ILM and object lifecycle
StorageGRID

NetApp
December 03, 2025

This PDF was generated from https://docs.netapp.com/us-en/storagegrid-118/ilm/how-ilm-operates-
throughout-objects-life.html on December 03, 2025. Always check docs.netapp.com for the latest.

Table of Contents

ILM and object lifecycle
How ILM operates throughout an object’s life
How objects are ingested
Ingest options
Advantages, disadvantages, and limitations of the ingest options
How objects are stored (replication or erasure coding)
What is replication?
Why you should not use single-copy replication
What is erasure coding?
What are erasure-coding schemes?
Advantages, disadvantages, and requirements for erasure coding
How object retention is determined
How tenant users control object retention
How grid administrators control object retention
How S3 bucket lifecycle and ILM interact
Examples for object retention
How objects are deleted
Time required to delete objects
How S3 versioned objects are deleted

ILM and object lifecycle

How ILM operates throughout an object’s life

Understanding how StorageGRID uses ILM to manage objects during every stage of their
life can help you design a more effective policy.

* Ingest: Ingest begins when an S3 or Swift client application establishes a connection to save an object to
the StorageGRID system, and is complete when StorageGRID returns an "ingest successful" message to
the client. Object data is protected during ingest either by applying ILM instructions immediately
(synchronous placement) or by creating interim copies and applying ILM later (dual commit), depending on
how the ILM requirements were specified.

+ Copy management: After creating the number and type of object copies that are specified in the ILM’s
placement instructions, StorageGRID manages object locations and protects objects against loss.

o ILM scanning and evaluation: StorageGRID continuously scans the list of objects stored in the grid
and checks if the current copies meet ILM requirements. When different types, numbers, or locations of
object copies are required, StorageGRID creates, deletes, or moves copies as needed.

o Background verification: StorageGRID continuously performs background verification to check the
integrity of object data. If a problem is found, StorageGRID automatically creates a new object copy or
a replacement erasure-coded object fragment in a location that meets current ILM requirements. See
Verify object integrity.

* Object deletion: Management of an object ends when all copies are removed from the StorageGRID
system. Objects can be removed as a result of a delete request by a client, or as a result of deletion by ILM
or deletion caused by the expiration of an S3 bucket lifecycle.

@ Objects in a bucket that has S3 Object Lock enabled can’t be deleted if they are under a
legal hold or if a retain-until-date has been specified but not yet met.

The diagram summarizes how ILM operates throughout an object’s lifecycle.

https://docs.netapp.com/us-en/storagegrid-118/troubleshoot/verifying-object-integrity.html

Client application saves
object to StorageGRID.

Synchronous placement Dual commit — The method that is
ILM applied later used depends on

@ @ wor how ILM is
WA configured.

= ILM scan Background verification
E — 5‘ Is the object @ Is the object’s
7] placed correctly? data correct?
o
% No
= A 4
= ILM action
8 Make new copy. MOVE: copy.

Delete copy. Repair copy.

] - . Deletion is triggered by ILM or S3 bucket

Rsspplication deletes object. lifecycle. (Objects in buckets with 53 Object

Lock enabled must have met retention date
and cannot be under legal hold.)

Is
synchronous
removal

ossible?

No, or Objects are marked as deleted and copies

> are queued for removal.

background *

gueues are idle.

ILM action
Object copies are remaved.

|
o
=
2
L
()]

v

All object copies removed.
Space is reclaimed.

How objects are ingested

Ingest options

When you create an ILM rule, you specify one of three options for protecting objects at
ingest: Dual commit, Strict, or Balanced.

Depending on your choice, StorageGRID makes interim copies and queues the objects for ILM evaluation
later, or it uses synchronous placement and immediately makes copies to meet ILM requirements.

Flowchart of ingest options

The flowchart shows what happens when objects are matched by an ILM rule that uses each of the three

ingest options.

Client application saves
object to StorageGRID

Dual commit

Balanced Strict

Interim object copies

“Ingest
failed”

Can day 0 copies be
made immediately?

Can day 0 copies be
made immediately?

stored.
“Ingest
successful”

Object queued for ILM
evaluation.

ILM evaluation l

v

Copies created to satisfy
ILM.

Copies created to satisfy

ILM. Ej_@_

Any interim copies that are
not needed are deleted.

“Ingest
successful”

Dual commit

Legend

1

StorageGRID responds to the client.

StorageGRID completes the
actions that were prompted by
the client save operation.

When you select the Dual commit option, StorageGRID immediately makes interim object copies on two
different Storage Nodes and returns an "ingest successful" message to the client. The object is queued for ILM
evaluation, and copies that meet the rule’s placement instructions are made later. If the ILM policy can’t be

processed immediately after the

dual commit, site-loss protection could take time to achieve.

