDUNDANCY option is not recommended in other circumstances.
REDUCED_ REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose
data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Attention: Having only one replicated copy for any time period puts data at risk of permanent loss. If only one
replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant error. You also
temporarily lose access to the object during maintenance procedures such as upgrades.

Specifying REDUCED REDUNDANCY only affects how many copies are created when an object is first ingested.
It does not affect how many copies of the object are made when the object is evaluated by the active ILM
policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.
Note: If you are ingesting an object into a bucket with S3 Object Lock enabled, the REDUCED REDUNDANCY
option is ignored. If you are ingesting an object into a legacy Compliant bucket, the REDUCED REDUNDANCY
option returns an error. StorageGRID will always perform a dual-commit ingest to ensure that compliance
requirements are satisfied.

The following request headers are supported:

* Content-Type

* x-amz-meta-, followed by a name-value pair containing user-defined metadata

When specifying the name-value pair for user-defined metadata, use this general format:

46

x-amz-meta- name : “value’

If you want to use the User Defined Creation Time option as the Reference Time for an ILM rule, you
must use creation-time as the name of the metadata that records when the object was created. For
example:

x—amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

@ Adding creation-time as user-defined metadata is not allowed if you are adding an
object to a bucket that has legacy Compliance enabled. An error will be returned.

* S3 Object Lock request headers:
° x—amz-object-lock-mode
° x—amz-object-lock-retain-until-date

° x—amz-object-lock-legal-hold

If a request is made without these headers, the bucket default retention settings are used to calculate
the object version retain-until-date.

Using S3 Object Lock
* SSE request headers:

° x-amz-server-side-encryption
° x—amz-server-side-encryption-customer-key-MD5
° x—amz-server-side-encryption-customer-key

° x—amz-server-side-encryption-customer-algorithm

Request headers for server-side encryption

@ For information on how StorageGRID handles UTF-8 characters, see the documentation for
PUT Object.

Request headers for server-side encryption

You can use the following request headers to encrypt a multipart object with server-side encryption. The SSE
and SSE-C options are mutually exclusive.

+ SSE: Use the following header in the Initiate Multipart Upload request if you want to encrypt the object with
a unique key managed by StorageGRID. Do not specify this header in any of the Upload Part requests.

° x-—amz-server-side-encryption

+ SSE-C: Use all three of these headers in the Initiate Multipart Upload request (and in each subsequent

47

Upload Part request) if you want to encrypt the object with a unique key that you provide and manage.
° x-amz-server-side-encryption-customer-algorithm: Specify AES256.

° x-—amz-server-side-encryption-customer-key: Specify your encryption key for the new
object.

° x-—amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new
object’s encryption key.

Attention: The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the considerations in
“Use server-side encryption.”

Unsupported request headers

The following request header is not supported and returns XNotImplemented

* x—amz-website-redirect-location

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)
when the Complete Multipart Upload operation is performed.

Related information

Manage objects with ILM
Use server-side encryption

PUT Object

Upload Part

The Upload Part operation uploads a part in a multipart upload for an object.

Supported request headers
The following request headers are supported:

* Content-Length

* Content-MD5

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following
request headers in each Upload Part request:

* x-amz-server-side-encryption-customer-algorithm: Specify AES256.

* x-—amz-server-side-encryption-customer-key: Specify the same encryption key that you
provided in the Initiate Multipart Upload request.

* x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you

48

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html

provided in the Initiate Multipart Upload request.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Use server-side encryption.”

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)
when the Complete Multipart Upload operation is performed.

Related information
Use server-side encryption

Upload Part - Copy

The Upload Part - Copy operation uploads a part of an object by copying data from an
existing object as the data source.

The Upload Part - Copy operation is implemented with all Amazon S3 REST API behavior.

This request reads and writes the object data specified in x-amz-copy-source-range within the
StorageGRID system.

The following request headers are supported:

* x—amz-copy-source-if-match
* x—amz-copy-source-if-none-match
* x—amz-copy-source-if-unmodified-since

* x—amz-copy-source-if-modified-since

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following
request headers in each Upload Part - Copy request:

* x-amz-server-side-encryption-customer-algorithm: Specify AES256.

* x-amz-server-side-encryption-customer-key: Specify the same encryption key that you
provided in the Initiate Multipart Upload request.

* x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you
provided in the Initiate Multipart Upload request.

If the source object is encrypted using a customer-provided key (SSE-C), you must include the following three
headers in the Upload Part - Copy request, so the object can be decrypted and then copied:

* x-amz-copy-source-server-side-encryption-customer-algorithm: Specify AES256.

* x-amz-copy-source-server-side-encryption-customer-key: Specify the encryption key you
provided when you created the source object.

49

* x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest you
provided when you created the source object.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the
corresponding object. Before using customer-provided keys to secure object data, review the
considerations in “Use server-side encryption.”

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,
assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)
when the Complete Multipart Upload operation is performed.

Complete Multipart Upload

The Complete Multipart Upload operation completes a multipart upload of an object by
assembling the previously uploaded parts.

Resolve conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.
The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given
request, and not on when S3 clients begin an operation.

Request headers

The x-amz-storage—-class request header is supported, and affects how many object copies StorageGRID
creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

¢ STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when
the Balanced option falls back to creating interim copies.

