
Reference

Astra Trident
NetApp
January 03, 2023

This PDF was generated from https://docs.netapp.com/us-en/trident-2207/trident-reference/trident-
ports.html on January 03, 2023. Always check docs.netapp.com for the latest.

Table of Contents

Reference. 1

Astra Trident ports . 1

Astra Trident REST API . 1

Command-line options . 2

NetApp products integrated with Kubernetes. 3

Kubernetes and Trident objects . 4

tridentctl commands and options . 16

Pod Security Standards (PSS) and Security Context Constraints (SCC) . 21

Reference

Astra Trident ports

Learn more about the ports that Astra Trident communicates over.

Astra Trident communicates over the following ports:

Port Purpose

8443 Backchannel HTTPS

8001 Prometheus metrics endpoint

8000 Trident REST server

17546 Liveness/readiness probe port used by Trident daemonset pods

The liveness/readiness probe port can be changed during installation time using the --probe

-port flag. It is important to make sure this port isn’t being used by another process on the

worker nodes.

Astra Trident REST API

While tridentctl commands and options is the easiest way to interact with Astra Trident’s

REST API, you can use the REST endpoint directly if you prefer.

This is useful for advanced installations that use Astra Trident as a standalone binary in non-Kubernetes

deployments.

For better security, Astra Trident’s REST API is restricted to localhost by default when running inside a pod. To

change this behavior, you need to set Astra Trident’s -address argument in its pod configuration.

The API works as follows:

GET

• GET <trident-address>/trident/v1/<object-type>: Lists all objects of that type.

• GET <trident-address>/trident/v1/<object-type>/<object-name>: Gets the details of the

named object.

POST

POST <trident-address>/trident/v1/<object-type>: Creates an object of the specified type.

• Requires a JSON configuration for the object to be created. For the specification of each object type, see

tridentctl commands and options.

• If the object already exists, behavior varies: backends update the existing object, while all other object

types will fail the operation.

1

DELETE

DELETE <trident-address>/trident/v1/<object-type>/<object-name>: Deletes the named

resource.

Volumes associated with backends or storage classes will continue to exist; these must be

deleted separately. For more information, see tridentctl commands and options.

For examples of how these APIs are called, pass the debug (-d) flag. For more information, see tridentctl

commands and options.

Command-line options

Astra Trident exposes several command-line options for the Trident orchestrator. You can

use these options to modify your deployment.

Logging

• -debug: Enables debugging output.

• -loglevel <level>: Sets the logging level (debug, info, warn, error, fatal). Defaults to info.

Kubernetes

• -k8s_pod: Use this option or -k8s_api_server to enable Kubernetes support. Setting this causes

Trident to use its containing pod’s Kubernetes service account credentials to contact the API server. This

only works when Trident runs as a pod in a Kubernetes cluster with service accounts enabled.

• -k8s_api_server <insecure-address:insecure-port>: Use this option or -k8s_pod to enable

Kubernetes support. When specified, Trident connects to the Kubernetes API server using the provided

insecure address and port. This allows Trident to be deployed outside of a pod; however, it only supports

insecure connections to the API server. To connect securely, deploy Trident in a pod with the -k8s_pod

option.

• -k8s_config_path <file>: Required; you must specify this path to a KubeConfig file.

Docker

• -volume_driver <name>: Driver name used when registering the Docker plugin. Defaults to netapp.

• -driver_port <port-number>: Listen on this port rather than a UNIX domain socket.

• -config <file>: Required; you must specify this path to a backend configuration file.

REST

• -address <ip-or-host>: Specifies the address on which Trident’s REST server should listen. Defaults

to localhost. When listening on localhost and running inside a Kubernetes pod, the REST interface isn’t

directly accessible from outside the pod. Use -address "" to make the REST interface accessible from

the pod IP address.

2

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1] (for

IPv6) only.

• -port <port-number>: Specifies the port on which Trident’s REST server should listen. Defaults to

8000.

• -rest: Enables the REST interface. Defaults to true.

NetApp products integrated with Kubernetes

The NetApp portfolio of storage products integrates with many different aspects of a Kubernetes cluster,

providing advanced data management capabilities, which enhance the functionality, capability, performance,

and availability of the Kubernetes deployment.

Astra

Astra makes it easier for enterprises to manage, protect, and move their data-rich containerized workloads

running on Kubernetes within and across public clouds and on-premises. Astra provisions and provides

persistent container storage using Trident from NetApp’s proven and expansive storage portfolio in the public

cloud and on-premises. It also offers a rich set of advanced application-aware data management functionality,

such as snapshot, backup and restore, activity logs, and active cloning for data protection, disaster/data

recovery, data audit, and migration use cases for Kubernetes workloads.

ONTAP

ONTAP is NetApp’s multiprotocol, unified storage operating system that provides advanced data management

capabilities for any application. ONTAP systems have all-flash, hybrid, or all-HDD configurations and offer

many different deployment models, including engineered hardware (FAS and AFF), white-box (ONTAP Select),

and cloud-only (Cloud Volumes ONTAP).

Trident supports all the above mentioned ONTAP deployment models.

Cloud Volumes ONTAP

Cloud Volumes ONTAP is a software-only storage appliance that runs the ONTAP data management software

in the cloud. You can use Cloud Volumes ONTAP for production workloads, disaster recovery, DevOps, file

shares, and database management. It extends enterprise storage to the cloud by offering storage efficiencies,

high availability, data replication, data tiering and application consistency.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers to launch and run file

systems powered by NetApp’s ONTAP storage operating system. FSx for ONTAP enables customers to

leverage NetApp features, performance, and administrative capabilities they’re familiar with, while taking

advantage of the simplicity, agility, security, and scalability of storing data on AWS. FSx for ONTAP supports

many of ONTAP’s file system features and administration APIs.

