
Configure backends
Astra Trident
NetApp
July 09, 2025

This PDF was generated from https://docs.netapp.com/us-en/trident-2201/trident-use/anf.html on July 09,
2025. Always check docs.netapp.com for the latest.

Table of Contents

Configure backends . 1

Configure an Azure NetApp Files backend . 1

Backend configuration options. 2

Example 1: Minimal configuration . 4

Example 2: Specific service level configuration with capacity pool filters . 4

Example 3: Advanced configuration. 5

Example 4: Virtual storage pool configuration . 5

What’s next? . 7

Configure a CVS for GCP backend . 7

Backend configuration options. 8

Example 1: Minimal configuration . 10

Example 2: Base CVS service type configuration . 11

Example 3: Single service level configuration . 12

Example 4: Virtual storage pool configuration . 13

What’s next? . 17

Configure a NetApp HCI or SolidFire backend . 17

Backend configuration options. 18

Example 1: Backend configuration for solidfire-san driver with three volume types 19

Example 2: Backend and storage class configuration for solidfire-san driver with virtual storage

pools. 19

Find more information . 23

Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers. 23

User permissions . 23

Preparation. 23

Configuration options and examples . 30

Configure a backend with ONTAP NAS drivers . 42

User permissions . 42

Preparation. 42

Configuration options and examples . 49

Use Astra Trident with Amazon FSx for NetApp ONTAP . 62

Learn about Astra Trident. 62

Deploy and configure Astra Trident on EKS with Amazon FSx for NetApp ONTAP 63

Find more information . 65

Configure backends
A backend defines the relationship between Astra Trident and a storage system. It tells Astra Trident how to

communicate with that storage system and how Astra Trident should provision volumes from it. Astra Trident

will automatically offer up storage pools from backends that together match the requirements defined by a

storage class. Learn more about configuring the backend based on the type of storage system you have.

• Configure an Azure NetApp Files backend

• Configure a Cloud Volumes Service for Google Cloud Platform backend

• Configure a NetApp HCI or SolidFire backend

• Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

• Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

• Use Astra Trident with Amazon FSx for NetApp ONTAP

Configure an Azure NetApp Files backend

Learn about how to configure Azure NetApp Files (ANF) as the backend for your Astra Trident installation

using the sample configurations provided.

The Azure NetApp Files service does not support volumes less than 100 GB. Astra Trident

automatically creates 100-GB volumes if a smaller volume is requested.

What you’ll need

To configure and use an Azure NetApp Files backend, you need the following:

• subscriptionID from an Azure subscription with Azure NetApp Files enabled.

• tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with

sufficient permissions to the Azure NetApp Files service. The App Registration should use the Owner or

Contributor role that is predefined by Azure.

To learn more about Azure built-in roles, see the Azure documentation.

• The Azure location that contains at least one delegated subnet. As of Trident 22.01, the location

parameter is a required field at the top level of the backend configuration file. Location values specified in

virtual pools are ignored.

• If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is

required. See the quickstart guide.

About this task

Based on the backend configuration (subnet, virtual network, service level, and location), Trident creates ANF

volumes on capacity pools that are available in the requested location and match the requested service level

and subnet.

NOTE: Astra Trident does not support Manual QoS capacity pools.

1

https://azure.microsoft.com/en-us/services/netapp/
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage

backend

Driver name + "_" + random

characters

subscriptionID The subscription ID from your

Azure subscription

tenantID The tenant ID from an App

Registration

clientID The client ID from an App

Registration

clientSecret The client secret from an App

Registration

serviceLevel One of Standard, Premium, or

Ultra

"" (random)

location Name of the Azure location where

the new volumes will be created

serviceLevel One of Standard, Premium, or

Ultra

"" (random)

resourceGroups List of resource groups for filtering

discovered resources

"[]" (no filter)

netappAccounts List of NetApp accounts for filtering

discovered resources

"[]" (no filter)

capacityPools List of capacity pools for filtering

discovered resources

"[]" (no filter, random)

virtualNetwork Name of a virtual network with a

delegated subnet

""

subnet Name of a subnet delegated to

Microsoft.Netapp/volumes

""

nfsMountOptions Fine-grained control of NFS mount

options.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

2

Parameter Description Default

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api": false, "method":

true, "discovery": true}.

Do not use this unless you are

troubleshooting and require a

detailed log dump.

null

If you encounter a “No capacity pools found” error when attempting to create a PVC, it is likely

your app registration doesn’t have the required permissions and resources (subnet, virtual

network, capacity pool) associated. Astra Trident will log the Azure resources it discovered when

the backend is created when debug is enabled. Be sure to check if an appropriate role is being

used.

If you want to mount the volumes by using NFS version 4.1, you can include nfsvers=4 in the

comma-delimited mount options list to choose NFS v4.1. Any mount options set in a storage

class override the mount options set in a backend configuration file.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet

may be specified using short or fully-qualified names. Short names may match multiple resources with the

same name, so using fully-qualified names is recommended in most situations. The resourceGroups,

netappAccounts, and capacityPools values are filters which restrict the set of discovered resources to

those available to this storage backend and may be specified in any combination. The fully-qualified names are

of the following format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>

Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

You can control how each volume is provisioned by default by specifying the following options in a special

section of the configuration file. See the configuration examples below.

Parameter Description Default

exportRule The export rule(s) for new volumes "0.0.0.0/0"

snapshotDir Controls visibility of the .snapshot

directory

"false"

size The default size of new volumes "100G"

unixPermissions The unix permissions of new

volumes (4 octal digits)

"" (preview feature, requires

whitelisting in subscription)

The exportRule value must be a comma-separated list of any combination of IPv4 addresses or IPv4

subnets in CIDR notation.

3

For all the volumes created on an ANF backend, Astra Trident copies all the labels present on a

storage pool to the storage volume at the time it is provisioned. Storage administrators can

define labels per storage pool and group all the volumes created in a storage pool. This provides

a convenient way of differentiating volumes based on a set of customizable labels that are

provided in the backend configuration.

Example 1: Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Astra Trident discovers all of your

NetApp accounts, capacity pools, and subnets delegated to ANF in the configured location, and places new

volumes on one of those pools and subnets randomly.

This configuration is ideal when you are just getting started with ANF and trying things out, but in practice you

are going to want to provide additional scoping for the volumes you provision.

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus"

}

Example 2: Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool. Astra

Trident

automatically discovers all of the subnets delegated to ANF in that location and places a new volume on one of

them randomly.

 {

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "serviceLevel": "Ultra",

 "capacityPools": [

 "application-group-1/account-1/ultra-1",

 "application-group-1/account-1/ultra-2"

],

 }

4

Example 3: Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also

modifies some volume provisioning defaults.

 {

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "serviceLevel": "Ultra",

 "capacityPools": [

 "application-group-1/account-1/ultra-1",

 "application-group-1/account-1/ultra-2"

],

 "virtualNetwork": "my-virtual-network",

 "subnet": "my-subnet",

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "limitVolumeSize": "500Gi",

 "defaults": {

 "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",

 "snapshotDir": "true",

 "size": "200Gi",

 "unixPermissions": "0777"

=======

 }

 }

Example 4: Virtual storage pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have multiple

capacity pools supporting different service levels and you want to create storage classes in Kubernetes that

represent those.