* REDUCED REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the
Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

@ REDUCED REDUNDANCY option is ignored. If you are ingesting an object into a legacy
Compliant bucket, the REDUCED REDUNDANCY option returns an error. StorageGRID will
always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

@ If a multipart upload is not completed within 15 days, the operation is marked as inactive and all
associated data is deleted from the system.

@ The ETag value returned is not an MD5 sum of the data, but follows the Amazon S3 API
implementation of the ETag value for multipart objects.

50

Versioning

This operation completes a multipart upload. If versioning is enabled for a bucket, the object version is created
upon completion of the multipart upload.

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the
object being stored. This versionId is also returned in the response using the x-amz-version-id
response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already
exists it will be overwritten.

When versioning is enabled for a bucket, completing a multipart upload always creates a new
version, even if there are concurrent multipart uploads completed on the same object key. When

@ versioning is not enabled for a bucket, it is possible to initiate a multipart upload and then have
another multipart upload initiate and complete first on the same object key. On non-versioned
buckets, the multipart upload that completes last takes precedence.

Failed replication, notification, or metadata notification

If the bucket where the multipart upload occurs is configured for a platform service, multipart upload succeeds
even if the associated replication or notification action fails.

If this occurs, an alarm is raised in the Grid Manager on Total Events (SMTT). The Last Event message
displays “Failed to publish notifications for bucket-nameobject key” for the last object whose notification failed.

(To see this message, select NODES > Storage Node > Events. View Last Event at the top of the table.)
Event messages are also listed in /var/local/log/bycast-err.log.

A tenant can trigger the failed replication or notification by updating the object’'s metadata or tags. A tenant can
resubmit the existing values to avoid making unwanted changes.

Related information

Manage objects with ILM

Error responses

The StorageGRID system supports all standard S3 REST API error responses that apply.
In addition, the StorageGRID implementation adds several custom responses.

Supported S3 API error codes

Name HTTP status
AccessDenied 403 Forbidden
BadDigest 400 Bad Request
BucketAlreadyExists 409 Conflict
BucketNotEmpty 409 Conflict

51

https://docs.netapp.com/us-en/storagegrid-116/ilm/index.html

Name

IncompleteBody

InternalError

InvalidAccessKeyld

InvalidArgument

InvalidBucketName

InvalidBucketState

InvalidDigest

InvalidEncryptionAlgorithmError

InvalidPart

InvalidPartOrder

InvalidRange

InvalidRequest

InvalidStorageClass

InvalidTag

InvalidURI

KeyToolLong

MalformedXML

MetadataToolLarge

MethodNotAllowed

MissingContentLength

MissingRequestBodyError

MissingSecurityHeader

52

HTTP status
400 Bad Request

500 Internal Server Error

403 Forbidden

400 Bad Request

400 Bad Request

409 Conflict

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

416 Requested Range Not Satisfiable

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

400 Bad Request

405 Method Not Allowed

411 Length Required

400 Bad Request

400 Bad Request

Name

NoSuchBucket
NoSuchKey
NoSuchUpload
Notlmplemented
NoSuchBucketPolicy
ObjectLockConfigurationNotFoundError
PreconditionFailed
RequestTimeTooSkewed
ServiceUnavailable
SignatureDoesNotMatch
TooManyBuckets

UserKeyMustBeSpecified

StorageGRID custom error codes

Name Description

XBucketLifecycleNotAllowed

HTTP status
404 Not Found

404 Not Found

404 Not Found

501 Not Implemented

404 Not Found

404 Not Found

412 Precondition Failed

403 Forbidden

503 Service Unavailable

403 Forbidden

400 Bad Request

400 Bad Request

HTTP status

Bucket lifecycle configuration is not 400 Bad Request

allowed in a legacy Compliant

bucket

XBucketPolicyParseException Failed to parse received bucket 400 Bad Request
policy JSON.

XComplianceConflict Operation denied because of 403 Forbidden

legacy Compliance settings.

XComplianceReducedRedundancy Reduced redundancy is not

400 Bad Request

Forbidden allowed in legacy Compliant bucket

XMaxBucketPolicyLengthExceeded Your policy exceeds the maximum 400 Bad Request
allowed bucket policy length.

53

Name

XMissinglnternalRequestHeader

XNoSuchBucketCompliance

XNotAcceptable

XNotlmplemented

54

Description HTTP status

Missing a header of an internal 400 Bad Request
request.

The specified bucket does not have 404 Not Found
legacy Compliance enabled.

The request contains one or more 406 Not Acceptable
accept headers that could not be
satisfied.

The request you provided implies 501 Not Implemented
functionality that is not
implemented.

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

55

http://www.netapp.com/TM

	S3 REST API supported operations and limitations : StorageGRID
	Table of Contents
	S3 REST API supported operations and limitations
	Date handling
	Common request headers
	Common response headers
	Authenticate requests
	Use the HTTP Authorization header
	Use query parameters

	Operations on the service
	Operations on buckets
	Create S3 lifecycle configuration
	Use S3 Object Lock default bucket retention
	Custom operations on buckets

	Operations on objects
	Use S3 Object Lock
	Use S3 Select
	Use server-side encryption
	GET Object
	HEAD Object
	POST Object restore
	PUT Object
	PUT Object - Copy
	SelectObjectContent

	Operations for multipart uploads
	List Multipart Uploads
	Initiate Multipart Upload
	Upload Part
	Upload Part - Copy
	Complete Multipart Upload

	Error responses
	Supported S3 API error codes
	StorageGRID custom error codes

