■ NetApp # **Audit log file format** StorageGRID 11.7 NetApp March 05, 2024 This PDF was generated from https://docs.netapp.com/us-en/storagegrid-117/audit/audit-log-file-format.html on March 05, 2024. Always check docs.netapp.com for the latest. ## **Table of Contents** | A | udit log file format | 1 | |---|---------------------------------|---| | | Audit log file format: Overview | 1 | | | Use audit-explain tool. | 2 | | | Use audit-sum tool | 4 | # **Audit log file format** ### **Audit log file format: Overview** The audit log files are found on every Admin Node and contain a collection of individual audit messages. Each audit message contains the following: • The Coordinated Universal Time (UTC) of the event that triggered the audit message (ATIM) in ISO 8601 format, followed by a space: YYYY-MM-DDTHH: MM: SS. UUUUUU, where UUUUUU are microseconds. • The audit message itself, enclosed within square brackets and beginning with AUDT. The following example shows three audit messages in an audit log file (line breaks added for readability). These messages were generated when a tenant created an S3 bucket and added two objects to that bucket. ``` 2019-08-07T18:43:30.247711 [AUDT: [RSLT (FC32):SUCS] [CNID (UI64):1565149504991681] [TIME (UI64):73520] [SAI P(IPAD): "10.224.2.255"] [S3AI(CSTR): "17530064241597054718"] [SACC(CSTR): "s3tenant"][S3AK(CSTR): "SGKH9100SCkNB8M3MTWNt- PhoTDwB9JOk7PtyLkQmA=="][SUSR(CSTR):"urn:sgws:identity::175300642415970547 18:root"] [SBAI (CSTR): "17530064241597054718"] [SBAC (CSTR): "s3tenant"] [S3BK (CSTR): "buc ket1" | [AVER (UI32):10] [ATIM (UI64):1565203410247711] [ATYP(FC32):SPUT][ANID(UI32):12454421][AMID(FC32):S3RQ][ATID(UI64):7074142 142472611085]] 2019-08-07T18:43:30.783597 [AUDT: [RSLT(FC32):SUCS] [CNID(UI64):1565149504991696] [TIME(UI64):120713] [SA IP(IPAD):"10.224.2.255"][S3AI(CSTR):"17530064241597054718"] [SACC(CSTR): "s3tenant"] [S3AK(CSTR): "SGKH9100SCkNB8M3MTWNt- PhoTDwB9JOk7PtyLkQmA=="][SUSR(CSTR):"urn:sqws:identity::175300642415970547 18:root"] [SBAI (CSTR): "17530064241597054718"] [SBAC (CSTR): "s3tenant"] [S3BK (CSTR): "buc ket1"][S3KY(CSTR):"fh-small-0"] [CBID(UI64):0x779557A069B2C037][UUID(CSTR):"94BA6949-38E1-4B0C-BC80- EB44FB4FCC7F"] [CSIZ (UI64):1024] [AVER (UI32):10] [ATIM(UI64):1565203410783597] [ATYP(FC32):SPUT] [ANID(UI32):12454421] [AMID(F C32):S3RQ][ATID(UI64):8439606722108456022]] 2019-08-07T18:43:30.784558 [AUDT: [RSLT (FC32):SUCS] [CNID (UI64):1565149504991693] [TIME (UI64):121666] [SA IP(IPAD):"10.224.2.255"][S3AI(CSTR):"17530064241597054718"] [SACC(CSTR): "s3tenant"][S3AK(CSTR): "SGKH9100SCkNB8M3MTWNt- PhoTDwB9JOk7PtyLkQmA=="][SUSR(CSTR):"urn:sqws:identity::175300642415970547 18:root"] [SBAI (CSTR): "17530064241597054718"] [SBAC (CSTR): "s3tenant"] [S3BK (CSTR): "buc ket1"][S3KY(CSTR):"fh-small-2000"] [CBID(UI64):0x180CBD8E678EED17][UUID(CSTR):"19CE06D0-D2CF-4B03-9C38- E578D66F7ADD"] [CSIZ (UI64):1024] [AVER (UI32):10] [ATIM(U164):1565203410784558] [ATYP(FC32):SPUT] [ANID(U132):12454421] [AMID(F C32):S3RQ][ATID(UI64):13489590586043706682]] ``` In their default format, the audit messages in the audit log files aren't easy to read or interpret. You can use the audit-explain tool to obtain simplified summaries of the audit messages in the audit log. You can use the audit-sum tool to summarize how many write, read, and delete operations were logged and how long these operations took. ### Use audit-explain tool You can use the audit-explain tool to translate the audit messages in the audit log in to an easy-to-read format. #### Before you begin - You must have specific access permissions. - You must have the Passwords.txt file. - You must know the IP address of the primary Admin Node. #### About this task The audit-explain tool, available on the primary Admin Node, provides simplified summaries of the audit messages in an audit log. The audit-explain tool is primarily intended for use by technical support during troubleshooting operations. Processing