
Support for Amazon S3 REST API
StorageGRID 11.7
NetApp
March 05, 2024

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-117/s3/s3-rest-api-supported-
operations-and-limitations.html on March 05, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Support for Amazon S3 REST API . 1

S3 REST API implementation details . 1

Authenticate requests . 2

Operations on the service . 2

Operations on buckets . 3

Operations on objects. 11

Operations for multipart uploads . 38

Error responses . 45

Support for Amazon S3 REST API

S3 REST API implementation details

The StorageGRID system implements the Simple Storage Service API (API Version

2006-03-01) with support for most operations, and with some limitations. You need to

understand the implementation details when you are integrating S3 REST API client

applications.

The StorageGRID system supports both virtual hosted-style requests and path-style requests.

Date handling

The StorageGRID implementation of the S3 REST API only supports valid HTTP date formats.

The StorageGRID system only supports valid HTTP date formats for any headers that accept date values. The

time portion of the date can be specified in Greenwich Mean Time (GMT) format, or in Universal Coordinated

Time (UTC) format with no time zone offset (+0000 must be specified). If you include the x-amz-date header

in your request, it overrides any value specified in the Date request header. When using AWS Signature

Version 4, the x-amz-date header must be present in the signed request because the date header is not

supported.

Common request headers

The StorageGRID system supports the common request headers defined by Amazon Simple Storage Service

API Reference: Common Request Headers, with one exception.

Request header Implementation

Authorization Full support for AWS Signature Version 2

Support for AWS Signature Version 4, with the following exceptions:

• The SHA256 value is not calculated for the body of the request. The

user-submitted value is accepted without validation, as if the value

UNSIGNED-PAYLOAD had been provided for the x-amz-content-

sha256 header.

x-amz-security-token Not implemented. Returns XNotImplemented.

Common response headers

The StorageGRID system supports all of the common response headers defined by the Simple Storage

Service API Reference, with one exception.

Response header Implementation

x-amz-id-2 Not used

1

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonRequestHeaders.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonRequestHeaders.html

Authenticate requests

The StorageGRID system supports both authenticated and anonymous access to objects

using the S3 API.

The S3 API supports Signature version 2 and Signature version 4 for authenticating S3 API requests.

Authenticated requests must be signed using your access key ID and secret access key.

The StorageGRID system supports two authentication methods: the HTTP Authorization header and using

query parameters.

Use the HTTP Authorization header

The HTTP Authorization header is used by all S3 API operations except Anonymous requests where

permitted by the bucket policy. The Authorization header contains all of the required signing information to

authenticate a request.

Use query parameters

You can use query parameters to add authentication information to a URL. This is known as presigning the

URL, which can be used to grant temporary access to specific resources. Users with the presigned URL don’t

need to know the secret access key to access the resource, which enables you to provide third-party restricted

access to a resource.

Operations on the service

The StorageGRID system supports the following operations on the service.

Operation Implementation

GET Service

(ListBuckets)

Implemented with all Amazon S3 REST API behavior. Subject to change

without notice.

GET Storage Usage The GET Storage Usage request tells you the total amount of storage in

use by an account, and for each bucket associated with the account.

This is an operation on the service with a path of / and a custom query

parameter (?x-ntap-sg-usage) added.

OPTIONS / Client applications can issue OPTIONS / requests to the S3 port on a

Storage Node, without providing S3 authentication credentials, to

determine whether the Storage Node is available. You can use this

request for monitoring, or to allow external load balancers to identify

when a Storage Node is down.

Related information

GET Storage Usage

2

https://docs.netapp.com/us-en/storagegrid-117/s3/get-storage-usage-request.html

Operations on buckets

The StorageGRID system supports a maximum of 1,000 buckets for each S3 tenant

account.

Bucket name restrictions follow the AWS US Standard region restrictions, but you should further restrict them

to DNS naming conventions to support S3 virtual hosted-style requests.

See the following for more information:

• Amazon Web Services (AWS) Documentation: Bucket Restrictions and Limitations

• Configure S3 endpoint domain names

The GET Bucket (List Objects) and GET Bucket versions operations support StorageGRID consistency

controls.

You can check whether updates to last access time are enabled or disabled for individual buckets.

The following table describes how StorageGRID implements S3 REST API bucket operations. To perform any

of these operations, the necessary access credentials must be provided for the account.

Operation Implementation

DELETE Bucket This operation deletes the bucket.

DELETE Bucket cors This operation deletes the CORS configuration for the bucket.

DELETE Bucket

encryption

This operation deletes the default encryption from the bucket. Existing encrypted

objects remain encrypted, but any new objects added to the bucket aren’t

encrypted.

DELETE Bucket lifecycle This operation deletes the lifecycle configuration from the bucket. See Create S3

lifecycle configuration.

DELETE Bucket policy This operation deletes the policy attached to the bucket.

DELETE Bucket

replication

This operation deletes the replication configuration attached to the bucket.

DELETE Bucket tagging This operation uses the tagging subresource to remove all tags from a bucket.

3

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.netapp.com/us-en/storagegrid-117/admin/configuring-s3-api-endpoint-domain-names.html
https://docs.netapp.com/us-en/storagegrid-117/s3/create-s3-lifecycle-configuration.html
https://docs.netapp.com/us-en/storagegrid-117/s3/create-s3-lifecycle-configuration.html

Operation Implementation

GET Bucket

(ListObjects)

(ListObjectsV2)

This operation returns some or all (up to 1,000) of the objects in a bucket. The

Storage Class for objects can have either of two values, even if the object was

ingested with the REDUCED_REDUNDANCY storage class option:

• STANDARD, which indicates the object is stored in a storage pool consisting of

Storage Nodes.

• GLACIER, which indicates that the object has been moved to the external

bucket specified by the Cloud Storage Pool.

If the bucket contains large numbers of deleted keys that have the same prefix,

the response might include some CommonPrefixes that don’t contain keys.

GET Bucket Object

versions

(ListObjectVersions)

With READ access on a bucket, this operation with the versions subresource

lists metadata of all of the versions of objects in the bucket.

GET Bucket acl This operation returns a positive response and the ID, DisplayName, and

Permission of the bucket owner, indicating that the owner has full access to the

bucket.

GET Bucket cors This operation returns the cors configuration for the bucket.

GET Bucket encryption This operation returns the default encryption configuration for the bucket.

GET Bucket lifecycle

(GetBucketLifecycleConfi

guration)

This operation returns the lifecycle configuration for the bucket. See Create S3

lifecycle configuration.

GET Bucket location This operation returns the region that was set using the LocationConstraint

element in the PUT Bucket request. If the bucket’s region is us-east-1, an

empty string is returned for the region.

GET Bucket notification

(GetBucketNotificationCo

nfiguration)

This operation returns the notification configuration attached to the bucket.

GET Bucket policy This operation returns the policy attached to the bucket.

GET Bucket replication This operation returns the replication configuration attached to the bucket.

GET Bucket tagging This operation uses the tagging subresource to return all tags for a bucket.

4

https://docs.netapp.com/us-en/storagegrid-117/s3/create-s3-lifecycle-configuration.html
https://docs.netapp.com/us-en/storagegrid-117/s3/create-s3-lifecycle-configuration.html

Operation Implementation

GET Bucket versioning This implementation uses the versioning subresource to return the versioning

state of a bucket.

• blank: Versioning has never been enabled (bucket is “Unversioned”)

• Enabled: Versioning is enabled

• Suspended: Versioning was previously enabled and is suspended

GET Object Lock

Configuration

This operation returns the bucket default retention mode and default retention

period, if configured.

See Use S3 REST API to configure S3 Object Lock.

HEAD Bucket This operation determines if a bucket exists and you have permission to access it.

This operation returns:

• x-ntap-sg-bucket-id: The UUID of the bucket in UUID format.

• x-ntap-sg-trace-id: The unique trace ID of the associated request.

5

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html

Operation Implementation

PUT Bucket This operation creates a new bucket. By creating the bucket, you become the

bucket owner.

• Bucket names must comply with the following rules:

◦ Must be unique across each StorageGRID system (not just unique within

the tenant account).

◦ Must be DNS compliant.

◦ Must contain at least 3 and no more than 63 characters.

◦ Can be a series of one or more labels, with adjacent labels separated by

a period. Each label must start and end with a lowercase letter or a

number and can only use lowercase letters, numbers, and hyphens.

◦ Must not look like a text-formatted IP address.

◦ Should not use periods in virtual hosted style requests. Periods will cause

problems with server wildcard certificate verification.

• By default, buckets are created in the us-east-1 region; however, you can

use the LocationConstraint request element in the request body to

specify a different region. When using the LocationConstraint element,

you must specify the exact name of a region that has been defined using the

Grid Manager or the Grid Management API. Contact your system

administrator if you don’t know the region name you should use.

Note: An error will occur if your PUT Bucket request uses a region that has

not been defined in StorageGRID.

• You can include the x-amz-bucket-object-lock-enabled request

header to create a bucket with S3 Object Lock enabled. See Use S3 REST

API to configure S3 Object Lock.

You must enable S3 Object Lock when you create the bucket. You can’t add

or disable S3 Object Lock after a bucket is created. S3 Object Lock requires

bucket versioning, which is enabled automatically when you create the

bucket.

PUT Bucket cors This operation sets the CORS configuration for a bucket so that the bucket can

service cross-origin requests. Cross-origin resource sharing (CORS) is a security

mechanism that allows client web applications in one domain to access resources

in a different domain. For example, suppose you use an S3 bucket named

images to store graphics. By setting the CORS configuration for the images

bucket, you can allow the images in that bucket to be displayed on the website

http://www.example.com.

