
Use Swift REST API (deprecated)
StorageGRID
NetApp
November 04, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-117/swift/history-of-swift-api-
support-in-storagegrid.html on November 04, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Use Swift REST API (deprecated) . 1

Use Swift REST API: Overview . 1

History of Swift API support in StorageGRID . 1

How StorageGRID implements Swift REST API . 2

Recommendations for implementing Swift REST API . 3

Configure tenant accounts and connections . 4

Create and configure Swift tenant accounts . 4

How client connections can be configured. 4

Test your connection in Swift API configuration . 6

Swift REST API supported operations . 8

Operations supported in StorageGRID . 8

Common response headers for all operations . 8

Supported Swift API endpoints. 8

Account operations . 10

Container operations . 12

Object operations . 14

OPTIONS request . 18

Error responses to Swift API operations . 19

StorageGRID Swift REST API operations . 20

GET container consistency request . 20

PUT container consistency request . 22

Configure security for the REST API . 24

How StorageGRID provides security for the REST API. 24

Supported hashing and encryption algorithms for TLS libraries . 25

Monitor and audit operations . 25

Monitor object ingest and retrieval rates . 26

Access and review audit logs. 28

Use Swift REST API (deprecated)

Use Swift REST API: Overview

Client applications can use the OpenStack Swift API to interface with the StorageGRID

system.

Support for Swift client applications has been deprecated and will be removed in a future

release.

StorageGRID supports the following specific versions of Swift and HTTP.

Item Version

Swift specification OpenStack Swift Object Storage API v1 as of

November 2015

HTTP 1.1 For more information about HTTP, see HTTP/1.1

(RFCs 7230-35).

Note: StorageGRID does not support HTTP/1.1

pipelining.

Related information

OpenStack: Object Storage API

History of Swift API support in StorageGRID

You should be aware of changes to the StorageGRID system’s support for the Swift

REST API.

Release Comments

11.7 Support for Swift client applications has been deprecated and will be removed in

a future release.

11.6 Minor editorial changes.

11.5 Removed Weak consistency control. The Available consistency level will be used

instead.

11.4 Added support for TLS 1.3. Added description of interrelationship between ILM

and consistency setting.

1

http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html

Release Comments

11.3 Updated PUT Object operations to describe the impact of ILM rules that use

synchronous placement at ingest (the Balanced and Strict options for Ingest

Behavior). Added description of client connections that use load balancer

endpoints or high availability groups. TLS 1.1 ciphers are no longer supported.

11.2 Minor editorial changes to document.

11.1 Added support for using HTTP for Swift client connections to grid nodes. Updated

the definitions of consistency controls.

11.0 Added support for 1,000 containers for each tenant account.

10.3 Administrative updates and corrections to the document. Removed sections for

configuring custom server certificates.

10.2 Initial support of the Swift API by the StorageGRID system. The currently

supported version is OpenStack Swift Object Storage API v1.

How StorageGRID implements Swift REST API

A client application can use Swift REST API calls to connect to Storage Nodes and

Gateway Nodes to create containers and to store and retrieve objects. This enables

service-oriented applications developed for OpenStack Swift to connect with on-premise

object storage provided by the StorageGRID system.

Swift object management

After Swift objects have been ingested in the StorageGRID system, they are managed by the information

lifecycle management (ILM) rules in the system’s active ILM policy. The ILM rules and ILM policy determine

how StorageGRID creates and distributes copies of object data and how it manages those copies over time.

For example, an ILM rule might apply to objects in specific Swift containers and might specify that multiple

object copies be saved to several data centers for a certain number of years.

Contact your NetApp Professional Services consultant or StorageGRID administrator if you need to understand

how the grid’s ILM rules and policies will affect the objects in your Swift tenant account.

Conflicting client requests

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.

The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given

request, and not on when Swift clients begin an operation.

Consistency guarantees and controls

By default, StorageGRID provides read-after-write consistency for newly created objects and eventual

consistency for object updates and HEAD operations. Any GET following a successfully completed PUT will be

able to read the newly written data. Overwrites of existing objects, metadata updates, and deletes are

eventually consistent. Overwrites generally take seconds or minutes to propagate, but can take up to 15 days.

2

https://docs.netapp.com/us-en/storagegrid-117/ilm/what-ilm-rule-is.html
https://docs.netapp.com/us-en/storagegrid-117/ilm/creating-ilm-policy.html
https://docs.netapp.com/us-en/storagegrid-117/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/put-container-consistency-request.html

StorageGRID also allows you to control consistency on a per container basis. Consistency controls provide a

balance between the availability of the objects and the consistency of those objects across different Storage

Nodes and sites, as required by your application.

Recommendations for implementing Swift REST API

You should follow these recommendations when implementing the Swift REST API for

use with StorageGRID.

Recommendations for HEADs to non-existent objects

If your application routinely checks to see if an object exists at a path where you don’t expect the object to

actually exist, you should use the “Available” consistency control. For example, you should use the “Available”

consistency control if your application performs a HEAD operation to a location before performing a PUT

operation to that location.

Otherwise, if the HEAD operation does not find the object, you might receive a high number of 500 Internal

Server errors if one or more Storage Nodes are unavailable.

You can set the “Available” consistency control for each container using the PUT container consistency

request. You view set the “Available” consistency control for each container using the GET container

consistency request.

