
Overview

StorageGRID
NetApp
November 04, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-117/swift/history-of-swift-api-
support-in-storagegrid.html on November 04, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Use Swift REST API: Overview . 1

History of Swift API support in StorageGRID . 1

How StorageGRID implements Swift REST API . 2

Swift object management. 2

Conflicting client requests . 2

Consistency guarantees and controls . 2

Recommendations for implementing Swift REST API . 3

Recommendations for HEADs to non-existent objects . 3

Recommendations for object names . 3

Recommendations for “range reads” . 3

Use Swift REST API: Overview

Client applications can use the OpenStack Swift API to interface with the StorageGRID

system.

Support for Swift client applications has been deprecated and will be removed in a future

release.

StorageGRID supports the following specific versions of Swift and HTTP.

Item Version

Swift specification OpenStack Swift Object Storage API v1 as of

November 2015

HTTP 1.1 For more information about HTTP, see HTTP/1.1

(RFCs 7230-35).

Note: StorageGRID does not support HTTP/1.1

pipelining.

Related information

OpenStack: Object Storage API

History of Swift API support in StorageGRID

You should be aware of changes to the StorageGRID system’s support for the Swift

REST API.

Release Comments

11.7 Support for Swift client applications has been deprecated and will be removed in

a future release.

11.6 Minor editorial changes.

11.5 Removed Weak consistency control. The Available consistency level will be used

instead.

11.4 Added support for TLS 1.3. Added description of interrelationship between ILM

and consistency setting.

11.3 Updated PUT Object operations to describe the impact of ILM rules that use

synchronous placement at ingest (the Balanced and Strict options for Ingest

Behavior). Added description of client connections that use load balancer

endpoints or high availability groups. TLS 1.1 ciphers are no longer supported.

1

http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html

Release Comments

11.2 Minor editorial changes to document.

11.1 Added support for using HTTP for Swift client connections to grid nodes. Updated

the definitions of consistency controls.

11.0 Added support for 1,000 containers for each tenant account.

10.3 Administrative updates and corrections to the document. Removed sections for

configuring custom server certificates.

10.2 Initial support of the Swift API by the StorageGRID system. The currently

supported version is OpenStack Swift Object Storage API v1.

How StorageGRID implements Swift REST API

A client application can use Swift REST API calls to connect to Storage Nodes and

Gateway Nodes to create containers and to store and retrieve objects. This enables

service-oriented applications developed for OpenStack Swift to connect with on-premise

object storage provided by the StorageGRID system.

Swift object management

After Swift objects have been ingested in the StorageGRID system, they are managed by the information

lifecycle management (ILM) rules in the system’s active ILM policy. The ILM rules and ILM policy determine

how StorageGRID creates and distributes copies of object data and how it manages those copies over time.

For example, an ILM rule might apply to objects in specific Swift containers and might specify that multiple

object copies be saved to several data centers for a certain number of years.

Contact your NetApp Professional Services consultant or StorageGRID administrator if you need to understand

how the grid’s ILM rules and policies will affect the objects in your Swift tenant account.

Conflicting client requests

Conflicting client requests, such as two clients writing to the same key, are resolved on a "latest-wins" basis.

The timing for the "latest-wins" evaluation is based on when the StorageGRID system completes a given

request, and not on when Swift clients begin an operation.

Consistency guarantees and controls

By default, StorageGRID provides read-after-write consistency for newly created objects and eventual

consistency for object updates and HEAD operations. Any GET following a successfully completed PUT will be

able to read the newly written data. Overwrites of existing objects, metadata updates, and deletes are

eventually consistent. Overwrites generally take seconds or minutes to propagate, but can take up to 15 days.

StorageGRID also allows you to control consistency on a per container basis. Consistency controls provide a

balance between the availability of the objects and the consistency of those objects across different Storage

Nodes and sites, as required by your application.

2

https://docs.netapp.com/us-en/storagegrid-117/ilm/what-ilm-rule-is.html
https://docs.netapp.com/us-en/storagegrid-117/ilm/creating-ilm-policy.html
https://docs.netapp.com/us-en/storagegrid-117/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/put-container-consistency-request.html

Recommendations for implementing Swift REST API

You should follow these recommendations when implementing the Swift REST API for

use with StorageGRID.

Recommendations for HEADs to non-existent objects

If your application routinely checks to see if an object exists at a path where you don’t expect the object to

actually exist, you should use the “Available” consistency control. For example, you should use the “Available”

consistency control if your application performs a HEAD operation to a location before performing a PUT

operation to that location.

Otherwise, if the HEAD operation does not find the object, you might receive a high number of 500 Internal

Server errors if one or more Storage Nodes are unavailable.

You can set the “Available” consistency control for each container using the PUT container consistency

request. You view set the “Available” consistency control for each container using the GET container

consistency request.

Recommendations for object names

For containers that are created in StorageGRID 11.4 or later, restricting object names to meet performance

best practices is no longer required. For example, you can now use random values for the first four characters

of object names.

For containers that were created in releases earlier than StorageGRID 11.4, continue to follow these

recommendations for object names:

• You should not use random values as the first four characters of object names. This is in contrast to the

former AWS recommendation for name prefixes. Instead, you should use non-random, non-unique

prefixes, such as image.

• If you do follow the former AWS recommendation to use random and unique characters in name prefixes,

you should prefix the object names with a directory name. That is, use this format:

mycontainer/mydir/f8e3-image3132.jpg

Instead of this format:

mycontainer/f8e3-image3132.jpg

Recommendations for “range reads”

If the global option to compress stored objects is enabled, Swift client applications should avoid performing

GET object operations that specify a range of bytes be returned. These “range read” operations are inefficient

because StorageGRID must effectively uncompress the objects to access the requested bytes. GET Object

operations that request a small range of bytes from a very large object are especially inefficient; for example, it

is very inefficient to read a 10 MB range from a 50 GB compressed object.

If ranges are read from compressed objects, client requests can time out.

3

https://docs.netapp.com/us-en/storagegrid-117/swift/put-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/put-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/swift/get-container-consistency-request.html
https://docs.netapp.com/us-en/storagegrid-117/admin/configuring-stored-object-compression.html

If you need to compress objects and your client application must use range reads, increase the

read timeout for the application.

4

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

5

http://www.netapp.com/TM

	Overview : StorageGRID
	Table of Contents
	Use Swift REST API: Overview
	History of Swift API support in StorageGRID
	How StorageGRID implements Swift REST API
	Swift object management
	Conflicting client requests
	Consistency guarantees and controls

	Recommendations for implementing Swift REST API
	Recommendations for HEADs to non-existent objects
	Recommendations for object names
	Recommendations for “range reads”