Element software

Element enables the storage administrator to consolidate workloads by guaranteeing performance and

enabling a simplified and streamlined storage footprint. Coupled with an API to enable automation of all

aspects of storage management, Element enables storage administrators to do more with less effort.

3

https://docs.netapp.com/us-en/astra/
http://cloud.netapp.com/ontap-cloud?utm_source=GitHub&utm_campaign=Trident
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/data-management/element-software/

NetApp HCI

NetApp HCI simplifies the management and scale of the datacenter by automating routine tasks and enabling

infrastructure administrators to focus on more important functions.

NetApp HCI is fully supported by Trident. Trident can provision and manage storage devices for containerized

applications directly against the underlying NetApp HCI storage platform.

Azure NetApp Files

Azure NetApp Files is an enterprise-grade Azure file share service, powered by NetApp. You can run your

most demanding file-based workloads in Azure natively, with the performance and rich data management you

expect from NetApp.

Cloud Volumes Service for Google Cloud

NetApp Cloud Volumes Service for Google Cloud is a cloud native file service that provides NAS volumes over

NFS and SMB with all-flash performance. This service enables any workload, including legacy applications, to

run in the GCP cloud. It provides a fully managed service which offers consistent high performance, instant

cloning, data protection and secure access to Google Compute Engine (GCE) instances.

Kubernetes and Trident objects

You can interact with Kubernetes and Trident using REST APIs by reading and writing resource objects. There

are several resource objects that dictate the relationship between Kubernetes and Trident, Trident and storage,

and Kubernetes and storage. Some of these objects are managed through Kubernetes and the others are

managed through Trident.

How do the objects interact with one another?

Perhaps the easiest way to understand the objects, what they are for, and how they interact, is to follow a

single request for storage from a Kubernetes user:

1. A user creates a PersistentVolumeClaim requesting a new PersistentVolume of a particular size

from a Kubernetes StorageClass that was previously configured by the administrator.

2. The Kubernetes StorageClass identifies Trident as its provisioner and includes parameters that tell

Trident how to provision a volume for the requested class.

3. Trident looks at its own StorageClass with the same name that identifies the matching Backends and

StoragePools that it can use to provision volumes for the class.

4. Trident provisions storage on a matching backend and creates two objects: a PersistentVolume in

Kubernetes that tells Kubernetes how to find, mount, and treat the volume, and a volume in Trident that

retains the relationship between the PersistentVolume and the actual storage.

5. Kubernetes binds the PersistentVolumeClaim to the new PersistentVolume. Pods that include the

PersistentVolumeClaim mount that PersistentVolume on any host that it runs on.

6. A user creates a VolumeSnapshot of an existing PVC, using a VolumeSnapshotClass that points to

Trident.

7. Trident identifies the volume that is associated with the PVC and creates a snapshot of the volume on its

backend. It also creates a VolumeSnapshotContent that instructs Kubernetes on how to identify the

snapshot.

4

https://www.netapp.com/virtual-desktop-infrastructure/netapp-hci/
https://azure.microsoft.com/en-us/services/netapp/
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=GitHub&utm_campaign=Trident

8. A user can create a PersistentVolumeClaim using VolumeSnapshot as the source.

9. Trident identifies the required snapshot and performs the same set of steps involved in creating a

PersistentVolume and a Volume.

For further reading about Kubernetes objects, we highly recommend that you read the

Persistent Volumes section of the Kubernetes documentation.

Kubernetes PersistentVolumeClaim objects

A Kubernetes PersistentVolumeClaim object is a request for storage made by a Kubernetes cluster user.

In addition to the standard specification, Trident allows users to specify the following volume-specific

annotations if they want to override the defaults that you set in the backend configuration:

Annotation Volume Option Supported Drivers

trident.netapp.io/fileSystem fileSystem ontap-san, solidfire-san,

eseries-iscsi, ontap-san-economy

trident.netapp.io/cloneFromPVC cloneSourceVolume ontap-nas,

ontap-san, solidfire-san, azure-

netapp-files, gcp-cvs,

ontap-san-economy

trident.netapp.io/splitOnClone splitOnClone ontap-nas, ontap-san

trident.netapp.io/protocol protocol any

trident.netapp.io/exportPolicy exportPolicy ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/snapshotPolicy snapshotPolicy ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup, ontap-san

trident.netapp.io/snapshotReserve snapshotReserve ontap-nas,

ontap-nas-flexgroup, ontap-san,

gcp-cvs

trident.netapp.io/snapshotDirectory snapshotDirectory ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/unixPermissions unixPermissions ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/blockSize blockSize solidfire-san

If the created PV has the Delete reclaim policy, Trident deletes both the PV and the backing volume when the

PV becomes released (that is, when the user deletes the PVC). Should the delete action fail, Trident marks the

PV as such and periodically retries the operation until it succeeds or the PV is manually deleted. If the PV uses

the Retain policy, Trident ignores it and assumes the administrator will clean it up from Kubernetes and the

backend, allowing the volume to be backed up or inspected before its removal. Note that deleting the PV does

5

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

not cause Trident to delete the backing volume. You should remove it using the REST API (tridentctl).