6

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html
https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html

Operation Implementation

PUT Bucket encryption This operation sets the default encryption state of an existing bucket. When

bucket-level encryption is enabled, any new objects added to the bucket are

encrypted.StorageGRID supports server-side encryption with StorageGRID-

managed keys. When specifying the server-side encryption configuration rule, set

the SSEAlgorithm parameter to AES256, and don’t use the KMSMasterKeyID

parameter.

Bucket default encryption configuration is ignored if the object upload request

already specifies encryption (that is, if the request includes the x-amz-server-

side-encryption-* request header).

PUT Bucket lifecycle

(PutBucketLifecycleConfig

uration)

This operation creates a new lifecycle configuration for the bucket or replaces an

existing lifecycle configuration. StorageGRID supports up to 1,000 lifecycle rules

in a lifecycle configuration. Each rule can include the following XML elements:

• Expiration (Days, Date)

• NoncurrentVersionExpiration (NoncurrentDays)

• Filter (Prefix, Tag)

• Status

• ID

StorageGRID does not support these actions:

• AbortIncompleteMultipartUpload

• ExpiredObjectDeleteMarker

• Transition

See Create S3 lifecycle configuration. To understand how the Expiration action in

a bucket lifecycle interacts with ILM placement instructions, see How ILM

operates throughout an object’s life.

Note: Bucket lifecycle configuration can be used with buckets that have S3 Object

Lock enabled, but bucket lifecycle configuration is not supported for legacy

Compliant buckets.

7

https://docs.netapp.com/us-en/storagegrid-117/s3/create-s3-lifecycle-configuration.html
https://docs.netapp.com/us-en/storagegrid-117/ilm/how-ilm-operates-throughout-objects-life.html
https://docs.netapp.com/us-en/storagegrid-117/ilm/how-ilm-operates-throughout-objects-life.html

Operation Implementation

PUT Bucket notification

(PutBucketNotificationCon

figuration)

This operation configures notifications for the bucket using the notification

configuration XML included in the request body. You should be aware of the

following implementation details:

• StorageGRID supports Simple Notification Service (SNS) topics as

destinations. Simple Queue Service (SQS) or Amazon Lambda endpoints

aren’t supported.

• The destination for notifications must be specified as the URN of an

StorageGRID endpoint. Endpoints can be created using the Tenant Manager

or the Tenant Management API.

The endpoint must exist for notification configuration to succeed. If the

endpoint does not exist, a 400 Bad Request error is returned with the code

InvalidArgument.

• You can’t configure a notification for the following event types. These event

types are not supported.

◦ s3:ReducedRedundancyLostObject

◦ s3:ObjectRestore:Completed

• Event notifications sent from StorageGRID use the standard JSON format

except that they don’t include some keys and use specific values for others,

as shown in the following list:

◦ eventSource

sgws:s3

◦ awsRegion

not included

◦ x-amz-id-2

not included

◦ arn

urn:sgws:s3:::bucket_name

PUT Bucket policy This operation sets the policy attached to the bucket.

8

Operation Implementation

PUT Bucket replication This operation configures StorageGRID CloudMirror replication for the bucket

using the replication configuration XML provided in the request body. For

CloudMirror replication, you should be aware of the following implementation

details:

• StorageGRID only supports V1 of the replication configuration. This means

that StorageGRID does not support the use of the Filter element for rules,

and follows V1 conventions for deletion of object versions. For details, see the

Amazon S3 documentation on replication configuration.

• Bucket replication can be configured on versioned or unversioned buckets.

• You can specify a different destination bucket in each rule of the replication

configuration XML. A source bucket can replicate to more than one

destination bucket.

• Destination buckets must be specified as the URN of StorageGRID endpoints

as specified in the Tenant Manager or the Tenant Management API. See

Configure CloudMirror replication.

The endpoint must exist for replication configuration to succeed. If the

endpoint does not exist, the request fails as a 400 Bad Request. The error

message states: Unable to save the replication policy. The

specified endpoint URN does not exist: URN.

• You don’t need to specify a Role in the configuration XML. This value is not

used by StorageGRID and will be ignored if submitted.

• If you omit the storage class from the configuration XML, StorageGRID uses

the STANDARD storage class by default.

• If you delete an object from the source bucket or you delete the source bucket

itself, the cross-region replication behavior is as follows:

◦ If you delete the object or bucket before it has been replicated, the

object/bucket is not replicated and you aren’t notified.

◦ If you delete the object or bucket after it has been replicated,

StorageGRID follows standard Amazon S3 delete behavior for V1 of

cross-region replication.

PUT Bucket tagging This operation uses the tagging subresource to add or update a set of tags for a

bucket. When adding bucket tags, be aware of the following limitations:

• Both StorageGRID and Amazon S3 support up to 50 tags for each bucket.

• Tags associated with a bucket must have unique tag keys. A tag key can be

up to 128 Unicode characters in length.

• Tag values can be up to 256 Unicode characters in length.

• Key and values are case sensitive.

9

https://docs.netapp.com/us-en/storagegrid-117/tenant/understanding-cloudmirror-replication-service.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-add-config.html
https://docs.netapp.com/us-en/storagegrid-117/tenant/configuring-cloudmirror-replication.html

Operation Implementation

PUT Bucket versioning This implementation uses the versioning subresource to set the versioning

state of an existing bucket. You can set the versioning state with one of the

following values:

• Enabled: Enables versioning for the objects in the bucket. All objects added to

the bucket receive a unique version ID.

• Suspended: Disables versioning for the objects in the bucket. All objects

added to the bucket receive the version ID null.

PUT Object Lock

Configuration

This operation configures or removes the bucket default retention mode and

default retention period.

If the default retention period is modified, the retain-until-date of existing object

versions remains the same and is not recalculated using the new default retention

period.

See Use S3 REST API to configure S3 Object Lock for detailed information.

Related information

Consistency controls

GET Bucket last access time

Use bucket and group access policies

S3 operations tracked in audit logs

Custom operations on buckets

The StorageGRID system supports custom bucket operations that are added on to the S3

REST API and are specific to the system.

The following table lists the custom bucket operations supported by StorageGRID.

Operation Description For more information

GET Bucket consistency Returns the consistency level being

applied to a particular bucket.

GET Bucket consistency

PUT Bucket consistency Sets the consistency level applied

to a particular bucket.

PUT Bucket consistency

GET Bucket last access time Returns whether last access time

updates are enabled or disabled for

a particular bucket.

GET Bucket last access time

10

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html
https://docs.netapp.com/us-en/storagegrid-117/s3/consistency-controls.html
https://docs.netapp.com/us-en/storagegrid-117/s3/get-bucket-last-access-time-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/bucket-and-group-access-policies.html
https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-117/s3/get-bucket-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/put-bucket-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/get-bucket-last-access-time-request.html

Operation Description For more information

PUT Bucket last access time Allows you to enable or disable last

access time updates for a particular

bucket.

PUT Bucket last access time

DELETE Bucket metadata

notification configuration

Deletes the metadata notification

configuration XML associated with

a particular bucket.

DELETE Bucket metadata

notification configuration

GET Bucket metadata notification

configuration

Returns the metadata notification

configuration XML associated with

a particular bucket.

GET Bucket metadata notification

configuration

PUT Bucket metadata notification

configuration

Configures the metadata

notification service for a bucket.

PUT Bucket metadata notification

configuration

PUT Bucket with compliance

settings

Deprecated and not supported: You

can no longer create new buckets

with Compliance enabled.

Deprecated: PUT Bucket with

compliance settings

GET Bucket compliance Deprecated but supported: Returns

the compliance settings currently in

effect for an existing legacy

Compliant bucket.

Deprecated: GET Bucket

compliance

PUT Bucket compliance Deprecated but supported: Allows

you to modify the compliance

settings for an existing legacy

Compliant bucket.

Deprecated: PUT Bucket

compliance

Related information

S3 operations tracked in the audit logs

Operations on objects

This section describes how the StorageGRID system implements S3 REST API

operations for objects.

The following conditions apply to all object operations:

• StorageGRID consistency controls are supported by all operations on objects, with the exception of the

following:

◦ GET Object ACL

◦ OPTIONS /

◦ PUT Object legal hold

◦ PUT Object retention

11

https://docs.netapp.com/us-en/storagegrid-117/s3/put-bucket-last-access-time-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/delete-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/delete-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/get-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/get-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/put-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/put-bucket-metadata-notification-configuration-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/deprecated-put-bucket-request-modifications-for-compliance.html
https://docs.netapp.com/us-en/storagegrid-117/s3/deprecated-put-bucket-request-modifications-for-compliance.html
https://docs.netapp.com/us-en/storagegrid-117/s3/deprecated-get-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/deprecated-get-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/deprecated-put-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/deprecated-put-bucket-compliance-request.html
https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-117/s3/consistency-controls.html

◦ SELECT Object content

• Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins"

basis. The timing for the “latest-wins” evaluation is based on when the StorageGRID system completes a

given request, and not on when S3 clients begin an operation.

• All objects in a StorageGRID bucket are owned by the bucket owner, including objects created by an

anonymous user, or by another account.

• Data objects ingested to the StorageGRID system through Swift can’t be accessed through S3.

The following table describes how StorageGRID implements S3 REST API object operations.

Operation Implementation

DELETE Object Multi-Factor Authentication (MFA) and the response header x-amz-mfa

aren’t supported.