Recommendations for object names

For containers that are created in StorageGRID 11.4 or later, restricting object names to meet performance

best practices is no longer required. For example, you can now use random values for the first four characters

of object names.

For containers that were created in releases earlier than StorageGRID 11.4, continue to follow these

recommendations for object names:

• You should not use random values as the first four characters of object names. This is in contrast to the

former AWS recommendation for name prefixes. Instead, you should use non-random, non-unique

prefixes, such as image.

• If you do follow the former AWS recommendation to use random and unique characters in name prefixes,

you should prefix the object names with a directory name. That is, use this format:

mycontainer/mydir/f8e3-image3132.jpg

Instead of this format:

mycontainer/f8e3-image3132.jpg

Recommendations for “range reads”

If the global option to compress stored objects is enabled, Swift client applications should avoid performing

GET object operations that specify a range of bytes be returned. These “range read” operations are inefficient

because StorageGRID must effectively uncompress the objects to access the requested bytes. GET Object

3

https://docs.netapp.com/us-en/storagegrid-117/swift/put-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/put-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/admin/configuring-stored-object-compression.html

operations that request a small range of bytes from a very large object are especially inefficient; for example, it

is very inefficient to read a 10 MB range from a 50 GB compressed object.

If ranges are read from compressed objects, client requests can time out.

If you need to compress objects and your client application must use range reads, increase the

read timeout for the application.

Configure tenant accounts and connections

Configuring StorageGRID to accept connections from client applications requires creating

one or more tenant accounts and setting up the connections.

Create and configure Swift tenant accounts

A Swift tenant account is required before Swift API clients can store and retrieve objects on StorageGRID.

Each tenant account has its own account ID, groups and users, and containers and objects.

Swift tenant accounts are created by a StorageGRID grid administrator using the Grid Manager or the Grid

Management API.

When creating a Swift tenant account, the grid administrator specifies the following information:

• Display name for the tenant (the tenant’s account ID is assigned automatically and can’t be changed)

• Optionally, a storage quota for the tenant account — the maximum number of gigabytes, terabytes, or

petabytes available for the tenant’s objects. A tenant’s storage quota represents a logical amount (object

size), not a physical amount (size on disk).

• If single sign-on (SSO) is not in use for the StorageGRID system, whether the tenant account will use its

own identity source or share the grid’s identity source, and the initial password for the tenant’s local root

user.

• If SSO is enabled, which federated group has Root access permission to configure the tenant account.

After a Swift tenant account is created, users with the Root access permission can access the Tenant Manager

to perform tasks such as the following:

• Setting up identity federation (unless the identity source is shared with the grid), and creating local groups

and users

• Monitoring storage usage

Swift users must have the Root access permission to access the Tenant Manager. However, the

Root access permission does not allow users to authenticate into the Swift REST API to create

containers and ingest objects. Users must have the Swift Administrator permission to

authenticate into the Swift REST API.

How client connections can be configured

A grid administrator makes configuration choices that affect how Swift clients connect to StorageGRID to store

and retrieve data. The specific information you need to make a connection depends upon the configuration that

was chosen.

4

https://docs.netapp.com/us-en/storagegrid-117/admin/editing-tenant-account.html
https://docs.netapp.com/us-en/storagegrid-117/admin/editing-tenant-account.html
https://docs.netapp.com/us-en/storagegrid-117/admin/configuring-sso.html
https://docs.netapp.com/us-en/storagegrid-117/tenant/signing-in-to-tenant-manager.html

Client applications can store or retrieve objects by connecting to the Load Balancer service on Admin Nodes or

Gateway Nodes, or optionally, the virtual IP address of a high availability (HA) group of Admin Nodes or

Gateway Nodes.

All applications that depend on StorageGRID to provide load balancing should connect using the

Load Balancer service.

• Storage Nodes, with or without an external load balancer

When configuring StorageGRID, a grid administrator can use the Grid Manager or the Grid Management API

to perform the following steps, all of which are optional:

1. Configure endpoints for the Load Balancer service.

You must configure endpoints to use the Load Balancer service. The Load Balancer service on Admin

Nodes or Gateway Nodes distributes incoming network connections from client applications to Storage

Nodes. When creating a load balancer endpoint, the StorageGRID administrator specifies a port number,

whether the endpoint accepts HTTP or HTTPS connections, the type of client (S3 or Swift) that will use the

endpoint, and the certificate to be used for HTTPS connections (if applicable). Swift supports these

endpoint types.

2. Configure Untrusted Client Networks.

If a StorageGRID administrator configures a node’s Client Network to be untrusted, the node only accepts

inbound connections on the Client Network on ports that are explicitly configured as load balancer

endpoints.

3. Configure high availability groups.

If an administrator creates an HA group, the network interfaces of multiple Admin Nodes or Gateway

Nodes are placed into an active-backup configuration. Client connections are made using the virtual IP

address of the HA group.

See Configuration options for HA groups for more information.

Summary: IP addresses and ports for client connections

Client applications connect to StorageGRID using the IP address of a grid node and the port number of a

service on that node. If high availability (HA) groups are configured, client applications can connect using the

virtual IP address of the HA group.

Information required to make client connections

The table summarizes the different ways that clients can connect to StorageGRID and the IP addresses and

ports that are used for each type of connection. See IP addresses and ports for client connections or contact

your StorageGRID administrator for more information.