Trident supports the creation of Volume Snapshots using the CSI specification: you can create a Volume

Snapshot and use it as a Data Source to clone existing PVCs. This way, point-in-time copies of PVs can be

exposed to Kubernetes in the form of snapshots. The snapshots can then be used to create new PVs. Take a

look at On-Demand Volume Snapshots to see how this would work.

Trident also provides the cloneFromPVC and splitOnClone annotations for creating clones. You can use

these annotations to clone a PVC without having to use the CSI implementation (on Kubernetes 1.13 and

earlier) or if your Kubernetes release does not support beta Volume Snapshots (Kubernetes 1.16 and earlier).

Keep in mind that Trident 19.10 supports the CSI workflow for cloning from a PVC.

You can use the cloneFromPVC and splitOnClone annotations with CSI Trident as well as

the traditional non-CSI frontend.

Here is an example: If a user already has a PVC called mysql, the user can create a new PVC called

mysqlclone by using the annotation, such as trident.netapp.io/cloneFromPVC: mysql. With this

annotation set, Trident clones the volume corresponding to the mysql PVC, instead of provisioning a volume

from scratch.

Consider the following points:

• We recommend cloning an idle volume.

• A PVC and its clone should be in the same Kubernetes namespace and have the same storage class.

• With the ontap-nas and ontap-san drivers, it might be desirable to set the PVC annotation

trident.netapp.io/splitOnClone in conjunction with trident.netapp.io/cloneFromPVC. With

trident.netapp.io/splitOnClone set to true, Trident splits the cloned volume from the parent

volume and thus, completely decoupling the life cycle of the cloned volume from its parent at the expense

of losing some storage efficiency. Not setting trident.netapp.io/splitOnClone or setting it to

false results in reduced space consumption on the backend at the expense of creating dependencies

between the parent and clone volumes such that the parent volume cannot be deleted unless the clone is

deleted first. A scenario where splitting the clone makes sense is cloning an empty database volume where

it’s expected for the volume and its clone to greatly diverge and not benefit from storage efficiencies offered

by ONTAP.

The sample-input directory contains examples of PVC definitions for use with Trident. See Trident Volume

objects for a full description of the parameters and settings associated with Trident volumes.

Kubernetes PersistentVolume objects

A Kubernetes PersistentVolume object represents a piece of storage that is made available to the

Kubernetes cluster. It has a lifecycle that is independent of the pod that uses it.

Trident creates PersistentVolume objects and registers them with the Kubernetes cluster

automatically based on the volumes that it provisions. You are not expected to manage them

yourself.

When you create a PVC that refers to a Trident-based StorageClass, Trident provisions a new volume using

the corresponding storage class and registers a new PV for that volume. In configuring the provisioned volume

and corresponding PV, Trident follows the following rules:

6

• Trident generates a PV name for Kubernetes and an internal name that it uses to provision the storage. In

both cases, it is assuring that the names are unique in their scope.

• The size of the volume matches the requested size in the PVC as closely as possible, though it might be

rounded up to the nearest allocatable quantity, depending on the platform.

Kubernetes StorageClass objects

Kubernetes StorageClass objects are specified by name in PersistentVolumeClaims to provision

storage with a set of properties. The storage class itself identifies the provisioner to be used and defines that

set of properties in terms the provisioner understands.

It is one of two basic objects that need to be created and managed by the administrator. The other is the

Trident backend object.

A Kubernetes StorageClass object that uses Trident looks like this:

apiVersion: storage.k8s.io/v1beta1

kind: StorageClass

metadata:

 name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters:

 <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

These parameters are Trident-specific and tell Trident how to provision volumes for the class.

The storage class parameters are:

Attribute Type Required Description

attributes map[string]string no See the attributes section

below

storagePools map[string]StringList no Map of backend names to

lists

of storage pools within

additionalStoragePools map[string]StringList no Map of backend names

to lists of storage pools

within

excludeStoragePools map[string]StringList no Map of backend names to

lists of storage pools

within

Storage attributes and their possible values can be classified into storage pool selection attributes and

Kubernetes attributes.

7

Storage pool selection attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.

Attribute Type Values Offer Request Supported by

media1 string hdd, hybrid, ssd Pool contains

media of this

type; hybrid

means both

Media type

specified

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san

provisioningType string thin, thick Pool supports

this provisioning

method

Provisioning

method specified

thick: all ontap &

eseries-iscsi;

thin: all ontap &

solidfire-san

backendType string ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san,

eseries-iscsi,

gcp-cvs, azure-

netapp-files,

ontap-san-

economy

Pool belongs to

this type of

backend

Backend

specified

All drivers

snapshots bool true, false Pool supports

volumes with

snapshots

Volume with

snapshots

enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

clones bool true, false Pool supports

cloning volumes

Volume with

clones enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

encryption bool true, false Pool supports

encrypted

volumes

Volume with

encryption

enabled

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroups,

ontap-san

IOPS int positive integer Pool is capable

of guaranteeing

IOPS in this

range

Volume

guaranteed

these IOPS

solidfire-san

1: Not supported by ONTAP Select systems

In most cases, the values requested directly influence provisioning; for instance, requesting thick provisioning

results in a thickly provisioned volume. However, an Element storage pool uses its offered IOPS minimum and

8

maximum to set QoS values, rather than the requested value. In this case, the requested value is used only to

select the storage pool.

Ideally, you can use attributes alone to model the qualities of the storage you need to satisfy the needs of a

particular class. Trident automatically discovers and selects storage pools that match all of the attributes

that you specify.