5

 {

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "resourceGroups": ["application-group-1"],

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "labels": {

 "cloud": "azure"

 },

 "location": "eastus",

 "storage": [

 {

 "labels": {

 "performance": "gold"

 },

 "serviceLevel": "Ultra",

 "capacityPools": ["ultra-1", "ultra-2"]

 },

 {

 "labels": {

 "performance": "silver"

 },

 "serviceLevel": "Premium",

 "capacityPools": ["premium-1"]

 },

 {

 "labels": {

 "performance": "bronze"

 },

 "serviceLevel": "Standard",

 "capacityPools": ["standard-1", "standard-2"]

 }

]

 }

The following StorageClass definitions refer to the storage pools above. By using the

parameters.selector field, you can specify for each StorageClass the visrtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

6

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: bronze

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze"

allowVolumeExpansion: true

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a CVS for GCP backend

Learn about how to configure NetApp Cloud Volumes Service (CVS) for Google Cloud Platform (GCP) as the

backend for your Astra Trident installation using the sample configurations provided.

7

NetApp Cloud Volumes Service for Google Cloud does not support CVS-Performance volumes

less than 100 GiB in size, or CVS volumes less than 300 GiB in size. Astra Trident automatically

creates volumes of the minimum size if a the volume requested is smaller than the minimum

size.

What you’ll need

To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

• A Google Cloud account configured with NetApp CVS

• Project number of your Google Cloud account

• Google Cloud service account with the netappcloudvolumes.admin role

• API key file for your CVS service account

Astra Trident now includes support for smaller volumes with the default CVS service type on GCP. For

backends created with storageClass=software, volumes will now have a minimum provisioning size of

300 GiB. CVS currently provides this feature under Controlled Availability and does not provide technical

support. Users must sign up for access to sub-1TiB volumes here. NetApp recommends customers consume

sub-1TiB volumes for non-production workloads.

When deploying backends using the default CVS service type (storageClass=software),

users must obtain access to the sub-1TiB volumes feature on GCP for the Project Number(s)

and Project ID(s) in question. This is necessary for Astra Trident to provision sub-1TiB volumes.

If not, volume creations will fail for PVCs that are lesser than 600 GiB. Obtain access to sub-

1TiB volumes using this form.

Volumes created by Astra Trident for the default CVS service level will be provisioned as follows:

• PVCs that are smaller than 300 GiB will result in Astra Trident creating a 300 GiB CVS volume.

• PVCs that are between 300 GiB to 600 GiB will result in Astra Trident creating a CVS volume of the

requested size.

• PVCs that are between 600 GiB and 1 TiB will result in Astra Trident creating a 1TiB CVS volume.

• PVCs that are greater than 1 TiB will result in Astra Trident creating a CVS volume of the requested size.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "gcp-cvs"

backendName Custom name or the storage

backend

Driver name + "_" + part of API key

storageClass Type of storage. Choose from

hardware (performance

optimized) or software (CVS

service type)

8

https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://docs.google.com/forms/d/e/1FAIpQLSc7_euiPtlV8bhsKWvwBl3gm9KUL4kOhD7lnbHC3LlQ7m02Dw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSc7_euiPtlV8bhsKWvwBl3gm9KUL4kOhD7lnbHC3LlQ7m02Dw/viewform

Parameter Description Default

projectNumber Google Cloud account project

number. The value is found on the

Google Cloud portal’s Home page.

apiRegion CVS account region. It is the region

where the backend will provision

the volumes.

apiKey API key for the Google Cloud

service account with the

netappcloudvolumes.admin

role. It includes the JSON-formatted

contents of a Google Cloud service

account’s private key file (copied

verbatim into the backend

configuration file).

proxyURL Proxy URL if proxy server required

to connect to CVS Account. The

proxy server can either be an HTTP

proxy or an HTTPS proxy. For an

HTTPS proxy, certificate validation

is skipped to allow the usage of

self-signed certificates in the proxy

server. Proxy servers with

authentication enabled are not

supported.

nfsMountOptions Fine-grained control of NFS mount

options.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

serviceLevel The CVS service level for new

volumes. The values are

"standard", "premium", and

"extreme".

"standard"

network GCP network used for CVS

volumes

“default”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api":false,

"method":true}. Do not use this

unless you are troubleshooting and

require a detailed log dump.

null

If using a shared VPC network, both projectNumber and hostProjectNumber must be specified. In that

case, projectNumber is the service project, and hostProjectNumber is the host project.

The apiRegion represents the GCP region where Astra Trident creates CVS volumes. When creating cross-

region Kubernetes clusters, CVS volumes created in an apiRegion can be used in workloads scheduled on

nodes across multiple GCP regions. Be aware that cross-region traffic incurs an additional cost.

9

• To enable cross-region access, your StorageClass definition for allowedTopologies

must include all regions. For example:

- key: topology.kubernetes.io/region

 values:

 - us-east1

 - europe-west1

• storageClass is an optional parameter that you can use to select the desired CVS service

type. You can choose from the base CVS service type (storageClass=software) or the

CVS-Performance service type (storageClass=hardware), which Trident uses by

default. Make sure you specify an apiRegion that provides the respective CVS

storageClass in your backend definition.

Astra Trident’s integration with the base CVS service type on Google Cloud is a beta feature,

not meant for production workloads. Trident is fully supported with the CVS-Performance

service type and uses it by default.

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you

can define additional backends.

You can control how each volume is provisioned by default by specifying the following options in a special

section of the configuration file. See the configuration examples below.

Parameter Description Default

exportRule The export rule(s) for new volumes "0.0.0.0/0"

snapshotDir Access to the .snapshot directory "false"

snapshotReserve Percentage of volume reserved for

snapshots

"" (accept CVS default of 0)

size The size of new volumes "100Gi"

The exportRule value must be a comma-separated list of any combination of IPv4 addresses or IPv4

subnets in CIDR notation.

For all the volumes created on a CVS Google Cloud backend, Trident copies all the labels

present on a storage pool to the storage volume at the time it is provisioned. Storage

administrators can define labels per storage pool and group all the volumes created in a storage

pool. This provides a convenient way of differentiating volumes based on a set of customizable

labels that are provided in the backend configuration.

Example 1: Minimal configuration

This is the absolute minimum backend configuration.

10

https://cloud.google.com/solutions/partners/netapp-cloud-volumes/service-types?hl=en_US
https://cloud.google.com/solutions/partners/netapp-cloud-volumes/service-types?hl=en_US

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "apiRegion": "us-west2",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "1234567890123456789012345678901234567890",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 }

}

Example 2: Base CVS service type configuration

This example shows a backend definition that uses the base CVS service type, which is meant for general-

purpose workloads and provides light/moderate performance, coupled with high zonal availability.

11

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "storageClass": "software",

 "apiRegion": "us-east4",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "<id_value>>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 }

}

Example 3: Single service level configuration

This example shows a backend file that applies the same aspects to all Astra Trident-created storage in the

Google Cloud us-west2 region. This example also shows the usage of proxyURL in the backend configuration

file.

12

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "apiRegion": "us-west2",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "<id_value>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 },

 "proxyURL": "http://proxy-server-hostname/",

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "limitVolumeSize": "10Ti",

 "serviceLevel": "premium",

 "defaults": {

 "snapshotDir": "true",

 "snapshotReserve": "5",

 "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",

 "size": "5Ti"

 }

}

Example 4: Virtual storage pool configuration

This example shows the backend definition file configured with virtual storage pools along with

StorageClasses that refer back to them.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

snapshotReserve at 5% and the exportRule to 0.0.0.0/0. The virtual storage pools are defined in the

storage section. In this example, each individual storage pool sets its own serviceLevel, and some pools

overwrite the default values.