audit-explain queries can consume a large amount of CPU power, which might impact StorageGRID operations. This example shows typical output from the audit-explain tool. These four SPUT audit messages were generated when the S3 tenant with account ID 92484777680322627870 used S3 PUT requests to create a bucket named "bucket1" and add three objects to that bucket. ``` SPUT S3 PUT bucket bucket1 account:92484777680322627870 usec:124673 SPUT S3 PUT object bucket1/part1.txt tenant:92484777680322627870 cbid:9DCB157394F99FE5 usec:101485 SPUT S3 PUT object bucket1/part2.txt tenant:92484777680322627870 cbid:3CFBB07AB3D32CA9 usec:102804 SPUT S3 PUT object bucket1/part3.txt tenant:92484777680322627870 cbid:5373D73831ECC743 usec:93874 ``` The audit-explain tool can do the following: • Process plain or compressed audit logs. For example: ``` audit-explain audit.log audit-explain 2019-08-12.txt.qz ``` · Process multiple files simultaneously. For example: ``` audit-explain audit.log 2019-08-12.txt.gz 2019-08-13.txt.gz audit-explain /var/local/audit/export/* ``` Accept input from a pipe, which allows you to filter and preprocess the input using the grep command or other means. For example: ``` grep SPUT audit.log | audit-explain grep bucket-name audit.log | audit-explain ``` Because audit logs can be very large and slow to parse, you can save time by filtering parts that you want to look at and running audit-explain on the parts, instead of the entire file. The audit-explain tool does not accept compressed files as piped input. To process compressed files, provide their file names as command-line arguments, or use the zcat tool to decompress the files first. For example: ``` zcat audit.log.gz | audit-explain ``` Use the help (-h) option to see the available options. For example: ``` $ audit-explain -h ``` #### Steps - 1. Log in to the primary Admin Node: - a. Enter the following command: ssh admin@primary Admin Node IP - b. Enter the password listed in the Passwords.txt file. - c. Enter the following command to switch to root: su - - d. Enter the password listed in the Passwords.txt file. When you are logged in as root, the prompt changes from \$ to #. 2. Enter the following command, where /var/local/audit/export/audit.log represents the name and the location of the file or files you want to analyze: ``` $ audit-explain /var/local/audit/export/audit.log ``` The audit-explain tool prints human-readable interpretations of all messages in the specified file or files. To reduce line lengths and to aid readability, timestamps aren't shown by default. If you want to see the timestamps, use the timestamp (-t) option. ### Use audit-sum tool You can use the audit-sum tool to count the write, read, head, and delete audit messages and to see the minimum, maximum, and average time (or size) for each operation type. #### Before you begin - · You must have specific access permissions. - You must have the Passwords.txt file. - You must know the IP address of the primary Admin Node. #### About this task The audit-sum tool, available on the primary Admin Node, summarizes how many write, read, and delete operations were logged and how long these operations took. The audit-sum tool is primarily intended for use by technical support during troubleshooting operations. Processing audit-sum queries can consume a large amount of CPU power, which might impact StorageGRID operations. This example shows typical output from the audit-sum tool. This example shows how long protocol operations took. | message group average(sec) | count | min(sec) | max(sec) | | |----------------------------|---------|----------|----------|--| | ========= | ===== | ====== | ====== | | | ======== | | | | | | IDEL | 274 | | | | | SDEL | 213371 | 0.004 | 20.934 | | | 0.352 | | | | | | SGET | 201906 | 0.010 | 1740.290 | | | 1.132 | | | | | | SHEA | 22716 | 0.005 | 2.349 | | | 0.272 | | | | | | SPUT | 1771398 | 0.011 | 1770.563 | | | 0.487 | | | | | | | | | | | The