If you find yourself unable to use attributes to automatically select the right pools for a class, you can use

the storagePools and additionalStoragePools parameters to further refine the pools or even to select

a specific set of pools.

You can use the storagePools parameter to further restrict the set of pools that match any specified

attributes. In other words, Trident uses the intersection of pools identified by the attributes and

storagePools parameters for provisioning. You can use either parameter alone or both together.

You can use the additionalStoragePools parameter to extend the set of pools that Trident uses for

provisioning, regardless of any pools selected by the attributes and storagePools parameters.

You can use the excludeStoragePools parameter to filter the set of pools that Trident uses for provisioning.

Using this parameter removes any pools that match.

In the storagePools and additionalStoragePools parameters, each entry takes the form

<backend>:<storagePoolList>, where <storagePoolList> is a comma-separated list of storage pools

for the specified backend. For example, a value for additionalStoragePools might look like

ontapnas_192.168.1.100:aggr1,aggr2;solidfire_192.168.1.101:bronze.

These lists accept regex values for both the backend and list values. You can use tridentctl get

backend to get the list of backends and their pools.

Kubernetes attributes

These attributes have no impact on the selection of storage pools/backends by Trident during dynamic

provisioning. Instead, these attributes simply supply parameters supported by Kubernetes Persistent Volumes.

Worker nodes are responsible for filesystem create operations and might require filesystem utilities, such as

xfsprogs.

Attribute Type Values Description Relevant

Drivers
Kubernetes

Version

fsType string ext4, ext3, xfs,

etc.

The file system

type for block

volumes

solidfire-san,

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

ontap-san-

economy,

eseries-iscsi

All

9

Attribute Type Values Description Relevant

Drivers
Kubernetes

Version

allowVolumeExp

ansion

boolean true, false Enable or

disable support

for growing the

PVC size

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

ontap-san-

economy,

solidfire-san,

gcp-cvs, azure-

netapp-files

1.11+

volumeBindingM

ode

string Immediate,

WaitForFirstCon

sumer

Choose when

volume binding

and dynamic

provisioning

occurs

All 1.19 - 1.24

• The fsType parameter is used to control the desired file system type for SAN LUNs. In

addition, Kubernetes also uses the presence of fsType in a storage class to indicate a

filesystem exists. Volume ownership can be controlled using the fsGroup security context

of a pod only if fsType is set. See Kubernetes: Configure a Security Context for a Pod or

Container for an overview on setting volume ownership using the fsGroup context.

Kubernetes will apply the fsGroup value only if:

◦ fsType is set in the storage class.

◦ The PVC access mode is RWO.

For NFS storage drivers, a filesystem already exists as part of the NFS export. In order to

use fsGroup the storage class still needs to specify a fsType. You can set it to nfs or any

non-null value.

• See Expand volumes for further details on volume expansion.

• The Trident installer bundle provides several example storage class definitions for use with

Trident in sample-input/storage-class-*.yaml. Deleting a Kubernetes storage class

causes the corresponding Trident storage class to be deleted as well.

Kubernetes VolumeSnapshotClass objects

Kubernetes VolumeSnapshotClass objects are analogous to StorageClasses. They help define multiple

classes of storage and are referenced by volume snapshots to associate the snapshot with the required

snapshot class. Each volume snapshot is associated with a single volume snapshot class.

A VolumeSnapshotClass should be defined by an administrator in order to create snapshots. A volume

snapshot class is created with the following definition:

10

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

apiVersion: snapshot.storage.k8s.io/v1beta1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

The driver specifies to Kubernetes that requests for volume snapshots of the csi-snapclass class are

handled by Trident. The deletionPolicy specifies the action to be taken when a snapshot must be deleted.

When deletionPolicy is set to Delete, the volume snapshot objects as well as the underlying snapshot on

the storage cluster are removed when a snapshot is deleted. Alternatively, setting it to Retain means that

VolumeSnapshotContent and the physical snapshot are retained.

Kubernetes VolumeSnapshot objects

A Kubernetes VolumeSnapshot object is a request to create a snapshot of a volume. Just as a PVC

represents a request made by a user for a volume, a volume snapshot is a request made by a user to create a

snapshot of an existing PVC.

When a volume snapshot request comes in, Trident automatically manages the creation of the snapshot for the

volume on the backend and exposes the snapshot by creating a unique

VolumeSnapshotContent object. You can create snapshots from existing PVCs and use the snapshots as a

DataSource when creating new PVCs.

The lifecyle of a VolumeSnapshot is independent of the source PVC: a snapshot persists even

after the source PVC is deleted. When deleting a PVC which has associated snapshots, Trident

marks the backing volume for this PVC in a Deleting state, but does not remove it completely.

The volume is removed when all the associated snapshots are deleted.

Kubernetes VolumeSnapshotContent objects

A Kubernetes VolumeSnapshotContent object represents a snapshot taken from an already provisioned

volume. It is analogous to a PersistentVolume and signifies a provisioned snapshot on the storage cluster.

Similar to PersistentVolumeClaim and PersistentVolume objects, when a snapshot is created, the

VolumeSnapshotContent object maintains a one-to-one mapping to the VolumeSnapshot object, which

had requested the snapshot creation.

Trident creates VolumeSnapshotContent objects and registers them with the Kubernetes

cluster automatically based on the volumes that it provisions. You are not expected to manage

them yourself.

The VolumeSnapshotContent object contains details that uniquely identify the snapshot, such as the

snapshotHandle. This snapshotHandle is a unique combination of the name of the PV and the name of

the VolumeSnapshotContent object.