13

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "apiRegion": "us-west2",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "<id_value>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 },

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "defaults": {

 "snapshotReserve": "5",

 "exportRule": "0.0.0.0/0"

 },

 "labels": {

 "cloud": "gcp"

 },

 "region": "us-west2",

 "storage": [

 {

 "labels": {

 "performance": "extreme",

 "protection": "extra"

 },

 "serviceLevel": "extreme",

 "defaults": {

 "snapshotDir": "true",

 "snapshotReserve": "10",

14

 "exportRule": "10.0.0.0/24"

 }

 },

 {

 "labels": {

 "performance": "extreme",

 "protection": "standard"

 },

 "serviceLevel": "extreme"

 },

 {

 "labels": {

 "performance": "premium",

 "protection": "extra"

 },

 "serviceLevel": "premium",

 "defaults": {

 "snapshotDir": "true",

 "snapshotReserve": "10"

 }

 },

 {

 "labels": {

 "performance": "premium",

 "protection": "standard"

 },

 "serviceLevel": "premium"

 },

 {

 "labels": {

 "performance": "standard"

 },

 "serviceLevel": "standard"

 }

]

}

The following StorageClass definitions refer to the storage pools above. By using the parameters.selector

field, you can specify for each StorageClass the virtual pool that is used to host a volume. The volume will

have the aspects defined in the chosen pool.

The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual storage pool. This is the

only pool offering extreme performance with a snapshot reserve of 10%. The last StorageClass (cvs-extra-

protection) calls out any storage pool which provides a snapshot reserve of 10%. Astra Trident decides

which virtual storage pool is selected and ensures that the snapshot reserve requirement is met.

15

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-extra-protection

provisioner: netapp.io/trident

parameters:

 selector: "performance=extreme; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-standard-protection

provisioner: netapp.io/trident

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium-extra-protection

provisioner: netapp.io/trident

parameters:

 selector: "performance=premium; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium

provisioner: netapp.io/trident

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-standard

provisioner: netapp.io/trident

parameters:

 selector: "performance=standard"

allowVolumeExpansion: true

16

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extra-protection

provisioner: netapp.io/trident

parameters:

 selector: "protection=extra"

allowVolumeExpansion: true

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn about how to create and use an Element backend with your Astra Trident installation.

What you’ll need

• A supported storage system that runs Element software.

• Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

• All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. See worker node

preparation information.

What you need to know

The solidfire-san storage driver supports both volume modes: file and block. For the Filesystem

volumeMode, Astra Trident creates a volume and creates a filesystem. The filesystem type is specified by the

StorageClass.

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device.

solidfire-san iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device.

17

https://docs.netapp.com/us-en/trident-2201/trident-use/worker-node-prep.html
https://docs.netapp.com/us-en/trident-2201/trident-use/worker-node-prep.html

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Filesystem RWO,ROX xfs, ext3, ext4

solidfire-san iSCSI Filesystem RWO,ROX xfs, ext3, ext4

Astra Trident uses CHAP when functioning as an enhanced CSI Provisioner. If you’re using

CHAP (which is the default for CSI), no further preparation is required. It is recommended to

explicitly set the UseCHAP option to use CHAP with non-CSI Trident. Otherwise, see here.

Volume access groups are only supported by the conventional, non-CSI framework for Astra

Trident. When configured to work in CSI mode, Astra Trident uses CHAP.

If neither AccessGroups or UseCHAP are set, one of the following rules applies:

• If the default trident access group is detected, access groups are used.

• If no access group is detected and Kubernetes version is 1.7 or later, then CHAP is used.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always “solidfire-san”

backendName Custom name or the storage

backend

“solidfire_” + storage (iSCSI) IP

address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

SVIP Storage (iSCSI) IP address and

port

labels Set of arbitrary JSON-formatted

labels to apply on volumes.

“”

TenantName Tenant name to use (created if not

found)

InitiatorIFace Restrict iSCSI traffic to a specific

host interface

“default”

UseCHAP Use CHAP to authenticate iSCSI true

AccessGroups List of Access Group IDs to use Finds the ID of an access group

named “trident”

Types QoS specifications

18

https://docs.netapp.com/us-en/trident-2201/trident-concepts/vol-access-groups.html

Parameter Description Default

limitVolumeSize Fail provisioning if requested

volume size is above this value

“” (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

For all volumes created, Astra Trident will copy all labels present on a storage pool to the

backing storage LUN at the time it is provisioned. Storage administrators can define labels per

storage pool and group all volumes created in a storage pool. This provides a convenient way of

differentiating volumes based on a set of customizable labels that are provided in the backend

configuration.

Example 1: Backend configuration for solidfire-san driver with three volume
types

This example shows a backend file using CHAP authentication and modeling three volume types with specific

QoS guarantees. Most likely you would then define storage classes to consume each of these using the IOPS

storage class parameter.

{

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://<user>:<password>@<mvip>/json-rpc/8.0",

 "SVIP": "<svip>:3260",

 "TenantName": "<tenant>",

 "labels": {"k8scluster": "dev1", "backend": "dev1-element-cluster"},

 "UseCHAP": true,

 "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS": 2000,

"burstIOPS": 4000}},

 {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS": 6000,

"burstIOPS": 8000}},

 {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS": 8000,

"burstIOPS": 10000}}]

}

Example 2: Backend and storage class configuration for solidfire-san driver
with virtual storage pools

This example shows the backend definition file configured with virtual storage pools along with StorageClasses

that refer back to them.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

type at Silver. The virtual storage pools are defined in the storage section. In this example, some of the

19

storage pool sets their own type, and some pools overwrite the default values set above.

{

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://<user>:<password>@<mvip>/json-rpc/8.0",

 "SVIP": "<svip>:3260",

 "TenantName": "<tenant>",

 "UseCHAP": true,

 "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS": 2000,

"burstIOPS": 4000}},

 {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS": 6000,

"burstIOPS": 8000}},

 {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS": 8000,

"burstIOPS": 10000}}],

 "type": "Silver",

 "labels":{"store":"solidfire", "k8scluster": "dev-1-cluster"},

 "region": "us-east-1",

 "storage": [

 {

 "labels":{"performance":"gold", "cost":"4"},

 "zone":"us-east-1a",

 "type":"Gold"

 },

 {

 "labels":{"performance":"silver", "cost":"3"},

 "zone":"us-east-1b",

 "type":"Silver"

 },

 {

 "labels":{"performance":"bronze", "cost":"2"},

 "zone":"us-east-1c",

 "type":"Bronze"

 },

 {

 "labels":{"performance":"silver", "cost":"1"},

 "zone":"us-east-1d"

 }

]

}

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

20

The first StorageClass (solidfire-gold-four) will map to the first virtual storage pool. This is the only pool

offering gold performance with a Volume Type QoS of Gold. The last StorageClass (solidfire-silver)

calls out any storage pool which offers a silver performance. Astra Trident will decide which virtual storage pool

is selected and will ensure the storage requirement is met.

21

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-gold-four

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold; cost=4"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-three

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=3"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-bronze-two

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze; cost=2"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-one

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=1"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

 fsType: "ext4"

22

Find more information

• Volume access groups

Configure a backend with ONTAP or Cloud Volumes ONTAP
SAN drivers

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP SAN drivers.