Use the Dual commit option in either of these cases:

* You are using multi-site ILM rules and client ingest latency is your primary consideration. When using Dual
commit, you must ensure your grid can perform the additional work of creating and removing the dual-
commit copies if they don’t satisfy ILM. Specifically:

o The load on the grid must be low enough to prevent an ILM backlog.
> The grid must have excess hardware resources (IOPS, CPU, memory, network bandwidth, and so on).

* You are using multi-site ILM rules and the WAN connection between the sites usually has high latency or
limited bandwidth. In this scenario, using the Dual commit option can help prevent client timeouts. Before
choosing the Dual commit option, you should test the client application with realistic workloads.

Balanced (default)

When you select the Balanced option, StorageGRID also uses synchronous placement on ingest and
immediately makes all copies specified in the rule’s placement instructions. In contrast with the Strict option, if
StorageGRID can’t immediately make all copies, it uses Dual commit instead. If the ILM policy uses
placements on multiple sites and immediate site-loss protection can’t be achieved, the ILM placement
unachievable alert is triggered.

Use the Balanced option to achieve the best combination of data protection, grid performance, and ingest
success. Balanced is the default option in the Create ILM rule wizard.

Strict

When you select the Strict option, StorageGRID uses synchronous placement on ingest and immediately
makes all object copies specified in the rule’s placement instructions. Ingest fails if StorageGRID can’t create
all copies, for example, because a required storage location is temporarily unavailable. The client must retry
the operation.

Use the Strict option if you have an operational or regulatory requirement to immediately store objects only in
the locations outlined in the ILM rule. For example, to satisfy a regulatory requirement, you might need to use
the Strict option and a Location Constraint advanced filter to guarantee that objects are never stored at certain
data centers.

See Example 5: ILM rules and policy for Strict ingest behavior.

Advantages, disadvantages, and limitations of the ingest options

Understanding the advantages and disadvantages of each of the three options for
protecting data at ingest (Balanced, Strict, or Dual commit) can help you decide which
one to select for an ILM rule.

For an overview of ingest options, see Ingest options.

Advantages of the Balanced and Strict options

When compared to Dual commit, which creates interim copies during ingest, the two synchronous placement
options can provide the following advantages:

+ Better data security: Object data is immediately protected as specified in the ILM rule’s placement
instructions, which can be configured to protect against a wide variety of failure conditions, including the
failure of more than one storage location. Dual commit can only protect against the loss of a single local

copy.
* More efficient grid operation: Each object is processed only once, as it is ingested. Because the

https://docs.netapp.com/us-en/storagegrid-118/ilm/example-5-ilm-rules-and-policy-for-strict-ingest-behavior.html

StorageGRID system does not need to track or delete interim copies, there is less processing load and less
database space is consumed.

(Balanced) Recommended: The Balanced option provides optimal ILM efficiency. Using the Balanced
option is recommended unless Strict ingest behavior is required or the grid meets all of the criteria for using
Dual commit.

(Strict) Certainty about object locations: The Strict option guarantees that objects are immediately
stored according to the placement instructions in the ILM rule.

Disadvantages of the Balanced and Strict options

When compared to Dual commit, the Balanced and Strict options have some disadvantages:

Longer client ingests: Client ingest latencies might be longer. When you use the Balanced or Strict
options, an "ingest successful" message is not returned to the client until all erasure-coded fragments or
replicated copies are created and stored. However, object data will most likely reach its final placement
much faster.

(Strict) Higher rates of ingest failure: With the Strict option, ingest fails whenever StorageGRID can’t
immediately make all copies specified in the ILM rule. You might see high rates of ingest failure if a
required storage location is temporarily offline or if network issues cause delays in copying objects between
sites.

(Strict) S3 multipart upload placements might not be as expected in some circumstances: With
Strict, you expect objects either to be placed as described by the ILM rule or for ingest to fail. However,
with an S3 multipart upload, ILM is evaluated for each part of the object as it is ingested, and for the object
as a whole when the multipart upload completes. In the following circumstances this might result in
placements that are different than you expect:

o If ILM changes while an S3 multipart upload is in progress: Because each part is placed according
to the rule that is active when the part is ingested, some parts of the object might not meet current ILM
requirements when the multipart upload completes. In these cases, ingest of the object does not fail.
Instead, any part that is not placed correctly is queued for ILM re-evaluation and is moved to the
correct location later.

> When ILM rules filter on size: When evaluating ILM for a part, StorageGRID filters on the size of the
part, not the size of the object. This means that parts of an object can be stored in locations that don’t
meet ILM requirements for the object as a whole. For example, if a rule specifies that all objects 10 GB
or larger are stored at DC1 while all smaller objects are stored at DC2, at ingest each 1 GB part of a
10-part multipart upload is stored at DC2. When ILM is evaluated for the object, all parts of the object
are moved to DCA1.

(Strict) Ingest does not fail when object tags or metadata are updated and newly required
placements cannot be made: With Strict, you expect objects either to be placed as described by the ILM
rule or for ingest to fail. However, when you update metadata or tags for an object that is already stored in
the grid, the object is not re-ingested. This means that any changes to object placement that are triggered
by the update aren’t made immediately. Placement changes are made when ILM is re-evaluated by normal
background ILM processes. If required placement changes can’t be made (for example, because a newly
required location is unavailable), the updated object retains its current placement until the placement
changes are possible.