Where connection is

made

Service that client

connects to

IP address Port

HA group Load Balancer Virtual IP address of an

HA group

• Load balancer

endpoint port

5

https://docs.netapp.com/us-en/storagegrid-117/admin/configuration-options-for-ha-groups.html
https://docs.netapp.com/us-en/storagegrid-117/admin/summary-ip-addresses-and-ports-for-client-connections.html

Where connection is

made

Service that client

connects to

IP address Port

Admin Node Load Balancer IP address of the Admin

Node

• Load balancer

endpoint port

Gateway Node Load Balancer IP address of the

Gateway Node

• Load balancer

endpoint port

Storage Node LDR IP address of Storage

Node

Default Swift ports:

• HTTPS: 18083

• HTTP: 18085

Example

To connect a Swift client to the Load Balancer endpoint of an HA group of Gateway Nodes, use a URL

structured as shown below:

• https://VIP-of-HA-group:LB-endpoint-port

For example, if the virtual IP address of the HA group is 192.0.2.6 and the port number of a Swift Load

Balancer endpoint is 10444, then a Swift client could use the following URL to connect to StorageGRID:

• https://192.0.2.6:10444

It is possible to configure a DNS name for the IP address that clients use to connect to StorageGRID. Contact

your local network administrator.

Decide to use HTTPS or HTTP connections

When client connections are made using a Load Balancer endpoint, connections must be made using the

protocol (HTTP or HTTPS) that was specified for that endpoint. To use HTTP for client connections to Storage

Nodes, you must enable its use.

By default, when client applications connect to Storage Nodes, they must use encrypted HTTPS for all

connections. Optionally, you can enable less-secure HTTP connections by selecting the Enable HTTP for

Storage Node connections option in Grid Manager. For example, a client application might use HTTP when

testing the connection to a Storage Node in a non-production environment.

Be careful when enabling HTTP for a production grid because requests and responses will be

sent unencrypted.

If the Enable HTTP for Storage Node connections option is selected, clients must use different ports for

HTTP than they use for HTTPS.

Test your connection in Swift API configuration

You can use the Swift CLI to test your connection to the StorageGRID system and to verify that you can read

and write objects to the system.

Before you begin

6

https://docs.netapp.com/us-en/storagegrid-117/admin/changing-network-options-object-encryption.html
https://docs.netapp.com/us-en/storagegrid-117/admin/changing-network-options-object-encryption.html

• You must have downloaded and installed python-swiftclient, the Swift command-line client.

SwiftStack: python-swiftclient

• You must have a Swift tenant account in the StorageGRID system.

About this task

If you have not configured security, you must add the --insecure flag to each of these commands.

Steps

1. Query the info URL for your StorageGRID Swift deployment:

swift

-U <Tenant_Account_ID:Account_User_Name>

-K <User_Password>

-A https://<FQDN | IP>:<Port>/info

capabilities

This is sufficient to test that your Swift deployment is functional. To further test account configuration by

storing an object, continue with the additional steps.

2. Put an object in the container:

touch test_object

swift

-U <Tenant_Account_ID:Account_User_Name>

-K <User_Password>

-A https://<FQDN | IP>:<Port>/auth/v1.0

upload test_container test_object

--object-name test_object

3. Get the container to verify the object:

swift

-U <Tenant_Account_ID:Account_User_Name>

-K <User_Password>

-A https://<FQDN | IP>:<Port>/auth/v1.0

list test_container

4. Delete the object:

7

https://platform.swiftstack.com/docs/integration/python-swiftclient.html

swift

-U <Tenant_Account_ID:Account_User_Name>

-K <User_Password>

-A https://<FQDN | IP>:<Port>/auth/v1.0

delete test_container test_object

5. Delete the container:

swift

-U `<_Tenant_Account_ID:Account_User_Name_>`

-K `<_User_Password_>`

-A `\https://<_FQDN_ | _IP_>:<_Port_>/auth/v1.0'

delete test_container

Related information

Create and configure Swift tenant accounts

Configure security for the REST API

Swift REST API supported operations

The StorageGRID system supports most operations in the OpenStack Swift API. Before

integrating Swift REST API clients with StorageGRID, review the implementation details

for account, container, and object operations.

Operations supported in StorageGRID

The following Swift API operations are supported:

• Account operations

• Container operations

• Object operations

Common response headers for all operations

The StorageGRID system implements all common headers for supported operations as defined by the

OpenStack Swift Object Storage API v1.

Related information

OpenStack: Object Storage API

Supported Swift API endpoints

StorageGRID supports the following Swift API endpoints: the info URL, the auth URL, and

the storage URL.

8

http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html

info URL

You can determine the capabilities and limitations of the StorageGRID Swift implementation by issuing a GET

request to the Swift base URL with the /info path.

https://FQDN | Node IP:Swift Port/info/

In the request:

• FQDN is the fully qualified domain name.

• Node IP is the IP address for the Storage Node or the Gateway Node on the StorageGRID network.

• Swift Port is the port number used for Swift API connections on the Storage Node or Gateway Node.

For example, the following info URL would request information from a Storage Node with the IP address of

10.99.106.103 and using port 18083.

https://10.99.106.103:18083/info/

The response includes the capabilities of the Swift implementation as a JSON dictionary. A client tool can

parse the JSON response to determine the capabilities of the implementation and use them as constraints for

subsequent storage operations.