• Preparation

• Configuration and examples

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for

NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using

the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.

The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Preparation

Learn about how to prepare to configure an ONTAP backend with ONTAP SAN drivers. For all ONTAP

backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-

default class that uses the ontap-san-economy one.

All of your Kubernetes worker nodes must have the appropriate iSCSI tools installed. See here for more

details.

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed

on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,

key, and the trusted CA certificate if used (recommended).

23

https://docs.netapp.com/us-en/trident-2201/trident-concepts/vol-access-groups.html
https://docs.netapp.com/us-en/trident-2201/trident-use/worker-node-prep.html

Users can also choose to update existing backends, opting to move from credential-based to certificate-based,

and vice-versa. If both credentials and certificates are provided, Astra Trident will default to using

certificates while issuing a warning to remove the credentials from the backend definition.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

24

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi

-authentication-method cert

security login create -user-or-group-name admin -application http

-authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

25

$ cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"trustedCACertificate": "QNFinfO...SiqOyN",

"storagePrefix": "myPrefix_"

}

$ tridentctl create backend -f cert-backend.json -n trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 0 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to make use of a different authentication method or to rotate their

credentials. This works both ways: backends that make use of username/password can be updated to use

certificates; backends that utilize certificates can be updated to username/password based. To do this, use an

updated backend.json file containing the required parameters to execute tridentctl backend update.

26

$ cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "secret",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

$ tridentctl update backend SanBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Specify igroups

Astra Trident uses igroups to control access to the volumes (LUNs) that it provisions. Administrators have two

options when it comes to specifying igroups for backends:

• Astra Trident can automatically create and manage an igroup per backend. If igroupName is not included

in the backend definition, Astra Trident creates an igroup named trident-<backend-UUID> on the

SVM. This will ensure each backend has a dedicated igroup and handle the automated addition/deletion of

Kubernetes node IQNs.

• Alternatively, pre-created igroups can also be provided in a backend definition. This can be done using the

igroupName config parameter. Astra Trident will add/delete Kubernetes node IQNs to the pre-existing

27

igroup.

For backends that have igroupName defined, the igroupName can be deleted with a tridentctl

backend update to have Astra Trident auto-handle igroups. This will not disrupt access to volumes that are

already attached to workloads. Future connections will be handled using the igroup Astra Trident created.

Dedicating an igroup for each unique instance of Astra Trident is a best practice that is beneficial

for the Kubernetes admin as well as the storage admin. CSI Trident automates the addition and

removal of cluster node IQNs to the igroup, greatly simplifying its management. When using the

same SVM across Kubernetes environments (and Astra Trident installations), using a dedicated

igroup ensures that changes made to one Kubernetes cluster don’t influence igroups associated

with another. In addition, it is also important to ensure each node in the Kubernetes cluster has a

unique IQN. As mentioned above, Astra Trident automatically handles the addition and removal

of IQNs. Reusing IQNs across hosts can lead to undesirable scenarios where hosts get

mistaken for one another and access to LUNs is denied.

If Astra Trident is configured to function as a CSI Provisioner, Kubernetes node IQNs are automatically added

to/removed from the igroup. When nodes are added to a Kubernetes cluster, trident-csi DaemonSet

deploys a pod (trident-csi-xxxxx) on the newly added nodes and registers the new nodes it can attach

volumes to. Node IQNs are also added to the backend’s igroup. A similar set of steps handle the removal of

IQNs when node(s) are cordoned, drained, and deleted from Kubernetes.

If Astra Trident does not run as a CSI Provisioner, the igroup must be manually updated to contain the iSCSI

IQNs from every worker node in the Kubernetes cluster. IQNs of nodes that join the Kubernetes cluster will

need to be added to the igroup. Similarly, IQNs of nodes that are removed from the Kubernetes cluster must be

removed from the igroup.

Authenticate connections with bidirectional CHAP

Astra Trident can authenticate iSCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-

economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,

Astra Trident configures the SVM’s default initiator security to bidirectional CHAP and set the username and

secrets from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections.

See the following sample configuration:

28

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "ontap_san_chap",

 "managementLIF": "192.168.0.135",

 "svm": "ontap_iscsi_svm",

 "useCHAP": true,

 "username": "vsadmin",

 "password": "FaKePaSsWoRd",

 "igroupName": "trident",

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

}

The useCHAP parameter is a Boolean option that can be configured only once. It is set to false

by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,

chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets

can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Astra Trident to configure CHAP on the storage

backend. This includes the following:

• Setting up CHAP on the SVM:

◦ If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs

already present in the volume, Astra Trident will set the default security type to CHAP and proceed to

configuring the CHAP initiator and target username and secrets.

◦ If the SVM contains LUNs, Astra Trident will not enable CHAP on the SVM. This ensures that access to

LUNs that are already present on the SVM isn’t restricted.

• Configuring the CHAP initiator and target username and secrets; these options must be specified in the

backend configuration (as shown above).

• Managing the addition of inititators to the igroupName given in the backend. If unspecified, this defaults to

trident.

After the backend is created, Astra Trident creates a corresponding tridentbackend CRD and stores the

CHAP secrets and usernames as Kubernetes secrets. All PVs that are created by Astra Trident on this

backend will be mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend.json file. This will

require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

29

When updating the CHAP secrets for a backend, you must use tridentctl to update the

backend. Do not update the credentials on the storage cluster through the CLI/ONTAP UI as

Astra Trident will not be able to pick up these changes.

$ cat backend-san.json

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "ontap_san_chap",

 "managementLIF": "192.168.0.135",

 "svm": "ontap_iscsi_svm",

 "useCHAP": true,

 "username": "vsadmin",

 "password": "FaKePaSsWoRd",

 "igroupName": "trident",

 "chapInitiatorSecret": "cl9qxUpDaTeD",

 "chapTargetInitiatorSecret": "rqxigXgkeUpDaTeD",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

}

$./tridentctl update backend ontap_san_chap -f backend-san.json -n

trident

+----------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+----------------+----------------+--------------------------------------

+--------+---------+

| ontap_san_chap | ontap-san | aa458f3b-ad2d-4378-8a33-1a472ffbeb5c |

online | 7 |

+----------------+----------------+--------------------------------------

+--------+---------+

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by

Astra Trident on the SVM. New connections will use the updated credentials and existing connections continue

to remain active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

Configuration options and examples

Learn about how to create and use ONTAP SAN drivers with your Astra Trident installation. This section

provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

30

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

“ontap-nas-flexgroup”, “ontap-san”,

“ontap-san-economy”

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF. Use

square brackets for IPv6. Cannot

be updated after you set it

Derived by the SVM unless

specified

useCHAP Use CHAP to authenticate iSCSI

for ONTAP SAN drivers [Boolean]

false

chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true

“”

labels Set of arbitrary JSON-formatted

labels to apply on volumes

“”

chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true

“”

chapUsername Inbound username. Required if

useCHAP=true

“”

chapTargetUsername Target username. Required if

useCHAP=true

“”

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

“”

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

“”

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based auth

“”

username Username to connect to the

cluster/SVM. Used for credential-

based auth

“”

password Password to connect to the

cluster/SVM. Used for credential-

based auth

“”

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

igroupName Name of the igroup for SAN

volumes to use

“trident-<backend-UUID>”

31

Parameter Description Default

storagePrefix Prefix used when provisioning new

volumes in the SVM. Cannot be

updated after you set it

“trident”

limitAggregateUsage Fail provisioning if usage is above

this percentage. Does not apply to

Amazon FSx for ONTAP

“” (not enforced by default)

limitVolumeSize Fail provisioning if requested

volume size is above this value.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200]

“100”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

false

useREST is provided as a tech preview that is recommended for test environments and not for

production workloads. When set to true, Astra Trident will use ONTAP REST APIs to

communicate with the backend. This feature requires ONTAP 9.9 and later. In addition, the

ONTAP login role used must have access to the ontap application. This is satisfied by the pre-

defined vsadmin and cluster-admin roles.