Limitations on object placements with the Balanced and Strict options

The Balanced or Strict options can’t be used for ILM rules that have any of these placement instructions:

Placement in a Cloud Storage Pool at day O.

Placement in an Archive Node at day 0.

* Placements in a Cloud Storage Pool or an Archive Node when the rule has a User defined creation time as
its Reference time.

These restrictions exist because StorageGRID can’t synchronously make copies to a Cloud Storage Pool or an
Archive Node, and a User defined creation time could resolve to the present.

How ILM rules and consistency interact to affect data protection

Both your ILM rule and your choice of consistency affect how objects are protected. These settings can
interact.

For example, the ingest behavior selected for an ILM rule affects the initial placement of object copies, while
the consistency used when an object is stored affects the initial placement of object metadata. Because
StorageGRID requires access to both an object’s data and metadata to fulfill client requests, selecting
matching levels of protection for the consistency and ingest behavior can provide better initial data protection
and more predictable system responses.

Here is a brief summary of the consistency values that are available in StorageGRID:

« All: All nodes receive object metadata immediately or the request will fail.

« Strong-global: Object metadata is immediately distributed to all sites. Guarantees read-after-write
consistency for all client requests across all sites.

» Strong-site: Object metadata is immediately distributed to other nodes at the site. Guarantees read-after-
write consistency for all client requests within a site.

+ Read-after-new-write: Provides read-after-write consistency for new objects and eventual consistency for
object updates. Offers high availability and data protection guarantees. Recommended for most cases.

+ Available: Provides eventual consistency for both new objects and object updates. For S3 buckets, use
only as required (for example, for a bucket that contains log values that are rarely read, or for HEAD or
GET operations on keys that don’t exist). Not supported for S3 FabricPool buckets.

@ Before selecting a consistency value, read the full description of consistency. You should
understand the benefits and limitations before changing the default value.

Example of how consistency and ILM rules can interact

Suppose you have a two-site grid with the following ILM rule and the following consistency:

 ILM rule: Create two object copies, one at the local site and one at a remote site. Use Strict ingest
behavior.

« consistency: Strong-global (object metadata is immediately distributed to all sites).

When a client stores an object to the grid, StorageGRID makes both object copies and distributes metadata to
both sites before returning success to the client.

The object is fully protected against loss at the time of the ingest successful message. For example, if the local
site is lost shortly after ingest, copies of both the object data and the object metadata still exist at the remote
site. The object is fully retrievable.

If you instead used the same ILM rule and the strong-site consistency, the client might receive a success
message after object data is replicated to the remote site but before object metadata is distributed there. In this
case, the level of protection of object metadata does not match the level of protection for object data. If the
local site is lost shortly after ingest, object metadata is lost. The object can’t be retrieved.

https://docs.netapp.com/us-en/storagegrid-118/s3/consistency-controls.html

The inter-relationship between consistency and ILM rules can be complex. Contact NetApp if you need
assistance.

Related information
« Example 5: ILM rules and policy for Strict ingest behavior

How objects are stored (replication or erasure coding)

What is replication?

Replication is one of two methods used by StorageGRID to store object data. When
objects match an ILM rule that uses replication, the system creates exact copies of object
data and stores the copies on Storage Nodes or Archive Nodes.

When you configure an ILM rule to create replicated copies, you specify how many copies should be created,
where those copies should be placed, and how long the copies should be stored at each location.

In the following example, the ILM rule specifies that two replicated copies of each object be placed in a storage
pool that contains three Storage Nodes.

- Make 2 Copies

Storage Pool

When StorageGRID matches objects to this rule, it creates two copies of the object, placing each copy on a
different Storage Node in the storage pool. The two copies might be placed on any two of the three available
Storage Nodes. In this case, the rule placed object copies on Storage Nodes 2 and 3. Because there are two
copies, the object can be retrieved if any of the nodes in the storage pool fails.

https://docs.netapp.com/us-en/storagegrid-118/ilm/example-5-ilm-rules-and-policy-for-strict-ingest-behavior.html

StorageGRID can store only one replicated copy of an object on any given Storage Node. If your

@ grid includes three Storage Nodes and you create a 4-copy ILM rule, only three copies will be
made—one copy for each Storage Node. The ILM placement unachievable alert is triggered to
indicate that the ILM rule could not be completely applied.

Related information
* What is erasure coding

* What is a storage pool

* Enable site-loss protection using replication and erasure coding

Why you should not use single-copy replication

When creating an ILM rule to create replicated copies, you should always specify at least
two copies for any time period in the placement instructions.

Don’t use an ILM rule that creates only one replicated copy for any time period. If only one

@ replicated copy of an object exists, that object is lost if a Storage Node fails or has a significant
error. You also temporarily lose access to the object during maintenance procedures such as
upgrades.