The StorageGRID implementation of Swift allows unauthenticated access to the info URL.

auth URL

A client can use the Swift auth URL to authenticate as a tenant account user.

https://FQDN | Node IP:Swift Port/auth/v1.0/

You must provide the tenant account ID, user name, and password as parameters in the X-Auth-User and

X-Auth-Key request headers, as follows:

X-Auth-User: Tenant_Account_ID:Username

X-Auth-Key: Password

In the request headers:

• Tenant_Account_ID is the account ID assigned by StorageGRID when the Swift tenant was created.

This is the same tenant account ID used on the Tenant Manager sign-in page.

• Username is the name of a tenant user that has been created in the Tenant Manager. This user must

belong to a group that has the Swift Administrator permission. The tenant’s root user can’t be configured to

use the Swift REST API.

If Identity Federation is enabled for the tenant account, provide the username and password of the

federated user from the LDAP server. Alternatively, provide the LDAP user’s domain name. For example:

X-Auth-User: Tenant_Account_ID:Username@Domain_Name

• Password is the password for the tenant user. User passwords are created and managed in the Tenant

Manager.

9

The response to a successful authentication request returns a storage URL and an auth token, as follows:

X-Storage-Url: https://FQDN | Node_IP:Swift_Port/v1/Tenant_Account_ID

X-Auth-Token: token

X-Storage-Token: token

By default, the token is valid for 24 hours from generation time.

Tokens are generated for a specific tenant account. A valid token for one account does not authorize a user to

access another account.

storage URL

A client application can issue Swift REST API calls to perform supported account, container, and object

operations against a Gateway Node or Storage Node. Storage requests are addressed to the storage URL

returned in the authentication response. The request must also include the X-Auth-Token header and value

returned from the auth request.

https://FQDN | IP:Swift_Port/v1/Tenant_Account_ID

[/container][/object]

X-Auth-Token: token

Some storage response headers that contain usage statistics might not reflect accurate numbers for recently

modified objects. It might take a few minutes for accurate numbers to appear in these headers.

The following response headers for account and container operations are examples of those that contain

usage statistics:

• X-Account-Bytes-Used

• X-Account-Object-Count

• X-Container-Bytes-Used

• X-Container-Object-Count

Related information

Configure tenant accounts and connections

Account operations

Container operations

Object operations

Account operations

The following Swift API operations are performed on accounts.

10

GET account

This operation retrieves the container list associated with the account and account usage statistics.

The following request parameter is required:

• Account

The following request header is required:

• X-Auth-Token

The following supported request query parameters are optional:

• Delimiter

• End_marker

• Format

• Limit

• Marker

• Prefix

A successful execution returns the following headers with an “HTTP/1.1 204 No Content” response if the

account is found and has no containers or the container list is empty; or an “HTTP/1.1 200 OK” response if the

account is found and the container list is not empty:

• Accept-Ranges

• Content-Length

• Content-Type

• Date

• X-Account-Bytes-Used

• X-Account-Container-Count

• X-Account-Object-Count

• X-Timestamp

• X-Trans-Id

HEAD account

This operation retrieves account information and statistics from a Swift account.

The following request parameter is required:

• Account

The following request header is required:

• X-Auth-Token

11

A successful execution returns the following headers with an “HTTP/1.1 204 No Content” response:

• Accept-Ranges

• Content-Length

• Date

• X-Account-Bytes-Used

• X-Account-Container-Count

• X-Account-Object-Count

• X-Timestamp

• X-Trans-Id

Related information

Monitor and audit operations

Container operations

StorageGRID supports a maximum of 1,000 containers per Swift account. The following

Swift API operations are performed on containers.

DELETE container

This operation removes an empty container from a Swift account in a StorageGRID system.

The following request parameters are required:

• Account

• Container

The following request header is required:

• X-Auth-Token

A successful execution returns the following headers with an "HTTP/1.1 204 No Content" response:

• Content-Length

• Content-Type

• Date

• X-Trans-Id

GET container

This operation retrieves the object list associated with the container along with container statistics and

metadata in a StorageGRID system.

The following request parameters are required:

12

• Account

• Container

The following request header is required:

• X-Auth-Token

The following supported request query parameters are optional:

• Delimiter

• End_marker

• Format

• Limit

• Marker

• Path

• Prefix

A successful execution returns the following headers with an "HTTP/1.1 200 Success" or a "HTTP/1.1 204 No

Content" response:

• Accept-Ranges

• Content-Length

• Content-Type

• Date

• X-Container-Bytes-Used

• X-Container-Object-Count

• X-Timestamp

• X-Trans-Id

HEAD container

This operation retrieves container statistics and metadata from a StorageGRID system.

The following request parameters are required:

• Account

• Container

The following request header is required:

• X-Auth-Token

A successful execution returns the following headers with an "HTTP/1.1 204 No Content" response:

• Accept-Ranges

13

• Content-Length

• Date

• X-Container-Bytes-Used

• X-Container-Object-Count

• X-Timestamp

• X-Trans-Id

PUT container

This operation creates a container for an account in a StorageGRID system.

The following request parameters are required:

• Account

• Container

The following request header is required:

• X-Auth-Token

A successful execution returns the following headers with an "HTTP/1.1 201 Created" or "HTTP/1.1 202

Accepted" (if the container already exists under this account) response:

• Content-Length

• Date

• X-Timestamp

• X-Trans-Id

A container name must be unique in the StorageGRID namespace. If the container exists under another

account, the following header is returned: "HTTP/1.1 409 Conflict."