When a snapshot request comes in, Trident creates the snapshot on the backend. After the snapshot is

created, Trident configures a VolumeSnapshotContent object and thus exposes the snapshot to the

Kubernetes API.

11

Kubernetes CustomResourceDefinition objects

Kubernetes Custom Resources are endpoints in the Kubernetes API that are defined by the administrator and

are used to group similar objects. Kubernetes supports the creation of custom resources for storing a collection

of objects. You can obtain these resource definitions by running kubectl get crds.

Custom Resource Definitions (CRDs) and their associated object metadata are stored by Kubernetes in its

metadata store. This eliminates the need for a separate store for Trident.

Beginning with the 19.07 release, Trident uses a number of CustomResourceDefinition objects to

preserve the identity of Trident objects, such as Trident backends, Trident storage classes, and Trident

volumes. These objects are managed by Trident. In addition, the CSI volume snapshot framework introduces

some CRDs that are required to define volume snapshots.

CRDs are a Kubernetes construct. Objects of the resources defined above are created by Trident. As a simple

example, when a backend is created using tridentctl, a corresponding tridentbackends CRD object is

created for consumption by Kubernetes.

Here are a few points to keep in mind about Trident’s CRDs:

• When Trident is installed, a set of CRDs are created and can be used like any other resource type.

• When upgrading from a previous version of Trident (one that used etcd to maintain state), the Trident

installer migrates data from the etcd key-value data store and creates corresponding CRD objects.

• When uninstalling Trident by using the tridentctl uninstall command, Trident pods are deleted but

the created CRDs are not cleaned up. See Uninstall Trident to understand how Trident can be completely

removed and reconfigured from scratch.

Trident StorageClass objects

Trident creates matching storage classes for Kubernetes StorageClass objects that specify

csi.trident.netapp.io/netapp.io/trident in their provisioner field. The storage class name matches

that of the Kubernetes StorageClass object it represents.

With Kubernetes, these objects are created automatically when a Kubernetes StorageClass

that uses Trident as a provisioner is registered.

Storage classes comprise a set of requirements for volumes. Trident matches these requirements with the

attributes present in each storage pool; if they match, that storage pool is a valid target for provisioning

volumes using that storage class.

You can create storage class configurations to directly define storage classes by using the REST API.

However, for Kubernetes deployments, we expect them to be created when registering new Kubernetes

StorageClass objects.

Trident backend objects

Backends represent the storage providers on top of which Trident provisions volumes; a single Trident instance

can manage any number of backends.

This is one of the two object types that you create and manage yourself. The other is the

Kubernetes StorageClass object.

12

https://docs.netapp.com/us-en/trident-2207/trident-managing-k8s/uninstall-trident.html

For more information about how to construct these objects, see configuring backends.

Trident StoragePool objects

Storage pools represent the distinct locations available for provisioning on each backend. For ONTAP, these

correspond to aggregates in SVMs. For NetApp HCI/SolidFire, these correspond to administrator-specified

QoS bands. For Cloud Volumes Service, these correspond to cloud provider regions. Each storage pool has a

set of distinct storage attributes, which define its performance characteristics and data protection

characteristics.

Unlike the other objects here, storage pool candidates are always discovered and managed automatically.

Trident Volume objects

Volumes are the basic unit of provisioning, comprising backend endpoints, such as NFS shares and iSCSI

LUNs. In Kubernetes, these correspond directly to PersistentVolumes. When you create a volume, ensure

that it has a storage class, which determines where that volume can be provisioned, along with a size.

In Kubernetes, these objects are managed automatically. You can view them to see what Trident

provisioned.

When deleting a PV with associated snapshots, the corresponding Trident volume is updated to

a Deleting state. For the Trident volume to be deleted, you should remove the snapshots of the

volume.

A volume configuration defines the properties that a provisioned volume should have.

Attribute Type Required Description

version string no Version of the Trident API

("1")

name string yes Name of volume to create

storageClass string yes Storage class to use when

provisioning the volume

size string yes Size of the volume to

provision in bytes

protocol string no Protocol type to use; "file"

or "block"

internalName string no Name of the object on the

storage system;

generated by Trident

cloneSourceVolume string no ontap (nas, san) &

solidfire-*: Name of the

volume to clone from

splitOnClone string no ontap (nas, san): Split the

clone from its parent

snapshotPolicy string no ontap-*: Snapshot policy

to use

13

https://docs.netapp.com/us-en/trident-2207/trident-use/backends.html

Attribute Type Required Description

snapshotReserve string no ontap-*: Percentage of

volume reserved for

snapshots

exportPolicy string no ontap-nas*: Export policy

to use

snapshotDirectory bool no ontap-nas*: Whether the

snapshot directory is

visible

unixPermissions string no ontap-nas*: Initial UNIX

permissions

blockSize string no solidfire-*: Block/sector

size

fileSystem string no File system type

Trident generates internalName when creating the volume. This consists of two steps. First, it prepends the

storage prefix (either the default trident or the prefix in the backend configuration) to the volume name,

resulting in a name of the form <prefix>-<volume-name>. It then proceeds to sanitize the name, replacing

characters not permitted in the backend. For ONTAP backends, it replaces hyphens with underscores (thus,

the internal name becomes <prefix>_<volume-name>). For Element backends, it replaces underscores

with hyphens.

You can use volume configurations to directly provision volumes using the REST API, but in Kubernetes

deployments we expect most users to use the standard Kubernetes PersistentVolumeClaim method.