In the following example, the Make 1 Copy ILM rule specifies that one replicated copy of an object be placed in
a storage pool that contains three Storage Nodes. When an object is ingested that matches this rule,
StorageGRID places a single copy on only one Storage Node.

— Make 1 Copy

Storage Pool

When an ILM rule creates only one replicated copy of an object, the object becomes inaccessible when the
Storage Node is unavailable. In this example, you will temporarily lose access to object AAA whenever Storage
Node 2 is offline, such as during an upgrade or other maintenance procedure. You will lose object AAA entirely
if Storage Node 2 fails.

https://docs.netapp.com/us-en/storagegrid-118/ilm/what-storage-pool-is.html
https://docs.netapp.com/us-en/storagegrid-118/ilm/using-multiple-storage-pools-for-cross-site-replication.html

— Make 1 Copy

Storage Pool

To avoid losing object data, you should always make at least two copies of all objects you want to protect with
replication. If two or more copies exist, you can still access the object if one Storage Node fails or goes offline.

- Make 2 Copies

Storage Pool

What is erasure coding?

Erasure coding is one of two methods StorageGRID uses to store object data. When
objects match an ILM rule that uses erasure coding, those objects are sliced into data
fragments, additional parity fragments are computed, and each fragment is stored on a
different Storage Node.

When an object is accessed, it is reassembled using the stored fragments. If a data or a parity fragment
becomes corrupt or lost, the erasure-coding algorithm can recreate that fragment using a subset of the
remaining data and parity fragments.

As you create ILM rules, StorageGRID creates erasure-coding profiles that support those rules. You can view a
list of erasure-coding profiles, rename an erasure-coding profile, or deactivate an erasure-coding profile if it is
not currently used in any ILM rules.

The following example illustrates the use of an erasure-coding algorithm on an object’s data. In this example,
the ILM rule uses a 4+2 erasure-coding scheme. Each object is sliced into four equal data fragments, and two
parity fragments are computed from the object data. Each of the six fragments is stored on a different node
across three data center sites to provide data protection for node failures or site loss.

Parity'r"___. L Pariﬂ.r

The 4+2 erasure-coding scheme can be configured in various ways. For example, you can configure a single-
site storage pool that contains six Storage Nodes. For site-loss protection, you can use a storage pool
containing three sites with three Storage Nodes at each site. An object can be retrieved as long as any four of
the six fragments (data or parity) remain available. Up to two fragments can be lost without loss of the object
data. If an entire site is lost, the object can still be retrieved or repaired, as long as all of the other fragments
remain accessible.

10

https://docs.netapp.com/us-en/storagegrid-118/ilm/manage-erasure-coding-profiles.html#rename-an-erasure-coding-profile
https://docs.netapp.com/us-en/storagegrid-118/ilm/manage-erasure-coding-profiles.html#deactivate-an-erasure-coding-profile
https://docs.netapp.com/us-en/storagegrid-118/ilm/manage-erasure-coding-profiles.html#deactivate-an-erasure-coding-profile
https://docs.netapp.com/us-en/storagegrid-118/ilm/using-multiple-storage-pools-for-cross-site-replication.html

Parity F’arit\;,r

If more than two Storage Nodes are lost, the object is not retrievable.

Parity F’arity

Related information
* What is replication

* What is a storage pool

* What are erasure-coding schemes

11

https://docs.netapp.com/us-en/storagegrid-118/ilm/what-storage-pool-is.html

* Rename an erasure-coding profile

» Deactivate an erasure-coding profile

What are erasure-coding schemes?

Erasure-coding schemes control how many data fragments and how many parity
fragments are created for each object.

When you configure the erasure-coding profile for an ILM rule, you select an available erasure-coding scheme
based on how many Storage Nodes and sites make up the storage pool you plan to use.

The StorageGRID system uses the Reed-Solomon erasure-coding algorithm. The algorithm slices an object
into k data fragments and computes m parity fragments. The k + m = n fragments are spread across n
Storage Nodes to provide data protection. An object can sustain up to m lost or corrupt fragments. To retrieve
or repair an object, k fragments are needed.

When selecting the storage pool to use for a rule that will create an erasure-coded copy, use the following
guidelines for storage pools:

* The storage pool must include three or more sites, or exactly one site.
@ You can’t use erasure coding if the storage pool includes two sites.

o Erasure-coding schemes for storage pools containing three or more sites
o Erasure-coding schemes for one-site storage pools
» Don’t use a storage pool that includes the default site, All Sites.

* The storage pool should include at least k+m +1 Storage Nodes that can store object data.

@ Storage Nodes can be configured during installation to contain only object metadata and not
object data. For more information, see Types of Storage Nodes.

The minimum number of Storage Nodes required is k+m. However, having at least one additional Storage
Node can help prevent ingest failures or ILM backlogs if a required Storage Node is temporarily
unavailable.