When processing a DELETE Object request, StorageGRID attempts to

immediately remove all copies of the object from all stored locations. If

successful, StorageGRID returns a response to the client immediately. If

all copies can’t be removed within 30 seconds (for example, because a

location is temporarily unavailable), StorageGRID queues the copies for

removal and then indicates success to the client.

Versioning

To remove a specific version, the requestor must be the bucket

owner and use the versionId subresource. Using this subresource

permanently deletes the version. If the versionId corresponds to a

delete marker, the response header x-amz-delete-marker is

returned set to true.

• If an object is deleted without the versionId subresource on a

version enabled bucket, it results in the generation of a delete

marker. The versionId for the delete marker is returned using

the x-amz-version-id response header, and the x-amz-

delete-marker response header is returned set to true.

• If an object is deleted without the versionId subresource on a

version suspended bucket, it results in a permanent deletion of

an already existing 'null' version or a 'null' delete marker, and the

generation of a new 'null' delete marker. The x-amz-delete-

marker response header is returned set to true.

Note: In certain cases, multiple delete markers might exist for an

object.

See Use S3 REST API to configure S3 Object Lock to learn how to

delete object versions in GOVERNANCE mode.

12

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html

Operation Implementation

DELETE Multiple Objects

(DeleteObjects)

Multi-Factor Authentication (MFA) and the response header x-amz-mfa

aren’t supported.

Multiple objects can be deleted in the same request message.

See Use S3 REST API to configure S3 Object Lock to learn how to

delete object versions in GOVERNANCE mode.

DELETE Object tagging Uses the tagging subresource to remove all tags from an object.

Versioning

If the versionId query parameter is not specified in the request, the

operation deletes all tags from the most recent version of the object

in a versioned bucket. If the current version of the object is a delete

marker, a “MethodNotAllowed” status is returned with the x-amz-

delete-marker response header set to true.

GET Object GET Object

GET Object ACL If the necessary access credentials are provided for the account, the

operation returns a positive response and the ID, DisplayName, and

Permission of the object owner, indicating that the owner has full access

to the object.

GET Object legal hold Use S3 REST API to configure S3 Object Lock

GET Object retention Use S3 REST API to configure S3 Object Lock

GET Object tagging Uses the tagging subresource to return all tags for an object.

Versioning

If the versionId query parameter is not specified in the request, the

operation returns all tags from the most recent version of the object in

a versioned bucket. If the current version of the object is a delete

marker, a “MethodNotAllowed” status is returned with the x-amz-

delete-marker response header set to true.

HEAD Object HEAD Object

POST Object restore POST Object restore

PUT Object PUT Object

PUT Object - Copy PUT Object - Copy

PUT Object legal hold Use S3 REST API to configure S3 Object Lock

13

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html
https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html
https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html
https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html

Operation Implementation

PUT Object retention Use S3 REST API to configure S3 Object Lock

PUT Object tagging Uses the tagging subresource to add a set of tags to an existing

object.

Object tag limits

You can add tags to new objects when you upload them, or you can

add them to existing objects. Both StorageGRID and Amazon S3

support up to 10 tags for each object. Tags associated with an object

must have unique tag keys. A tag key can be up to 128 Unicode

characters in length and tag values can be up to 256 Unicode

characters in length. Key and values are case sensitive.

Tag updates and ingest behavior

When you use PUT Object tagging to update an object’s tags,

StorageGRID does not re-ingest the object. This means that the

option for Ingest Behavior specified in the matching ILM rule is not

used. Any changes to object placement that are triggered by the

update are made when ILM is re-evaluated by normal background

ILM processes.

This means that if the ILM rule uses the Strict option for ingest

behavior, no action is taken if the required object placements can’t be

made (for example, because a newly required location is

unavailable). The updated object retains its current placement until

the required placement is possible.

Resolving conflicts

Conflicting client requests, such as two clients writing to the same

key, are resolved on a “latest-wins” basis. The timing for the “latest-

wins” evaluation is based on when the StorageGRID system

completes a given request, and not on when S3 clients begin an

operation.

Versioning

If the versionId query parameter is not specified in the request, the

operation add tags to the most recent version of the object in a

versioned bucket. If the current version of the object is a delete

marker, a “MethodNotAllowed” status is returned with the x-amz-

delete-marker response header set to true.

SelectObjectContent SelectObjectContent

Related information

S3 operations tracked in audit logs

Use S3 Select

StorageGRID supports the following Amazon S3 Select clauses, data types, and

14

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html
https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html

operators for the SelectObjectContent command.

Any items not listed aren’t supported.

For syntax, see SelectObjectContent. For more information about S3 Select, see the AWS documentation for

S3 Select.

Only tenant accounts that have S3 Select enabled can issue SelectObjectContent queries. See the

considerations and requirements for using S3 Select.

Clauses

• SELECT list

• FROM clause

• WHERE clause

• LIMIT clause

Data types

• bool

• integer

• string

• float

• decimal, numeric

• timestamp

Operators

Logical operators

• AND

• NOT

• OR

Comparison operators

• <

• >

• <=

• >=

• =

• =

• <>

• !=

• BETWEEN

15

https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.netapp.com/us-en/storagegrid-117/admin/manage-s3-select-for-tenant-accounts.html

• IN

Pattern matching operators

• LIKE

• _

• %

Unitary operators

• IS NULL

• IS NOT NULL

Math operators

• +

• -

• *

• /

• %

StorageGRID follows the Amazon S3 Select operator precedence.

Aggregate functions

• AVG()

• COUNT(*)

• MAX()

• MIN()

• SUM()

Conditional functions

• CASE

• COALESCE

• NULLIF

Conversion functions

• CAST (for supported datatype)

Date functions

• DATE_ADD

• DATE_DIFF

• EXTRACT

• TO_STRING

16

• TO_TIMESTAMP

• UTCNOW

String functions

• CHAR_LENGTH, CHARACTER_LENGTH

• LOWER

• SUBSTRING

• TRIM

• UPPER

Use server-side encryption

Server-side encryption allows you to protect your object data at rest. StorageGRID

encrypts the data as it writes the object and decrypts the data when you access the

object.

If you want to use server-side encryption, you can choose either of two mutually exclusive options, based on

how the encryption keys are managed:

• SSE (server-side encryption with StorageGRID-managed keys): When you issue an S3 request to

store an object, StorageGRID encrypts the object with a unique key. When you issue an S3 request to

retrieve the object, StorageGRID uses the stored key to decrypt the object.

• SSE-C (server-side encryption with customer-provided keys): When you issue an S3 request to store

an object, you provide your own encryption key. When you retrieve an object, you provide the same

encryption key as part of your request. If the two encryption keys match, the object is decrypted and your

object data is returned.

While StorageGRID manages all object encryption and decryption operations, you must manage the

encryption keys you provide.

The encryption keys you provide are never stored. If you lose an encryption key, you lose

the corresponding object.

If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption

settings are ignored.

Use SSE

To encrypt an object with a unique key managed by StorageGRID, you use the following request header:

x-amz-server-side-encryption

The SSE request header is supported by the following object operations:

• PUT Object

• PUT Object - Copy

• Initiate Multipart Upload

17

Use SSE-C

To encrypt an object with a unique key that you manage, you use three request headers:

Request header Description

x-amz-server-side

-encryption-customer

-algorithm

Specify the encryption algorithm. The header value must be AES256.

x-amz-server-side

-encryption-customer-key

Specify the encryption key that will be used to encrypt or decrypt the

object. The value for the key must be 256-bit, base64-encoded.

x-amz-server-side

-encryption-customer-key

-MD5

Specify the MD5 digest of the encryption key according to RFC 1321,

which is used to ensure the encryption key was transmitted without error.

The value for the MD5 digest must be base64-encoded 128-bit.

The SSE-C request headers are supported by the following object operations:

• GET Object

• HEAD Object

• PUT Object

• PUT Object - Copy

• Initiate Multipart Upload

• Upload Part

• Upload Part - Copy

Considerations for using server-side encryption with customer-provided keys (SSE-C)

Before using SSE-C, be aware of the following considerations:

• You must use https.

StorageGRID rejects any requests made over http when using SSE-C. For security

considerations, you should consider any key you send accidentally using http to be

compromised. Discard the key, and rotate as appropriate.

• The ETag in the response is not the MD5 of the object data.

• You must manage the mapping of encryption keys to objects. StorageGRID does not store encryption keys.

You are responsible for tracking the encryption key you provide for each object.

• If your bucket is versioning-enabled, each object version should have its own encryption key. You are

responsible for tracking the encryption key used for each object version.

• Because you manage encryption keys on the client side, you must also manage any additional safeguards,

such as key rotation, on the client side.

The encryption keys you provide are never stored. If you lose an encryption key, you lose

the corresponding object.

18

• If cross-grid replication or CloudMirror replication is configured for the bucket, you can’t ingest SSE-C

objects. The ingest operation will fail.

Related information

Amazon S3 Developer Guide: Protecting Data Using Server-Side Encryption with Customer-Provided

Encryption Keys (SSE-C)

GET Object

You can use the S3 GET Object request to retrieve an object from an S3 bucket.

GET object and multipart objects

You can use the partNumber request parameter to retrieve a specific part of a multipart or segmented object.

The x-amz-mp-parts-count response element indicates how many parts the object has.

You can set partNumber to 1 for both segmented/multipart objects and non-segmented/non-multipart objects;

however, the x-amz-mp-parts-count response element is only returned for segmented or multipart objects.