Trident creates this volume object automatically as part of the provisioning

process.

Trident Snapshot objects

Snapshots are a point-in-time copy of volumes, which can be used to provision new volumes or restore state.

In Kubernetes, these correspond directly to VolumeSnapshotContent objects. Each snapshot is associated

with a volume, which is the source of the data for the snapshot.

Each Snapshot object includes the properties listed below:

Attribute Type Required Description

version String Yes Version of the Trident API

("1")

name String Yes Name of the Trident

snapshot object

internalName String Yes Name of the Trident

snapshot object on the

storage system

volumeName String Yes Name of the Persistent

Volume for which the

snapshot is created

14

Attribute Type Required Description

volumeInternalName String Yes Name of the associated

Trident volume object on

the storage system

In Kubernetes, these objects are managed automatically. You can view them to see what Trident

provisioned.

When a Kubernetes VolumeSnapshot object request is created, Trident works by creating a snapshot object

on the backing storage system. The internalName of this snapshot object is generated by combining the

prefix snapshot- with the UID of the VolumeSnapshot object (for example, snapshot-e8d8a0ca-9826-

11e9-9807-525400f3f660). volumeName and volumeInternalName are populated by getting the details

of the backing

volume.

Astra Trident ResourceQuota object

The Trident deamonset consumes a system-node-critical Priority Class—the highest Priority Class

available in Kubernetes—to ensure Astra Trident can identify and clean up volumes during graceful node

shutdown and allow Trident daemonset pods to preempt workloads with a lower priority in clusters where there

is high resource pressure.

To accomplish this, Astra Trident employs a ResourceQuota object to ensure a "system-node-critical" Priority

Class on the Trident daemonset is satisfied. Prior to deployment and daemonset creation, Astra Trident looks

for the ResourceQuota object and, if not discovered, applies it.

If you need more control over the default Resource Quota and Priority Class, you can generate a

custom.yaml or configure the ResourceQuota object using Helm chart.

The following is an example of a `ResourceQuota`object prioritizing the Trident daemonset.

apiVersion: <version>

kind: ResourceQuota

metadata:

 name: trident-csi

 labels:

 app: node.csi.trident.netapp.io

spec:

 scopeSelector:

 matchExpressions:

 - operator : In

 scopeName: PriorityClass

 values: ["system-node-critical"]

For more information on Resource Quotas, see Kubernetes: Resource Quotas.

15

https://kubernetes.io/docs/concepts/policy/resource-quotas/

Clean up ResourceQuota if installation fails

In the rare case where installation fails after the ResourceQuota object is created, first try uninstalling and

then reinstall.

If that doesn’t work, manually remove the ResourceQuota object.

Remove ResourceQuota

If you prefer to control your own resource allocation, you can remove the Astra Trident ResourceQuota object

using the command:

kubectl delete quota trident-csi -n trident

tridentctl commands and options

The Trident installer bundle includes a command-line utility, tridentctl, that provides

simple access to Astra Trident. Kubernetes users with sufficient privileges can use it to

install Astra Trident as well as to interact with it directly to manage the namespace that

contains the Astra Trident pod.

For usage information, run tridentctl --help.

The available commands and global options are:

Usage:

 tridentctl [command]

Available commands:

• create: Add a resource to Astra Trident.

• delete: Remove one or more resources from Astra Trident.

• get: Get one or more resources from Astra Trident.

• help: Help about any command.

• images: Print a table of the container images Astra Trident needs.

• import: Import an existing resource to Astra Trident.

• install: Install Astra Trident.

• logs: Print the logs from Astra Trident.

• send: Send a resource from Astra Trident.

• uninstall: Uninstall Astra Trident.

• update: Modify a resource in Astra Trident.

16

https://docs.netapp.com/us-en/trident-2207/trident-managing-k8s/uninstall-trident.html
https://github.com/NetApp/trident/releases

• upgrade: Upgrade a resource in Astra Trident.

• version: Print the version of Astra Trident.

Flags:

• `-d, --debug: Debug output.

• `-h, --help: Help for tridentctl.

• `-n, --namespace string: Namespace of Astra Trident deployment.

• `-o, --output string: Output format. One of json|yaml|name|wide|ps (default).

• `-s, --server string: Address/port of Astra Trident REST interface.

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1]

(for IPv6) only.

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1] (for

IPv6) only.

create

You can use run the create command to add a resource to Astra Trident.

Usage:

 tridentctl create [option]

Available option:

backend: Add a backend to Astra Trident.

delete

You can run the delete command to remove one or more resources from Astra Trident.

Usage:

 tridentctl delete [option]

Available options:

• backend: Delete one or more storage backends from Astra Trident.

• snapshot: Delete one or more volume snapshots from Astra Trident.

• storageclass: Delete one or more storage classes from Astra Trident.

• volume: Delete one or more storage volumes from Astra Trident.

17

get

You can run the get command to get one or more resources from Astra Trident.

Usage:

 tridentctl get [option]

Available options:

• backend: Get one or more storage backends from Astra Trident.

• snapshot: Get one or more snapshots from Astra Trident.

• storageclass: Get one or more storage classes from Astra Trident.

• volume: Get one or more volumes from Astra Trident.

images

You can run the images flag to print a table of the container images Astra Trident needs.

Usage:

 tridentctl images [flags]

Flags:

* -h, --help`: Help for images.

* -v, --k8s-version string`: Semantic version of Kubernetes cluster.

import volume

You can run the import volume command to import an existing volume to Astra Trident.