The storage overhead of an erasure-coding scheme is calculated by dividing the number of parity fragments (
m) by the number of data fragments (k). You can use the storage overhead to calculate how much disk space
each erasure-coded object requires:

disk space = object size + (object size * storage overhead)

For example, if you store a 10 MB object using the 4+2 scheme (which has 50% storage overhead), the object
consumes 15 MB of grid storage. If you store the same 10 MB object using the 6+2 scheme (which has 33%
storage overhead), the object consumes approximately 13.3 MB.

Select the erasure-coding scheme with the lowest total value of k+m that meets your needs. Erasure-coding
schemes with a lower number of fragments are overall more computationally efficient, as fewer fragments are
created and distributed (or retrieved) per object, can show better performance due to the larger fragment size,
and can require fewer nodes be added in an expansion when more storage is required. (For information about
planning a storage expansion, see the instructions for expanding StorageGRID.)

12

https://docs.netapp.com/us-en/storagegrid-118/ilm/manage-erasure-coding-profiles.html#rename-an-erasure-coding-profile
https://docs.netapp.com/us-en/storagegrid-118/ilm/manage-erasure-coding-profiles.html#deactivate-an-erasure-coding-profile
https://docs.netapp.com/us-en/storagegrid-118/primer/what-storage-node-is.html#types-of-storage-nodes
https://docs.netapp.com/us-en/storagegrid-118/expand/index.html

Erasure-coding schemes for storage pools containing three or more sites

The following table describes the erasure-coding schemes currently supported by StorageGRID for storage
pools that include three or more sites. All of these schemes provide site-loss protection. One site can be lost,
and the object will still be accessible.

For erasure-coding schemes that provide site-loss protection, the recommended number of Storage Nodes in
the storage pool exceeds k+m +1 because each site requires a minimum of three Storage Nodes.

Erasure-coding Minimum Recommended Total Site loss Storage
scheme (k+m) number of number of recommended protection? overhead
deployed sites Storage Nodes number of
at each site Storage Nodes

4+2 3 3 9 Yes 50%
6+2 4 3 12 Yes 33%
8+2 5 3 15 Yes 25%
6+3 3 4 12 Yes 50%
9+3 4 4 16 Yes 33%
2+1 3 3 9 Yes 50%
4+1 5 3 15 Yes 25%
6+1 7 3 21 Yes 17%
7+5 3 5 15 Yes 71%

StorageGRID requires a minimum of three Storage Nodes per site. To use the 7+5 scheme,
each site requires a minimum of four Storage Nodes. Using five Storage Nodes per site is
recommended.

When selecting an erasure-coding scheme that provides site protection, balance the relative importance of the
following factors:

* Number of fragments: Performance and expansion flexibility are generally better when the total number of
fragments is lower.

* Fault tolerance: Fault tolerance is increased by having more parity segments (that is, when m has a higher
value.)

» Network traffic: When recovering from failures, using a scheme with more fragments (that is, a higher total
for k+m) creates more network traffic.

» Storage overhead: Schemes with higher overhead require more storage space per object.

For example, when deciding between a 4+2 scheme and 6+3 scheme (which both have 50% storage
overhead), select the 6+3 scheme if additional fault tolerance is required. Select the 4+2 scheme if network

13

resources are constrained. If all other factors are equal, select 4+2 because it has a lower total number of
fragments.

@ If you are unsure of which scheme to use, select 4+2 or 6+3, or contact technical support.

Erasure-coding schemes for one-site storage pools

A one-site storage pool supports all of the erasure-coding schemes defined for three or more sites, provided
that the site has enough Storage Nodes.

The minimum number of Storage Nodes required is k+m, but a storage pool with k+m +1 Storage Nodes is
recommended. For example, the 2+1 erasure-coding scheme requires a storage pool with a minimum of three
Storage Nodes, but four Storage Nodes is recommended.

Erasure-coding scheme Minimum number of Recommended number Storage overhead
(k+m) Storage Nodes of Storage Nodes

4+2 6 7 50%
6+2 8 9 33%
8+2 10 1 25%
6+3 9 10 50%
9+3 12 13 33%
2+1 3 4 50%
4+1 5 6 25%
6+1 7 8 17%
7+5 12 13 71%

Advantages, disadvantages, and requirements for erasure coding

Before deciding whether to use replication or erasure coding to protect object data from
loss, you should understand the advantages, disadvantages, and the requirements for
erasure coding.

Advantages of erasure coding

When compared to replication, erasure coding offers improved reliability, availability, and storage efficiency.

* Reliability: Reliability is gauged in terms of fault tolerance—that is, the number of simultaneous failures
that can be sustained without loss of data. With replication, multiple identical copies are stored on different
nodes and across sites. With erasure coding, an object is encoded into data and parity fragments and
distributed across many nodes and sites. This dispersal provides both site and node failure protection.

14

When compared to replication, erasure coding provides improved reliability at comparable storage costs.