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. GET requests

for an object with escaped UTF-8 characters in user-defined metadata don’t return the x-amz-missing-meta

header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XNotImplemented:

• x-amz-website-redirect-location

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a

versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with

the x-amz-delete-marker response header set to true.

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)

Use all three of the headers if the object is encrypted with a unique key that you provided.

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

• x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s

encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in Use server-side encryption.

19

https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html

Behavior of GET Object for Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool, the behavior of a GET Object request depends on the

state of the object. See HEAD Object for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on

the grid, GET Object requests will attempt to retrieve data from the grid, before retrieving it from

the Cloud Storage Pool.

State of object Behavior of GET Object

Object ingested into StorageGRID but not yet

evaluated by ILM, or object stored in a traditional

storage pool or using erasure coding

200 OK

A copy of the object is retrieved.

Object in Cloud Storage Pool but not yet transitioned

to a non-retrievable state
200 OK

A copy of the object is retrieved.

Object transitioned to a non-retrievable state 403 Forbidden, InvalidObjectState

Use a POST Object restore request to restore the

object to a retrievable state.

Object in process of being restored from a non-

retrievable state
403 Forbidden, InvalidObjectState

Wait for the POST Object restore request to complete.

Object fully restored to the Cloud Storage Pool 200 OK

A copy of the object is retrieved.

Multipart or segmented objects in a Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID

determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts

or segments. In some cases, a GET Object request might incorrectly return 200 OK when some parts of the

object have already been transitioned to a non-retrievable state or when some parts of the object have not yet

been restored.

In these cases:

• The GET Object request might return some data but stop midway through the transfer.

• A subsequent GET Object request might return 403 Forbidden.

GET Object and cross-grid replication

If you are using grid federation and cross-grid replication is enabled for a bucket, the S3 client can verify an

object’s replication status by issuing a GET Object request. The response includes the StorageGRID-specific

x-ntap-sg-cgr-replication-status response header, which will have one of the following values:

20

https://docs.netapp.com/us-en/storagegrid-117/ilm/what-cloud-storage-pool-is.html
https://docs.netapp.com/us-en/storagegrid-117/admin/grid-federation-overview.html
https://docs.netapp.com/us-en/storagegrid-117/tenant/grid-federation-manage-cross-grid-replication.html

Grid Replication status

Source • SUCCESS: The replication was successful.

• PENDING: The object hasn’t been replicated yet.

• FAILURE: The replication failed with a permanent failure. A user

must resolve the error.

Destination REPLICA: The object was replicated from the source grid.

StorageGRID does not support the x-amz-replication-status header.

Related information

S3 operations tracked in audit logs

HEAD Object

You can use the S3 HEAD Object request to retrieve metadata from an object without

returning the object itself. If the object is stored in a Cloud Storage Pool, you can use

HEAD Object to determine the object’s transition state.

HEAD object and multipart objects

You can use the partNumber request parameter to retrieve metadata for a specific part of a multipart or

segmented object. The x-amz-mp-parts-count response element indicates how many parts the object has.

You can set partNumber to 1 for both segmented/multipart objects and non-segmented/non-multipart objects;

however, the x-amz-mp-parts-count response element is only returned for segmented or multipart objects.

UTF-8 characters in user metadata

StorageGRID does not parse or interpret escaped UTF-8 characters in user-defined metadata. HEAD requests

for an object with escaped UTF-8 characters in user-defined metadata don’t return the x-amz-missing-meta

header if the key name or value includes unprintable characters.

Unsupported request header

The following request header is not supported and returns XNotImplemented:

• x-amz-website-redirect-location

Versioning

If a versionId subresource is not specified, the operation fetches the most recent version of the object in a

versioned bucket. If the current version of the object is a delete marker, a “Not Found” status is returned with

the x-amz-delete-marker response header set to true.

Request headers for server-side encryption with customer-provided encryption keys (SSE-C)

Use all three of these headers if the object is encrypted with a unique key that you provided.

21

https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify your encryption key for the object.

• x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the object’s

encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in Use server-side encryption.

HEAD Object responses for Cloud Storage Pool objects

If the object is stored in a Cloud Storage Pool, the following response headers are returned:

• x-amz-storage-class: GLACIER

• x-amz-restore

The response headers provide information about the state of an object as it is moved to a Cloud Storage Pool,

optionally transitioned to a non-retrievable state, and restored.

State of object Response to HEAD object

Object ingested into StorageGRID but not yet

evaluated by ILM, or object stored in a traditional

storage pool or using erasure coding

200 OK (No special response header is returned.)

Object in Cloud Storage Pool but not yet transitioned

to a non-retrievable state
200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="false",

expiry-date="Sat, 23 July 20 2030

00:00:00 GMT"

Until the object is transitioned to a non-retrievable

state, the value for expiry-date is set to some

distant time in the future. The exact time of transition

is not controlled by the StorageGRID system.

22

https://docs.netapp.com/us-en/storagegrid-117/ilm/what-cloud-storage-pool-is.html

State of object Response to HEAD object

Object has transitioned to non-retrievable state, but at

least one copy also exists on the grid
200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="false",

expiry-date="Sat, 23 July 20 2030

00:00:00 GMT"

The value for expiry-date is set to some distant

time in the future.

Note: If the copy on the grid is not available (for

example, a Storage Node is down), you must issue a

POST Object restore request to restore the copy from

the Cloud Storage Pool before you can successfully

retrieve the object.

Object transitioned to a non-retrievable state, and no

copy exists on the grid
200 OK

x-amz-storage-class: GLACIER

Object in process of being restored from a non-

retrievable state
200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="true"

Object fully restored to the Cloud Storage Pool 200 OK

x-amz-storage-class: GLACIER

x-amz-restore: ongoing-request="false",

expiry-date="Sat, 23 July 20 2018

00:00:00 GMT"

The expiry-date indicates when the object in the

Cloud Storage Pool will be returned to a non-

retrievable state.

Multipart or segmented objects in Cloud Storage Pool

If you uploaded a multipart object or if StorageGRID split a large object into segments, StorageGRID

determines whether the object is available in the Cloud Storage Pool by sampling a subset of the object’s parts

or segments. In some cases, a HEAD Object request might incorrectly return x-amz-restore: ongoing-

request="false" when some parts of the object have already been transitioned to a non-retrievable state or

when some parts of the object have not yet been restored.

23

HEAD Object and cross-grid replication

If you are using grid federation and cross-grid replication is enabled for a bucket, the S3 client can verify an

object’s replication status by issuing a HEAD Object request. The response includes the StorageGRID-specific

x-ntap-sg-cgr-replication-status response header, which will have one of the following values:

Grid Replication status

Source • SUCCESS: The replication was successful.

• PENDING: The object hasn’t been replicated yet.

• FAILURE: The replication failed with a permanent failure. A user

must resolve the error.

Destination REPLICA: The object was replicated from the source grid.

StorageGRID does not support the x-amz-replication-status header.

Related information

S3 operations tracked in audit logs

POST Object restore

You can use the S3 POST Object restore request to restore an object that is stored in a

Cloud Storage Pool.

Supported request type

StorageGRID only supports POST Object restore requests to restore an object. It does not support the SELECT

type of restoration. Select requests return XNotImplemented.

Versioning

Optionally, specify versionId to restore a specific version of an object in a versioned bucket. If you don’t

specify versionId, the most recent version of the object is restored

Behavior of POST Object restore on Cloud Storage Pool objects

If an object has been stored in a Cloud Storage Pool (see the instructions for managing objects with

information lifecycle management), a POST Object restore request has the following behavior, based on the

state of the object. See “HEAD Object” for more details.

If an object is stored in a Cloud Storage Pool and one or more copies of the object also exist on

the grid, there is no need to restore the object by issuing a POST Object restore request.

Instead, the local copy can be retrieved directly, using a GET Object request.

24

https://docs.netapp.com/us-en/storagegrid-117/admin/grid-federation-overview.html
https://docs.netapp.com/us-en/storagegrid-117/tenant/grid-federation-manage-cross-grid-replication.html
https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html

State of object Behavior of POST Object restore

Object ingested into StorageGRID

but not yet evaluated by ILM, or

object is not in a Cloud Storage

Pool

403 Forbidden, InvalidObjectState

Object in Cloud Storage Pool but

not yet transitioned to a non-

retrievable state

200 OK No changes are made.

Note: Before an object has been transitioned to a non-retrievable state,

you can’t change its expiry-date.

Object transitioned to a non-

retrievable state
202 Accepted Restores a retrievable copy of the object to the Cloud

Storage Pool for the number of days specified in the request body. At the

end of this period, the object is returned to a non-retrievable state.

Optionally, use the Tier request element to determine how long the

restore job will take to finish (Expedited, Standard, or Bulk). If you

don’t specify Tier, the Standard tier is used.

Important: If an object has been transitioned to S3 Glacier Deep

Archive or the Cloud Storage Pool uses Azure Blob storage, you can’t

restore it using the Expedited tier. The following error is returned 403

Forbidden, InvalidTier: Retrieval option is not

supported by this storage class.

Object in process of being restored

from a non-retrievable state
409 Conflict, RestoreAlreadyInProgress

Object fully restored to the Cloud

Storage Pool
200 OK

Note: If an object has been restored to a retrievable state, you can

change its expiry-date by reissuing the POST Object restore request

with a new value for Days. The restoration date is updated relative to

the time of the request.