To communicate with the ONTAP cluster, you should provide the authentication parameters. This could be the

username/password to a security login or an installed certificate.

If you are using an Amazon FSx for NetApp ONTAP backend, do not specify the

limitAggregateUsage parameter. The fsxadmin and vsadmin roles provided by Amazon

FSx for NetApp ONTAP do not contain the required access permissions to retrieve aggregate

usage and limit it through Astra Trident.

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

For the ontap-san drivers, the default is to use all data LIF IPs from the SVM and to use iSCSI multipath.

Specifying an IP address for the dataLIF for the ontap-san drivers forces them to disable multipath and use

only the specified address.

When creating a backend, remember that dataLIF and storagePrefix cannot be modified

after creation. To update these parameters, you will need to create a new backend.

igroupName can be set to an igroup that is already created on the ONTAP cluster. If unspecified, Astra Trident

automatically creates an igroup named trident-<backend-UUID>. If providing a pre-defined igroupName,

NetApp recommends using an igroup per Kubernetes cluster, if the SVM is to be shared between

environments. This is necessary for Astra Trident to maintain IQN additions/deletions automatically.

Backends can also have igroups updated after creation:

32

• igroupName can be updated to point to a new igroup that is created and managed on the SVM outside of

Astra Trident.

• igroupName can be omitted. In this case, Astra Trident will create and manage a trident-<backend-UUID>

igroup automatically.

In both cases, volume attachments will continue to be accessible. Future volume attachments will use the

updated igroup. This update does not disrupt access to volumes present on the backend.

A fully-qualified domain name (FQDN) can be specified for the managementLIF option.

managementLIF for all ONTAP drivers can also be set to IPv6 addresses. Make sure to install Trident with the

--use-ipv6 flag. Care must be taken to define managementLIF IPv6 address within square brackets.

When using IPv6 addresses, make sure managementLIF and dataLIF (if included in your

backend definition) are defined within square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. If dataLIF is not provided, Astra Trident will fetch

the IPv6 data LIFs from the SVM.

To enable the ontap-san drivers to use CHAP, set the useCHAP parameter to true in your backend definition.

Astra Trident will then configure and use bidirectional CHAP as the default authentication for the SVM given in

the backend. See here to learn about how it works.

For the ontap-san-economy driver, the limitVolumeSize option will also restrict the maximum size of the

volumes it manages for qtrees and LUNs.

Astra Trident sets provisioning labels in the “Comments” field of all volumes created using the

ontap-san driver. For each volume created, the “Comments” field on the FlexVol will be

populated with all labels present on the storage pool it is placed in. Storage administrators can

define labels per storage pool and group all volumes created in a storage pool. This provides a

convenient way of differentiating volumes based on a set of customizable labels that are

provided in the backend configuration.

Backend configuration options for provisioning volumes

You can control how each volume is provisioned by default using these options in a special section of the

configuration. For an example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs “true”

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)

“none”

snapshotPolicy Snapshot policy to use “none”

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool/backend

“”

33

Parameter Description Default

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage

pool/backend

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is “none”, else

“”

splitOnClone Split a clone from its parent upon

creation

“false”

splitOnClone Split a clone from its parent upon

creation

“false”

encryption Enable NetApp volume encryption “false”

securityStyle Security style for new volumes “unix”

tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

use a non-shared QoS policy group and ensure the policy group is applied to each constituent

individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

workloads.

Here’s an example with defaults defined:

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "trident_svm",

 "username": "admin",

 "password": "password",

 "labels": {"k8scluster": "dev2", "backend": "dev2-sanbackend"},

 "storagePrefix": "alternate-trident",

 "igroupName": "custom",

 "debugTraceFlags": {"api":false, "method":true},

 "defaults": {

 "spaceReserve": "volume",

 "qosPolicy": "standard",

 "spaceAllocation": "false",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

34

For all volumes created using the ontap-san driver, Astra Trident adds an extra 10 percent

capacity to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with

the exact size that the user requests in the PVC. Astra Trident adds 10 percent to the FlexVol

(shows as Available size in ONTAP). Users will now get the amount of usable capacity they

requested. This change also prevents LUNs from becoming read-only unless the available

space is fully utilized. This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Astra Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve

percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Astra Trident adds to the FlexVol to accommodate the LUN metadata. For

snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is

5.5GiB. The volume show command should show results similar to this example:

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Astra Trident, the recommendation is to

specify DNS names for LIFs instead of IP addresses.

ontap-san driver with certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

35

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "DefaultSANBackend",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

 "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

 "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"

}

ontap-san driver with bidirectional CHAP

This is a minimal backend configuration example. This basic configuration creates an ontap-san backend

with useCHAP set to true.

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "labels": {"k8scluster": "test-cluster-1", "backend": "testcluster1-

sanbackend"},

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "username": "vsadmin",

 "password": "secret"

}

ontap-san-economy driver

36

{

 "version": 1,

 "storageDriverName": "ontap-san-economy",

 "managementLIF": "10.0.0.1",

 "svm": "svm_iscsi_eco",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "username": "vsadmin",

 "password": "secret"

}

Examples of backends with virtual storage pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual storage pools are

defined in the storage section.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and

encryption values, and some pools overwrite the default values set above.

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "username": "vsadmin",

 "password": "secret",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "false",

 "qosPolicy": "standard"

 },

 "labels":{"store": "san_store", "kubernetes-cluster": "prod-cluster-

37

1"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"protection":"gold", "creditpoints":"40000"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "true",

 "adaptiveQosPolicy": "adaptive-extreme"

 }

 },

 {

 "labels":{"protection":"silver", "creditpoints":"20000"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "true",

 "qosPolicy": "premium"

 }

 },

 {

 "labels":{"protection":"bronze", "creditpoints":"5000"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "false"

 }

 }

]

}

Here is an iSCSI example for the ontap-san-economy driver:

{

 "version": 1,

 "storageDriverName": "ontap-san-economy",

 "managementLIF": "10.0.0.1",

 "svm": "svm_iscsi_eco",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

38

 "username": "vsadmin",

 "password": "secret",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "false"

 },

 "labels":{"store":"san_economy_store"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"app":"oracledb", "cost":"30"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "true"

 }

 },

 {

 "labels":{"app":"postgresdb", "cost":"20"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "true"

 }

 },

 {

 "labels":{"app":"mysqldb", "cost":"10"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "false"

 }

 }

]

}

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

• The first StorageClass (protection-gold) will map to the first, second virtual storage pool in the

ontap-nas-flexgroup backend and the first virtual storage pool in the ontap-san backend. These are

the only pool offering gold level protection.

39

• The second StorageClass (protection-not-gold) will map to the third, fourth virtual storage pool in

ontap-nas-flexgroup backend and the second, third virtual storage pool in ontap-san backend.