 Availability: Availability can be defined as the ability to retrieve objects if Storage Nodes fail or become
inaccessible. When compared to replication, erasure coding provides increased availability at comparable
storage costs.

» Storage efficiency: For similar levels of availability and reliability, objects protected through erasure
coding consume less disk space than the same objects would if protected through replication. For
example, a 10 MB object that is replicated to two sites consumes 20 MB of disk space (two copies), while
an object that is erasure-coded across three sites with a 6+3 erasure-coding scheme only consumes 15
MB of disk space.

Disk space for erasure-coded objects is calculated as the object size plus the storage
@ overhead. The storage overhead percentage is the number of parity fragments divided by
the number of data fragments.

Disadvantages of erasure coding

When compared to replication, erasure coding has the following disadvantages:

* An increased number of Storage Nodes and sites is recommended, depending on the erasure-coding
scheme. In contrast, if you replicate object data, you need only one Storage Node for each copy. See
Erasure-coding schemes for storage pools containing three or more sites and Erasure-coding schemes for
one-site storage pools.

* Increased cost and complexity of storage expansions. To expand a deployment that uses replication, you
add storage capacity in every location where object copies are made. To expand a deployment that uses
erasure coding, you must consider both the erasure-coding scheme in use and how full existing Storage
Nodes are. For example, if you wait until existing nodes are 100% full, you must add at least k+m Storage
Nodes, but if you expand when existing nodes are 70% full, you can add two nodes per site and still
maximize usable storage capacity. For more information, see Add storage capacity for erasure-coded
objects.

» There are increased retrieval latencies when you use erasure coding across geographically distributed
sites. The object fragments for an object that is erasure-coded and distributed across remote sites take
longer to retrieve over WAN connections than an object that is replicated and available locally (the same
site to which the client connects).

» When you use erasure coding across geographically distributed sites, there is higher WAN network traffic
usage for retrievals and repairs, especially for frequently retrieved objects or for object repairs over WAN
network connections.

* When you use erasure coding across sites, the maximum object throughput declines sharply as network
latency between sites increases. This decrease is due to the corresponding decrease in TCP network
throughput, which affects how quickly the StorageGRID system can store and retrieve object fragments.

» Higher usage of compute resources.

When to use erasure coding

Erasure coding is best suited for the following requirements:

» Objects greater than 1 MB in size.

Erasure coding is best suited for objects greater than 1 MB. Don’t use erasure coding for
objects smaller than 200 KB to avoid the overhead of managing very small erasure-coded
fragments.

15

https://docs.netapp.com/us-en/storagegrid-118/expand/adding-storage-capacity-for-erasure-coded-objects.html
https://docs.netapp.com/us-en/storagegrid-118/expand/adding-storage-capacity-for-erasure-coded-objects.html

* Long-term or cold storage for infrequently retrieved content.
« High data availability and reliability.

* Protection against complete site and node failures.
 Storage efficiency.

 Single-site deployments that require efficient data protection with only a single erasure-coded copy rather
than multiple replicated copies.

* Multiple-site deployments where the inter-site latency is less than 100 ms.

How object retention is determined

StorageGRID provides options for both grid administrators and individual tenant users to
specify how long to store objects. In general, any retention instructions provided by a
tenant user take precedence over the retention instructions provided by the grid
administrator.

How tenant users control object retention
Tenant users have three primary ways to control how long their objects are stored in StorageGRID:

* If the global S3 Object Lock setting is enabled for the grid, S3 tenant users can create buckets with S3
Object Lock enabled and then use the S3 REST API to specify retain-until-date and legal hold settings for
each object version added to that bucket.

> An object version that is under a legal hold can’t be deleted by any method.
o Before an object version’s retain-until-date is reached, that version can’t be deleted by any method.

> Objects in buckets with S3 Object Lock enabled are retained by ILM "forever." However, after its retain-
until-date is reached, an object version can be deleted by a client request or the expiration of the
bucket lifecycle. See Manage objects with S3 Object Lock.

» S3 tenant users can add a lifecycle configuration to their buckets that specifies an Expiration action. If a
bucket lifecycle exists, StorageGRID stores an object until the date or number of days specified in the
Expiration action are met, unless the client deletes the object first. See Create S3 lifecycle configuration.

« An S3 or Swift client can issue a delete object request. StorageGRID always prioritizes client delete
requests over S3 bucket lifecycle or ILM when determining whether to delete or retain an object.

How grid administrators control object retention

Grid administrators use ILM placement instructions to control how long objects are stored. WWhen objects are
matched by an ILM rule, StorageGRID stores those objects until the last time period in the ILM rule has
elapsed. Objects are retained indefinitely if "forever" is specified for the placement instructions.

Regardless of who controls how long objects are retained, ILM settings control what types of object copies
(replicated or erasure-coded) are stored and where the copies are located (Storage Nodes, Cloud Storage
Pools, or Archive Nodes).