Related information

Monitor and audit operations

Object operations

The following Swift API operations are performed on objects. These operations can be

tracked in the StorageGRID audit log.

DELETE object

This operation deletes an object’s content and metadata from the StorageGRID system.

The following request parameters are required:

• Account

• Container

14

• Object

The following request header is required:

• X-Auth-Token

A successful execution returns the following response headers with an HTTP/1.1 204 No Content

response:

• Content-Length

• Content-Type

• Date

• X-Trans-Id

When processing a DELETE Object request, StorageGRID attempts to immediately remove all copies of the

object from all stored locations. If successful, StorageGRID returns a response to the client immediately. If all

copies can’t be removed within 30 seconds (for example, because a location is temporarily unavailable),

StorageGRID queues the copies for removal and then indicates success to the client.

For more information, see How objects are deleted.

GET object

This operation retrieves the object content and gets the object metadata from a StorageGRID system.

The following request parameters are required:

• Account

• Container

• Object

The following request header is required:

• X-Auth-Token

The following request headers are optional:

• Accept-Encoding

• If-Match

• If-Modified-Since

• If-None-Match

• If-Unmodified-Since

• Range

A successful execution returns the following headers with an HTTP/1.1 200 OK response:

• Accept-Ranges

15

https://docs.netapp.com/us-en/storagegrid-117/ilm/how-objects-are-deleted.html

• Content-Disposition, returned only if Content-Disposition metadata was set

• Content-Encoding, returned only if Content-Encoding metadata was set

• Content-Length

• Content-Type

• Date

• ETag

• Last-Modified

• X-Timestamp

• X-Trans-Id

HEAD object

This operation retrieves metadata and properties of an ingested object from a StorageGRID system.

The following request parameters are required:

• Account

• Container

• Object

The following request header is required:

• X-Auth-Token

A successful execution returns the following headers with an "HTTP/1.1 200 OK" response:

• Accept-Ranges

• Content-Disposition, returned only if Content-Disposition metadata was set

• Content-Encoding, returned only if Content-Encoding metadata was set

• Content-Length

• Content-Type

• Date

• ETag

• Last-Modified

• X-Timestamp

• X-Trans-Id

PUT object

This operation creates a new object with data and metadata, or replaces an existing object with data and

metadata in a StorageGRID system.

16

StorageGRID supports objects up to 5 TiB (5,497,558,138,880 bytes) in size.

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-

wins" basis. The timing for the "latest-wins" evaluation is based on when the StorageGRID

system completes a given request, and not on when Swift clients begin an operation.

The following request parameters are required:

• Account

• Container

• Object

The following request header is required:

• X-Auth-Token

The following request headers are optional:

• Content-Disposition

• Content-Encoding

Don’t use chunked Content-Encoding if the ILM rule that applies to an object filters objects based on

size and uses synchronous placement on ingest (the Balanced or Strict options for Ingest Behavior).

• Transfer-Encoding

Don’t use compressed or chunked Transfer-Encoding if the ILM rule that applies to an object filters

objects based on size and uses synchronous placement on ingest (the Balanced or Strict options for Ingest

Behavior).

• Content-Length

If an ILM rule filters objects by size and uses synchronous placement on ingest, you must specify

Content-Length.

If you don’t follow these guidelines for Content-Encoding, Transfer-Encoding, and

Content-Length, StorageGRID must save the object before it can determine object size

and apply the ILM rule. In other words, StorageGRID must default to creating interim copies

of an object on ingest. That is, StorageGRID must use the Dual Commit option for Ingest

Behavior.

For more information about synchronous placement and ILM rules, see Data-protection options for ingest.

• Content-Type

• ETag

• X-Object-Meta-<name\> (object-related metadata)

If you want to use the User defined creation time option as the Reference time for an ILM rule, you must

store the value in a user-defined header named X-Object-Meta-Creation-Time. For example:

17

https://docs.netapp.com/us-en/storagegrid-117/ilm/data-protection-options-for-ingest.html

X-Object-Meta-Creation-Time: 1443399726

This field is evaluated as seconds since January 1, 1970.

• X-Storage-Class: reduced_redundancy

This header affects how many object copies StorageGRID creates if the ILM rule that matches an ingested

object specifies an Ingest Behavior of Dual Commit or Balanced.

◦ Dual commit: If the ILM rule specifies the Dual commit option for Ingest Behavior, StorageGRID

creates a single interim copy as the object is ingested (single commit).

◦ Balanced: If the ILM rule specifies the Balanced option, StorageGRID makes a single interim copy only

if the system can’t immediately make all copies specified in the rule. If StorageGRID can perform

synchronous placement, this header has no effect.

The reduced_redundancy header is best used when the ILM rule that matches the object creates a

single replicated copy. In this case using reduced_redundancy eliminates the unnecessary creation

and deletion of an extra object copy for every ingest operation.

Using the reduced_redundancy header is not recommended in other circumstances because it

increases the risk the loss of object data during ingest. For example, you might lose data if the single

copy is initially stored on a Storage Node that fails before ILM evaluation can occur.

Having only one replicated copy for any time period puts data at risk of permanent loss.

If only one replicated copy of an object exists, that object is lost if a Storage Node fails or

has a significant error. You also temporarily lose access to the object during

maintenance procedures such as upgrades.