Related information

Manage objects with ILM

HEAD Object

S3 operations tracked in audit logs

PUT Object

You can use the S3 PUT Object request to add an object to a bucket.

Resolve conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.

The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given

25

https://docs.netapp.com/us-en/storagegrid-117/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html

request, and not on when S3 clients begin an operation.

Object size

The maximum recommended size for a single PUT Object operation is 5 GiB (5,368,709,120 bytes). If you

have objects that are larger than 5 GiB, use multipart upload instead.

The maximum supported size for a single PUT Object operation is 5 TiB (5,497,558,138,880 bytes). However,

the S3 PUT Object size too large alert will be triggered if you attempt to upload an object that exceeds 5 GiB.

User metadata size

Amazon S3 limits the size of user-defined metadata within each PUT request header to 2 KB. StorageGRID

limits user metadata to 24 KiB. The size of user-defined metadata is measured by taking the sum of the

number of bytes in the UTF-8 encoding of each key and value.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,

StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-

defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

• PUT, PUT Object-Copy, GET, and HEAD requests succeed if user-defined metadata includes escaped

UTF-8 characters.

• StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name

or value includes unprintable characters.

Object tag limits

You can add tags to new objects when you upload them, or you can add them to existing objects. Both

StorageGRID and Amazon S3 support up to 10 tags for each object. Tags associated with an object must have

unique tag keys. A tag key can be up to 128 Unicode characters in length and tag values can be up to 256

Unicode characters in length. Key and values are case sensitive.

Object ownership

In StorageGRID, all objects are owned by the bucket owner account, including objects created by a non-owner

account or an anonymous user.

Supported request headers

The following request headers are supported:

• Cache-Control

• Content-Disposition

• Content-Encoding

When you specify aws-chunked for Content-EncodingStorageGRID does not verify the following

items:

◦ StorageGRID does not verify the chunk-signature against the chunk data.

26

◦ StorageGRID does not verify the value that you provide for x-amz-decoded-content-length

against the object.

• Content-Language

• Content-Length

• Content-MD5

• Content-Type

• Expires

• Transfer-Encoding

Chunked transfer encoding is supported if aws-chunked payload signing is also used.

• x-amz-meta-, followed by a name-value pair containing user-defined metadata.

When specifying the name-value pair for user-defined metadata, use this general format:

x-amz-meta-name: value

If you want to use the User defined creation time option as the Reference time for an ILM rule, you must

use creation-time as the name of the metadata that records when the object was created. For

example:

x-amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

An ILM rule can’t use both a User defined creation time for the Reference time and the

Balanced or Strict options for Ingest Behavior. An error is returned when the ILM rule is

created.

• x-amz-tagging

• S3 Object Lock request headers

◦ x-amz-object-lock-mode

◦ x-amz-object-lock-retain-until-date

◦ x-amz-object-lock-legal-hold

If a request is made without these headers, the bucket default retention settings are used to calculate

the object version mode and retain-until-date. See Use S3 REST API to configure S3 Object Lock.

• SSE request headers:

◦ x-amz-server-side-encryption

◦ x-amz-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption-customer-key

27

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html

◦ x-amz-server-side-encryption-customer-algorithm

See Request headers for server-side encryption

Unsupported request headers

The following request headers aren’t supported:

• The x-amz-acl request header is not supported.

• The x-amz-website-redirect-location request header is not supported and returns

XNotImplemented.

Storage class options

The x-amz-storage-class request header is supported. The value submitted for x-amz-storage-class

affects how StorageGRID protects object data during ingest and not how many persistent copies of the object

are stored in the StorageGRID system (which is determined by ILM).

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-

class header has no effect.

The following values can be used for x-amz-storage-class:

• STANDARD (Default)

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object

is ingested a second copy of that object is created and distributed to a different Storage Node (dual

commit). When the ILM is evaluated, StorageGRID determines if these initial interim copies satisfy the

placement instructions in the rule. If they don’t, new object copies might need to be made in different

locations and the initial interim copies might need to be deleted.

◦ Balanced: If the ILM rule specifies the Balanced option and StorageGRID can’t immediately make all

copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous

placement), the x-amz-storage-class header has no effect.

• REDUCED_REDUNDANCY

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID

creates a single interim copy as the object is ingested (single commit).

◦ Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only

if the system can’t immediately make all copies specified in the rule. If StorageGRID can perform

synchronous placement, this header has no effect. The REDUCED_REDUNDANCY option is best used

when the ILM rule that matches the object creates a single replicated copy. In this case using

REDUCED_REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for

every ingest operation.

Using the REDUCED_REDUNDANCY option is not recommended in other circumstances.

REDUCED_REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose

data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

28

Having only one replicated copy for any time period puts data at risk of permanent loss. If only

one replicated copy of an object exists, that object is lost if a Storage Node fails or has a

significant error. You also temporarily lose access to the object during maintenance procedures

such as upgrades.

Specifying REDUCED_REDUNDANCY only affects how many copies are created when an object is first ingested.

It does not affect how many copies of the object are made when the object is evaluated by the active ILM

policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

REDUCED_REDUNDANCY option is ignored. If you are ingesting an object into a legacy Compliant

bucket, the REDUCED_REDUNDANCY option returns an error. StorageGRID will always perform a

dual-commit ingest to ensure that compliance requirements are satisfied.

Request headers for server-side encryption

You can use the following request headers to encrypt an object with server-side encryption. The SSE and SSE-

C options are mutually exclusive.

• SSE: Use the following header if you want to encrypt the object with a unique key managed by

StorageGRID.

◦ x-amz-server-side-encryption

• SSE-C: Use all three of these headers if you want to encrypt the object with a unique key that you provide

and manage.

◦ x-amz-server-side-encryption-customer-algorithm: Specify AES256.

◦ x-amz-server-side-encryption-customer-key: Specify your encryption key for the new

object.

◦ x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new

object’s encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations for using server-side encryption.

If an object is encrypted with SSE or SSE-C, any bucket-level or grid-level encryption settings

are ignored.

Versioning

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the

object being stored. This versionId is also returned in the response using the x-amz-version-id

response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already

exists it will be overwritten.

Signature calculations for the Authorization header

When using the Authorization header to authenticate requests, StorageGRID differs from AWS in the

29

following ways:

• StorageGRID doesn’t require host headers to be included within CanonicalHeaders.

• StorageGRID doesn’t require Content-Type to be included within CanonicalHeaders.

• StorageGRID doesn’t require x-amz-* headers to be included within CanonicalHeaders.

As a general best practice, always include these headers within CanonicalHeaders to ensure

they are verified; however, if you exclude these headers, StorageGRID does not return an error.

For details, refer to Signature Calculations for the Authorization Header: Transferring Payload in a Single

Chunk (AWS Signature Version 4).

Related information

Manage objects with ILM

Operations on buckets

S3 operations tracked in audit logs

How client connections can be configured

PUT Object - Copy

You can use the S3 PUT Object - Copy request to create a copy of an object that is

already stored in S3. A PUT Object - Copy operation is the same as performing a GET

and then a PUT.

Resolve conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.

The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given

request, and not on when S3 clients begin an operation.

Object size

The maximum recommended size for a single PUT Object operation is 5 GiB (5,368,709,120 bytes). If you

have objects that are larger than 5 GiB, use multipart upload instead.

The maximum supported size for a single PUT Object operation is 5 TiB (5,497,558,138,880 bytes). However,

the S3 PUT Object size too large alert will be triggered if you attempt to upload an object that exceeds 5 GiB.

UTF-8 characters in user metadata

If a request includes (unescaped) UTF-8 values in the key name or value of user-defined metadata,

StorageGRID behavior is undefined.

StorageGRID does not parse or interpret escaped UTF-8 characters included in the key name or value of user-

defined metadata. Escaped UTF-8 characters are treated as ASCII characters:

• Requests succeed if user-defined metadata includes escaped UTF-8 characters.

• StorageGRID does not return the x-amz-missing-meta header if the interpreted value of the key name

30

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html
https://docs.netapp.com/us-en/storagegrid-117/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html
https://docs.netapp.com/us-en/storagegrid-117/s3/configuring-tenant-accounts-and-connections.html

or value includes unprintable characters.

Supported request headers

The following request headers are supported:

• Content-Type

• x-amz-copy-source

• x-amz-copy-source-if-match

• x-amz-copy-source-if-none-match

• x-amz-copy-source-if-unmodified-since

• x-amz-copy-source-if-modified-since

• x-amz-meta-, followed by a name-value pair containing user-defined metadata

• x-amz-metadata-directive: The default value is COPY, which enables you to copy the object and

associated metadata.

You can specify REPLACE to overwrite the existing metadata when copying the object, or to update the

object metadata.

• x-amz-storage-class

• x-amz-tagging-directive: The default value is COPY, which enables you to copy the object and all

tags.

You can specify REPLACE to overwrite the existing tags when copying the object, or to update the tags.

• S3 Object Lock request headers:

◦ x-amz-object-lock-mode

◦ x-amz-object-lock-retain-until-date

◦ x-amz-object-lock-legal-hold

If a request is made without these headers, the bucket default retention settings are used to calculate

the object version mode and retain-until-date. See Use S3 REST API to configure S3 Object Lock.