How S3 bucket lifecycle and ILM interact

When an S3 bucket lifecycle is configured, the lifecycle expiration actions override the ILM policy for objects
that match the lifecycle filter. As a result, an object might be retained on the grid even after any ILM instructions
for placing the object have lapsed.

16

https://docs.netapp.com/us-en/storagegrid-118/ilm/managing-objects-with-s3-object-lock.html
https://docs.netapp.com/us-en/storagegrid-118/s3/create-s3-lifecycle-configuration.html

Examples for object retention

To better understand the interactions between S3 Object Lock, bucket lifecycle settings, client delete requests,

and ILM, consider the following examples.

Example 1: S3 bucket lifecycle keeps objects longer than ILM

ILM
Store two copies for 1 year (365 days)

Bucket lifecycle
Expire objects in 2 years (730 days)

Result

StorageGRID stores the object for 730 days. StorageGRID uses the bucket lifecycle settings to determine

whether to delete or retain an object.

If the bucket lifecycle specifies that objects should be kept longer than specified by ILM,
@ StorageGRID continues to use the ILM placement instructions when determining the number
and type of copies to store. In this example, two copies of the object will continue to be stored in

StorageGRID from days 366 to 730.

Example 2: S3 bucket lifecycle expires objects before ILM

ILM
Store two copies for 2 years (730 days)

Bucket lifecycle
Expire objects in 1 year (365 days)

Result

StorageGRID deletes both copies of the object after day 365.

Example 3: Client delete overrides bucket lifecycle and ILM

ILM
Store two copies on Storage Nodes "forever"

Bucket lifecycle
Expire objects in 2 years (730 days)

Client delete request
Issued on day 400

Result

StorageGRID deletes both copies of the object on day 400 in response to the client delete request.

Example 4: S3 Object Lock overrides client delete request

S3 Object Lock

Retain-until-date for an object version is 2026-03-31. A legal hold is not in effect.

17

Compliant ILM rule
Store two copies on Storage Nodes "forever"

Client delete request
Issued on 2024-03-31

Result
StorageGRID will not delete the object version because the retain-until-date is still 2 years away.

How objects are deleted

StorageGRID can delete objects either in direct response to a client request or
automatically as a result of the expiration of an S3 bucket lifecycle or the requirements of
the ILM policy. Understanding the different ways that objects can be deleted and how
StorageGRID handles delete requests can help you manage objects more effectively.

StorageGRID can use one of two methods to delete objects:
« Synchronous deletion: When StorageGRID receives a client delete request, all object copies are removed

immediately. The client is informed that deletion was successful after the copies have been removed.

» Objects are queued for deletion: When StorageGRID receives a delete request, the object is queued for
deletion and the client is informed immediately that deletion was successful. Object copies are removed
later by background ILM processing.

When deleting objects, StorageGRID uses the method that optimizes delete performance, minimizes potential
delete backlogs, and frees space most quickly.

The table summarizes when StorageGRID uses each method.

Method of performing When used
deletion

Objects are queued for When any of the following conditions are true:

deletion
» Automatic object deletion has been triggered by one of the following events:

> The expiration date or number of days in the lifecycle configuration for an
S3 bucket is reached.
o The last time period specified in an ILM rule elapses.

Note: Objects in a bucket that has S3 Object Lock enabled can’t be deleted if
they are under a legal hold or if a retain-until-date has been specified but not
yet met.

» An S3 or Swift client requests deletion and one or more of these conditions is
true:

o Copies can’t be deleted within 30 seconds because, for example, an
object location is temporarily unavailable.

> Background deletion queues are idle.

18

Method of performing When used

deletion

Objects are removed When an S3 or Swift client makes a delete request and all of the following
immediately (synchronous conditions are met:

deletion)

* All copies can be removed within 30 seconds.

» Background deletion queues contain objects to process.

When S3 or Swift clients make delete requests, StorageGRID begins by adding objects to the delete queue. It
then switches to performing synchronous deletion. Making sure that the background deletion queue has
objects to process allows StorageGRID to process deletes more efficiently, especially for low concurrency
clients, while helping to prevent client delete backlogs.

Time required to delete objects
The way that StorageGRID deletes objects can affect how the system appears to perform:

* When StorageGRID performs synchronous deletion, it can take StorageGRID up to 30 seconds to return a
result to the client. This means that deletion can appear to be happening more slowly, even though copies
are actually being removed more quickly than they are when StorageGRID queues objects for deletion.

* If you are closely monitoring delete performance during a bulk delete, you might notice that the deletion
rate appears to be slow after a certain number of objects have been deleted. This change occurs when
StorageGRID shifts from queuing objects for deletion to performing synchronous deletion. The apparent
reduction in the deletion rate does not mean that object copies are being removed more slowly. On the
contrary, it indicates that on average, space is now being freed more quickly.

If you are deleting large numbers of objects and your priority is to free space quickly, consider using a client
request to delete objects rather than deleting them using ILM or other methods. In general, space is freed more
quickly when deletion is performed by clients because StorageGRID can use synchronous deletion.