These are the only pools offering protection level other than gold.

• The third StorageClass (app-mysqldb) will map to the fourth virtual storage pool in ontap-nas backend

and the third virtual storage pool in ontap-san-economy backend. These are the only pools offering

storage pool configuration for mysqldb type app.

• The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual

storage pool in ontap-nas-flexgroup backend and the second virtual storage pool in ontap-san

backend. These are the only pools offering gold-level protection at 20000 creditpoints.

• The fifth StorageClass (creditpoints-5k) will map to the second virtual storage pool in ontap-nas-

economy backend and the third virtual storage pool in ontap-san backend. These are the only pool

offerings at 5000 creditpoints.

Astra Trident will decide which virtual storage pool is selected and will ensure the storage requirement is met.

40

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: netapp.io/trident

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: netapp.io/trident

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

41

Configure a backend with ONTAP NAS drivers

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP NAS drivers.

• Preparation

• Configuration and examples

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for

NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using

the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.

The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Preparation

Learn about how to prepare to configure an ONTAP backend with ONTAP NAS drivers. For all ONTAP

backends, Astra Trident requires at least one aggregate assigned to the SVM.

For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a Gold class that uses the ontap-nas driver and a Bronze class that

uses the ontap-nas-economy one.

All of your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more details.

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed

on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,

key, and the trusted CA certificate if used (recommended).

Users can also choose to update existing backends, opting to move from credential-based to certificate-based,

and vice-versa. If both credentials and certificates are provided, Astra Trident will default to using

certificates while issuing a warning to remove the credentials from the backend definition.

42

https://docs.netapp.com/us-en/trident-2201/trident-use/worker-node-prep.html

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

43

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi

-authentication-method cert -vserver <vserver-name>

security login create -user-or-group-name vsadmin -application http

-authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-

data-management.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

44

$ cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

$ tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to make use of a different authentication method or to rotate their

credentials. This works both ways: backends that make use of username/password can be updated to use

certificates; backends that utilize certificates can be updated to username/password based. To do this, use an

updated backend.json file containing the required parameters to execute tridentctl backend update.

45

$ cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "secret",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

$ tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Manage NFS export policies

Astra Trident uses NFS export policies to control access to the volumes that it provisions.

Astra Trident provides two options when working with export policies:

• Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage

administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds

node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are

specified, any global-scoped unicast IP found on the nodes will be added to the export policy.

• Storage administrators can create an export policy and add rules manually. Astra Trident uses the default

46

export policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

The 20.04 release of CSI Trident provides the ability to dynamically manage export policies for ONTAP

backends. This provides the storage administrator the ability to specify a permissible address space for worker

node IPs, rather than defining explicit rules manually. It greatly simplifies export policy management;

modifications to the export policy no longer require manual intervention on the storage cluster. Moreover, this

helps restrict access to the storage cluster only to worker nodes that have IPs in the range specified,

supporting a finegrained and automated managment.

The dynamic management of export policies is only available for CSI Trident. It is important to

ensure that the worker nodes are not being NATed.

Example

There are two configuration options that must be used. Here’s an example backend definition:

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap_nas_auto_export,

 "managementLIF": "192.168.0.135",

 "svm": "svm1",

 "username": "vsadmin",

 "password": "FaKePaSsWoRd",

 "autoExportCIDRs": ["192.168.0.0/24"],

 "autoExportPolicy": true

}

When using this feature, you must ensure that the root junction in your SVM has a precreated

export policy with an export rule that permits the node CIDR block (such as the default export

policy). Always follow NetApp’s recommended best practice of dedicating a SVM for Astra

Trident.

Here is an explanation of how this feature works using the example above:

• autoExportPolicy is set to true. This indicates that Astra Trident will create an export policy for the

svm1 SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For

example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to

true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the

SVM.

• autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",

"::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs

that fall within this address range will be added to the export policy that Astra Trident creates. When Astra

Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the

address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules

47

for the client IPs it discovers, with one rule for each node it identifies.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can

append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when

deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable

autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting

the exportPolicy parameter in your backend config.

After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the

corresponding tridentbackend CRD:

$./tridentctl get backends ontap_nas_auto_export -n trident -o yaml

items:

- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec

 config:

 aggregate: ""

 autoExportCIDRs:

 - 192.168.0.0/24

 autoExportPolicy: true

 backendName: ontap_nas_auto_export

 chapInitiatorSecret: ""

 chapTargetInitiatorSecret: ""

 chapTargetUsername: ""

 chapUsername: ""

 dataLIF: 192.168.0.135

 debug: false

 debugTraceFlags: null

 defaults:

 encryption: "false"

 exportPolicy: <automatic>

 fileSystemType: ext4

As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of

existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the

backend).

When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the

node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue

mounts, unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend will ensure that

Astra Trident manages the export policies automatically. This will create a new export policy named after the

backend’s UUID and volumes that are present on the backend will use the newly created export policy when

they are mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export

policy. If the backend is re-created, it is treated as a new backend and will result in the creation

of a new export policy.

48

If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident

will then update the export policy for backends it manages to reflect this IP change.

Configuration options and examples

Learn about how to create and use ONTAP NAS drivers with your Astra Trident installation. This section

provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

“ontap-nas-flexgroup”, “ontap-san”,

“ontap-san-economy”

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF. Use

square brackets for IPv6. Cannot

be updated after you set it

Derived by the SVM unless

specified

autoExportPolicy Enable automatic export policy

creation and updating [Boolean]

false

autoExportCIDRs List of CIDRs to filter Kubernetes’

node IPs against when

autoExportPolicy is enabled

[“0.0.0.0/0”, “::/0”]`

labels Set of arbitrary JSON-formatted

labels to apply on volumes

“”

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

“”

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

“”

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based auth

“”

username Username to connect to the

cluster/SVM. Used for credential-

based auth

password Password to connect to the

cluster/SVM. Used for credential-

based auth

49

Parameter Description Default

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

igroupName Name of the igroup for SAN

volumes to use

“trident-<backend-UUID>”

storagePrefix Prefix used when provisioning new

volumes in the SVM. Cannot be

updated after you set it

“trident”

limitAggregateUsage Fail provisioning if usage is above

this percentage. Does not apply to

Amazon FSx for ONTAP

“” (not enforced by default)

limitVolumeSize Fail provisioning if requested

volume size is above this value.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200]

“100”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

nfsMountOptions Comma-separated list of NFS

mount options

“”

qtreesPerFlexvol Maximum Qtrees per FlexVol, must

be in range [50, 300]

“200”

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

false

useREST is provided as a tech preview that is recommended for test environments and not for

production workloads. When set to true, Astra Trident will use ONTAP REST APIs to

communicate with the backend. This feature requires ONTAP 9.9 and later. In addition, the

ONTAP login role used must have access to the ontap application. This is satisfied by the pre-

defined vsadmin and cluster-admin roles.

To communicate with the ONTAP cluster, you should provide the authentication parameters. This could be the

username/password to a security login or an installed certificate.

If you are using an Amazon FSx for NetApp ONTAP backend, do not specify the

limitAggregateUsage parameter. The fsxadmin and vsadmin roles provided by Amazon

FSx for NetApp ONTAP do not contain the required access permissions to retrieve aggregate

usage and limit it through Astra Trident.