• SSE request headers:

◦ x-amz-copy-source-server-side-encryption-customer-algorithm

◦ x-amz-copy-source-server-side-encryption-customer-key

◦ x-amz-copy-source-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption

◦ x-amz-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption-customer-key

◦ x-amz-server-side-encryption-customer-algorithm

See Request headers for server-side encryption

31

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html

Unsupported request headers

The following request headers aren’t supported:

• Cache-Control

• Content-Disposition

• Content-Encoding

• Content-Language

• Expires

• x-amz-website-redirect-location

Storage class options

The x-amz-storage-class request header is supported, and affects how many object copies StorageGRID

creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

• STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when

the Balanced option falls back to creating interim copies.

• REDUCED_REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the

Balanced option falls back to creating interim copies.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

REDUCED_REDUNDANCY option is ignored. If you are ingesting an object into a legacy

Compliant bucket, the REDUCED_REDUNDANCY option returns an error. StorageGRID will

always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

Using x-amz-copy-source in PUT Object - Copy

If the source bucket and key, specified in the x-amz-copy-source header, are different from the destination

bucket and key, a copy of the source object data is written to the destination.

If the source and destination match, and the x-amz-metadata-directive header is specified as REPLACE,

the object’s metadata is updated with the metadata values supplied in the request. In this case, StorageGRID

does not re-ingest the object. This has two important consequences:

• You can’t use PUT Object - Copy to encrypt an existing object in place, or to change the encryption of an

existing object in place. If you supply the x-amz-server-side-encryption header or the x-amz-

server-side-encryption-customer-algorithm header, StorageGRID rejects the request and

returns XNotImplemented.

• The option for Ingest Behavior specified in the matching ILM rule is not used. Any changes to object

placement that are triggered by the update are made when ILM is re-evaluated by normal background ILM

processes.

This means that if the ILM rule uses the Strict option for ingest behavior, no action is taken if the required

object placements can’t be made (for example, because a newly required location is unavailable). The

32

updated object retains its current placement until the required placement is possible.

Request headers for server-side encryption

If you use server-side encryption, the request headers you provide depend on whether the source object is

encrypted and on whether you plan to encrypt the target object.

• If the source object is encrypted using a customer-provided key (SSE-C), you must include the following

three headers in the PUT Object - Copy request, so the object can be decrypted and then copied:

◦ x-amz-copy-source-server-side-encryption-customer-algorithm: Specify AES256.

◦ x-amz-copy-source-server-side-encryption-customer-key: Specify the encryption key

you provided when you created the source object.

◦ x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest

you provided when you created the source object.

• If you want to encrypt the target object (the copy) with a unique key that you provide and manage, include

the following three headers:

◦ x-amz-server-side-encryption-customer-algorithm: Specify AES256.

◦ x-amz-server-side-encryption-customer-key: Specify a new encryption key for the target

object.

◦ x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new

encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose

the corresponding object. Before using customer-provided keys to secure object data,

review the considerations for using server-side encryption.

• If you want to encrypt the target object (the copy) with a unique key managed by StorageGRID (SSE),

include this header in the PUT Object - Copy request:

◦ x-amz-server-side-encryption

The server-side-encryption value of the object can’t be updated. Instead, make a

copy with a new server-side-encryption value using x-amz-metadata-

directive: REPLACE.

Versioning

If the source bucket is versioned, you can use the x-amz-copy-source header to copy the latest version of

an object. To copy a specific version of an object, you must explicitly specify the version to copy using the

versionId subresource. If the destination bucket is versioned, the generated version is returned in the x-

amz-version-id response header. If versioning is suspended for the target bucket, then x-amz-version-

id returns a “null” value.

Related information

Manage objects with ILM

S3 operations tracked in audit logs

PUT Object

33

https://docs.netapp.com/us-en/storagegrid-117/ilm/index.html
https://docs.netapp.com/us-en/storagegrid-117/s3/s3-operations-tracked-in-audit-logs.html

SelectObjectContent

You can use the S3 SelectObjectContent request to filter the contents of an S3 object

based on a simple SQL statement.

For more information see the AWS documentation for SelectObjectContent.

Before you begin

• The tenant account has the S3 Select permission.

• You have s3:GetObject permission for the object you want to query.

• The object you want to query must be in one of the following formats:

◦ CSV. Can be used as is or compressed into GZIP or BZIP2 archives.

◦ Parquet. Additional requirements for Parquet objects:

▪ S3 Select supports only columnar compression using GZIP or Snappy. S3 Select doesn’t support

whole-object compression for Parquet objects.

▪ S3 Select doesn’t support Parquet output. You must specify the output format as CSV or JSON.

▪ The maximum uncompressed row group size is 512 MB.

▪ You must use the data types specified in the object’s schema.

▪ You can’t use INTERVAL, JSON, LIST, TIME, or UUID logical types.

• Your SQL expression has a maximum length of 256 KB.

• Any record in the input or results has a maximum length of 1 MiB.

Use of ScanRange is not supported.

CSV request syntax example

34

https://docs.aws.amazon.com/AmazonS3/latest/API/API_SelectObjectContent.html

POST /{Key+}?select&select-type=2 HTTP/1.1

Host: Bucket.s3.abc-company.com

x-amz-expected-bucket-owner: ExpectedBucketOwner

<?xml version="1.0" encoding="UTF-8"?>

<SelectObjectContentRequest xmlns="http://s3.amazonaws.com/doc/2006-03-

01/">

 <Expression>string</Expression>

 <ExpressionType>string</ExpressionType>

 <RequestProgress>

 <Enabled>boolean</Enabled>

 </RequestProgress>

 <InputSerialization>

 <CompressionType>GZIP</CompressionType>

 <CSV>

 <AllowQuotedRecordDelimiter>boolean</AllowQuotedRecordDelimiter>

 <Comments>#</Comments>

 <FieldDelimiter>\t</FieldDelimiter>

 <FileHeaderInfo>USE</FileHeaderInfo>

 <QuoteCharacter>'</QuoteCharacter>

 <QuoteEscapeCharacter>\\</QuoteEscapeCharacter>

 <RecordDelimiter>\n</RecordDelimiter>

 </CSV>

 </InputSerialization>

 <OutputSerialization>

 <CSV>

 <FieldDelimiter>string</FieldDelimiter>

 <QuoteCharacter>string</QuoteCharacter>

 <QuoteEscapeCharacter>string</QuoteEscapeCharacter>

 <QuoteFields>string</QuoteFields>

 <RecordDelimiter>string</RecordDelimiter>

 </CSV>

 </OutputSerialization>

 <ScanRange>

 <End>long</End>

 <Start>long</Start>

 </ScanRange>

</SelectObjectContentRequest>

Parquet request syntax example

35

POST /{Key+}?select&select-type=2 HTTP/1.1

Host: Bucket.s3.abc-company.com

x-amz-expected-bucket-owner: ExpectedBucketOwner

<?xml version="1.0" encoding="UTF-8"?>

<SelectObjectContentRequest xmlns=http://s3.amazonaws.com/doc/2006-03-01/>

 <Expression>string</Expression>

 <ExpressionType>string</ExpressionType>

 <RequestProgress>

 <Enabled>boolean</Enabled>

 </RequestProgress>

 <InputSerialization>

 <CompressionType>GZIP</CompressionType>

 <PARQUET>

 </PARQUET>

 </InputSerialization>

 <OutputSerialization>

 <CSV>

 <FieldDelimiter>string</FieldDelimiter>

 <QuoteCharacter>string</QuoteCharacter>

 <QuoteEscapeCharacter>string</QuoteEscapeCharacter>

 <QuoteFields>string</QuoteFields>

 <RecordDelimiter>string</RecordDelimiter>

 </CSV>

 </OutputSerialization>

 <ScanRange>

 <End>long</End>

 <Start>long</Start>

 </ScanRange>

</SelectObjectContentRequest>

SQL query example

This query gets the state name, 2010 populations, estimated 2015 populations, and the percentage of change

from US census data. Records in the file that aren’t states are ignored.

SELECT STNAME, CENSUS2010POP, POPESTIMATE2015, CAST((POPESTIMATE2015 -

CENSUS2010POP) AS DECIMAL) / CENSUS2010POP * 100.0 FROM S3Object WHERE

NAME = STNAME

The first few lines of the file to be queried, SUB-EST2020_ALL.csv, look like this:

36

SUMLEV,STATE,COUNTY,PLACE,COUSUB,CONCIT,PRIMGEO_FLAG,FUNCSTAT,NAME,STNAME,

CENSUS2010POP,

ESTIMATESBASE2010,POPESTIMATE2010,POPESTIMATE2011,POPESTIMATE2012,POPESTIM

ATE2013,POPESTIMATE2014,

POPESTIMATE2015,POPESTIMATE2016,POPESTIMATE2017,POPESTIMATE2018,POPESTIMAT

E2019,POPESTIMATE042020,

POPESTIMATE2020

040,01,000,00000,00000,00000,0,A,Alabama,Alabama,4779736,4780118,4785514,4

799642,4816632,4831586,

4843737,4854803,4866824,4877989,4891628,4907965,4920706,4921532

162,01,000,00124,00000,00000,0,A,Abbeville

city,Alabama,2688,2705,2699,2694,2645,2629,2610,2602,

2587,2578,2565,2555,2555,2553

162,01,000,00460,00000,00000,0,A,Adamsville

city,Alabama,4522,4487,4481,4474,4453,4430,4399,4371,

4335,4304,4285,4254,4224,4211

162,01,000,00484,00000,00000,0,A,Addison

town,Alabama,758,754,751,750,745,744,742,734,734,728,

725,723,719,717

AWS-CLI usage example (CSV)

aws s3api select-object-content --endpoint-url https://10.224.7.44:10443

--no-verify-ssl --bucket 619c0755-9e38-42e0-a614-05064f74126d --key SUB-

EST2020_ALL.csv --expression-type SQL --input-serialization '{"CSV":