audit-sum tool provides counts and times for the following S3, Swift, and ILM audit messages in an audit log: | Code | Description | Refer to | |------|--|--| | ARCT | Archive Retrieve from Cloud-Tier | ARCT: Archive Retrieve from Cloud-Tier | | ASCT | Archive Store Cloud-Tier | ASCT: Archive Store Cloud-Tier | | IDEL | ILM Initiated Delete: Logs when ILM starts the process of deleting an object. | IDEL: ILM Initiated Delete | | SDEL | S3 DELETE: Logs a successful transaction to delete an object or bucket. | SDEL: S3 DELETE | | SGET | S3 GET: Logs a successful transaction to retrieve an object or list the objects in a bucket. | SGET: S3 GET | | SHEA | S3 HEAD: Logs a successful transaction to check for the existence of an object or bucket. | SHEA: S3 HEAD | | SPUT | S3 PUT: Logs a successful transaction to create a new object or bucket. | SPUT: S3 PUT | | Code | Description | Refer to | |------|--|--------------------| | WDEL | Swift DELETE: Logs a successful transaction to delete an object or container. | WDEL: Swift DELETE | | WGET | Swift GET: Logs a successful transaction to retrieve an object or list the objects in a container. | WGET: Swift GET | | WHEA | Swift HEAD: Logs a successful transaction to check for the existence of an object or container. | WHEA: Swift HEAD | | WPUT | Swift PUT: Logs a successful transaction to create a new object or container. | WPUT: Swift PUT | The audit-sum tool can do the following: • Process plain or compressed audit logs. For example: ``` audit-sum audit.log audit-sum 2019-08-12.txt.gz ``` • Process multiple files simultaneously. For example: ``` audit-sum audit.log 2019-08-12.txt.gz 2019-08-13.txt.gz audit-sum /var/local/audit/export/* ``` Accept input from a pipe, which allows you to filter and preprocess the input using the grep command or other means. For example: ``` grep WGET audit.log | audit-sum grep bucket1 audit.log | audit-sum grep SPUT audit.log | grep bucket1 | audit-sum ``` This tool does not accept compressed files as piped input. To process compressed files, provide their file names as command-line arguments, or use the zcat tool to decompress the files first. For example: ``` audit-sum audit.log.gz zcat audit.log.gz | audit-sum ``` You can use command-line options to summarize operations on buckets separately from operations on objects or to group message summaries by bucket name, by time period, or by target type. By default, the summaries show the minimum, maximum, and average operation time, but you can use the size (-s) option to look at object size instead. Use the help (-h) option to see the available options. For example: \$ audit-sum -h #### **Steps** - 1. Log in to the primary Admin Node: - a. Enter the following command: ssh admin@primary Admin Node IP - b. Enter the password listed in the Passwords.txt file. - c. Enter the following command to switch to root: su - - d. Enter the password listed in the Passwords.txt file. When you are logged in as root, the prompt changes from \$ to #. - 2. If you want to analyze all messages related to write, read, head, and delete operations, follow these steps: - a. Enter the following command, where /var/local/audit/export/audit.log represents the name and the location of the file or files you want to analyze: - \$ audit-sum /var/local/audit/export/audit.log This example shows typical output from the audit-sum tool. This example shows how long protocol operations took. | message group