Note that specifying reduced_redundancy only affects how many copies are created when an object is

first ingested. It does not affect how many copies of the object are made when the object is evaluated by

the active ILM policy and does not result in data being stored at lower levels of redundancy in the

StorageGRID system.

A successful execution returns the following headers with an "HTTP/1.1 201 Created" response:

• Content-Length

• Content-Type

• Date

• ETag

• Last-Modified

• X-Trans-Id

OPTIONS request

The OPTIONS request checks the availability of an individual Swift service. The

OPTIONS request is processed by the Storage Node or Gateway Node specified in the

URL.

18

OPTIONS method

For example, client applications can issue an OPTIONS request to the Swift port on a Storage Node, without

providing Swift authentication credentials, to determine whether the Storage Node is available. You can use

this request for monitoring or to allow external load balancers to identify when a Storage Node is down.

When used with the info URL or the storage URL, the OPTIONS method returns a list of supported verbs for

the given URL (for example, HEAD, GET, OPTIONS, and PUT). The OPTIONS method can’t be used with the

auth URL.

The following request parameter is required:

• Account

The following request parameters are optional:

• Container

• Object

A successful execution returns the following headers with an “HTTP/1.1 204 No Content” response. The

OPTIONS request to the storage URL does not require that the target exists.

• Allow (a list of supported verbs for the given URL, for example, HEAD, GET, OPTIONS, and PUT)

• Content-Length

• Content-Type

• Date

• X-Trans-Id

Related information

Supported Swift API endpoints

Error responses to Swift API operations

Understanding the possible error responses can help you troubleshoot operations.

The following HTTP status codes might be returned when errors occur during an operation:

Swift error name HTTP status

AccountNameTooLong, ContainerNameTooLong,

HeaderTooBig, InvalidContainerName,

InvalidRequest, InvalidURI, MetadataNameTooLong,

MetadataValueTooBig, MissingSecurityHeader,

ObjectNameTooLong, TooManyContainers,

TooManyMetadataItems, TotalMetadataTooLarge

400 Bad Request

AccessDenied 403 Forbidden

ContainerNotEmpty, ContainerAlreadyExists 409 Conflict

19

Swift error name HTTP status

InternalError 500 Internal Server Error

InvalidRange 416 Requested Range Not Satisfiable

MethodNotAllowed 405 Method Not Allowed

MissingContentLength 411 Length Required

NotFound 404 Not Found

NotImplemented 501 Not Implemented

PreconditionFailed 412 Precondition Failed

ResourceNotFound 404 Not Found

Unauthorized 401 Unauthorized

UnprocessableEntity 422 Unprocessable Entity

StorageGRID Swift REST API operations

There are operations added on to the Swift REST API that are specific to StorageGRID

system.

GET container consistency request

Consistency controls provide a balance between the availability of the objects and the consistency of those

objects across different Storage Nodes and sites. The GET container consistency request allows you to

determine the consistency level being applied to a particular container.

Request

Request HTTP Header Description

X-Auth-Token Specifies the Swift authentication token for the account to use for the

request.

x-ntap-sg-consistency Specifies the type of request, where true = GET container consistency,

and false = GET container.

Host The hostname to which the request is directed.

20

https://docs.netapp.com/us-en/storagegrid-117/s3/consistency-controls.html

Request example

GET /v1/28544923908243208806/Swift container

X-Auth-Token: SGRD_3a877009a2d24cb1801587bfa9050f29

x-ntap-sg-consistency: true

Host: test.com

Response

Response HTTP Header Description

Date The date and time of the response.

Connection Whether the connection to the server is open or closed.

X-Trans-Id The unique transaction identifier for the request.

Content-Length The length of the response body.

x-ntap-sg-consistency The consistency control level being applied to the container. The

following values are supported:

all: All nodes receive the data immediately or the request will fail.

strong-global: Guarantees read-after-write consistency for all client

requests across all sites.

strong-site: Guarantees read-after-write consistency for all client

requests within a site.

read-after-new-write: (Default) Provides read-after-write consistency for

new objects and eventual consistency for object updates. Offers high

availability and data protection guarantees. Recommended for most

cases.

available: Provides eventual consistency for both new objects and

object updates. For S3 buckets, use only as required (for example, for a

bucket that contains log values that are rarely read, or for HEAD or GET

operations on keys that don’t exist). Not supported for S3 FabricPool

buckets.

Response example

21

HTTP/1.1 204 No Content

Date: Sat, 29 Nov 2015 01:02:18 GMT

Connection: CLOSE

X-Trans-Id: 1936575373

Content-Length: 0

x-ntap-sg-consistency: strong-site

PUT container consistency request

The PUT container consistency request allows you to specify the consistency level to apply to operations

performed on a container. By default, new containers are created using the “read-after-new-write” consistency

level.

Request

Request HTTP Header Description

X-Auth-Token The Swift authentication token for the account to use for the request.

x-ntap-sg-consistency The consistency control level to apply to operations on the container.

The following values are supported:

all: All nodes receive the data immediately or the request will fail.

strong-global: Guarantees read-after-write consistency for all client

requests across all sites.

strong-site: Guarantees read-after-write consistency for all client

requests within a site.

read-after-new-write: (Default) Provides read-after-write consistency for

new objects and eventual consistency for object updates. Offers high

availability and data protection guarantees. Recommended for most

cases.

available: Provides eventual consistency for both new objects and

object updates. For S3 buckets, use only as required (for example, for a

bucket that contains log values that are rarely read, or for HEAD or GET

operations on keys that don’t exist). Not supported for S3 FabricPool

buckets.