Usage:

 tridentctl import volume <backendName> <volumeName> [flags]

Aliases:

volume, v

Flags:

• `-f, --filename string: Path to YAML or JSON PVC file.

• `-h, --help: Help for volume.

• `--no-manage: Create PV/PVC only. Don’t assume volume lifecycle management.

18

install

You can run the install flags to install Astra Trident.

Usage:

 tridentctl install [flags]

Flags:

• `--autosupport-image string: The container image for Autosupport Telemetry (default

"netapp/trident autosupport:20.07.0").

• `--autosupport-proxy string: The address/port of a proxy for sending Autosupport Telemetry.

• `--csi: Install CSI Trident (override for Kubernetes 1.13 only, requires feature gates).

• `--enable-node-prep: Attempt to install required packages on nodes.

• `--generate-custom-yaml: Generate YAML files without installing anything.

• `-h, --help: Help for install.

• `--http-request-timeout: Override the HTTP request timeout for Trident controller’s REST API

(default 1m30s).

• `--image-registry string: The address/port of an internal image registry.

• `--k8s-timeout duration: The timeout for all Kubernetes operations (default 3m0s).

• `--kubelet-dir string: The host location of kubelet’s internal state (default "/var/lib/kubelet").

• `--log-format string: The Astra Trident logging format (text, json) (default "text").

• `--pv string: The name of the legacy PV used by Astra Trident, makes sure this doesn’t exist (default

"trident").

• `--pvc string: The name of the legacy PVC used by Astra Trident, makes sure this doesn’t exist

(default "trident").

• `--silence-autosupport: Don’t send autosupport bundles to NetApp automatically (default true).

• `--silent: Disable most output during installation.

• `--trident-image string: The Astra Trident image to install.

• `--use-custom-yaml: Use any existing YAML files that exist in setup directory.

• `--use-ipv6: Use IPv6 for Astra Trident’s communication.

logs

You can run the logs flags to print the logs from Astra Trident.

Usage:

 tridentctl logs [flags]

19

Flags:

• `-a, --archive: Create a support archive with all logs unless otherwise specified.

• `-h, --help: Help for logs.

• `-l, --log string: Astra Trident log to display. One of trident|auto|trident-operator|all (default "auto").

• `--node string: The Kubernetes node name from which to gather node pod logs.

• `-p, --previous: Get the logs for the previous container instance if it exists.

• `--sidecars: Get the logs for the sidecar containers.

send

You can run the send command to send a resource from Astra Trident.

Usage:

 tridentctl send [option]

Available option:

autosupport: Send an Autosupport archive to NetApp.

uninstall

You can run the uninstall flags to uninstall Astra Trident.

Usage:

 tridentctl uninstall [flags]

Flags:

* -h, --help: Help for uninstall.

* --silent: Disable most output during uninstallation.

update

You can run the update commands to modify a resource in Astra Trident.

Usage:

 tridentctl update [option]

Available options:

backend: Update a backend in Astra Trident.

20

upgrade

You can run the upgrade commands to upgrade a resource in Astra Trident.

Usage:

tridentctl upgrade [option]

Available option:

volume: Upgrade one or more persistent volumes from NFS/iSCSI to CSI.

version

You can run the version flags to print the version of tridentctl and the running Trident service.

Usage:

 tridentctl version [flags]

Flags:

* --client: Client version only (no server required).

* -h, --help: Help for version.

Pod Security Standards (PSS) and Security Context
Constraints (SCC)

Kubernetes Pod Security Standards (PSS) and Pod Security Policies (PSP) define permission levels and

restrict the behavior of pods. OpenShift Security Context Constraints (SCC) similarly define pod restriction

specific to the OpenShift Kubernetes Engine. To provide this customization, Astra Trident enables certain

permissions during installation. The following sections detail the permissions set by Astra Trident.

PSS replaces Pod Security Policies (PSP). PSP was deprecated in Kubernetes v1.21 and will

be removed in v1.25. For more information, see Kubernetes: Security.

Required Kubernetes Security Context and Related Fields

Permission Description

Privileged CSI requires mount points to be Bidirectional, which

means the Trident node pod must run a privileged

container. For more information, see Kubernetes:

Mount propagation.

Host networking Required for the iSCSI daemon. iscsiadm manages

iSCSI mounts and uses host networking to

communicate with the iSCSI daemon.

Host IPC NFS uses interprocess communication (IPC) to

communicate with the NFSD.

21

https://kubernetes.io/docs/concepts/security/
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Permission Description

Host PID Required to start rpc-statd for NFS. Astra Trident

queries host processes to determine if rpc-statd is

running before mounting NFS volumes.

Capabilities The SYS_ADMIN capability is provided as part of the

default capabilities for privileged containers. For

example, Docker sets these capabilities for privileged

containers:

CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

Seccomp Seccomp profile is always "Unconfined" in privileged

containers; therefore, it cannot be enabled in Astra

Trident.

SELinux On OpenShift, privileged containers are run in the

spc_t ("Super Privileged Container") domain, and

unprivileged containers are run in the container_t

domain. On containerd, with container-

selinux installed, all containers are run in the spc_t

domain, which effectively disables SELinux.

Therefore, Astra Trident does not add

seLinuxOptions to containers.

DAC Privileged containers must be run as root. Non-

privileged containers run as root to access unix

sockets required by CSI.

Pod Security Standards (PSS)

Label Description Default

pod-

security.kubernetes.io/enf

orce

pod-

security.kubernetes.io/enf

orce-version

Allows the Trident Controller and

nodes to be admitted into the install

namespace.