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

When creating a backend, remember that the dataLIF and storagePrefix cannot be

modified after creation. To update these parameters, you will need to create a new backend.

A fully-qualified domain name (FQDN) can be specified for the managementLIF option. A FQDN may also be

50

specified for the dataLIF option, in which case the FQDN will be used for the NFS mount operations. This

way you can create a round-robin DNS to load-balance across multiple data LIFs.

managementLIF for all ONTAP drivers can also be set to IPv6 addresses. Make sure to install Astra Trident

with the --use-ipv6 flag. Care must be taken to define the managementLIF IPv6 address within square

brackets.

When using IPv6 addresses, make sure managementLIF and dataLIF (if included in your

backend definition) are defined within square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. If dataLIF is not provided, Astra Trident will fetch

the IPv6 data LIFs from the SVM.

Using the autoExportPolicy and autoExportCIDRs options, CSI Trident can manage export policies

automatically. This is supported for all ontap-nas-* drivers.

For the ontap-nas-economy driver, the limitVolumeSize option will also restrict the maximum size of the

volumes it manages for qtrees and LUNs, and the qtreesPerFlexvol option allows customizing the

maximum number of qtrees per FlexVol.

The nfsMountOptions parameter can be used to specify mount options. The mount options for Kubernetes

persistent volumes are normally specified in storage classes, but if no mount options are specified in a storage

class, Astra Trident will fall back to using the mount options specified in the storage backend’s configuration

file. If no mount options are specified in either the storage class or the configuration file, then Astra Trident will

not set any mount options on an associated persistent volume.

Astra Trident sets provisioning labels in the “Comments” field of all volumes created using

ontap-nas and ontap-nas-flexgroup. Based on the driver used, the comments are set on

the FlexVol (ontap-nas) or FlexGroup (ontap-nas-flexgroup). Astra Trident will copy all

labels present on a storage pool to the storage volume at the time it is provisioned. Storage

administrators can define labels per storage pool and group all volumes created in a storage

pool. This provides a convenient way of differentiating volumes based on a set of customizable

labels that are provided in the backend configuration.

Backend configuration options for provisioning volumes

You can control how each volume is provisioned by default using these options in a special section of the

configuration. For an example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs “true”

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)

“none”

snapshotPolicy Snapshot policy to use “none”

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool/backend

“”

51

Parameter Description Default

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage

pool/backend. Not supported by

ontap-nas-economy.

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is “none”, else

“”

splitOnClone Split a clone from its parent upon

creation

“false”

encryption Enable NetApp volume encryption “false”

securityStyle Security style for new volumes “unix”

tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

unixPermissions Mode for new volumes “777”

snapshotDir Controls visibility of the

.snapshot directory

“false”

exportPolicy Export policy to use “default”

securityStyle Security style for new volumes “unix”

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

use a non-shared QoS policy group and ensure the policy group is applied to each constituent

individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

workloads.

Here’s an example with defaults defined:

52

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "customBackendName",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "labels": {"k8scluster": "dev1", "backend": "dev1-nasbackend"},

 "svm": "trident_svm",

 "username": "cluster-admin",

 "password": "password",

 "limitAggregateUsage": "80%",

 "limitVolumeSize": "50Gi",

 "nfsMountOptions": "nfsvers=4",

 "debugTraceFlags": {"api":false, "method":true},

 "defaults": {

 "spaceReserve": "volume",

 "qosPolicy": "premium",

 "exportPolicy": "myk8scluster",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

For ontap-nas and ontap-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the

FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC,

Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation

ensures that the user receives the writable space they requested for in the PVC, and not lesser space than

what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the

snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user

requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what

the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the

percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to

see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available

size is 5GiB, which is what the user requested in the PVC request. The volume show command should show

results similar to this example:

53

Existing backends from previous installs will provision volumes as explained above when upgrading Astra

Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be

observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides

1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of

writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify

DNS names for LIFs instead of IP addresses.

ontap-nas driver with certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

{

 "version": 1,

 "backendName": "DefaultNASBackend",

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.15",

 "svm": "nfs_svm",

 "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

 "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

 "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz",

 "storagePrefix": "myPrefix_"

}

ontap-nas driver with auto export policy

This example shows you how you can instruct Astra Trident to use dynamic export policies to create and

manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-nas-

flexgroup drivers.

54

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "labels": {"k8scluster": "test-cluster-east-1a", "backend": "test1-

nasbackend"},

 "autoExportPolicy": true,

 "autoExportCIDRs": ["10.0.0.0/24"],

 "username": "admin",

 "password": "secret",

 "nfsMountOptions": "nfsvers=4",

}

ontap-nas-flexgroup driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "labels": {"k8scluster": "test-cluster-east-1b", "backend": "test1-

ontap-cluster"},

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

}

ontap-nas driver with IPv6

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "nas_ipv6_backend",

 "managementLIF": "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]",

 "labels": {"k8scluster": "test-cluster-east-1a", "backend": "test1-ontap-

ipv6"},

 "svm": "nas_ipv6_svm",

 "username": "vsadmin",

 "password": "netapp123"

}

55

ontap-nas-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret"

}

Examples of backends with virtual storage pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual storage pools are

defined in the storage section.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and

encryption values, and some pools overwrite the default values set above.

ontap-nas driver

{

 {

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "admin",

 "password": "secret",

 "nfsMountOptions": "nfsvers=4",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false",

 "qosPolicy": "standard"

 },

 "labels":{"store":"nas_store", "k8scluster": "prod-cluster-1"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"app":"msoffice", "cost":"100"},

 "zone":"us_east_1a",

 "defaults": {

56

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755",

 "adaptiveQosPolicy": "adaptive-premium"

 }

 },

 {

 "labels":{"app":"slack", "cost":"75"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"app":"wordpress", "cost":"50"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0775"

 }

 },

 {

 "labels":{"app":"mysqldb", "cost":"25"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

}

ontap-nas-flexgroup driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

57

 "password": "secret",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false"

 },

 "labels":{"store":"flexgroup_store", "k8scluster": "prod-cluster-1"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"protection":"gold", "creditpoints":"50000"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"protection":"gold", "creditpoints":"30000"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"protection":"silver", "creditpoints":"20000"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0775"

 }

 },

 {

 "labels":{"protection":"bronze", "creditpoints":"10000"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

58

}

ontap-nas-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false"

 },

 "labels":{"store":"nas_economy_store"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"department":"finance", "creditpoints":"6000"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"department":"legal", "creditpoints":"5000"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"department":"engineering", "creditpoints":"3000"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0775"

59

 }

 },

 {

 "labels":{"department":"humanresource",

"creditpoints":"2000"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

}

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

• The first StorageClass (protection-gold) will map to the first, second virtual storage pool in the

ontap-nas-flexgroup backend and the first virtual storage pool in the ontap-san backend. These are

the only pool offering gold level protection.

• The second StorageClass (protection-not-gold) will map to the third, fourth virtual storage pool in

ontap-nas-flexgroup backend and the second, third virtual storage pool in ontap-san backend.

These are the only pools offering protection level other than gold.

• The third StorageClass (app-mysqldb) will map to the fourth virtual storage pool in ontap-nas backend

and the third virtual storage pool in ontap-san-economy backend. These are the only pools offering

storage pool configuration for mysqldb type app.