Host The hostname to which the request is directed.

How consistency controls and ILM rules interact to affect data protection

Both your choice of consistency control and your ILM rule affect how objects are protected. These settings can

interact.

For example, the consistency control used when an object is stored affects the initial placement of object

metadata, while the ingest behavior selected for the ILM rule affects the initial placement of object copies.

22

https://docs.netapp.com/us-en/storagegrid-117/s3/consistency-controls.html
https://docs.netapp.com/us-en/storagegrid-117/ilm/what-ilm-rule-is.html#ilm-rule-ingest-behavior

Because StorageGRID requires access to both an object’s metadata and its data to fulfill client requests,

selecting matching levels of protection for the consistency level and ingest behavior can provide better initial

data protection and more predictable system responses.

Example of how consistency control and ILM rule can interact

Suppose you have a two-site grid with the following ILM rule and the following consistency level setting:

• ILM rule: Create two object copies, one at the local site and one at a remote site. The Strict ingest

behavior is selected.

• Consistency level: “strong-global” (Object metadata is immediately distributed to all sites.)

When a client stores an object to the grid, StorageGRID makes both object copies and distributes metadata to

both sites before returning success to the client.

The object is fully protected against loss at the time of the ingest successful message. For example, if the local

site is lost shortly after ingest, copies of both the object data and the object metadata still exist at the remote

site. The object is fully retrievable.

If you instead used the same ILM rule and the “strong-site” consistency level, the client might receive a

success message after object data is replicated to the remote site but before object metadata is distributed

there. In this case, the level of protection of object metadata does not match the level of protection for object

data. If the local site is lost shortly after ingest, object metadata is lost. The object can’t be retrieved.

The inter-relationship between consistency levels and ILM rules can be complex. Contact NetApp if you require

assistance.

Request example

PUT /v1/28544923908243208806/_Swift container_

X-Auth-Token: SGRD_3a877009a2d24cb1801587bfa9050f29

x-ntap-sg-consistency: strong-site

Host: test.com

Response

Response HTTP Header Description

Date The date and time of the response.

Connection Whether the connection to the server is open or closed.

X-Trans-Id The unique transaction identifier for the request.

Content-Length The length of the response body.

Response example

23

HTTP/1.1 204 No Content

Date: Sat, 29 Nov 2015 01:02:18 GMT

Connection: CLOSE

X-Trans-Id: 1936575373

Content-Length: 0

Configure security for the REST API

You should review the security measures implemented for the REST API and understand

how to secure your system.

How StorageGRID provides security for the REST API

You should understand how the StorageGRID system implements security, authentication, and authorization

for the REST API.

StorageGRID uses the following security measures.

• Client communications with the Load Balancer service use HTTPS if HTTPS is configured for the load

balancer endpoint.

When you configure a load balancer endpoint, HTTP can optionally be enabled. For example, you might

want to use HTTP for testing or other non-production purposes.

• By default, StorageGRID uses HTTPS for client communications with Storage Nodes.

Optionally, enable HTTP for these connections. For example, you might want to use HTTP for testing or

other non-production purposes.

• Communications between StorageGRID and the client are encrypted using TLS.

• Communications between the Load Balancer service and Storage Nodes within the grid are encrypted

whether the load balancer endpoint is configured to accept HTTP or HTTPS connections.

• Clients must supply HTTP authentication headers to StorageGRID to perform REST API operations.

Security certificates and client applications

Clients can connect to the Load Balancer service on Gateway Nodes or Admin Nodes, directly to Storage

Nodes.

In all cases, client applications can make TLS connections using either a custom server certificate uploaded by

the grid administrator or a certificate generated by the StorageGRID system:

• When client applications connect to the Load Balancer service, they do so using the certificate that was

configured for the specific load balancer endpoint used to make the connection. Each endpoint has its own

certificate, which is either a custom server certificate uploaded by the grid administrator or a certificate that

the grid administrator generated in StorageGRID when configuring the endpoint.

• When client applications connect directly to a Storage Node, they use either the system-generated server

certificates that were generated for Storage Nodes when the StorageGRID system was installed (which are

signed by the system certificate authority), or a single custom server certificate that is supplied for the grid

by a grid administrator.

24

https://docs.netapp.com/us-en/storagegrid-117/admin/configuring-load-balancer-endpoints.html
https://docs.netapp.com/us-en/storagegrid-117/admin/changing-network-options-object-encryption.html

Clients should be configured to trust the certificate authority that signed whichever certificate they use to

establish TLS connections.

See configuring load balancer endpoints and adding a single custom server certificate for TLS connections

directly to Storage Nodes.

Summary

The following table shows how security issues are implemented in the S3 and Swift REST APIs:

Security issue Implementation for REST API

Connection security TLS

Server authentication X.509 server certificate signed by system CA or

custom server certificate supplied by administrator

Client authentication • S3: S3 account (access key ID and secret access

key)

• Swift: Swift account (user name and password)

Client authorization • S3: Bucket ownership and all applicable access

control policies

• Swift: Administrator role access

Supported hashing and encryption algorithms for TLS libraries

The StorageGRID system supports a limited set of cipher suites that client applications can use when

establishing a Transport Layer Security (TLS) session. To configure ciphers, go to CONFIGURATION >

Security > Security settings and select TLS and SSH policies.