{"FileHeaderInfo": "USE", "Comments": "#", "QuoteEscapeCharacter": "\"",

"RecordDelimiter": "\n", "FieldDelimiter": ",", "QuoteCharacter": "\"",

"AllowQuotedRecordDelimiter": false}, "CompressionType": "NONE"}' --output

-serialization '{"CSV": {"QuoteFields": "ASNEEDED",

"QuoteEscapeCharacter": "#", "RecordDelimiter": "\n", "FieldDelimiter":

",", "QuoteCharacter": "\""}}' --expression "SELECT STNAME, CENSUS2010POP,

POPESTIMATE2015, CAST((POPESTIMATE2015 - CENSUS2010POP) AS DECIMAL) /

CENSUS2010POP * 100.0 FROM S3Object WHERE NAME = STNAME" changes.csv

The first few lines of the output file, changes.csv, look like this:

Alabama,4779736,4854803,1.5705260708959658022953568983726297854

Alaska,710231,738430,3.9703983633493891424057806544631253775

Arizona,6392017,6832810,6.8959922978928247531256565807005832431

Arkansas,2915918,2979732,2.1884703204959810255295244928012378949

California,37253956,38904296,4.4299724839960620557988526104449148971

Colorado,5029196,5454328,8.4532796097030221132761578590295546246

37

AWS-CLI usage example (Parquet)

aws s3api select-object-content -endpoint-url https://10.224.7.44:10443

--bucket 619c0755-9e38-42e0-a614-05064f74126d --key SUB-

EST2020_ALL.parquet --expression "SELECT STNAME, CENSUS2010POP,

POPESTIMATE2015, CAST((POPESTIMATE2015 - CENSUS2010POP) AS DECIMAL) /

CENSUS2010POP * 100.0 FROM S3Object WHERE NAME = STNAME" --expression-type

'SQL' --input-serialization '{"Parquet":{}}' --output-serialization

'{"CSV": {}}' changes.csv

The first few lines of the output file, changes.csv, look like this:

Alabama,4779736,4854803,1.5705260708959658022953568983726297854

Alaska,710231,738430,3.9703983633493891424057806544631253775

Arizona,6392017,6832810,6.8959922978928247531256565807005832431

Arkansas,2915918,2979732,2.1884703204959810255295244928012378949

California,37253956,38904296,4.4299724839960620557988526104449148971

Colorado,5029196,5454328,8.4532796097030221132761578590295546246

Operations for multipart uploads

This section describes how StorageGRID supports operations for multipart uploads.

The following conditions and notes apply to all multipart upload operations:

• You should not exceed 1,000 concurrent multipart uploads to a single bucket because the results of List

Multipart Uploads queries for that bucket might return incomplete results.

• StorageGRID enforces AWS size limits for multipart parts. S3 clients must follow these guidelines:

◦ Each part in a multipart upload must be between 5 MiB (5,242,880 bytes) and 5 GiB (5,368,709,120

bytes).

◦ The last part can be smaller than 5 MiB (5,242,880 bytes).

◦ In general, part sizes should be as large as possible. For example, use part sizes of 5 GiB for a 100

GiB object. Because each part is considered a unique object, using large part sizes reduces

StorageGRID metadata overhead.

◦ For objects smaller than 5 GiB, consider using non-multipart upload instead.

• ILM is evaluated for each part of a multipart object as it is ingested and for the object as a whole when the

multipart upload completes, if the ILM rule uses the Balanced or Strict ingest behavior. You should be

aware of how this affects object and part placement:

◦ If ILM changes while an S3 multipart upload is in progress, when the multipart upload completes some

parts of the object might not meet current ILM requirements. Any part that is not placed correctly is

queued for ILM re-evaluation, and is moved to the correct location later.

◦ When evaluating ILM for a part, StorageGRID filters on the size of the part, not the size of the object.

This means that parts of an object can be stored in locations that don’t meet ILM requirements for the

object as a whole. For example, if a rule specifies that all objects 10 GB or larger are stored at DC1

while all smaller objects are stored at DC2, at ingest each 1 GB part of a 10-part multipart upload is

38

stored at DC2. When ILM is evaluated for the object as a whole, all parts of the object are moved to

DC1.

• All of the multipart upload operations support StorageGRID consistency controls.

• As required, you can use server-side encryption with multipart uploads. To use SSE (server-side encryption

with StorageGRID-managed keys), you include the x-amz-server-side-encryption request header

in the Initiate Multipart Upload request only. To use SSE-C (server-side encryption with customer-provided

keys), you specify the same three encryption key request headers in the Initiate Multipart Upload request

and in each subsequent Upload Part request.

Operation Implementation

List Multipart Uploads See List Multipart Uploads

Initiate Multipart Upload See Initiate Multipart Upload

Upload Part See Upload Part

Upload Part - Copy See Upload Part - Copy

Complete Multipart Upload See Complete Multipart Upload

Abort Multipart Upload Implemented with all Amazon S3 REST API behavior. Subject to

change without notice.

List Parts Implemented with all Amazon S3 REST API behavior. Subject to

change without notice.

Related information

• Consistency controls

• Use server-side encryption

List Multipart Uploads

The List Multipart Uploads operation lists in-progress multipart uploads for a bucket.

The following request parameters are supported:

• encoding-type

• key-marker

• max-uploads

• prefix

• upload-id-marker

• Host

• Date

• Authorization

39

https://docs.netapp.com/us-en/storagegrid-117/s3/consistency-controls.html

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. When the Complete Multipart Upload operation is

performed, that is the point when objects are created (and versioned if applicable).

Initiate Multipart Upload

The Initiate Multipart Upload (CreateMultipartUpload) operation initiates a multipart

upload for an object, and returns an upload ID.

The x-amz-storage-class request header is supported. The value submitted for x-amz-storage-class

affects how StorageGRID protects object data during ingest and not how many persistent copies of the object

are stored in the StorageGRID system (which is determined by ILM).

If the ILM rule matching an ingested object uses the Strict option for Ingest Behavior, the x-amz-storage-

class header has no effect.

The following values can be used for x-amz-storage-class:

• STANDARD (Default)

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, as soon as an object

is ingested a second copy of that object is created and distributed to a different Storage Node (dual

commit). When the ILM is evaluated, StorageGRID determines if these initial interim copies satisfy the

placement instructions in the rule. If they don’t, new object copies might need to be made in different

locations and the initial interim copies might need to be deleted.

◦ Balanced: If the ILM rule specifies the Balanced option and StorageGRID can’t immediately make all

copies specified in the rule, StorageGRID makes two interim copies on different Storage Nodes.

If StorageGRID can immediately create all object copies specified in the ILM rule (synchronous

placement), the x-amz-storage-class header has no effect.

• REDUCED_REDUNDANCY

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID

creates a single interim copy as the object is ingested (single commit).

◦ Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only

if the system can’t immediately make all copies specified in the rule. If StorageGRID can perform

synchronous placement, this header has no effect. The REDUCED_REDUNDANCY option is best used

when the ILM rule that matches the object creates a single replicated copy. In this case using

REDUCED_REDUNDANCY eliminates the unnecessary creation and deletion of an extra object copy for

every ingest operation.

Using the REDUCED_REDUNDANCY option is not recommended in other circumstances.

REDUCED_REDUNDANCY increases the risk of object data loss during ingest. For example, you might lose

data if the single copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Having only one replicated copy for any time period puts data at risk of permanent loss. If only

one replicated copy of an object exists, that object is lost if a Storage Node fails or has a

significant error. You also temporarily lose access to the object during maintenance procedures

such as upgrades.

40

Specifying REDUCED_REDUNDANCY only affects how many copies are created when an object is first ingested.

It does not affect how many copies of the object are made when the object is evaluated by the active ILM

policy, and does not result in data being stored at lower levels of redundancy in the StorageGRID system.

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

REDUCED_REDUNDANCY option is ignored. If you are ingesting an object into a legacy Compliant

bucket, the REDUCED_REDUNDANCY option returns an error. StorageGRID will always perform a

dual-commit ingest to ensure that compliance requirements are satisfied.

The following request headers are supported:

• Content-Type

• x-amz-meta-, followed by a name-value pair containing user-defined metadata

When specifying the name-value pair for user-defined metadata, use this general format:

x-amz-meta-_name_: `value`

If you want to use the User defined creation time option as the Reference time for an ILM rule, you must

use creation-time as the name of the metadata that records when the object was created. For

example:

x-amz-meta-creation-time: 1443399726

The value for creation-time is evaluated as seconds since January 1, 1970.

Adding creation-time as user-defined metadata is not allowed if you are adding an

object to a bucket that has legacy Compliance enabled. An error will be returned.

• S3 Object Lock request headers:

◦ x-amz-object-lock-mode

◦ x-amz-object-lock-retain-until-date

◦ x-amz-object-lock-legal-hold

If a request is made without these headers, the bucket default retention settings are used to calculate

the object version retain-until-date.

Use S3 REST API to configure S3 Object Lock

• SSE request headers:

◦ x-amz-server-side-encryption

◦ x-amz-server-side-encryption-customer-key-MD5

◦ x-amz-server-side-encryption-customer-key

◦ x-amz-server-side-encryption-customer-algorithm

41

https://docs.netapp.com/us-en/storagegrid-117/s3/use-s3-api-for-s3-object-lock.html

Request headers for server-side encryption

For information about how StorageGRID handles UTF-8 characters, see the documentation

for PUT Object.