Do not change the namespace

label.

enforce: privileged

enforce-version: <version

of the current cluster or

highest version of PSS

tested.>

Changing the namespace labels can result in pods not being scheduled, an "Error creating: …"

or, "Warning: trident-csi-…". If this happens, check if the namespace label for privileged was

changed. If so, reinstall Trident.

Pod Security Policies (PSP)

Field Description Default

allowPrivilegeEscalation Privileged containers must allow

privilege escalation.
true

22

Field Description Default

allowedCSIDrivers Trident does not use inline CSI

ephemeral volumes.

Empty

allowedCapabilities Non-privileged Trident containers

do not require more capabilities

than the default set and privileged

containers are granted all possible

capabilities.

Empty

allowedFlexVolumes Trident does not make use of a

FlexVolume driver, therefore they

are not included in the list of

allowed volumes.

Empty

allowedHostPaths The Trident node pod mounts the

node’s root filesystem, therefore

there is no benefit to setting this list.

Empty

allowedProcMountTypes Trident does not use any

ProcMountTypes.

Empty

allowedUnsageSysctls Trident does not require any unsafe

sysctls.

Empty

defaultAddCapabilities No capabilities are required to be

added to privileged containers.

Empty

defaultAllowPrivilegeEscal

ation

Allowing privilege escalation is

handled in each Trident pod.
false

forbiddenSysctls No sysctls are allowed. Empty

fsGroup Trident containers run as root. RunAsAny

hostIPC Mounting NFS volumes requires

host IPC to communicate with

nfsd

true

hostNetwork iscsiadm requires the host network

to communicate with the iSCSI

daemon.

true

hostPID Host PID is required to check if

rpc-statd is running on the node.
true

hostPorts Trident does not use any host

ports.

Empty

privileged Trident node pods must run a

privileged container in order to

mount volumes.

true

readOnlyRootFilesystem Trident node pods must write to the

node filesystem.
false

requiredDropCapabilities Trident node pods run a privileged

container and cannot drop

capabilities.

none

23

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

Field Description Default

runAsGroup Trident containers run as root. RunAsAny

runAsUser Trident containers run as root. runAsAny

runtimeClass Trident does not use

RuntimeClasses.

Empty

seLinux Trident does not set

seLinuxOptions because there

are currently differences in how

container runtimes and Kubernetes

distributions handle SELinux.

Empty

supplementalGroups Trident containers run as root. RunAsAny

volumes Trident pods require these volume

plugins.
hostPath, projected,

emptyDir

Security Context Constraints (SCC)

Labels Description Default

allowHostDirVolumePlugin Trident node pods mount the

node’s root filesystem.
true

allowHostIPC Mounting NFS volumes requires

host IPC to communicate with

nfsd.

true

allowHostNetwork iscsiadm requires the host network

to communicate with the iSCSI

daemon.

true

allowHostPID Host PID is required to check if

rpc-statd is running on the node.
true

allowHostPorts Trident does not use any host

ports.
false

allowPrivilegeEscalation Privileged containers must allow

privilege escalation.
true

allowPrivilegedContainer Trident node pods must run a

privileged container in order to

mount volumes.

true

allowedUnsafeSysctls Trident does not require any unsafe

sysctls.
none

allowedCapabilities Non-privileged Trident containers

do not require more capabilities

than the default set and privileged

containers are granted all possible

capabilities.

Empty

defaultAddCapabilities No capabilities are required to be

added to privileged containers.

Empty

24

Labels Description Default

fsGroup Trident containers run as root. RunAsAny

groups This SCC is specific to Trident and

is bound to its user.

Empty

readOnlyRootFilesystem Trident node pods must write to the

node filesystem.
false

requiredDropCapabilities Trident node pods run a privileged

container and cannot drop

capabilities.

none

runAsUser Trident containers run as root. RunAsAny

seLinuxContext Trident does not set

seLinuxOptions because there

are currently differences in how

container runtimes and Kubernetes

distributions handle SELinux.

Empty

seccompProfiles Privileged containers always run

"Unconfined".

Empty

supplementalGroups Trident containers run as root. RunAsAny

users One entry is provided to bind this

SCC to the Trident user in the

Trident namespace.

n/a

25

Labels Description Default

volumes Trident pods require these volume

plugins.
hostPath, downwardAPI,

projected, emptyDir

:leveloffset: -1

:leveloffset: -1

<<<

Copyright information

Copyright © 2022 NetApp, Inc. All

Rights Reserved. Printed in the

U.S. No part of this document

covered by copyright may be

reproduced in any form or by any

means—graphic, electronic, or

mechanical, including

photocopying, recording, taping, or

storage in an electronic retrieval

system—without prior written

permission of the copyright owner.

Software derived from copyrighted

NetApp material is subject to the

following license and disclaimer:

THIS SOFTWARE IS PROVIDED

BY NETAPP “AS IS” AND

WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR

PURPOSE, WHICH ARE HEREBY

DISCLAIMED. IN NO EVENT

SHALL NETAPP BE LIABLE FOR

ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL,

EXEMPLARY, OR

CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF

SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING

26

	Reference : Astra Trident
	Table of Contents
	Reference
	Astra Trident ports
	Astra Trident REST API
	Command-line options
	NetApp products integrated with Kubernetes
	Kubernetes and Trident objects
	tridentctl commands and options
	Pod Security Standards (PSS) and Security Context Constraints (SCC)