• The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual

storage pool in ontap-nas-flexgroup backend and the second virtual storage pool in ontap-san

backend. These are the only pools offering gold-level protection at 20000 creditpoints.

• The fifth StorageClass (creditpoints-5k) will map to the second virtual storage pool in ontap-nas-

economy backend and the third virtual storage pool in ontap-san backend. These are the only pool

offerings at 5000 creditpoints.

Astra Trident will decide which virtual storage pool is selected and will ensure the storage requirement is met.

60

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: netapp.io/trident

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: netapp.io/trident

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

61

Use Astra Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP, is a fully managed AWS service that enables customers to launch and run

file systems powered by NetApp’s ONTAP storage operating system. Amazon FSx for NetApp ONTAP enables

you to leverage NetApp features, performance, and administrative capabilities you are familiar with, while

taking advantage of the simplicity, agility, security, and scalability of storing data on AWS. FSx supports many

of ONTAP’s file system features and administration APIs.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within

each SVM you can create one or multiple volumes, which are data containers that store the files and folders in

your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file

system in the cloud. The new file system type is called NetApp ONTAP.

Using Astra Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in

Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Creating your Amazon FSx for ONTAP file system

Volumes created on Amazon FSx filesystems that have automatic backups enabled cannot be

deleted by Trident. To delete PVCs, you need to manually delete the PV and the FSx for ONTAP

volume.

To prevent this issue:

• Do not use Quick create to create the FSx for ONTAP file system. The quick create

workflow enables automatic backups and does not provide an opt-out option.

• When using Standard create, disable automatic backup. Disabling automatic backups

allows Trident to successfully delete a volume without further manual intervention.

Learn about Astra Trident

If you are new to Astra Trident, familiarize yourself by using the links provided below:

• FAQs

• Requirements for using Astra Trident

• Deploy Astra Trident

• Best practices for configuring ONTAP, Cloud Volumes ONTAP, and Amazon FSx for NetApp ONTAP

• Integrate Astra Trident

• ONTAP SAN backend configuration

62

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.netapp.com/us-en/trident-2201/faq.html
https://docs.netapp.com/us-en/trident-2201/trident-get-started/requirements.html
https://docs.netapp.com/us-en/trident-2201/trident-get-started/kubernetes-deploy.html
https://docs.netapp.com/us-en/trident-2201/trident-reco/storage-config-best-practices.html
https://docs.netapp.com/us-en/trident-2201/trident-reco/integrate-trident.html#ontap

• ONTAP NAS backend configuration

Learn more about driver capabilities here.

Amazon FSx for NetApp ONTAP uses FabricPool to manage storage tiers. It enables you to store data in a tier,

based on whether the data is frequently accessed.

Astra Trident expects to be run as a vsadmin SVM user or as a user with a different name that has the same

role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a limited replacement of the ONTAP

admin cluster user. It is not recommended to use the fsxadmin user, with Trident, as a vsadmin SVM user

has access to more Astra Trident capabilities.

Drivers

You can integrate Astra Trident with Amazon FSx for NetApp ONTAP by using the following drivers:

• ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

• ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup

volume.

Authentication

Astra Trident offers two modes of authentication:

• Certificate-based: Astra Trident will communicate with the SVM on your FSx file system using a certificate

installed on your SVM.

• Credential-based: You can use the fsxadmin user for your file system or the vsadmin user configured for

your SVM.

We strongly recommend using the vsadmin user instead of the fsxadmin to configure

your backend. Astra Trident will communicate with the FSx file system using this username

and password.

To learn more about authentication, see these links:

• ONTAP NAS

• ONTAP SAN

Deploy and configure Astra Trident on EKS with Amazon FSx for NetApp ONTAP

What you’ll need

• An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubectl installed.

• An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is

reachable from your cluster’s worker nodes.

63

https://docs.netapp.com/us-en/trident-2201/trident-concepts/ontap-drivers.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-mgng-stor-tier-fp/GUID-5A78F93F-7539-4840-AB0B-4A6E3252CF84.html

• Worker nodes that are prepared for NFS and/or iSCSI.

Ensure that you follow the node preparation steps required for Amazon Linux and Ubuntu

Amazon Machine Images (AMIs) depending on your EKS AMI type.

For other Astra Trident requirements, see here.

Steps

1. Deploy Astra Trident using one of the ../trident-get-started/kubernetes-deploy.html[deployment methods^].

2. Configure Astra Trident as follows:

a. Collect your SVM’s management LIF DNS name. For example, by using the AWS CLI, find the

DNSName entry under Endpoints → Management after running the following command:

aws fsx describe-storage-virtual-machines --region <file system

region>

3. Create and install certificates for authentication. If you are using an ontap-san backend, see here. If you

are using an ontap-nas backend, see here.

You can log in to your file system (for example to install certificates) using SSH from

anywhere that can reach your file system. Use the fsxadmin user, the password you

configured when you created your file system, and the management DNS name from aws

fsx describe-file-systems.

4. Create a backend file using your certificates and the DNS name of your management LIF, as shown in the

sample below:

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "customBackendName",

 "managementLIF": "svm-XXXXXXXXXXXXXXXXX.fs-XXXXXXXXXXXXXXXXX.fsx.us-

east-2.aws.internal",

 "svm": "svm01",

 "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

 "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

 "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz",

 }

For information about creating backends, see these links:

• Configure a backend with ONTAP NAS drivers

• Configure a backend with ONTAP SAN drivers

64

https://docs.netapp.com/us-en/trident-2201/trident-use/worker-node-prep.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.netapp.com/us-en/trident-2201/trident-get-started/requirements.html

Do not specify dataLIF for the ontap-san and ontap-san-economy drivers to allow Astra

Trident to use multipath.

The limitAggregateUsage parameter will not work with the vsadmin and fsxadmin user

accounts. The configuration operation will fail if you specify this parameter.

After deployment, perform the steps to create a storage class, provision a volume, and mount the volume in a

pod.

Find more information

• Amazon FSx for NetApp ONTAP documentation

• Blog post on Amazon FSx for NetApp ONTAP

65

https://docs.netapp.com/us-en/trident-2201/trident-get-started/kubernetes-postdeployment.html
https://docs.netapp.com/us-en/trident-2201/trident-get-started/kubernetes-postdeployment.html
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

66

http://www.netapp.com/TM

	Configure backends : Astra Trident
	Table of Contents
	Configure backends
	Configure an Azure NetApp Files backend
	Backend configuration options
	Example 1: Minimal configuration
	Example 2: Specific service level configuration with capacity pool filters
	Example 3: Advanced configuration
	Example 4: Virtual storage pool configuration
	What’s next?

	Configure a CVS for GCP backend
	Backend configuration options
	Example 1: Minimal configuration
	Example 2: Base CVS service type configuration
	Example 3: Single service level configuration
	Example 4: Virtual storage pool configuration
	What’s next?

	Configure a NetApp HCI or SolidFire backend
	Backend configuration options
	Example 1: Backend configuration for solidfire-san driver with three volume types
	Example 2: Backend and storage class configuration for solidfire-san driver with virtual storage pools
	Find more information

	Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers
	User permissions
	Preparation
	Configuration options and examples

	Configure a backend with ONTAP NAS drivers
	User permissions
	Preparation
	Configuration options and examples

	Use Astra Trident with Amazon FSx for NetApp ONTAP
	Learn about Astra Trident
	Deploy and configure Astra Trident on EKS with Amazon FSx for NetApp ONTAP
	Find more information