The amount of time required to free space after an object is deleted depends on several factors:

* Whether object copies are synchronously removed or are queued for removal later (for client delete
requests).

» Other factors such as the number of objects in the grid or the availability of grid resources when object
copies are queued for removal (for both client deletes and other methods).

How S3 versioned objects are deleted

When versioning is enabled for an S3 bucket, StorageGRID follows Amazon S3 behavior when responding to
delete requests, whether those requests come from an S3 client, the expiration of an S3 bucket lifecycle, or the
requirements of the ILM policy.

When objects are versioned, object delete requests don’t delete the current version of the object and don’t free
space. Instead, an object delete request creates a zero-byte delete marker as the current version of the object,
which makes the previous version of the object "noncurrent." An object delete marker becomes an expired
object delete marker when it is the current version and there are no noncurrent versions.

Even though the object has not been removed, StorageGRID behaves as though the current version of the

object is no longer available. Requests to that object return 404 NotFound. However, because noncurrent
object data has not been removed, requests that specify a noncurrent version of the object can succeed.

19

To free space when deleting versioned objects, or to remove delete markers, use one of the following:

* 83 client request: Specify the object version ID in the S3 DELETE Object request (DELETE
/object?versionId=1ID). Keep in mind that this request only removes object copies for the specified
version (the other versions are still taking up space).

* Bucket lifecycle: Use the NoncurrentVersionExpiration action in the bucket lifecycle configuration.
When the number of NoncurrentDays specified is met, StorageGRID permanently removes all copies of
noncurrent object versions. These object versions can’t be recovered.

The NewerNoncurrentVersions action in the bucket lifecycle configuration specifies the number of
noncurrent versions retained in a versioned S3 bucket. If there are more noncurrent versions than
NewerNoncurrentVersions specifies, StorageGRID removes the older versions when the
NoncurrentDays value has elapsed. The NewerNoncurrentVersions threshold overrides lifecycle rules
provided by ILM, meaning that a noncurrent object with a version within the NewerNoncurrentVersions
threshold is retained if ILM requests its deletion.

To remove expired object delete markers use the Expiration action with one of the following tags:
ExpiredObjectDeleteMarker, Days, Of Date.

* ILM: Clone an active policy and add two ILM rules to the new policy:

o First rule: Use "Noncurrent time" as the Reference time to match the noncurrent versions of the object.
In Step 1 (Enter details) of the Create an ILM rule wizard, select Yes for the question, "Apply this rule to
older object versions only (in S3 buckets with versioning enabled)?"

o Second rule: Use Ingest time to match the current version. The "Noncurrent time" rule must appear in
the policy above the Ingest time rule.

@ ILM cannot be used to remove current object delete markers. Use an S3 client request
or S3 Bucket Lifecycle to remove current object delete markers.

* Delete objects in bucket: Use the tenant manager to delete all object versions, including delete markers,
from a bucket.

When a versioned object is deleted, StorageGRID creates a zero-byte delete marker as the current version
of the object. All objects and delete markers must be removed before a versioned bucket can be deleted.

o Delete markers created in StorageGRID 11.7 or earlier can only be removed through S3 client
requests, they are not removed by ILM, bucket lifecycle rules, or Delete objects in bucket operations.

o Delete markers from a bucket that was created in StorageGRID 11.8 or later can be removed by ILM,
bucket lifecycle rules, Delete objects in bucket operations, or an explicit S3 client deletion. Expired
delete markers in StorageGRID 11.8 or later must be removed by bucket lifecycle rules or by an explicit
S3 client request with a version ID specified.

Related information
* Use S3 REST API

* Example 4: ILM rules and policy for S3 versioned objects

20

https://docs.netapp.com/us-en/storagegrid-118/ilm/creating-ilm-policy.html
https://docs.netapp.com/us-en/storagegrid-118/ilm/create-ilm-rule-enter-details.html
https://docs.netapp.com/us-en/storagegrid-118/tenant/deleting-s3-bucket-objects.html
https://docs.netapp.com/us-en/storagegrid-118/s3/index.html
https://docs.netapp.com/us-en/storagegrid-118/ilm/example-4-ilm-rules-and-policy-for-s3-versioned-objects.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

21

http://www.netapp.com/TM

	ILM and object lifecycle : StorageGRID
	Table of Contents
	ILM and object lifecycle
	How ILM operates throughout an object’s life
	How objects are ingested
	Ingest options
	Advantages, disadvantages, and limitations of the ingest options

	How objects are stored (replication or erasure coding)
	What is replication?
	Why you should not use single-copy replication
	What is erasure coding?
	What are erasure-coding schemes?
	Advantages, disadvantages, and requirements for erasure coding

	How object retention is determined
	How tenant users control object retention
	How grid administrators control object retention
	How S3 bucket lifecycle and ILM interact
	Examples for object retention

	How objects are deleted
	Time required to delete objects
	How S3 versioned objects are deleted