Supported versions of TLS

StorageGRID supports TLS 1.2 and TLS 1.3.

SSLv3 and TLS 1.1 (or earlier versions) are no longer supported.

Related information

Configure tenant accounts and connections

Monitor and audit operations

You can monitor workloads and efficiencies for client operations by viewing transaction

trends for the entire grid, or for specific nodes. You can use audit messages to monitor

client operations and transactions.

25

https://docs.netapp.com/us-en/storagegrid-117/admin/configuring-load-balancer-endpoints.html
https://docs.netapp.com/us-en/storagegrid-117/admin/configuring-custom-server-certificate-for-storage-node.html

Monitor object ingest and retrieval rates

You can monitor object ingest and retrieval rates as well as metrics for object counts, queries, and verification.

You can view the number of successful and failed attempts by client applications to read, write, and modify

objects in the StorageGRID system.

Steps

1. Sign in to the Grid Manager using a supported web browser.

2. On the dashboard, select Performance > S3 operations or Performance > Swift operations.

This section summarizes the number of client operations performed by your StorageGRID system. Protocol

rates are averaged over the last two minutes.

3. Select NODES.

4. From the Nodes home page (deployment level), click the Load Balancer tab.

The charts show trends for all client traffic directed to load balancer endpoints within the grid. You can

select a time interval in hours, days, weeks, months, or years, or you can apply a custom interval.

5. From the Nodes home page (deployment level), click the Objects tab.

The chart shows ingest and retrieve rates for your entire StorageGRID system in bytes per second and

total bytes. You can select a time interval in hours, days, weeks, months, or years, or you can apply a

custom interval.

6. To see information for a particular Storage Node, select the node from the list on the left, and click the

Objects tab.

The chart shows the object ingest and retrieval rates for this Storage Node. The tab also includes metrics

for object counts, queries, and verification. You can click the labels to see the definitions of these metrics.

26

https://docs.netapp.com/us-en/storagegrid-117/admin/web-browser-requirements.html

7. If you want even more detail:

a. Select SUPPORT > Tools > Grid topology.

b. Select site > Overview > Main.

The API Operations section displays summary information for the entire grid.

c. Select Storage Node > LDR > client application > Overview > Main

The Operations section displays summary information for the selected Storage Node.

27

Access and review audit logs

Audit messages are generated by StorageGRID services and stored in text log files. API-specific audit

messages in the audit logs provide critical security, operation, and performance monitoring data that can help

you evaluate the health of your system.

Before you begin

• You must have specific access permissions.

• You must have the Passwords.txt file.

• You must know the IP address of an Admin Node.

About this task

The active audit log file is named audit.log, and it is stored on Admin Nodes.

Once a day, the active audit.log file is saved, and a new audit.log file is started. The name of the saved file

indicates when it was saved, in the format yyyy-mm-dd.txt.

After a day, the saved file is compressed and renamed, in the format yyyy-mm-dd.txt.gz, which preserves

the original date.

This example shows the active audit.log file, the previous day’s file (2018-04-15.txt), and the compressed file

for the prior day (2018-04-14.txt.gz).

audit.log

2018-04-15.txt

2018-04-14.txt.gz

Steps

1. Log in to an Admin Node:

a. Enter the following command: ssh admin@primary_Admin_Node_IP

b. Enter the password listed in the Passwords.txt file.

c. Enter the following command to switch to root: su -

d. Enter the password listed in the Passwords.txt file.

When you are logged in as root, the prompt changes from $ to #.

2. Go to the directory containing the audit log files:cd /var/local/audit/export

3. View the current or a saved audit log file, as required.

Swift operations tracked in the audit logs

All successful storage DELETE, GET, HEAD, POST, and PUT operations are tracked in the StorageGRID audit

log. Failures aren’t logged, nor are info, auth, or OPTIONS requests.

Information is tracked for the following Swift operations.

28

https://docs.netapp.com/us-en/storagegrid-117/audit/audit-message-flow-and-retention.html
https://docs.netapp.com/us-en/storagegrid-117/audit/audit-messages-main.html
https://docs.netapp.com/us-en/storagegrid-117/audit/audit-messages-main.html

Account operations

• GET account

• HEAD account

Container operations

• DELETE container

• GET container

• HEAD container

• PUT container

Object operations

• DELETE object

• GET object

• HEAD object

• PUT object

29

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

30

http://www.netapp.com/TM

	Use Swift REST API (deprecated) : StorageGRID
	Table of Contents
	Use Swift REST API (deprecated)
	Use Swift REST API: Overview
	History of Swift API support in StorageGRID
	How StorageGRID implements Swift REST API
	Recommendations for implementing Swift REST API

	Configure tenant accounts and connections
	Create and configure Swift tenant accounts
	How client connections can be configured
	Test your connection in Swift API configuration

	Swift REST API supported operations
	Operations supported in StorageGRID
	Common response headers for all operations
	Supported Swift API endpoints
	Account operations
	Container operations
	Object operations
	OPTIONS request
	Error responses to Swift API operations

	StorageGRID Swift REST API operations
	GET container consistency request
	PUT container consistency request

	Configure security for the REST API
	How StorageGRID provides security for the REST API
	Supported hashing and encryption algorithms for TLS libraries

	Monitor and audit operations
	Monitor object ingest and retrieval rates
	Access and review audit logs