average(sec) | count | min(sec) | max(sec) | | |-------------------------------|---------|----------|----------|--| | ========= | ===== | ====== | ====== | | | ======== | | | | | | IDEL | 274 | | | | | SDEL | 213371 | 0.004 | 20.934 | | | 0.352 | | | | | | SGET | 201906 | 0.010 | 1740.290 | | | 1.132 | | | | | | SHEA | 22716 | 0.005 | 2.349 | | | 0.272 | | | | | | SPUT | 1771398 | 0.011 | 1770.563 | | | 0.487 | | | | | | | | | | | In this example, SGET (S3 GET) operations are the slowest on average at 1.13 seconds, but SGET and SPUT (S3 PUT) operations both show long worst-case times of about 1,770 seconds. b. To show the slowest 10 retrieval operations, use the grep command to select only SGET messages and add the long output option (-1) to include object paths: ``` grep SGET audit.log | audit-sum -l ``` The results include the type (object or bucket) and path, which allows you to grep the audit log for other messages relating to these particular objects. | Total: | 201906 o _l | perations | | | | |-----------------|-----------------------|---|--------|------------|------| | Slowest: | 1740.2 | 90 sec | | | | | Average: | 1.1 | 32 sec | | | | | Fastest: | 0.0 | 10 sec | | | | | Slowest ope | erations: | | | | | | | | source ip
==================================== | | | _ | | | | ======= ===
96.101.125 | | 5663711385 | ==== | | backup/r9010aQ8 | BJB-156686 | 1764-4519.iso | | | | | 1624414 | 1429 10. | 96.101.125 | object | 5375001556 | | | backup/r9010aQ8 | BJB-156686 | 1764-6618.iso | | | | | 1533143 | 3793 10. | 96.101.125 | object | 5183661466 | | | backup/r9010aQ8 | BJB-156686 | 1764-4518.iso | | | | | 7(| 0839 10. | 96.101.125 | object | 28338 | | | bucket3/dat.156 | 66861764-6 | 619 | | | | | 68 | 3487 10. | 96.101.125 | object | 27890 | | | bucket3/dat.156 | 66861764-6 | 615 | | | | | 6 | 7798 10. | 96.101.125 | object | 27671 | | | bucket5/dat.150 | 66861764-6 | 617 | | | | | 6 | 7027 10. | 96.101.125 | object | 27230 | | | bucket5/dat.150 | 66861764-4 | 517 | | | | | 60 | 0922 10. | 96.101.125 | object | 26118 | | | bucket3/dat.150 | 66861764-4 | 520 | | | | | 35 | 5588 10. | 96.101.125 | object | 11311 | | | bucket3/dat.156 | 66861764-6 | 616 | | | | | 23 | 3897 10. | 96.101.125 | object | 10692 | | | bucket3/dat.156 | 66861764-4 | 516 | | | | From this example output, you can see that the three slowest S3 GET requests were for objects about 5 GB in size, which is much larger than the other objects. The large size accounts for the slow worst-case retrieval times. 3. If you want to determine what sizes of objects are being ingested into and retrieved from your grid, use the size option (-s): ``` audit-sum -s audit.log ``` | message group average(MB) ======= | count
===== | min(MB) | max(MB) | | |-----------------------------------|----------------|---------|----------|--| | ======== | | | | | | IDEL | 274 | 0.004 | 5000.000 | | | 1654.502 | | | | | | SDEL | 213371 | 0.000 | 10.504 | | | 1.695 | | | | | | SGET | 201906 | 0.000 | 5000.000 | | | 14.920 | | | | | | SHEA | 22716 | 0.001 | 10.504 | | | 2.967 | | | | | | SPUT | 1771398 | 0.000 | 5000.000 | | | 2.495 | | | | | | | | | | | In this example, the average object size for SPUT is under 2.5 MB, but the average size for SGET is much larger. The number of SPUT messages is much higher than the number of SGET messages, indicating that most objects are never retrieved. - 4. If you want to determine if retrievals were slow yesterday: - a. Issue the command on the appropriate audit log and use the group-by-time option (-gt), followed by the time period (for example, 15M, 1H, 10S): ``` grep SGET audit.log | audit-sum -gt 1H ``` | message group | count | min(sec) | max(sec) | | |---------------|---------|----------|----------|--| | average(sec) | | | | | | ========= | ===== | ====== | ====== | | | ======== | | | | | | 2019-09-05T00 | 7591 | 0.010 | 1481.867 | | | 1.254 | | | | | | 2019-09-05T01 | 4173 | 0.011 | 1740.290 | | | 1.115 | | | | | | 2019-09-05T02 | 20142 | 0.011 | 1274.961 | | | 1.562 | | | | | | 2019-09-05T03 | 57591 | 0.010 | 1383.867 | | | 1.254 | | | | | | 2019-09-05T04 | 124171 | 0.013 | 1740.290 | | | 1.405 | | | | | | 2019-09-05T05 | 420182 | 0.021 | 1274.511 | | | 1.562 | | | | | | 2019-09-05T06 | 1220371 | 0.015 | 6274.961 | | | 5.562 | | | | | | 2019-09-05T07 | 527142 | 0.011 | 1974.228 | | | 2.002 | | | | | | 2019-09-05T08 | 384173 | 0.012 | 1740.290 | | | 1.105 | | | | | | 2019-09-05T09 | 27591 | 0.010 | 1481.867 | | | 1.354 | | | | | | | | | | | These results show that S3 GET traffic spiked between 06:00 and 07:00. The max and average times are both considerably higher at these times as well, and they did not ramp up gradually as the count increased. This suggests that capacity was exceeded somewhere, perhaps in the network or in the grid's ability to process requests. b. To determine what size objects were being retrieved each hour yesterday, add the size option (-s) to the command: ``` grep SGET audit.log | audit-sum -gt 1H -s ``` | message group | count | min(B) | max(B) | | |---------------|---------|--------|----------------|--| | average(B) | | | | | | ======== | ==== | ====== | ====== | | | ======== | | | | | | 2019-09-05T00 | 7591 | 0.040 | 1481.867 | | | 1.976 | | | | | | 2019-09-05T01 | 4173 | 0.043 | 1740.290 | | | 2.062 | | | | | | 2019-09-05T02 | 20142 | 0.083 | 1274.961 | | | 2.303 | | | | | | 2019-09-05T03 | 57591 | 0.912 | 1383.867 | | | 1.182 | | | | | | 2019-09-05T04 | 124171 | 0.730 | 1740.290 | | | 1.528 | | | | | | 2019-09-05T05 | 420182 | 0.875 | 4274.511 | | | 2.398 | 120102 | 0.070 | 12/1:011 | | | 2019-09-05T06 | 1220371 | 0 691 | 5663711385.961 | | | 51.328 | 1220371 | 0.031 | 3003/11303.901 | | | 2019-09-05T07 | 527142 | 0.130 | 1974.228 | | | | 32/142 | 0.130 | 19/4.220 | | | 2.147 | 204172 | 0.605 | 1740 000 | | | 2019-09-05T08 | 384173 | 0.625 | 1740.290 | | | 1.878 | | | | | | 2019-09-05T09 | 27591 | 0.689 | 1481.867 | | | 1.354 | | | | | | | | | | | These results indicate that some very large retrievals occurred when the overall retrieval traffic was at its maximum. c. To see more detail, use the audit-explain tool to review all the SGET operations during that hour: ``` grep 2019-09-05T06 audit.log | grep SGET | audit-explain | less ``` If the output of the grep command is expected to be many lines, add the less command to show the contents of the audit log file one page (one screen) at a time. - 5. If you want to determine if SPUT operations on buckets are slower than SPUT operations for objects: - a. Start by using the -go option, which groups messages for object and bucket operations separately: ``` grep SPUT sample.log | audit-sum -go ``` | message group average(sec) ======== | count | min(sec) | max(sec) | | |-------------------------------------|-------|----------|----------|--| | SPUT.bucket | 1 | 0.125 | 0.125 | | | SPUT.object
0.236 | 12 | 0.025 | 1.019 | | The results show that SPUT operations for buckets have different performance characteristics than SPUT operations for objects. b. To determine which buckets have the slowest SPUT operations, use the -gb option, which groups messages by bucket: grep SPUT audit.log | audit-sum -gb | message group
average(sec) | count | min(sec) | max(sec) | |-------------------------------|---------|----------|----------| | ======== | ==== | ====== | ====== | | ======== | | | | | SPUT.cho-non-versioning | 71943 | 0.046 | 1770.563 | | 1.571 | | | | | SPUT.cho-versioning | 54277 | 0.047 | 1736.633 | | 1.415 | | | | | SPUT.cho-west-region | 80615 | 0.040 | 55.557 | | 1.329 | | | | | SPUT.ldt002 | 1564563 | 0.011 | 51.569 | | 0.361 | | | | | | | | | c. To determine which buckets have the largest SPUT object size, use both the -gb and the -s options: grep SPUT audit.log | audit-sum -gb -s | message group average(B) | count | min(B) | max(B) | |--------------------------|---------|--------|----------| | ======== | ===== | ====== | ====== | | ======== | | | | | SPUT.cho-non-versioning | 71943 | 2.097 | 5000.000 | | 21.672 | | | | | SPUT.cho-versioning | 54277 | 2.097 | 5000.000 | | 21.120 | | | | | SPUT.cho-west-region | 80615 | 2.097 | 800.000 | | 14.433 | | | | | SPUT.ldt002 | 1564563 | 0.000 | 999.972 | | 0.352 | | | | #### Copyright information Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007). Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014). #### **Trademark information** NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.