Request headers for server-side encryption

You can use the following request headers to encrypt a multipart object with server-side encryption. The SSE

and SSE-C options are mutually exclusive.

• SSE: Use the following header in the Initiate Multipart Upload request if you want to encrypt the object with

a unique key managed by StorageGRID. Don’t specify this header in any of the Upload Part requests.

◦ x-amz-server-side-encryption

• SSE-C: Use all three of these headers in the Initiate Multipart Upload request (and in each subsequent

Upload Part request) if you want to encrypt the object with a unique key that you provide and manage.

◦ x-amz-server-side-encryption-customer-algorithm: Specify AES256.

◦ x-amz-server-side-encryption-customer-key: Specify your encryption key for the new

object.

◦ x-amz-server-side-encryption-customer-key-MD5: Specify the MD5 digest of the new

object’s encryption key.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations for using server-side encryption.

Unsupported request headers

The following request header is not supported and returns XNotImplemented

• x-amz-website-redirect-location

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)

when the Complete Multipart Upload operation is performed.

Related information

Manage objects with ILM

PUT Object

Upload Part

The Upload Part operation uploads a part in a multipart upload for an object.

Supported request headers

The following request headers are supported:

42

https://docs.netapp.com/us-en/storagegrid-117/ilm/index.html

• Content-Length

• Content-MD5

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following

request headers in each Upload Part request:

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify the same encryption key that you

provided in the Initiate Multipart Upload request.

• x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you

provided in the Initiate Multipart Upload request.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in “Use server-side encryption.”

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)

when the Complete Multipart Upload operation is performed.

Related information

Use server-side encryption

Upload Part - Copy

The Upload Part - Copy operation uploads a part of an object by copying data from an

existing object as the data source.

The Upload Part - Copy operation is implemented with all Amazon S3 REST API behavior. Subject to change

without notice.

This request reads and writes the object data specified in x-amz-copy-source-range within the

StorageGRID system.

The following request headers are supported:

• x-amz-copy-source-if-match

• x-amz-copy-source-if-none-match

• x-amz-copy-source-if-unmodified-since

• x-amz-copy-source-if-modified-since

Request headers for server-side encryption

If you specified SSE-C encryption for the Initiate Multipart Upload request, you must also include the following

request headers in each Upload Part - Copy request:

43

• x-amz-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-server-side-encryption-customer-key: Specify the same encryption key that you

provided in the Initiate Multipart Upload request.

• x-amz-server-side-encryption-customer-key-MD5: Specify the same MD5 digest that you

provided in the Initiate Multipart Upload request.

If the source object is encrypted using a customer-provided key (SSE-C), you must include the following three

headers in the Upload Part - Copy request, so the object can be decrypted and then copied:

• x-amz-copy-source-server-side-encryption-customer-algorithm: Specify AES256.

• x-amz-copy-source-server-side-encryption-customer-key: Specify the encryption key you

provided when you created the source object.

• x-amz-copy-source-server-side-encryption-customer-key-MD5: Specify the MD5 digest you

provided when you created the source object.

The encryption keys you provide are never stored. If you lose an encryption key, you lose the

corresponding object. Before using customer-provided keys to secure object data, review the

considerations in “Use server-side encryption.”

Versioning

Multipart upload consists of separate operations for initiating the upload, listing uploads, uploading parts,

assembling the uploaded parts, and completing the upload. Objects are created (and versioned if applicable)

when the Complete Multipart Upload operation is performed.

Complete Multipart Upload

The Complete Multipart Upload operation completes a multipart upload of an object by

assembling the previously uploaded parts.

Resolve conflicts

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.

The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given

request, and not on when S3 clients begin an operation.

Request headers

The x-amz-storage-class request header is supported, and affects how many object copies StorageGRID

creates if the matching ILM rule specifies an Ingest Behavior of Dual commit or Balanced.

• STANDARD

(Default) Specifies a dual-commit ingest operation when the ILM rule uses the Dual commit option, or when

the Balanced option falls back to creating interim copies.

• REDUCED_REDUNDANCY

Specifies a single-commit ingest operation when the ILM rule uses the Dual commit option, or when the

Balanced option falls back to creating interim copies.

44

If you are ingesting an object into a bucket with S3 Object Lock enabled, the

REDUCED_REDUNDANCY option is ignored. If you are ingesting an object into a legacy

Compliant bucket, the REDUCED_REDUNDANCY option returns an error. StorageGRID will

always perform a dual-commit ingest to ensure that compliance requirements are satisfied.

If a multipart upload is not completed within 15 days, the operation is marked as inactive and all

associated data is deleted from the system.

The ETag value returned is not an MD5 sum of the data, but follows the Amazon S3 API

implementation of the ETag value for multipart objects.

Versioning

This operation completes a multipart upload. If versioning is enabled for a bucket, the object version is created

after completion of the multipart upload.

If versioning is enabled for a bucket, a unique versionId is automatically generated for the version of the

object being stored. This versionId is also returned in the response using the x-amz-version-id

response header.

If versioning is suspended, the object version is stored with a null versionId and if a null version already

exists it will be overwritten.

When versioning is enabled for a bucket, completing a multipart upload always creates a new

version, even if there are concurrent multipart uploads completed on the same object key. When

versioning is not enabled for a bucket, it is possible to initiate a multipart upload and then have

another multipart upload initiate and complete first on the same object key. On non-versioned

buckets, the multipart upload that completes last takes precedence.

Failed replication, notification, or metadata notification

If the bucket where the multipart upload occurs is configured for a platform service, multipart upload succeeds

even if the associated replication or notification action fails.

If this occurs, an alarm is raised in the Grid Manager on Total Events (SMTT). The Last Event message

displays “Failed to publish notifications for bucket-nameobject key” for the last object whose notification failed.

(To see this message, select NODES > Storage Node > Events. View Last Event at the top of the table.)

Event messages are also listed in /var/local/log/bycast-err.log.

A tenant can trigger the failed replication or notification by updating the object’s metadata or tags. A tenant can

resubmit the existing values to avoid making unwanted changes.

Related information

Manage objects with ILM

Error responses

The StorageGRID system supports all standard S3 REST API error responses that apply.

In addition, the StorageGRID implementation adds several custom responses.

45

https://docs.netapp.com/us-en/storagegrid-117/ilm/index.html

Supported S3 API error codes

Name HTTP status

AccessDenied 403 Forbidden

BadDigest 400 Bad Request

BucketAlreadyExists 409 Conflict

BucketNotEmpty 409 Conflict

IncompleteBody 400 Bad Request

InternalError 500 Internal Server Error

InvalidAccessKeyId 403 Forbidden

InvalidArgument 400 Bad Request

InvalidBucketName 400 Bad Request

InvalidBucketState 409 Conflict

InvalidDigest 400 Bad Request

InvalidEncryptionAlgorithmError 400 Bad Request

InvalidPart 400 Bad Request

InvalidPartOrder 400 Bad Request

InvalidRange 416 Requested Range Not Satisfiable

InvalidRequest 400 Bad Request

InvalidStorageClass 400 Bad Request

InvalidTag 400 Bad Request

InvalidURI 400 Bad Request

KeyTooLong 400 Bad Request

MalformedXML 400 Bad Request

46

Name HTTP status

MetadataTooLarge 400 Bad Request

MethodNotAllowed 405 Method Not Allowed

MissingContentLength 411 Length Required

MissingRequestBodyError 400 Bad Request

MissingSecurityHeader 400 Bad Request

NoSuchBucket 404 Not Found

NoSuchKey 404 Not Found

NoSuchUpload 404 Not Found

NotImplemented 501 Not Implemented

NoSuchBucketPolicy 404 Not Found

ObjectLockConfigurationNotFoundError 404 Not Found

PreconditionFailed 412 Precondition Failed

RequestTimeTooSkewed 403 Forbidden

ServiceUnavailable 503 Service Unavailable

SignatureDoesNotMatch 403 Forbidden

TooManyBuckets 400 Bad Request

UserKeyMustBeSpecified 400 Bad Request

StorageGRID custom error codes

Name Description HTTP status

XBucketLifecycleNotAllowed Bucket lifecycle configuration is not

allowed in a legacy Compliant bucket

400 Bad Request

XBucketPolicyParseException Failed to parse received bucket policy

JSON.

400 Bad Request

47

Name Description HTTP status

XComplianceConflict Operation denied because of legacy

Compliance settings.

403 Forbidden

XComplianceReducedRedundancyForbidd

en

Reduced redundancy is not allowed in

legacy Compliant bucket

400 Bad Request

XMaxBucketPolicyLengthExceeded Your policy exceeds the maximum allowed

bucket policy length.

400 Bad Request

XMissingInternalRequestHeader Missing a header of an internal request. 400 Bad Request

XNoSuchBucketCompliance The specified bucket does not have legacy

Compliance enabled.

404 Not Found

XNotAcceptable The request contains one or more accept

headers that could not be satisfied.

406 Not Acceptable

XNotImplemented The request you provided implies

functionality that is not implemented.

501 Not

Implemented

48

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

49

http://www.netapp.com/TM

	Support for Amazon S3 REST API : StorageGRID 11.7
	Table of Contents
	Support for Amazon S3 REST API
	S3 REST API implementation details
	Authenticate requests
	Operations on the service
	Operations on buckets
	Operations on objects
	Operations for multipart uploads
	Error responses

